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Abstract

Genetic Programming (GP) is a method of discovering computer programs which solve
problems. It combines ideas about genetics and evolution based on fitness with computer
programming to come up with a very powerful yet still general problem solving technique.

Genetic Programming has several useful features. The most important of these is the
ability to ‘discover’ explicit solutions to problems. Unlike neural networks which learn to do
a job but can be difficult to extract information from, GP not only learns to do the job, but
can offer a simple representation of that answer, from which insight into the problem may be
gained.

Background

Genetic programming was derived by John Koza from the field of genetic algorithms.
Koza's work is described in (3], [4], and (5). John Holland describes genetic algorithms in his
1975 book "Adaptation in Natural and Artificial Systems”, in which the main new ideas are
the use of fitness proportionate mating and reproduction to generate new members in a
population of individuals. Each of these individuals is a potential solution to the problem at
hand. This problem is encoded into strings of binary digits. Each member of an initial pop-
ulation of strings is tested for fitness on the given problem after it is decoded. The strings are
then crossed with another such member of the population to produce a new member. This
new member contains string parts from each parent. The more fit individuals are chosen to
mate more frequently, so this type of reproduction is fitness proportionate. As a result, the
population as a whole improves its fitness as the generations progress. Genetic program-
ming overcomes some of the limitations inherent in the genetic algorithms. Essentially, in
genetic algorithms, the representation scheme used to encode the problems into bit strings
artificially limits the size and shape of the possible solutions. With GP, the representation
used is much more natural to the problem at hand. In addition, the size and shape of the
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possible solutions is not as limited as it is with genetic algorithms.

Basics of Genetic Programming
Genetic programming operates on a data set of candidate solutions to the problem at
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Figure 3: The Resultant Trees After Crossover

3. Two parents are needed for crossover, so another is chosen in the same manner as the first.
Crossover points are then chosen (randomly) which can be any point in the trees. Two bold
X’s mark the points chosen for crossover. The portions of the trees below the crossover point
are then swapped. These two new individuals are inserted into the new generation. Note
that the parents are not removed from the old population, only copied. Thus reproduction
takes place with reselection - i.e. one individual can be parent to more than one child.

Replication is simpler than crossover. One parent is chosen from the old generation (pro-
portional to fitness, of course) and is copied into the new generation.

Mutation is performed least often. This operation consists of choosing a parent, choosing
a mutation point, in the same manner as one chooses a crossover point, and then inserting a
randomly generated tree at the mutation point. Mutation can help to re-introduce variety in
a population that has become too homogeneous.

These reproduction operations are performed until the new generation is complete. The
old generation is then discarded (as far as the algorithm is concerned). One may, however,
choose to retain the best individual in memory for comparison as the process continues.

After reproduction, the algorithm simply loops back to the fitness calculation. These cal-
culations are performed again, this time using the new population. This process is repeated
until some termination condition is met. Typically, some maximum is imposed on the num-
ber of generations, or some measure of perfection is defined for the fitness function. This
termination criteria is application dependent.

Example 1: Two-Dimensional Function Approximation

A real-life problem that involves a two dimensional curve (surface) fitting is defined as
follows. An electric motor and electronic drive combination is used as the prime mover in an
application. This drive system has to operate over wide speed and load ranges. The efficien-
cy of the drive is important because it determines how much power needs to be delivered to
the system, and also cooling requirements. One would like to take the power consumption
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solutions produced. The best solution from each of the runs had raw fitnesses that were dif-
ferent by at most 15 percent. The best solutions varied in complexity, but most of them were
approximately quadratic in the LOAD parameter and ignored the SPD parameter
completely. The difference between the overall best solution (one that used both SPD and
LOAD) and the best solution using only LOAD was very small. The quadratic dependance
on LOAD makes sense since most of the loss was expected to be resistive loss due to the
current flowing in the motor, which is a simple quadratic. Figure 5 shows a graph of one of
the best solutigns found. This solution simplifies to:
1.16*LOAD’ - .066*LOAD + .000934.
Figure 6 shows the error surface for this solution. The best solution found which only uses
the LOAD parameter is .
(Limiter[(—0.068224)+(LOAD),O.947698])‘ ((LOAD)*(Expl0.1952311)
This solution’s fitness is about 5 percent better than that of the quadratic solution shown in
figure 5. The overall best solution found was

(((Div[((((Limiter[(-0.095502)‘(0.81 2365),Div[0.791595,5PD]])-(Div [(SPD)*(SPD)
,Cos[Pi"(LOAD)l]))+(((Sin[1’i"(SPD)]H(Div[LOAD,LOADl)) +(SPD)))‘(LOAD))+(LOAD),Div[Div[LOAD,(0.298916)'
(Limiter[LOAD,-0.015224])] ,(Limiter[LOAD,—0.0l5224])-(Cos[Pi'(((-0.079271 y*(-0.441625))+(Sin(P*(SPD)I]
)‘((SPD)-(Limiter[(SPD)-(LOAD),(Div[0.888507,(SPD)-(SPD)])-(
SPD)])))+(LOAD))'(((0.298916)‘(Limiter[LOAD,Cos[Pi‘(-0.341 589)1 1))+ ((Limiter{-0
.079207,Div[Div[((LOAD)—(((Cos[I’i'(LOAD)])+(SPD))- (((LOAD)+(LOAD))’(Div[0.992653,SPD]))))+((-0.027312)+
(LOAD)),Div[Sin[I’i’(Div[Limiter[LOAD,Limi ter| LOAD,LOAD]],(LOAD)'(SPD)])]
,(0.044022)+(Limiter[LOAD,Cos[Pi*(—O.B‘ll589)]])]],0.298916]|)+(LOAD)))

which is very complex, having 12 levels and 112 operators. This solution’s fitness is only
about 8 percent better than the best quadratic solution shown in figure 5. Thus we conclude
that a the quadratic )
1.16*LOAD - .066*LOAD +.000934.

is a good, concise approximation to the experimental data.

Example 2: Active Suspension Optimal Control

Active suspensions (AS) are in the research and advanced development stages now at
most of the automotive companies, including Ford. AS is expected to be a popular option in
the years to come because it offers ride and handling benefits not available from any other
type of suspension system. Essentially, an AS system is differentiated from other systems by
the presence of an active element, one which is capable of generating force or motion under
command between the wheel and body. A picture of the model used for the simulation is
shown in figure 7. For more extensive discussion of the active suspension, the reader should
see [8-14].

Load Actuator
Spring

[ |Wheel Mass

—— Tire Damping

Tire
Stiffness

() Road Input

Figure 7: Model of Active Suspension
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Results

As with the previously mentioned mapping problem, many runs were made, changing
random number seeds, the size of the population, and the set of operators used. The simu-
lation used to determine fitness was a drive over two seconds of a particular road. This road
had been measured and its vertical irregularities have been stored in a computer file. The
model of the suspension was a four state model, with some nonlinear terms. The best indi-
viduals discovered were then tested controlling a more complete model, including sensor
and actuator dynamics, run over several different road surfaces. For comparison purposes,
the same simulations were performed with a model for the passive suspension. The model
parameters for both the active and passive systems (masses, spring rates, etc.) were obtained
from an actual vehicle. A table showing some of the results achieved is shown in figure 9.
The rating number column simply lists the value of the fitness functions described above (
weighted sum of RMS body acceleration, RMS tire deflection, and RMS body velocity) for
each test case. The notation *** in a particular case means that the simulation was not com-
pleted due to the de-stabilizing effect of the particular controller. In a few cases, the system
was stable for a few seconds, then went unstable when a large bump was encountered. This
was particularly, common for controllers containing cubic and quartic terms in a measured
variable, like BV .

Some of the best genetic controllers are listed in figure 8. The base-line controller is de-
scribed in [1] and [6]. This controller was developed heuristically, and tuned via simulation..
The figures 10 through 12 compare the response of passive, base-line, and genetic controllers
when subjected to the Southfield Road input. The passive system allows a great deal of body
motion as compared to the active systems, as expected. This is a good reason for using an
active system. However, the trade-off is in power consumption and also increased tire
deflection. Excessive tire deflection is undesirable because it erodes the roadholding ability
of the tires. However, when comparing passive and the best active systems on smoother
roads, there is only a very small increase in the RMS tire deflection while the RMS body
acceleration can be reduced by more than an order of magnitude[1]. Looking at the table of
results indicates that the best controllers found (numbers 8 and 9) are strictly linear. This is
an interesting result since nonlinear dynamics were included in the plant and actuator
mode]s. However, it appears that the nonlinearities are well enough behaved that a linear
controller can work well.

Future Work

A wealth of linear optimal control theory exists, and one investigation not yet undertaken
is to develop a linear optimal control law based on a linearization of the plant and the same
cost (fitness) function that was used in the genetic programming. A comparison could then
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Figure 10: Passive Suspension

161




Bibliography:

[1] Hampo, R. J. “The Genetic Programming Paradigm: A New Tool for Analysis and
Control" Ford Research Technical Report, March 1992

(2] Holland, J. H. "Adaptation in Natural and Artificial Systems,” Univ. of Michigan
Press, 1975

[3] Koza, ]. R."Genetic Programming: A Paradigm for Genetically Breeding Populations
of Computer Programs to Solve Problems,” Stanford Univ. Computer Science Dept. Techni-
cal Report # STAN-CS-90-1314, June 1990

(4] Koza, J. R. "Genetic Programming" MIT Press, (to be published 1992)

[5] Koza, J. R. "Evolving a Computer Program to Generate Random Numbers Using the
Genetic Programming Paradigm," Proceedings of the Fourth International Conference on
genetic Algorithms, San Mateo California, 1991, pages 37-44

[6] Hampo, R. J. "Neural Network Control of an Active Suspension System", Masters
Thesis, Univ. of Michigan, May 1990

[7] Hampo, R. J., Marko, K. A., "Neural Network Architectures for Active Suspension
Control", Proceedings of the JCNN-91, July 1991, pp 1I-765 -- 11-770

[8] Yue, C., Butsuen, T., and Hedrick, J. K., "Alternative Control Laws for Active Sus-
pensions,” Journal of Dynamic Systems, Measurement, and Control, Vol. 111, June 1989, pp.
288 - 296.

[9] Hrovat, D. Margolis, D. L., and Hubbard, M., "An Approach Toward the Optimal
Semi-Active Suspension," Journal of Dynamic Systems, Measurement, and Control, Vol.
110, September 1988, pp. 288 -- 296

[10] Thompson, A. G., "Optimal and Suboptimal Linear Active Suspensions for Road
Vehicles,” Vehicle System Dynamics, 13(1984), pp.61 -- 72
: [11] Karnopp, D. "Two Contrasting Versions of the Optimal Active Suspension,” Journal

of Dynamic Systems, Measurement, and Control, Vol. 108, September 1986, pp. 264 -- 268

[12] Chalasani, R. M., "Ride Performance Potential of Active Suspension Systems -- Part
I: Simplified Analysis Based on a Quarter Car Model," Proceedings of the ASME Symposium
on Simulation of Ground Vehicles, Dec, 1986

[13] Chalasani, R. M., and Alexandridis, A. A., "Ride Performance Potential of Active
Suspension Systems — Part Il: Comprehensive Analysis Based on a Full-Car Model," General
Motors research Publication GMR-5313, 1986

[14] Thompson, A. G., "Design of Active Suspensions,” Proceedings of the Institute of
Mechanical Engineers 1970-71, Vol. 185, pp. 553 -- 563

5

163




