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Evolving GeneChip Correlation Predictors on
Parallel Graphics Hardware

W. B. Langdon

Abstract—A GPU is used to datamine five million correlations
between probes within Affymetrix HG-U133A probesets across
6685 human tissue samples from NCBI’s GEO database. These
concordances are used as machine learning training data for
genetic programming running on a Linux PC with a RapidMind
OpenGL GLSL backend. GPGPU is used to identify techno-
logical factors influencing High Density Oligonuclotide Arrays
(HDONA) performance. GP suggests mismatch (PM/MM) and
Adenosine/Guanine ratio influence microarray quality. Initial
results hint that Watson-Crick probe self hybridisation or fold-
ing is not important. Under GPGPGPU an nVidia GeForce 8800
GTX interprets 300 million GP primitives/second (300 MGPops,
approx 8 GFLOPS).

I. I NTRODUCTION

Affymetrix GeneChips, such as their HG-U133A, provide
multiple measurements per gene transcript. Individual mea-
surements are provide by short (25 base) DNA sequences
(known as probes, cf. Figure 2). These sequences of DNA
bases are designed to be complementary to known locations
in human genes. Being complementary, the gene product
(mRNA) preferentially binds to the probe. Probes are tightly
placed on a glass slide in a square grid pattern. A fluorescent
dye is used to quantify how much mRNA is bound to each
probe.

Measurement of ultra low (pico molar) concentrations
of long chain molecules, like mRNA, is noisy. Affymetrix
provides various control signals, including multiple mea-
surements to reduce noise. One controversial mechanism is
adjacent to each measuring probe is a control “mismatch”
probe. The MM probe is identical to the “perfect match”
PM probe except its central base is anti-complementary.
The intention being the MM measurement would give an
extremely sensitive background reading for its PM partner.
The true signal being given by subtracting the MM from the
PM signal. However in many cases the MM signal is actually
higher than the PM signal. This has led to mismatch probes
being widely distrusted and often ignored.

While nothing is simple in Biology, to a first approxima-
tion the amount of mRNA produced by a gene should be the
same no matter which part of the mRNA molecule is bound
to a probe. Affymetrix groups probes into probesets. Each
probeset targets a gene. Excluding controls, the HG-U133A
has 22 215 probesets. For simplicity we concentrate upon
the 21 765 HG-U133A probesets with exactly 11 pairs of
probes. Figure 1 shows for an example probeset its 231
correlations as a “heatmap” (yellow/lighter corresponds to
greater consistency between pairs of probes).
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Fig. 1. Correlation coefficients between 22 probes for gene “signal
transducing adaptor molecule (SH3 domain and ITAM motif) 2” STAM2.
Nine of the perfect match (lower left) are correlated but probes PM7 and
PM10 are not. PM7 and PM10 have stable low intensities (106, 89). The
mismatch probes are not well correlated, either amongst themselves (top
right) or with the PMs (lower right).

There are several known Biological reasons which might
lead to probes on the same gene giving consistently unrelated
readings. (Alternative splicing, alternative polyadenylation
and 3’-5’ degradation, come to mind [1]. See also the next
section.) However these seem unable explain all the many
cases of poor correlation. Can we find technological reasons?

The next section will describe the preparation of datasets
containing the correlation coefficients and facts about
GeneChip technology. Section III describes the genetic pro-
gramming system and its operation on a graphics processing
unit (GPU) [2], [3], [4], [5]. Our genetic programming (GP)
uses facts about the HG-U133A probes to predict which
are well correlated with gene activity and which are not.
Section IV describes how well the GP does. It uses the
evolved population to suggest the relative importance of
various components of the GeneChip technology. Then it
gives the speed of the GPU. In Section V we conclude that
PM/MM and the relative numbers of As and Gs are the most
important.
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Fig. 2. Schematic of an Affymetrix probe (209649at PM5, left) bound
with complementary target sequence (right). DNA double helix represented
as straight vertical ladder. Note complementary T–A and C–G base bindings
are shown by red rectangles. The 25 bases of the probe are tethered to
the glass slide by a flexible linker (black lower left). Firmly bound target
sequences can be detected by treatment with a florescent dye, whose location
is detected with a laser and an optical microscope. The florescent intensity
is approximately proportional to the amount of bound target and so gives
some indication of target gene activity.

II. I NPUTS TOEXPLAIN POOR CORRELATION

In 2007, as part of major bioinformatics datamining ex-
ercise, all the human Affymetrix GeneChips in the USA
National Center for Biotechnology Information’s GEO [7]
had been down loaded [6]. In particular 6685 HG-U133A,
each containing half a million data points from a wide range
of Human tissues and disease states were available.

Since it is impossible to accurately control the total amount
of mRNA dropped on each GeneChip, it is necessary to
normalise the data. We used quantile normalisation, which
non-linearly rescales the data so that the mean and standard
deviation (and all higher moments) are the same. We nor-
malised each chip against a reference average chip [6].

The correlation coefficient of each pair of probes within
each probeset in the HG-U133A design was calculated. (A
total of 5 310 652 correlation coefficients.) To avoid undue
influence of outliers: if either probe was more than three
standard deviations from its average value that tissue sample
was exclude from the calculation of that probe pairs correla-
tion. Also, each GeneChip was checked for spatial defects [6]
and the sample exclude if either probe was within 4 probes
of a known spatial error. Even after excluding these data, all
correlations used probe pairs from several thousand samples.

The placement of probes on GeneChips, like the
HG-U133A, is designed to put similar probes next to each
other. This is done to ease the photolithographic chemical
process used in manufacture and leads to horizontal bands
in average intensity. Probe variability tends to increase with
average intensity (until the signal is so strong that the probe
saturates, which reduces its ability to vary). Since signal
variation (as opposed to noise) is required for correlation,
correlation also tends to increase with average intensity lead-
ing to horizontal bands in correlation across the GeneChip.
Figure 3 shows the expected bands in average correlation for
each probe.

The distribution of probe-probe correlation coefficients for
probes in the same probeset has two peaks: one near 0.8 and
the other near 0, cf. Figure 4. As the peak at zero emphasises,
there are many probes which are simply not well correlated
with the other members of their probeset. Explaining why is
a major research effort. The peak at 0.8 corresponds better
behaved probes.

Part of the sample preparation process requires an enzyme
to act upon purified mRNA starting at the 3’ end. I.e. at
the normal back end of mRNA. The enzyme works its way
forward towards the 5’ front of the mRNA. Unfortunately it
has a tendency to fall off. Therefore the strength of signals
tends to fall further away from the 3’ end. This is a known
problem and laboratories regularly check that the effect is
not too extreme in each sample. Nonetheless, there is a small
trend for correlation between probes in the same probeset to
fall as the distance between where they measure along the
mRNA gene transcript increases. (The 5’ end is the negative
direction in Figure 4).

To exclude genes which are either never expressed (or are
constantly expressed) we selected 13 863 probesets where
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Fig. 3. Mean of 5 310 652 correlations between probes in probesets across
6685 HG-U133A GeneChips. White regions contain no probesets. Smallest
-0.63 (red). Median 0.16. Max 0.97 (yellow). 0.7% 3341 probes have a
mean correlation greater than 0.8 with the other probes in their probeset.
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Fig. 4. Correlation between PM probe and last PM probe in each GEO
HG-U133A probesets. (Approx 10000 data points per distance bin. Controls
excluded.)

three or more probe pairs had correlations of 0.8 or more.
These were evenly split into three to provide independent
training, test and validation data.

To give each probe the best chance we looked at all 21
of its pairings with other members of its probeset and took
the one for which it was most correlated. The technological
data for the probe is summarised in Table I.

A. GP Training Set

As Figure 4 has shown correlation coefficients cover a
wide range with many taking intermediate values. Since we
are using correlation only as an indication of how well a
probe is working we decided to exclude the middle values
from training and instead use probe pairs that were highly
correlated or were very poorly correlated.
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Fig. 5. GP training data changed each generation. GP trained on 100 probes
well correlated with rest of their probeset (top) and 100 poorly correlated
(bottom).

Of the 101 662 available training examples, the 5200 most
correlated and the 5200 least correlated we chosen. Each
high correlation example was paired with the corresponding
low correlation example and then the pairs were put into a
random order.

Each generation the GP uses two hundred randomly cho-
sen but different probes for training. This ensure there are
100 high corelation probe and 100 low corelation probes.
Cf. Figure 5.

B. Probe Folding

Affymetrix discounts the idea that poor probe performance
arrises from its single stranded DNA probes binding to
themselves to form a stable DNA double helix and so not
being available to bind to mRNA. Nevertheless the suspicion
remains that this is a possible explanation for poor probe
performance. We provided the GP with the results of two
of the many possible simple probe bindings (see Figures 6
and 7). For each the GP is given the fraction of the top of the
probe left exposed (i.e. not part of a DNA spiral). Secondly
we crudely model the thermodynamic strength of the binding
by counting the number of complementary base pairing the
spiral contains. Since the probes are only 25 bases long the
optimal binding is readily estimated by exhaustive search.

III. E VOLVING CORRELATION PREDICTION

The genetic programming system is a traditional tree
GP system with subtree crossover and a range of mutation
operators [9], [10], [3] (cf. Table I). Whilst [11] demonstrates
(albeit for evolutionary programming rather than for GP)
that a GPU can implement mutation and selection, these
are done by the host CPU. This means each generation
the whole population and the training data are transfered to
the GPU. However the run time is dominated by the time
taken to interpret each GP individual, rather than the genetic
operations (see Section IV-C). Therefore we anticipate only
a modest improvement might be possible by implementing
mutation etc. on the GPU.
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Fig. 6. Possible pairing of probe with neighbour (which will have same
sequence). Watson-Crick binding occurs between ovals and circles of the
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Fig. 7. (Right) DNA sequences may be self complementary forming
hairpins loops. Red rectangle indicates binding between complementary
bases.

TABLE I
GP PARAMETERS FORGENECHIP CORRELATION PREDICTION

Function set: ADD SUB MUL DIV MIN MAX operating on floats
Terminal set:

probe indexself , MMself (0/1), probeindexother, MMother (0/1),
Position of two probes on HG-U133A GeneChip (Xself , Yself , Xother,
Yother).
Distance along mRNA transcript, as defined by Affymetrix, from last
probe in probe set and distance from other probe.
The same two distances expressed as a fraction of the length of mRNA
spanned by the probeset (Locself (ratio) and i-o(ratio) ).
Number of Adenosine (A), Thymine (T), Guanine (G) and Cytosine (C)
bases in the probe both (as integers and as fractions of 25).
The twenty five bases in the probe (coded as A,T,G,C =1/π, −1/π,
e−3/4, −e−3/4).
Fraction of probe exposed assuming it was bound to neighbour and
number of complementary pairs in the binding, cf. Figure 6.
The same ratio and count assuming probe binds to itself via a single
hairpin, cf. Figure 7.
1001 Constants -5, -4.99, -4.98,... 4.98 ,4.99, 5

Fitness:
P200 |best correlation−prediction|
To avoid problems with calculations (e.g. divide by zero)
producing infinity, the absolute prediction error calculated for
each of the 200 fitness cases was limited to at most1010.

Selection: tournament size 4 in overlapping fine grained21×21 demes
[10], non elitist, Population size128× 128 = 16384

Initial pop: ramped half-and-half 1:3 (50% of terminals are constants)
Parameters: 50% subtree crossover.

50% mutation (point 22.5%, constants 22.5%, subtree 5%).
Max tree size 63, Max tree depth 8.

Termination: 50 generations

On the GPU each of the 16 384 GP individuals is in-
terpreted on 200 training examples. (As mentioned in Sec-
tion II-A, every generation two hundred new examples are
used.)

Since the GPU provides SIMD parallel operation [12]
the GPU interpreter is stack based and uses reverse polish
notation (RPN/postfix) rather than the usual Lisp prefix tree
structure. To avoid data conversion between the CPU and
GPU the GP genetic operations have been modified to use
the linearised RPN representation. Linearised RPN gives a
compact and very fast implementation. Details of the GPGPU
implementation are given in [3], whilst [4] provides and
example of its use in Bioinformatics. C++ code is available
via FTP ftp://cs.ucl.ac.uk/genetic/gp-code/
gpu gp 1.tar.gz

IV. RESULTS

In the first run GP evolved a predictor (see Figure 8)
which on the last generation’s training data is on average
0.16 from the actual correlation. To convert the evolved
continuous regression problem into a binary classify we use
our previous threshold of 0.8 (cf. Section II) to divide good
from poor probes. Table II contains a confusion matrix which
compares the actual maximum correlation of the probes
with the other members of their probeset with the evolved
prediction on the whole of the training set (including the
91 462 middling values which GP never saw). Unlike in many
machine learning applications, there is no evidence of over
fitting. Indeed the corresponding results for the test set (right
of Table II) are not significantly different (χ2, 3 dof).
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TABLE II
PERFORMANCE OF EVOLVED PREDICTOR

Whole training set
Prediction: poor good

poor (<0.8) 32 009 15 082
good (≥0.8) 23 551 31 020

Test set
Prediction: poor good

poor (<0.8) 32 112 15 097
good (≥0.8) 23 463 30 990
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Fig. 9. End of run abundance of GP primitives in the evolved population

A. Evolved Predictor

The predictor found by genetic programming is given in
Figure 8. Essentially it consists of four sub formulae and
returns the maximum of them. MMself plays a dominate
role. For perfect match probes MMself = 0 and the predictor
returns 0.97. For mismatch probes MMself = 1 and usually
GP predicts a correlation below 0.8 (i.e. a poor probe) unless
the probe contains more Guanine than Adenosine bases.
Typically if there are more than twice as many Guanine
as Adenosine then GP predicts the mismatch probe will
have a high correlations (with at least one other probe in its
probeset). The other technological inputs have little impact
of the prediction.

B. Relative Importance of parts of GeneChip Technology

As expected, over much of the range of values the fre-
quence of GP primitives evolves to follow a Zipf like law
[13]. This give rise to an almost straight line with a gradient
near -1, when frequency is plotted against rank on log-log
scales, cf. Figure 9. Of particular interest are those inputs
which occur frequently, since this suggests that they can help
predict if a probe works well or not.

Table III shows important factors include: 1) whether the
probe is a perfect match or mismatch MMself , 2) the number
of A T G and C’s in the probe. These reinforce the message
drawn from the best individual in the final population in
the previous section. That is, the most important factor in
differentiating a working probe from one with low corelation
with the other members of its probeset is whether or not it is
a perfect match or mismatch probe. Second is the fraction of
of the four bases. As Figure 9 shows there is a gap between
these and the other inputs (highlighted by horizontal line in

TABLE III
POPULAR HG-U133A PROBE CORRELATION PREDICTION INPUTS

Rank Name Count
2 MM self 54147
5 C(frac) 42710
9 G(frac) 19393

11 A 15601
12 G 9533
16 A(frac) 5725
18 T(frac) 4038
19 Seq22 2488
20 i-o(ratio) 2419
21 Seq19 2383
22 Seq18 2358
24 Seq16 2220

Plotted as+ in Figure 9.

Table III.) This suggests perhaps the other inputs available
to GP are of little importance.

Of the 8 locations inputs (be it X,Y, sequence in probeset,
or location along mRNA transcript) only the relative distance
between the two probes along the transcript (i-oratio) appears
in the top 25. The hairpin and neighbour probe binding inputs
calculated from the probe’s DNA sequence (see Section II-B)
appear well down the list (40 onwards, after many constants).
The middle base (Seq13, which is the only difference be-
tween PM and MM probes) is even further down the list at
rank 73. This is surprisingly low, since Seq13 is known to
be important in the comparison of PM vs. MM probes [14].

C. RapidMind C++ Performance

On average fitness evaluation took the GPU 13.58 Sec.
(Total run time 15.94 Sec.) The average program size was
25.56. Since the 51 populations each contained 16 384 pro-
grams, on average the GPU interpreted 314 million GP
primitives per second.

Without detailed examination of the RapidMind GPU
compiler it is difficult to estimate how many floating point
operations are required to interpret each GP primitive. Since
we are using defaults for all the RapidMind parameters, the
GPU compiler optimises. Assuming the compiler removes
common expressions, we estimate approximately 24 FLOPs
are needed for each GP function or leaf. This suggests the
GPU is delivering very roughly in the region of 8 GFLOP.

V. CONCLUSIONS

Using the affy bioconductor R statistical package we can
calculate correlations across thousands of publicly available
GeneChips. Even after excluding outliers and spatial flaws in
the data, the five million correlations between probes in the
same probeset, which should be measuring the same gene,
show wide variation. Genetic programming running on a state
of the art graphic processing unit automatically evolved a
biologically feasible predictor of probe quality. Analysis of
the GP’s population lends support for Affymetrix’ claim that
poor probe performance is not due to probe’s simple Watson-
Crick self-hybridising. Other forms of probe-probe, probe-
target [15] or target-target might be considered in future.
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Fig. 8. Simplification of evolved HG-U133A probe correlation predictor. The evolved program contains 27 GP primitives. A subtree of 11 primitives
always returns 0.23 (intron) A further branch of 8 primitives is relatively insensitive and mostly has the effect of scaling the ratio of Guanine/Adenosine
to be similar to the range of other numbers in the formula.
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