
Multi Objective Higher Order Mutation Testing with GP

William B. Langdon, Mark Harman, Yue Jia

Department of Computer Science, CREST centre, King’s College, London, WC2R 2LS, UK

Wi11iam.Langdon@kcl.ac.uk,Mark.Harman@kcl.ac.uk,Yue.Jia@kcl.ac.uk

ABSTRACT
Mutation testing is a powerful software engineering tech-
nique for fault finding. It works by injecting known faults
(mutations) into software and seeing if the test suite finds
them. It remains very expensive and the few valuable tra-
ditional mutants that resemble real faults are mixed in with
many others that denote unrealistic faults. The expense and
lack of realism inhibit industrial uptake of mutation testing.
Genetic programming searches the space of complex faults to
find realistic higher order mutants. Despite the much larger
search space, we have found mutants composed of multiple
changes to the C source code that challenge the tester and
which cannot be represented in the first order space.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms: Verification

Usually each mutant is created by the insertion of a single
simple fault. The faults are traditionally created by a small
syntactic change, such as the replacement of one arithmetic
or relational operator with another. If a test input can dis-
tinguish between a mutant and the original program, by
causing each to produce a different output, then the test
input is said to ‘kill’ the mutant. The percentage of mu-
tants killed gives a measure of the effectiveness of a test
suite. Mutation testing has also been used to assess other
test coverage criteria, such as branch coverage and statement
coverage and for test case generation.

Unfortunately, traditional mutation testing is very costly
since there are many possible simple mutations which are
uninteresting since they are readily killed by the simplest of
test cases. This leads to wasted effort spent killing trivial
mutants. The vast majority of hard-to-fix expensive faults
are complex (i.e. higher order mutants).

We suggest mutation testing should be seeking faults which
cause the mutated program to behave similarly to the orig-
inal. I.e. semantic mutants rather than syntactic mutants.
We explore the relationship between these two notions of
similarity; syntactic and semantic using each as an objec-
tive in a multi-objective Pareto GP system. The syntactic
difference is based on the changes made by the GP to the C
source code and the number of them. The semantic differ-
ence is defined as the number of tests which kill the mutant.
The fewer, the harder it would be to detect (and eventually

Copyright is held by the author/owner(s).
GECCO’09, July 8–12, 2009, Montreal, Canada
ACM 978-1-60558-325-9/09/07.

1. Number of tests passed

2. Syntatic differenceEvolution

10000 mutants

gcc

population.exe

source.c

Pareto

Grammar
BNF

Test Cases

GP

NSGA−II

Figure 1: High order Multi-objective mutation test-
ing. The BNF grammar tells GP where it can in-
sert mutations into source.c. Initially GP creates
a population of random mutations, which are com-
piled and run against the test suite. NSGA-II selects
the mutants to retain and instructs the GP which
mutants to recombine or further change. The evo-
lutionary cycle continues for 50 or 500 generations.

fix) the fault. Equivalent mutants, where the changes to the
code make no (detectable) difference, are usually uninterest-
ing and are excluded by giving them a very poor fitness.

We study the set of mutation operators that replace one
relational operator with another. These are interesting be-
cause they denote the ways in which one might alter the
flow of control within a program. These may resemble sub-
tle complex faults that programmers are likely to commit
which might resemble such slightly anomalous control flow.

The target source code is automatically analysed to cre-
ate a BNF grammar which describes all its possible mutants.
Unlike most BNFs, the grammar consists mostly of termi-
nals which regenerate the fixed portions of the source code.
However all comparisons are replaced by a BNF rule with
more than one production. By choosing between these al-
ternative expansions, the GP generates a mutated program.

Monte Carlo sampling of higher order mutants confirms
the well–known mutation testing coupling hypothesis. I.e.
adding changes to a faulty program tends to make it more
error–prone. However, there remain a non–trivial set of
higher order mutants that are hard to kill.

We have found higher order mutants of the TCAS aircraft
Traffic alert and Collision Avoidance System program that
are harder to kill than any of the first order mutants.

We show the exploration of the space of higher order mu-
tants may reveal the structure of the test suite.

GP mutation testing is able to find complex faults denoted
by higher order mutants of real programs that cannot be
represented by any first order mutant and which are harder
to kill than any first order mutant.

http://www.cs.ucl.ac.uk/staff/W.Langdon
http://www.dcs.kcl.ac.uk/staff/mark/
http://www.dcs.kcl.ac.uk/pg/jiayue/
http://crest.dcs.kcl.ac.uk/

