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I. Introduction

This proposal is a result of research over the past two years, and whose purpose was to develop a design methodology for low-
cost ultrasonic blood flow and tissue quantification using signal processing.  My original desire was to improve feature extraction
techniques for use in statistical pattern recognition, but was almost immediately redirected along the lines of efficient genetic
search of network solution spaces.  Over ten years of experience with Doppler flow measurement suggests that dynamic
processing of the clinical signals involved can be done with interconnected functional elements such as delays, filters, and
thresholds.  Some details of the processing issues and reasons for using genetic search will follow.  The point of this dissertation
is to study and develop a specific method for synthesizing processing  networks that aid in the use, interpretation, and diagnostic
power of low-cost medical technology.

Motivation: Development of signal processing  algorithms for low-cost Doppler
Non-invasive, diagnostic ultrasound utilizes both imaging and real-time Doppler blood flow measurement. This dissertation
proposes a general purpose methodology for developing real-time ultrasonic Doppler flow measurement. These flow
measurements make possible the real-time detection and discrimination of basic flow characteristics from audio Doppler flow
signals.  Complications arise from the varying signal character and quality that results from the normal and pathological
variations in anatomy as well as limitations imposed by the "non-invasive" (non-surgical) constraint.  As a result of this
complexity, any devised methodology needs to be powerful and yet have a wide range of applicability.

Flow characterization can also be useful with 2D or 3D imaging of tissue movement, of which blood flow is one example.  In
particular,  a precise mapping of flow event boundaries (which divide, e.g., flow near vessel boundaries and obstructions) must,
to some degree, take into account the case by case variation of naturally occurring flow states. For example, highly reflective
artifact from vessel walls and poor S/N conditions arising from tissue depth, probe movement, etc. must be accurately
discriminated in order to just determine if flow exists, and if so then what type of flow exists.  The "type" of flow can be broadly
characterized as being either laminar, which is associated with normal vessels, or turbulent, which can be associated with
disease.

Doppler signal dropout detection
Signal validity (i.e., the assurance that the signal is arising from center stream blood flow) can be assessed by thresholding
spectral energy content. An improvement can be made by restricting the range of spectral energies to those positive frequencies
between approximately 1 and 4 kHz (for a 5 MHz Doppler.)  Further improvement can be made if a reliable fiducial point (e.g.,
the ECG R-wave) can provide knowledge of where the systolic and diastolic portions of the cardiac cycle occur, so that filter
band limits and thresholds can be adjusted dynamically according to the heart cycle state.  There are several factors affecting
even such a basic determination, including Doppler beam to vessel angle, normal patient to patient variation, variation due to
disease state, and variation with respect to the choice of vessel being examined.  This is the reason for a powerful, yet widely
applicable approach that can still make use of problem knowledge the designer may already have.

The required processing power increases rapidly with increasing 2 or 3D Doppler sample voxel resolution.  If the boundaries of
normal versus turbulent and valid versus non-existent flow can be deduced rapidly enough, a visual map of flow boundaries, and
hence pathology such as arterial obstruction, can be provided, to the examiner.  If the processing of samples is fast enough,  the
examination process becomes interactive, which is very important for searching patient anatomy and looking for cause and effect
relationships from temporary, stress enduced changes.

Currently available digital data
A series of digitized Doppler data has been obtained, courtesy of the UW Department. of Surgery.  These data consist of  15 or
more seconds of  5 MHz,  quadrature Doppler data. There are 20 cases from the common and internal carotid arteries of patients
with varying atherosclerosis and encoded R-wave locations.  There are also twenty fetal umbilical cases from a hand-held CW
system.  These data were taken with the system shown in Figure 1.1.  This system has made it possible to FFT,
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Figure 1.1. The system used to acquire clinical data base

recursively average each resulting frequency magnitude (with a bank of 1-pole digital filters), and display the results in real-time
(100 Hz FFT rate.)  The display separates positive and negative frequencies and plots an unprocessed estimate of the spectral
mode (see figure 1.11.)  The co-processor is programmed to calculate a 64 point complex FFT and recursively average all
spectral magnitudes at a rate of 100 Hz,  which is typical for medical equipment. The time domain data are stored as 8-bit
complex pairs (from the I and Q channels of the quadrature output) which gives adequate dynamic range to represent Doppler
data, largely because the signal has its DC component removed  and because Doppler data are noisy, with there being at best  40
dB of S/N.

Two useful frequency estimates for recognizing diagnostic flow behavior patterns in normal and diseased arteries are the mode
and upper 9 dB  frequency contour of the signal 's magnitude spectrum. Figure 1.11 shows how these estimates are

0-3 9.8
Frequency (kHz)

|F(f)|

0

Mode (t)

Upper 9 dB
Contour (t)

Typical Doppler Magnitude Spectrum at Time t

9 dB 

Figure 1.11  Definition of spectral mode and upper 9 dB contour.

defined.  Reliable measurement of these quantities is complicated by the various signal states that can occur.  For example,
consider a Doppler signal produced by blood flow downstream from a tight vessel obstruction. Such a signal will have relatively
wide bandwidth, and in some cases may have less than 9 dB of S/N.  Such a situation much be reliably detected and dealt with.
A rule based system developed by the author for this purpose uses a series of ad hoc decisions to determine which states are
present and proceeds to alter the determination of the upper 9 dB level (and other parameters) accordingly (Figure 2.) These
algorithms have two limitations:  1) the "rules" must be modified if they are to handle a wider range of disease states and 2) the
rules are based on intuition, and extension of that methodology to the entire range of disease states, vessels, and patient variations
would be time consuming and difficult to test and re-modify for that reason.  The upper 9 dB contour is one of the measurements
made by this system. The reasons for using this estimator, as opposed to the mean, mode, or median estimators, for example, are
as follows:

1) The upper envelope produces essentially the same wave shapes (for various arteries, veins, and applicable disease
states) as does the commonly used zero crosser frequency to voltage converter and 1st moment (mean) when flow is
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laminar (i.e., narrow-band.)   Zero crossers are still in wide use with many low cost medical systems and
compatibility with existing or traditional techniques is an important feature;

2) If flow is disturbed (broad band), the upper envelope, or contour, can also reveal this very important condition in
a visually obvious way. By contrast a zero crosser, mean or mode, in this case, produces an output that appears
random or can even fall to zero;

3) The choice of 9 dB is, in practice, as much S/N as the Doppler signal can be expected to have in cases of severe
turbulence or difficult probe placement. The exact value of "9" corresponds to the 1/8th "power point" down from
the signal maximum.  Such a low S/N requirement makes it possible to utilize most of the clinically obtained data.

In summary, when compared to the upper (9 dB) envelope, the mean, mode, and median all fail in category (2) and are less
reliable in showing the pulsatile behavior in (1).

The three main signal states and typical upper (and lower) 9 dB levels are shown in Figure 2.  In addition, a possible

 Turbulent
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Invalid Signal
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Valid Heartbeat (at time t) ?

|F(f)|

|F(f)|

|F(f)|

 Contour (t)
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Upper 9 dB Contour (t)
for  Upper 9 dB

Figure 1.2. Basic Doppler signal flow states

improvement in the 9 dB estimate is suggested in this figure.  That is, determination of signal validity and whether the signal is
turbulent (wide band) or laminar can be used to qualify the signal for further analysis or modify calculation of the spectral mode
as appropriate.  The signal can become "invalid" if the Doppler sample volume moves relative to the actual region of flow.  If
this determination could be made automatically,  data would can be automatically rejected until the signal is once again restored
by re-positioning the probe.  Turbulence is often an indication of disease.  If turbulence is determined to be present (e.g., this can
be done by counting the number of  bins over a threshold amplitude as mentioned above), processing should be altered to find the
first 9 dB crossing coming down in frequency from the maximum frequency limit.  The latter step effectively eliminates artifact
due to multiple crossings in the 9 dB frequency.  In addition, the mode itself should be calculated somewhat differently in the
case of turbulence since there may be multiple spectral peaks having very near or identical amplitudes.  A similar problem arises
due to fluid-mechanical bruit noise, which has the characteristic of being band-limited to between 100 and approximately 1.2
kHz.  If "turbulence" is decided, then a bruit filter should be applied to eliminate a false spectral mode in this range.  Other
application of these ideas extends to deciding if the I and Q channels need reversal (which occurs when probe orientation is
changed) and, in CW Dopplers, pre-filtering of the -1 to +1 kHz region to eliminate venous or other static clutter.  The latter
problem can be effectively addressed with a bank of frequency domain filters that subtract out the lowest amplitude frequency bin
value (thereby approximating the time static value) seen over the previous 2 or so seconds.

The system must discriminate between laminar and turbulent flow conditions in order to get a reliable estimate of  the 9 dB
contour and other diagnostically useful parameters and detect invalid signal states.  The method for doing this will rely on
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Figure 1.3  Basic spectral measurements used for flow state determination

the basic Doppler flow measurements listed in Figure 1.3.  Measurements 1-5 are available for the methods about to be described
(only measurement 1 is actually used in the test problem presented in "Results".)  The overall approach is

Doppler Signal
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Averaged
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Best Chromosome

GA Operators

Fitness Value

Done ?

Start

Yes

Digital Recording
(Quadrature)

(Random Population)

Network Expansion

Synthesized Network

...

Error or

=>Next Generation

Figure 1.4.  Overall approach to network synthesis, including use of the measurements of Figure 1.3.

summarized in Figure 1.4, including the use of genetic algorithms, which will now be discussed.

Use of Genetic Algorithms
A goal of this proposal is to define a signal processing development methodology that permits pre-specification of  network
design.  Genetic algorithms ("GA's") are a probabilistic search technique that utilizes evolutionary mechanisms deduced from
biology to locate optima or near optima in a relatively large search space.  As will be shown in the literature review and as
demonstrated in the results sections, GA's coupled with an appropriate ("back-codable") coding scheme provides a methodology
that can complete or optimize a partially, or pre-specified, design.
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Current interest in AI extends to neural networks, fuzzy logic, and genetic algorithms.  One of the challenges inherent with neural
network processing (and connectionist systems in general) is the complexity involved in selecting node characteristics and
network architecture.  This has resulted in a narrow range of architectures and often fairly problem specific results.  Many
network architectures are possible, but only a small subset of these are typically considered when making a design.  A complex
pattern recognition problem could make use of a variety of non-linear operations.  In order to specify and systematically alter a
complex network having a variety of node operators and architecture, it is logical to code the structure of the network to keep
track of design building blocks, and then systematically alter the codings to search for a more optimal design.  Making the search
efficient may, of course, be the main difficulty.  In nature, this process is accomplished by altering DNA codes through natural
selection and what is broadly called evolution.  The approach I am suggesting for this dissertation has been received extensive
attention over the past two decades under the name:  Genetic algorithms ("GA's").

One of the aspects of GA's that I would like to investigate is the idea of encoding the chromosome to represent both the
architecture and internal parameters of  connectionist systems.  This will utilize an efficient encoding scheme together with
associated procedures and algorithmic details in the GA itself.  The basic idea is to represent a (connectionist) system by a
carefully designed linear code sequence (like DNA) that has among its properties, the following:

1) Short length sub-codes that can be replicated with possible modification (via standard GA operators, to be
discussed) for the purpose of optimizing or expanding on useful sub-designs

2)  Useful with custom designed software tools that aid in "pre-specifying" a desired network structure so as to
provide a good starting point on the design search.

3) Genetic operators that are especially suited to searching for near optimal connection weights.  For example,
instead of swapping weight values during genetic crossover, averaging them may be useful.

The next section will provide theoretical  justification and background to the above statements, including the alleged power and
broad applicability of GA's.  This dissertation will largely concentrate on developing a GA approach for synthesizing signal
processing network that are applicable to low-cost medical instrumentation.  The test problem suite will include solution of a
simple problem from Doppler signal processing as discussed above.  In addition, this dissertation will explore a completely new
approach to utilizing diploid/dominance in GA's. An overview of GA algorithmic details, e.g.,  crossover and mutation,
population sizing, network structure and function specification (as defined by a GA chromosome -- see methods), and theory
regarding the expected effects of diploid/dominance on GA performance in difficult problems.

II. Review of  Literature
Survey of Doppler Signal Processing

Pattern recognition of Doppler flow velocity wave forms originated with Keller (1976) and  Rutherford (1977) who developed
statistical pattern recognition approaches that predicted the degree of carotid arterial blockage from blood flow measurements
using Doppler ultrasound.  These approaches utilized hand-measured parameters.  A similar approach using digitally computed
and selected measurements was described in Greene (1982).  Methodology has also been described for matching the transfer
functions across different manufacturers' Doppler system electronics.  Such a procedure is needed, for example,  when
implementing signal pattern recognition with training results taken from a different transducer/electronics combination Greene
(1989)(p. 64).  Similar approaches have been taken with predicting gestation times from fetal umbilical artery Doppler data
Maulik (1982) and Saini (1986).

As mentioned in the introduction, the latter (fetal) cases require an additional level of capability since no ECG is available as a
fiducial, or registration, event.  Results from my personal experience in the field suggests that a system consisting of a network of
rules and simple digital filters, can be heuristically designed to not only locate the ECG from the Doppler signal in real time, but
also may be capable of measuring spectral characteristics of the Doppler flow signal.  Such measurements present a definite
challenge for application across all disease states and S/N conditions.  An interesting feature of these  methods was their potential
to increase the ease of use and accuracy with which hand-held, low-cost Doppler instruments can be put to use.

Survey of  Genetic Search
This section describes terminology and some theory behind GA's.  Many of the concepts presented have bearing on the
application in question.  Other concepts, such as population sizing vs. string length, are presented as current state of GA theory



Dissertation Proposal July 29, 2001:  F. Greene   7

even though they are not utilized as hard and fast design rules.  Following the section entitled "schemata as processing elements"
are selected applications that make use of the terms and concepts now to be discussed.

Terminology
Most of GA terminology is based on terms used in biology.  This table summarizes the basic terms:

Natural Genetic Algorithm
chromosome string or vector of binary or real nos.

gene string or substring (used interchangeably with "chromosome")
allele value of gene or string element
locus string element index

genotype genetic level coding (e.g., binary bits)
phenotype (scalar) level of fitness  ∝∝∝∝  1 / [network error]

schema/schemata (pl.) similarity template for sets of string elements

Basic Genetic Algorithm
The following pseudo-code is presented in Fitzpatrick (1988) for a simple genetic algorithm.  P(t) represents a population of
chromosomes at generation (time) t.  The function recombine contains the crossover operator that is explained in the
following sections.  Select picks chromosomes for propagation and recombination according to fitness and evaluate applies
the fitness or objectivity criterion to the newly recombined population.

procedure genetic algorithm
begin

t= 0;  initialize P(t);  evaluate P(t);
while (not termination condition) do
begin

t= t+1;  select P(t) from P(t-1);  recombination and mutation;  evaluate P(t);
end

end

Crossover
Crossover (sometimes referred to as recombination) of genetic material involves a limited exchange of string data between
two parent strings to produce two children. The key feature of crossover is that a series of contiguous string elements are
swapped ("uniform" crossover and real-encoded strings modify this procedure slightly,  as will be discussed below.)  The
result is that relatively short string subsets, or schemata, are more likely to propagate to future generations than are longer
subsets of equal fitness (this will also be further discussed.)  Since these schema are selected according to their contribution
to string fitness, they can commingle to create highly fit strings and rapidly locate the global optimum. In this sense,
crossover gives GA's what is called a global search capability that greatly increases the ability to handle relatively complex
and multi-modal fitness function behavior.  Crossover was studied extensively by Holland (1975) in his analysis of genetic
search.  There can be either one or multiple sites at which crossover occurs.  A more in depth analysis of crossover, as used
in GA's, is given below.

Schemata as Processing Elements:  The Effects of Crossover
This section provides mathematical explanations of how GA's efficiently utilize non-contiguous chromosome sub-strings, or
schemata, to locate a near optimal coding.  The GA operator that does most of this work is crossover, which provides a
mechanism for recombining schemata and encourages the propagation of short highly fit schemata or building blocks.  Much
of the to be discussed theory has to do with how crossover is thought to operate.  Other theory presented in this section
attempts to identify conditions (e.g., population size) under which GA's will more likely succeed or fail.

Definitions
As mentioned in the introduction, the heart of genetic search involves random crossover of genetic material.  A schema is a
similarity template, H, of a chromosome that is encoded to represent "solutions" having varying fitness, f(H).  A given
schema defines the positions (e.g., bits), of a particular sub length of the chromosome that are of actual relevance in locating
the global optimum. For example,  in the schema H= *11*0**, the *'s are "don't care" positions in the schema. Its length is
defined to be the total length of the schema including *'s, and is equal to 7.  Its defining length is the length from the first non
"*" to the last "*", and is equal to 4.  Its order, o(H), is the number of non *'s, and is equal to 3.  The number of schemata of a
given order is 2o(H).  The number of schema in an l bit string is 2l, since each position is either defined or an "*".  Therefore,
the number of schema in a population of n, l bit strings is somewhere between 2l and n2l, depending on the number of
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duplicate schema in the population.  Each schema functions can be considered to be a processing element and participates in
representing a phenotype having a fitness value f(H).

Each schema may be viewed as a partial solution which is defined by its fixed positions.  Schemata can be organized into
"competition partitions", or sets of schemata that share the same fixed bit positions, but with differing values in the "don't
care"  positions.  Every member of a population, which represents a complete solution, belongs to exactly one schema within
each competition partition.  The partial solutions within a competition partition compete, in effect,  for representation in the
population of complete solutions.

Values for f(H) can be estimated using the mean fitness of all chromosomes containing H.  Schema variance is estimated
similarly.  By substituting 0's for all "don't cares" and 1's for all fixed schema positions, Walsh transforms have been used to
analyze, among other things, signal to noise of competing  schema partitions Rudnick (1991),Goldberg (1991),Goldberg
(1989). Rudnick interprets schema variance as the force tending toward convergence, i.e., partition signal strength.  The
partition noise is then defined as the sum of the schema variances for all competing schemata.

Schemata Interpreted:  Hyperplanes in Solution Space
This section shows how the concept of schema helps to understand the mechanism behind genetic search.,  following an
example from Whitley (1993).  The concept, schema in genetic search , is generally attributed to (Holland, 1975).  As an
example of schemata with defining length of 3, consider the function in figure 2.1, which is to be searched for its

0**

**1

0*1=  0**  ^   **1
schema:

schema:

schema:

maximum

a)

b)

c)

Figure 2.1.  Examples of schemata as hyperplanes partitioning a search space.  The
shaded areas represent the portions of the search space defined by the fixed schema bits.

single maximum.  The search has a resolution of 3 bits (e.g., the population of 3-bit strings).  The intersection of the top two
order-1 schemata shown in (a) and (b) is an order-2 schema as shown in (c).  A population  consisting of a variety of such
schema provides a variety of hyperplane (sub-spaces) and makes it possible to locate a global optimum in the indicated
multimodal fitness function regardless of the starting point.  Many different hyperplanes are evaluated in a manner that
Holland terms implicitly parallel  Holland (1975) (pg. 74).  Whitley explains this term as follows:

"... it is the cumulative effects of evaluating a population of points that provides statistical information about any particular
subset of hyperplanes.  Implicit parallelism implies that many hyperplane competitions are simultaneously solved in
parallel.  Because genetic algorithms operate on populations of strings one can track the proportional representation in the
population over time when fitness based selection is combined with crossover to produce offspring from existing strings in
the population."

Crossover of genetic material favors shorter length schema over longer ones (assuming approximately equal schema
fitnesses), since a relatively long schema is more likely to be disrupted by crossover) As a result, we can expect short length
building blocks  will be located and subsequently combined with increasing frequency (these claims will be further
discussed.)  As stated in Goldberg (1989a).(pg. 41):  "... by working with ... building blocks ... we have reduced the
complexity of our problem -- instead of building high-performance strings by trying every conceivable combination, we
construct better and better strings from the best partial solutions of past samplings.

Optimal Trial Allocation
In Holland (1975), an explanation for how a highly efficient search for sub strings that leads to an optimal or near optimal
solution is presented.  Holland considers a simplified, hypothetical population having only two schemata.  The problem, then,
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is to find out which schema is the better of the two, by observing phenotypic fitness.  This is identical to a two-armed  slot
machine where we wish to determine the arm with the better payoff, by observing trial outcomes, and then after some
"optimal" number of trials dedicate our trials to  the "best" arm. The situation is modeled by writing the expected loss for any
allocation of n trials to schema 2 and N-n trials to schema 1. We also are given the mean and variance of the  payoffs for the
two schemata: µ1, µ2, σ1, σ2. The idea is that loss will occur due to 1) wasted trials during the experimental phase that could
have been allocated to the best schema (arm) and 2) a mistaken decision about which schema (arm) is actually best. The
resulting expression for loss is:

L(N, n)=  |µ1-µ2|• [(N-n)q(n)+n(1-q(n))]
where:  N is the total number of trials, n is the number of trials during the initial  experimental
phase, and q(n) is the probability that the worst schema (arm) is actually determined to be the
best arm during the experimental phase.

By approximating q(n) as the tail of a normal distribution:
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and setting the derivative of L(N,n) to zero, Holland provides mathematics to show that if n* trials are allocated to what is
actually the worst schema (arm), then the number of trials that should be optimally allocated to the better arm (schema) is
bounded by:
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In other words, an optimal plan for allocating trials will give slightly more than an exponentially increasing number to the
best schema (arm).  This approach assumes knowledge of trial outcomes before they occur, and as such does not represent a
realizable scheme, but does provide a descriptive bound on performance that an ideal approach would achieve. As will be
shown below, fitness proportionate reproduction allocates an exponentially increasing number of schema with each new
generation, which is very nearly the behavior of eq. 2.12.

Each schema may be viewed as a partial solution which is defined by its fixed positions.  Schemata can be organized into
"competition partitions", or sets of schemata that share the same fixed bit positions, but with differing values in those
positions.  Every member of a population, which represents a complete solution belongs  to exactly one schema within each
competition partition (the competing partitions can also be thought of as spanning a subspace of the space defined by entire
string).  The partial solutions within a competition partition compete, in effect,  for representation in the population of
complete solutions.

The Schema Theorem
A fundamental theorem of genetic algorithms was originally presented in Holland (1975), called the schema theorem.
Discussions of this result are also given in Goldberg (1989a) and Whitley (1993). The end result is an equation that gives a
lower bound on the expected number of schema  at the next generation, t+1:
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The schema equation is based on the reproductive growth rate of schema, which is defined as:

m H t m H t f H
f

( , ) ( , ) ( )+ ≡ ⋅1 .  The rightmost terms in "[ ]" brackets of (2.41) accounts for loss in the number of schema

due to crossover and mutation, respectively. The term p H
lc
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−1

 gives the joint probability of a crossover event occurring and
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of that event occurring within the length of the schema defined by its fixed bits.  The result is an upper bound on schema
disruption due to crossover, since it is still possible, though unlikely, that the material being crossed over is identical in the
two parents. This latter term is especially important since it takes into account the fact that shorter length schemata are more
likely to survive and thereby propagate to future generations.   The term o h pm( )  is the joint probability of a mutation event
occurring and of the event occurring on one of the fixed bits in the schema (thereby disrupting the schema.)

A most important conclusion from the schema theorem is that it predicts exponential growth/decay for schema of
above/below average fitness.  To see this, recognize that the basic growth rate

m H t m H t f H
f

m H t c
f H f c f

( , ) ( , ) ( ) ( , ) ( )
( )

+ = ⋅ = ⋅ +
= +

1 1  ,        (2.42)

can be re-written as:
⇒ = ⋅ +m H t m H c t( , ) ( , ) ( )0 1                                                     (2.43)

where c designates a (hypothetical) constant amount of above/below average fitness for every generation.  In this sense, the
fitness reproduction as used in genetic algorithms provides a near optimal allocation of trials to the observed best schema, at
least as described by 2.12.  Eq. 2.43 also provides the basis for predicting growth rates of various reproductive schemes, as
will be described later.

Expected  Number of Schema in a Population
For the purpose of determining adequate population size, one figure of merit is the expected number of schema in a
population  of binary strings Goldberg (1989b) . Assuming the probabilities that any particular bit is 1 or 0 are equal (p1=
p0= 1/2),  the probability of a match in all fixed positions in a schema of order "i" is (1/2)i. The complementary probability of
no matches in a given string is then 1 - (1/2)i, and the joint (assuming independence) probability of no matches in a
population of n strings is then [1 - (1/2)i]n. The complementary probability of at least one match in the population is then 1 -

[1-(1/2)i]n.  The total number of possible different  schemata of order i is 2i, and in a string of length l there are 
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To get a small population asymptotic expression for S( ) (2.21) is re-written so that we sum over "n".
First, the term[1-(1/2)i]n is expanded (using the binomial theorem) into a summation:
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Goldberg makes these results more useful in Goldberg (1985), by arguing that the schema contained within a string are useful
only when complimented by the same or different schemata in other strings, and should not themselves be counted.  He
therefore proposes the "effective" number of schemata as: nes= ns - 2l;  where ns is given by eq. 2.21.  He then does a
fibonacci search Avriel (1976) to find the optimal population size (maximum of nes(n) for a various string lengths.  The
results roughly agree when compared to average optimal populations found for an independent test suite of GA problems
DeJong (1975), DeJong (1980), Grefenstette (1986).  For a typical binary string with 20 < l < 30, Goldbergs's findings
Goldberg (1985) suggested a population in the range of  roughly 100 to 300.

Genetic Drift and  Diffusion Theory
Since GA's rely on populations from which candidates are drawn for mating and recombination, the process has a discrete
nature to it.  If the populations are sufficiently small, there results a phenomenon caused by sampling error called genetic
drift.  This situation, in the absence of a mechanism such as adequate mutation rate, can cause the population to be overtaken
by a particular allele value prior to locating the optimum, resulting in failure to locate the global optimum. This section
analyzes genetic drift using diffusion theory.  Some insight into appropriate mutation rate for a given population size (or vice
versa) result from this analysis.

[Inman, 1993 #59]  describes genetic drift as follows:
"If a coin is tossed 100 times, then on average it will be heads 50 times, but it is unlikely to be exactly 50.  The same
holds if 100 random [coins] are selected with replacement from [a population consisting of exactly] 50 heads and 50
tails [without flipping any].  In the [latter, selection] case, repetition of the process will on average give the same result
as on the previous, but the variance allows significant change in the average [or drift] over time.  If at any stage the
selection resulted in all heads (or tails), then future change would be impossible."

One of the consequence of genetic drift analysis is that if the mutation rate is too small for the population size and fitness
pressure, then each allele (string position) in the population will eventually converge to one (binary) value or the other.
Intermediate states will lend excessive weight to the allele proportions in the initial (random) population making successful
convergence to the  global optimum dependent on the makeup of the initial population.

Analysis of genetic drift using diffusion calculus has a history extending back decades in diploid populations, as described in
Roughgarden (1979) in detail.  The idea is to treat a (stochastic) sequence of  populations, at a specific chromosome locus, as
a Markov chain which is approximated by a diffusion equation which equates change in density at a location, x, to the spatial
derivative of the flow rate:

∂
∂

ρ ∂
∂t

x t
x

J x t( , ) ( , )= −    (2.51)

The density, ρ, corresponds to the proportion of populations (considered as separate trials) that have a value of, x, at the
relevant string locus, at time (generation) t.  J(x,t) contains the effects of mutation, selection, and diffusion (note that
crossover is not a factor, since it doesn't introduce any new allele values).  Specifically:

J x t M x x t
x

V x x t( , ) ( ) ( , ) ( ) ( , )= −ρ ∂
∂

ρ1
2

,     (2.52)

where M(x)∆t is the average distance traveled from a point x under force of mutation and selective pressure and V(x)∆t is the
variance of the (random) distances traveled from a point x.  What is desired is the steady-state distribution of > ( )ρ x  in those
situations where it exists, which implies that J(x)= 0 so that from (2.51) we have:
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, which after a change in variables results in
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For a haploid population, [Inman, 1993 #59] shows how to introduce mutation and selection pressures and that for one
generation, the variance in ∆x is x(1-x) (where x is the proportion of 1's at the locus of interest).  The result is:

> ( ) ( )
( )

; : " "ρ x c sx
x x

where s f f
f

selective pressure for a
N

p Nm
= +

−
≡ − ≡−

1
1

1
2

1 2
1 0

0

    (2.54)

and, for a mutation rate (pm) of zero gives:  � ( ) ( )
( )

ρ x c sx
x x

N
= +

−
1

1

2
,  which is a "U" shaped curve that reflects the tendency for

such a situation to result in an almost immediate convergence to either a 0 or a 1 at the locus of interest. We might conclude
that, in general, we should have N⋅pm>>1/2 to prevent significant genetic drift from occurring (by making the denominator of
eq. 2.54 much less dependent on x).  Roughgarden (1979) works out this  result for the diploid case, resulting in N⋅pm >> 1/4.
The inequalities are affected somewhat, of course, by the amount of selective pressure, s.  In conclusion too little mutation or
too small population size (or too much selective pressure) can result in premature convergence and excessive dependence on
the specific make-up of the initial population in less extreme cases.

Deceptive Fitness Functions
Deception refers to a situation where low-order schemata of  relatively high fitness can lead the search away from the global
optimum.  Such a condition can arise because of non-monotonicity or multi-modality in the fitness function.  It can also be
affected by the way the string is encoded, as shown below in the section on real-encoded strings.  Any problem requiring a
GA approach will have some deception involved, and attempts have been made to characterize GA test problems in terms of
the amount of deceptiveness they exhibit..

Deception can sometimes be made less deleterious, but not completely eliminated, by reducing the fitness pressure or
increasing the mutation rate. Whitley (1991) states that most problems involve some deception, since in general we would not
expect that all competing  hyperplanes defined by a particular schema will be leading towards the global optimum.  A fully
deceptive problem is one in which all hyperlanes of lower order schema lead away from the global optimum.  He then
provides a proof that for a function to be fully deceptive either the deceptive attractor or  some string that differs from the
deceptive attractor by 1 bit must be a local optimum in Hamming space.   As a result we can say that a fully deceptive
attractor will be the complement of the global optimum in Hamming space

We can also define deceptive GA problems of order-N, corresponding to the order of the hyperplane competition at which
one or more relevant lower order hyperplane competitions guide the search away from the global optimum.  A deceptive
attractor is a hyperplane of order N other than the global optimum.  A fully deceptive problem is one in which all relevant
lower order hyperplanes lead toward a deceptive attractor.  Liepins and Vose Liepins (1991) constructed fully and partially
deceptive GA test problems.

Schema Processing Efficiency and Implicit Parallelism
For a hypothetical binary string of length l, where any position can be either a 0, 1, or "don't care" symbol, the number of
possible schema is 3l.  If we consider an actual (instantiated) population, a particular string in that population will actually
have a potential for 2l schema, since any position will be either be fixed (at either a 1 or a 0), or it will be "don't care" symbol.
In a population of n strings, then, and depending on the actual diversity of this (instantiated) population, there may be as
many as n2l schema.

Short "Proof" of implicit parallelism:  That o(N3) schema are processed per GA generation:
The following is presented in Fitzpatrick (1988) and gives an indication of how schema processing is O[N3], where N is
the population size.
Given:
A population P of N randomly valued binary strings of length L.
To Show:
At least N3 schema are allocated trials per generation according to:
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M H t H t
P t

M H t

where P t
H t
P t

( , ) ( , )
( , )

( , )
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( , )

+ =

=
=

1 µ
µ

µ
µ

current population of strings
avg.  fitness of strings that are in both P( t )  and H

           ( , ) =  avg.  fitness of strings in P( t )

  (2.31)

Proof:
Consider only schemata that have at least r representations in P.  Let the schema order be k= log2 (N/r). For any choice of
k positions, there are 2k unique schemata defined at those k positions. Each of these are represented by r chromosomes in
P.  Therefore, the number of distinct schemata with r representatives in P is at least:









•=

k
L

M k
r 2 .  (2.32)

Since k= log(N/r), 2k= N/r, and N= 2kr.  Assume we have L > 64 and 2 26 20≤ ≤N  for an typical problem, and it is
reasonable to require that r > 7.  If r = 8, then 3 17≤ ≤k .  By inspection of (2.32) over this range, we find
Mr|k=3;L=64 > 3*105, Mr|k=17;L=64 > 1020,  and N3 = 2.6*105.  Therefore, we have Mr > N3.  Notice that this counts
only schemata of exactly order k.  The sum of all schemata from order 1 to m that are processed is given by









∑

−

= i
Lim

i
21

1
.  A more general proof of the O[n3] claim to schema processing efficiency is given in the Appendix.

Strings with Cardinality Greater Than Two
Genetic algorithm researchers commonly utilize binary strings for two reasons:  1) Binary vectors are simpler and the
associated mathematics involved in studying GA behavior is tractable;  2) The desire to maximize the number of schema
being processed, with the assumption being that with no underlying information being unavailable, the most information is
available for recombination. In Antonisse (1989), this latter notion that bitwise recombination results in an inherent increase
in schema processing efficiency is brought into question.

The use of binary strings can be traced to Holland (1975) where the "*", or "don't care" operator is introduced to identify
schema bit positions that can take any value.  Antonisse (1989) (pg. 88) points out that the "... don't care symbol can be
construed as denoting the set of strings sharing a subset of possible values."  Comparisons are drawn in terms of the number
of states that can be represented by a string of cardinality k elements, and if string sizes are adjusted so strings of different
cardinality have a comparable number of states.  Since the number of schema in an uninstantiated binary string is 2l, and this
formulation was also applied to higher cardinality strings, it appears that the binary string will always have more schema than
its representationally equivalent string of higher cardinality.

Antonisse, as previously mentioned, asserted that the "don't care" symbol represents all possible similarity subsets (as
opposed to singletons) of  cardinality values.  This assertion radically increases the number of schemata being processed,
even when string length is shortened according to the increase in cardinality.  A number of papers have referenced Antonisse
without seriously contesting this idea, including the following:

• Michalewicz (1992) presents real crossover and mutation operators and extensive examples and guidance for their use in
function optimization.  These operators can be summarized as follows:
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Crossover Operator (crossover also varies with generation)
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The above mutation operator is used here as described in the methods and results section.  The above crossover operator is
modified slightly in light of more recent research as follows:
• Radcliffe (1991), introduced a more general interpretation of schema/schemata call "forma/formae".   This permits a more

formal interpretation of Michalewicz's real crossover operator, which he terms a respectful operator, in that the offspring
produced (either by muataion or crossover) are members of the space spanned by the two parent chromosomes.

• Eshelman (1992),  extended the real-parameter crossover operator of Michalewics, that is not "respectful", to one that
permits offspring within the convex hull of the space spanned by the parents.  With such an operator, any point in the
search space is reachable even if the original population has limited allele representation.

The following argument in Goldberg (1991b), summarizes his argument against using higher cardinality strings :

Assume there are k schemata per string position plus 1 for the "don't care" symbol.  Each [cardinality k] position requires
log2k bits to be represented and so there are therefore n ks

k= +( ) /log1 1 2  schemata per bit in the string.  Taking
d  log ( n

dk
2 s ) ln ( ) ln( )

( ) ln
= − + +

+
k k k k

k k k
1 1

1 2  and noting that kln(k) monotonically increases requires that the derivative be

negative for all k, and that therefore smaller cardinality strings have more schemata per bit.

The latter argument assumes that efficient use of binary machine bits and the resulting ability to specify a crossover point
between any two such bits is of primary importance. One can also argue that if memory objects having more than one bit can
be processed with high efficiency, they can be treated more like binary bits.  For example, hardware floating point processors
make efficient use of a groups of bits as a single object representing a real number.  Such an object cannot be arbitrarily
subjected to crossover/recombination, when made available for bit-wise crossover, without highly non-linear consequences.
Put another way, a crossover or mutation event taking place within a real number would result in epistatic behavior, since
random juxtaposing parts of exponents and mantissas would not have a known useful result.  Goldberg very objectively points
out in the same article the following reasons in favor of using high cardinality strings:

• Elimination of Hamming cliff deception:  If a binary encoded string element is subjected to crossover, non-
monotonically increasing hamming distance (with changing fitness), in a particular application's encoding, may require
multiple, simultaneous bit changes to occur while in the process of searching for a global optimum. In this scenario, a
single bit change due to crossover/mutation, when several are actually necessary, ends up directing the search towards a
sub-optimum.  Such single bit changes require repeated, independent mutations, with a correspondingly small joint
probability of occurrence.  Use of Gray codes might seem helpful, but appears to actually not be the case in light of an
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analysis using Walsh functions in Goldberg (1989).  Such deceptive behavior is the subject of much analysis   The
point of my argument here is that the use of high cardinality alphabets eliminates the possibility of disruption within a
parameter, and may justify its use from a purely practical standpoint.

• Real-coded GA's permit the use of mutation operators that perturb the current solution a little about the current value.
Binary GA's, on the other hand, implement mutation by randomly flipping individual chromosome bits without regard
to any possible linear relationships in the problem encoding.  As a result, real-coded GA's can hillclimb local optima in
the underlying decision space at varying rates.  This capability is exploited with both mutation and crossover and is
further discussed in the methods section.

 The Genitor GA Algorithm
This algorithm is a public domain GA implementation that was used, with modifications and additions,  in this proposal (as
described in the methods and results sections.)  Genitor is capable of producing strong fitness pressure with a single string
evaluation per generation, largely a result of always and only deleting the worst individual.  No function evaluations are
wasted on children that have not been subjected to crossover, since in effect, pc= 1, apparently increasing efficiency (since no
evaluations are "wasted" on children that have only been subjected to mutation.)  A likely disadvantage, as will be shown, is
that the propagation of highly fit individuals does not taper off logistically with time as does the standard GA algorithm.  The
result may be an increased tendency for premature convergence to a sub-optimum result.  Such a condition occurs when a
relatively high fitness pressure, for example,  causes a sub-optimal solution to completely take over the population. Since
diversity is lost, normal crossover cannot generate new string combinations, and mutation will usually result in less fit
progeny that rapidly get deleted from the population  Diploid/dominance, it can be argued, reduces the required mutation rate
to maintain alleles of relatively low fitness, as will be shown later in this and the results section.  Since an approach to
diploid/dominance is being studied as part of this dissertation, the high growth rate provided by Genitor is a reasonable
choice for this dissertation.  Another consideration in choosing Genitor is that the code was readily ported from UNIX to PC-
DOS, and was also easily converted to C++ (one other package evaluated was not nearly so portable.)

The Genitor algorithm utilizes overlapping (sometimes also referred to as static) populations, which are characterized by the
survival of one or more individuals from one generation to the next.  This means that, except for the offspring, all members of
any previous population survive, unmodified, to the present population.  Rank based selection is used, which as analyzed
below, removes the actual fitness value from the selection process.  The (single) offspring created with each generation is
inserted into the ranked population according to its fitness, and all strings below it are moved down one position with the
worst being deleted.  The result is a high degree of selective pressure, as will now be shown.

Propagation rates for two GA implementations:  Non-overlapping rank based selection and Genitor
Goldberg (1991a) provides an in-depth analysis of several GA implementations, including Genitor.  Goldberg therein
compares GA algorithms on the basis of the propagation rate of individuals having fitness in excess of a some arbitrary class
boundary (i.e., the best individuals.)  Such an analysis defines the proportion of such "highly fit" individuals as:

Pt+1= β(Pt),     (2.71)

where t is the generation number and β is a cumulative assignment function, defined by:

0)(;1)(;)()(
1

00
>== ∫∫ xdxxdx

x
ααηηαβ  (2.714)

The range of x is [0,1] designating the most fit as x=0 and the least fit as x=1.  Fitness decreases monotonically from 0 to 1.
If  P is the proportion of individuals with fitness better than or equal to some particular fitness level, f, then the proportion of
individuals assigned to the same fitness range in the next generation is as stated above. The following linear assignment
function is  used for the experiments in this proposal:   α(x)= c- 2(c-1)x (where: c=constant). This satisfies the above
requirements (2.714), and results in β(x)= cx - (c-1)x2, which when substituted into eq. 2.71 gives a difference equation for
the generational GA as:

Pt+1= Pt[c - (c-1)Pt]      (2.715).

For the Genitor, overlapping population algorithm, Goldberg observes that exactly one individual is assigned into the fixed
size population every Genitor generation, or what he refers to as an iteration.  We can thereby analyze the growth of
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individuals in blocks of n iterations above a given fitness level by defining a new index:  τ= nt (n= population size).  The
proportion of individuals assigned in the next block, or generation, at or greater than a given fitness is then:

P P P c c P
nτ τ

τ τ
+ = + − −

1
1[ ( ) ]

The arguments for this last result are that:  1) the population model is "overlapping", i.e., not all individuals die out prior
to the succeeding generation, 2) only the worst individual does in fact die, and 3) the rest of the population is identical to
the previous except for the single individual that was born.  From this result we can derive an analytic expression for
fitness proportion at a given generation t= τ/n given the fitness pressure, "c" (which corresponds to the "b" parameter
mentioned in the "Results" section) and the initial proportion (as defined above) P0.

Subtracting fromboth sides gives the following difference equation
      (2.72)
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Eq. 2.73 is logistic in form and as such asymptotes to a constant proportion for either extreme in t (t = the generation count.)
However, if  we take the limit as t goes to infinity we get:  Pt→c/(c-1) and, since 1 2< ≤c , this limit can be no less than 2.
Since 0 1≤ ≤Pt , the actual behavior of the Genitor growth is to "crash" into its upper limit of P=1.   Such a characteristic may
contribute, as Goldberg suggests Goldberg (1991a) pg. 84,  to premature convergence in the Genitor algorithm to an extent
that, seemingly at least,  could make it more likely to fail than generational algorithms GA's (i.e., where the entire population
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is replaced every generation.)  Since I wish to consider the possible effects on premature convergence of using a Diploid
population, a large selective pressure resulting in high allele loss is not necessarily undesirable.  At any rate results described
in the next section using Genitor, both for network synthesis and diploid/dominance, are encouraging.

More traditional generational GA's will show a true logistic form.  The difference equation for the latter, in comparison to

2.72, is ∆Pt= Pt[c-1 - (c-1)Pt], resulting in P P e
P et

c t

c t=
+ −

−

−
0

1

0
11 1

( )

( )( )
, which as t→∞, slowly asymptotes to the value 1.0. As a

result we might expect that the takeover rate of highly fit individuals in later generations will be slower, and that the
likelihood of premature convergence is lessened, at the cost of decreased efficiency.

Uniform Crossover
If crossover is not expected or desired to produce increasingly fit building blocks, then we can use "uniform" crossover,
which randomly selects bits and then exchanges the individual bits.  Such a scheme has the property of being more disruptive
to schema in general, and to short length schema in comparison to multiple point crossover.  If no building block
accumulation is expected to be possible, this method should produce a more rapid and thorough search and avoid to a greater
extent premature convergence.

CHC Algorithm Eshelman (1991)
This is a modified GA algorithm that utilizes: 1) static generational selection, 2) uniform crossover, and 3) incest prevention
to reduce the likelihood of premature convergence (to a local sub-optimum). The authors note that item (2) was replaced with
(ordinary) two-point crossover with resulting improvement in performance for the "Liepins-Vose" deceptive problem, as
discussed above.  This modification makes CHC more similar to Genitor with the exception of (3).  Incest prevention is
implemented by comparing the Hamming distance of two prospective parents, and only accepting them if that value is greater
than the H= (string length)/4.  H gets decremented as the population converges.  This algorithm is used in the multiplierless
digital filter application (below) and was recommended by Whitley in a private communication as a good choice for reducing
premature convergence.  The source code for CHC is proprietary, however, and not available making it unusable for this
dissertation.

Parallel GA's
Parallel processors (MISD) can be utilized to great advantage to evaluate populations of strings in a GA since the fitness
function for each is identical and there is no inter-processor communication required during fitness evaluation.  Another use
of parallel processors (MIMD) is in evaluation of multiple populations that locate potentially different highly fit individuals
that are subsequently re-introduced to each other Whitley (1993).  "N" MIMD processors could be put to use with polyploid
populations (see below for some examples) to evaluate N homologue fitnesses.

Example Applications from the Literature
• VLSI design

Martin (1993) used a single cross point GA to optimize data/execution flow-graphs for VLSI implementation.  A table of
all available node/operators in the repertoire of the design is constructed that  lists the execution time, silicon area, and
power consumption for each operator (or gate.)  The problem is defined by a flow graph for the digital circuit to be made
into an IC including all processing steps and node characteristics, and an overall time constraint for one cycle of operation
of the circuit is specified.  This problem is clearly combinatorial and can get very large for typical IC designs.   The
parallel bit-width of each node/operator and the time delay from  the last of the operator's predecessors in the node graph
to finish are both encoded as successive fields in the chromosome.  The fitness function itself gives better values to
individuals using less silicon area while still satisfying the timing requirements.  An important feature of the fitness
function is that rather than simply rejecting an individual if it violates the timing constraint, the fitness is gradually
penalized according to the square of the excess time required to execute.

Successful results, which in some cases  could not be manually improved upon, were reported for two test cases:  A 16
operator arithmetic flow graph Park (1985) and an elliptic filter Kung (1985).  The authors indicate they did  examine
differing probabilities of crossover (in addition to mutation and population size) to verify that a GA was in fact being
done.

• Stack digital filter design
Stack filters are a generalization of median filtering.  The signal is decomposed into a set of binary signals using a set of
associated analog thresholds and a sliding window.  Boolean functions of the signals can efficiently produce a set of
filters, for each threshold, whose outputs can then be stacked to produce the filter output.  If the filters stack, then the
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output can be reconstructed without using addition by simply finding the threshold in the outputs at which a one to zero
transition occurs.  [Chu, 1989 #93] showed how to design stacked filters using a simple genetic algorithm with up to 7
taps.  [Oakley, 1994 #92] has subsequently presented results using genetic programming that were superior to both
median filtering and FIR filtering.  Genetic programming is discussed below under network synthesis.  Oakley states that
the genetic programming stacked filter design is presently in use in a laser-Doppler medical instrument.

• Multiplierless digital filter design
Design of digital FIR filters having power of two coefficients (i.e., +/-2-n, or zero) is possible, as presented in  [Schaffer,
1993 #94].  Four Gray coded bits are used to encode each filter coefficient in the range of +/-1 in logarithmic steps,
including the value zero. The tap length and cascade structure are preset for each GA run..  Fitness evaluation consists of a
1) range violation term (rvi) that indicates (linearly) the degree to which the ith frequency response bin is out of range,
and 2) either a LMS term which sums weighted  (rvi)2 terms, or, simply takes the maximum of the weighted rvi terms.
Several alternative algorithms including binary hill climbers and simulated annealing were reportedly tried and the authors
state that they do not compare to the CHC genetic algorithm Eshelman (1991).  One experiment resulted in the presence
of 50x106 local optima in the search space for a 31-tap low pass filter design.

• ART network development
Caudell (1992) describes the use of  adaptive resonance theory to cluster two-dimensional objects according to shape.  In
order to enhance the accuracy of the resulting category boundaries, artificially generated data are created using a modified
GA.  The fitness function used is designed to encourage the creation of samples near the category boundaries.  Credit for
the idea is given to work described by Hwang (1990), in which  generalization in a multilayer perceptron classifier is
considerably improved by augmenting the training set with samples near the decision boundaries.  This example
represents a somewhat different use of GA's, having the purpose of creating pools of candidate individuals that are similar
in fitness yet different in their genotype.

• Population size vs. sampling tradeoff in a noisy signal:  Analysis and application involving Image registration
An analysis of the effects of trading off measurement sampling vs. population size is presented in Fitzpatrick (1988).  The
idea is to average n samples of a random process, which is used in chromosome (fitness) evaluation, to see if there can be
a tradeoff with population size.  The authors show that a possible increase in overall processing efficiency is possible and
that optimum sampling rates may exist.  Such a situation occurs, for example, when noisy measurements are to be the
basis for evaluating a GA population. The authors show an example of utilizing this in an image registration problem
using a digitized angiogram pair in which the average pixel difference is measured over a 100X100 square..  The  four
corners of a proposed region of interest, which is to be used in registering the two images, are encoded as 2D vectors in
each chromosome. A 2D linear transform is then used to map interior points in the  trapezoid.  The resulting distorted 2nd
image is subtracted from the first to obtain the chromosome's fitness, using the absolute differences between the pixels of
the two images.  Since this action is obviously somewhat time intensive in itself, and we are dealing with noisy data, there
is ample reason to average pixel differences prior to GA evaluation in order to allow for either a larger population size or
more generations given a fixed evaluation time.  By optimizing this tradeoff, increased GA efficiency results.  The authors
give a  basis for this phenomenon which will now be summarized.

The authors submit that for an arbitrary hyperplane H, comprising a set of chromosomes {x1,x2,,,x|H|}, a random
sampling of r of these xi results in a random variable E having mean µE= µ and variance σE=σ / r , where µ and σ are
the mean and standard deviation of a  random variable, R(x), whose mean is equal to the true fitness function f(x).  The
sample standard deviation for R(x) is σS=σ( ) /x n .  The variance in n samples of R(x) is:

σ
σ ∂ σ

∂

σ

n n
n H

n
H

n
2

2 2 2

2( )
( ) ( ) ( )

xi
xi

xi xi
= ⇒ =

−
 (2.81)

By expressing sampled mean fitness as the true mean fitness plus a zero mean random variable, η(xi), we get:
η(xj) = µ(xi) - µ.  A similar expression holds for each individual sample:  Let pj(xi) be the jth sample taken from the
random variable R(xi) in the estimation of f(xi), then ηj(xj) = pj(xi) - µ(x,). The variance of the average fitness of the n
samples taken from r xi's is then shown to be:
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The total number of evaluations taken to estimate the performance of schema H is r•n.  Eq. (2.82) therefore suggests that
the µ= fitness estimate of  H can be improved without additional sampling cost by increasing r (i.e., the population size)
and decreasing n so that r•n= constant.  We can also consider the effect of decreasing the number of samples, n, without
varying the population size:

     from (2.82):
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=       (2.83)

σS can be viewed as the accuracy of the estimated fitness of schema H.  (2.83) states that as the number of samples
decreases, the estimated schema performance decreases at a fraction 1/r (proportional to 1/N) of the rate of decrease in the
performance of entire strings.  In other words, as the number n of data samples used per fitness evaluation increases, the
accuracy of the estimated performance of the schema H increases at a rate 1/r times the rate of increase of the average
accuracy for evaluating individual chromosomes.  Since we assume r is proportional to N, this suggests that there may be
an optimum tradeoff between the sampling of "training" data and population size.

By defining the computational cost, β, per sample taken during the evaluation of each chromosome and the cost per
evaluation due to the GA itself as α, the authors demonstrate this effect for problems having various ratios of α/β.  The
effect is seen as a trade off  between population size and sampling (N•n is kept constant).  Each string represents a
solution that is evaluated using n samples from the training data.  The tradeoff is in deciding whether to expend
computational energy in  using more of the available samples in the training data versus sampling and using the freed up
computational time to evaluate more strings.

In conclusion the authors state:
"Since the quality of the search performed by genetic algorithms depends on the quality of its estimates of the
performance of [schemata], rather than the evaluation of a particular individual [chromosomes], [eq. 2.83] suggests
that genetic algorithms can be expected to perform well for problems requiring partial evaluation of candidate
solutions."

This result has significance for the stochastic biological data that is the subject of this dissertation since sampling is
inherent in the digitization, FFT rates, etc.  For example, a logical result would be to sample more sparsely in early
generations and only analyze more thoroughly in later populations when solutions presumably emerge.

Network Synthesis
According to [Schaffer, 1992 #28], GA's have been combined with neural or connectionist networks in two different ways:  1)
as an aid before or after  training a neural network (e.g., feature selection as in Brill (1992), or in refinement of unsupervised
learning, as in Caudell (1992 ) , above), and 2) to  determine the architecture, connection weights or both of the network
itself.   This proposal will concern itself primarily with the latter approach, for which various methods have been developed.

Network encoding methods
The main challenge in evolving neural networks is in how to represent the structure of a network and all possible
combinations of connections and still have a manageable string length.  For example, many early approaches mapped a
connectivity matrix for a network with n nodes as follows:

Connectivity Matrix
The chromosome is mapped in row major order to a matrix Miller (1989).  For example, given that the number of nodes is
4,  we can map the binary chromosome, 1110000100010000, to a connectivity matrix as: 

from/to 1 2 3 4
1 X X X
2 X
3 X
4

which then  defines the (recursive) network:
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1 2

3 4
Such a chromosomal representation makes it possible to specify recursive feedback connections.  If crossover is used
indiscriminately, however,  there will be a tendency to randomize the beginnings and ends of rows.  More importantly,
this algorithm fails to provide an efficient chromosome encoding scheme, since N network nodes will in general require
N2 string elements.

An additional problem in applying this approach to even smaller networks,  is the lack of  consistency in how close node
specifications on the chromosome are with how close they are (connection-wise) in the network.  In general, close
positions on the chromosome should be closely related in the phenotype (a characteristic given the name linkage Whitley
(1993).)  In this way, swapping of genetic material will be able to swap and rearrange sub-networks within an existing
design with the result always being a functional network  This issue is referred to as the structural/functional problem
Whitley (1990), Gruau (1992).

Targeted layers
Harp (1989) proposed a chromosome encoding technique that provides perceptron nodes with a target vector that
specifies a distance and orientation in the network space to a connective area having a topology specified by an associated
chromosome element.  The connections are then made by matching closest nodes to the target area.  The network is
evaluated using backprop learning . This approach was used to successfully evolve XOR networks of various
configurations.  No attempt was made to utilize non-linear elements or recursive signal paths.  More importantly the
approach cannot guarantee formation of a completely connected network (e.g., a completed path between network input
and output) without some added mechanism and also requires allocation of chromosome elements to specify node targets.
The former results in wasted population strings (since they must be marked as invalid, and only with great difficulty could
one differentiate various levels of validity.) The latter allocation requirement limits network expansiveness (complexity
for a given string size) according to Gruau (1993).  The structure also does not recombine intact sub-networks as a result
of crossover, but will in fact break up subnets arbitrarily.  These problems can be alleviated using grammar rewrite
approaches, which will now be discussed.

Use of a Rewritable "Expansive" Grammar
Kitano (1990) proposed a grammar that decodes specifications in the chromosome according to a fixed set of rewrite
rules, using 2X2 matrices, that are encoded in a fixed portion of each chromosome.  This "grammar encoding method"
vastly increases the expressive power of the encoding and is a clear improvement in efficiency

Kitano Rewritable Grammar

Typical rewrite rules:

S A B
C D

a d
b c a 0 1

0 0

0 1
0 0

a d
b c

A

AS
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over the previous methods, which Kitano refers to as direct encoding, since each connection in the network has a one-to-
one correspondence to a specification in the chromosome string.  Grammar encoding still requires, however,  that an
mXm matrix be developed for a network of n neurons, where m is the smallest power of two bigger than n.  A grammar
produced by the GA may have many rules that rewrite the same character, or that are not even used.  A small fraction of
the coded rules are actually used,  which further reduces efficiency.  The method does not have an inherent ability to
repeat sub networks although Kitano mentions the possibility of defining rewrite rules to do this.

L-Systems and Cell Division
This approach analyzes automata, known  as L-Systems, that capture the reproductive behavior of cells in the early state of
an organism's development (morphogenesis) Lindenmayer (1990).  A context sensitive grammar is actually required, in
general,  in order to represent rules that are sensitive to generation number or the characteristics of the cell in question's
neighbors, proximity to a boundary or surface, etc.  The methods usually used, and those described below, constrain the
grammar to being context free for simplicity.  In addition to being context-free, however, L-systems permit simultaneous,
as opposed to ordered, rewrites.  An example of a deterministic, context sensitive, L-system grammar is:

productions:                   a → ab, b→ a
start symbol, or axiom:  b
resulting derivation:

b
a

ab
aba

abaab
abaababa

abaababaabaab
etc.

"Parallel" rewrites occur between the 3rd and 4th steps, where "ab" is replaced by "aba".  Only slightly more complex
rewrite rules are needed to generate 2D and 3D structures that are similar in appearance to plants and trees.

Cellular Encoding
Gruau (1993) has extensively demonstrated the use of "L-System" grammars that creates expansive networks with 1-bit
connection weights. Instead of rewriting a matrix as done by Kitano, this grammar rewrites cells, so that architectures of
considerable complexity can be described by a relatively short length chromosome.  Cell attributes are inherited from the
parent cell in a manner intended to mimic mutt-cellular development of complex organisms.  The basic operators are
listed in the table below, specifying such events as "cell divide", which simultaneously produces  two daughter cells
connected either in parallel or serially.   In addition a branching or repeat mechanism is used to encode and promote the
use of recursive grammars that encourage the formation of repeated sub networks. Gruaua named this method Cellular
Encoding.

For example, consider the chromosome string: S P E E S P A E -E, whose symbols are defined by:
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Symbol Action "Arity"

S Serial Divide 2
P Parallel Divide 2
A Threshold

set to "1"
1

E End 0
- Set Input Weight to -1 1
R Repeat from Root n Times 1

resulting in:      S(P(EE)S(P(A(E)E)-E)
S

P

E E

S

E

P

A

E

-

E

As the resulting grammar tree is read depth first, cells divide or get attributes modified according to string codes and a
neural net is formed of very high complexity (with respect to the number of string positions.)  If a "repeat" symbol ("R") is
encountered, the network recursively generates even more complex structures by repeatedly expanding the sub-tree
defined from the root down to the current node a number of times, as specified by an adjacent string position.  Gruau used
this technique, with a modified Genitor algorithm (specifically retaining the "delete the worst" feature mentioned above),
to successfully develop a number of Boolean networks including a 21-bit parity function Gruau (1993)(pg. 73. )

A drawback with this approach is the difficulty of  backcoding, which refers to any method by which a chromosome is
instantiated for a desired network.  For the design of a signal processing network, in particular,  a initial idea of what the
desired network should look like or consist of may be known.  This knowledge could conceivably be taken advantage of
by seeding the initial population with a small percentage of backcoded chromosomes (further discussed in methods .)

Genetic Programming ("GP")
Koza (1993) has extensively developed and tested a grammar encoding method that generates a rooted tree with ordered
branches.  Each node in the tree is an operator out of a function set that usually has a pre-defined arity (number of
children) of one to three.  The arity-2 "functions" consist  typically of  AND, OR, ADD, MULTIPLY, etc. An example of
an arity-three function/node controls execution  using an IF THEN ELSE comparison of one input to select one of the
remaining two inputs.  Single arity functions for many GP problems are  NOT, MINUS, but can be also SIN, COS, etc.
The terminal set specifies arity-0 nodes that are tree leafs that function typically act as input variable or constant numeric
values.  Koza specifies the use of  a minimal function (and terminal) set, which is intended to minimize search space
complexity.  Numerous successful applications of GP are described in Koza (1993), as well as elsewhere, including
inverse, integral, and differential problem solving (the latter use a function set {+,-,*,/,%,SIN,COS,EXP,LOG}, discovery
of  trigonometric identities, various parity functions, etc.

Koza also has developed methodology for evolving not only networks (which he refers to as programs because of their
ability to implement conditional execution, loops, etc.) but also for evolving what he refers to as functions.  These
functions can be called by the main "program" repeatedly as a typical program does.  He also has devised a method for
evolving parameter values.  It is easily possible for a network to be described with no more chromosome space than is
required to represent each of the node types, for example:
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The string:  OR(AND(4)(2)3) would be decoded into the following network:

OR

AND

4

3

2

(output)

In addition to being structurally efficient, this method is also efficient from the standpoint of coding with C++.  In Koza's
implementation, LISP "s" expressions are instantiated and in fact are what the chromosome strings are made of.  As a
result, there are no chromosome strings that get decoded, but rather the members of the population's expressions get
swapped and exchanged during crossover.  Parameter values evolve by simply accumulating  parameters nodes from one
generation to the next.  Methods for implementing genetic programming in C++ have also been developed, as described in
Keith (1993), and in fact the instantiation of nodes using inherited class characteristics has proven to be very efficient
execution-wise as well as easy to manage from a software maintenance standpoint.

Diploid/Dominance
Genetic algorithm research has largely involved the use of single chromosome haploid individuals in a population of
individuals which are subjected to a variety of selection and crossover operations. In biology, however, higher organisms
(including even single cell eukaryotes) utilize a diploid chromosome structure.  Diploidy is so common that several
investigators including Holland (1975) and Goldberg (1989a) have investigated its utility with genetic algorithms.

Diploid/dominance expression in biology suggests that two homologous alleles are paired and, through some mechanism, the
dominant gene is phenotypically expressed. If, and only if, both genes are recessive then the recessive phenotype is expressed.

Hollstien Triallelic Approach to Diploid/Dominance
In Hollstien (1971), a GA was used to  implement the above logic by increasing the cardinality of an ordinarily binary
chromosome from 2 to 3.  Each string position was specifically treated as a gene as far as pairing of alleles is concerned.
Hollstien then added a "triallelic" third value ("2") to the usually two-valued ("0" or "1"), at each binary position.  If a "2"
occurs, it is phenotypically interpreted as a "1".  Likewise for a "1",  but only if it is paired with a "1".  This approach made it
possible to study dominance in multiple allele chromosomes (every bit position in the string is a separate gene with

 Triallelic, Single locus, diploid dominance map
   Gene 2

0 1 2
0 0 0 1

Gene 1 1 0 1 1
2 1 1 1

Legend:    2=>dominant "1", 1=> recessive "1", 0=> "0"

Example:
Homologue #1: 01121;   Homologue #2: 10201.
=> Expressed genotype (for the purpose of fitness evaluation) would be:  00111.

Figure 2.1.  Triallelic dominance map that the effective allele value at a given diploid string position.

corresponding allele value), and is represented in dominance map shown in Figure 2.1.  Results with this approach were
mixed, perhaps due to the random dominance shifting methodology utilized, and diploid/dominance since Hollstein's work
appears to have received little attention in the literature with the exception about to be described.
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Non-Stationary Fitness
Smith (1992) used the Hollstein triallelic mechanism to study the ability of diploid/dominance to improve GA performance
with changing global optima. The fitness function they utilized is known as a "non-stationary 0-1 knapsack problem," which
has a search space of 2L, for an L-bit chromosome. The 0-1 knapsack problem is defined as follows:

maximize  v    (2.86a)

given         w W         (2.86b)

:        [0,1] are the chromosome bits 
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This function seeks to maximize the inner product of v with the binary chromosome, x,  imposing the constraint (2.86b) that
the inner product of w with the chromosome must be less than a fixed constant W.  The above authors then modified the
knapsack problem, in order to induce a shift in the fitness environment, by periodically switching the value of W between two
different values every 15 generations.   Results were definitely improved over Hollstein's stationary model, however, some
instability is still evident in the results Smith (1992)(p280), Goldberg (1989a)(p156).  The first  experiments described in the
results section of this proposal use an identical 0-1 knapsack problem, thereby providing direct comparison with a previous
experiment having moderate problem difficulty.

Some biologists assert that diploid/dominance can provide protection against low-fitness allele loss. "The preservation in
diploid populations of alleles that may be selectively disadvantageous under some conditions provides a source of
evolutionary variability not available to haploids Novikoff (1970)."  If a similar environment repeatedly arises, diploidy could
presumably enable the species to rapidly re-express its former fitness for that environment.  A shift in environment, or non-
stationarity,  was introduced into Smith's GA experiment by  periodically switching the value of "W" in order to see if
diploid/dominance had such an effect with GA's.  His conclusions suggest the possibility that such might be the case.  More
importantly, Smith provides direct insight into:  1) how the use of diploidy can maintain a relatively high proportion of
recessive alleles in a population without resorting to high levels of mutation, and 2) lower bounds on recessive allele retention
(from one generation to the next).  His analysis specifically examines item (2) for 2:1 and  infinity:1 dominant to recessive
fitness ratio. These results will now be summarized.

An explanation of how diploid dominance could permit a lower mutation rate while maintaining a constant (small) proportion
of recessive alleles was published in  Smith (1992).  These results are an extension of  conclusions presented in Holland
(1975)(pg. 114). Convergence, for a given single allele, is analyzed while the proportion of that allele reaches a small, steady-
state value Pss, for a given mutation rate pm and ε, the expected change in allele proportion due to fitness selection.  Smith
first derives pm as a function of  Pss and ε, for the usual haploid GA. The result is then compared to the same relationship for
a diploid ( with dominance) GA, where a recessive allele is expressed only if paired with another recessive.  The following is
an expanded summary of Smith's result with some expansion to the diploid analysis.  These results assume that recessive and
dominance, for a given allele, are defined from one population to the next using a dominance shift operator that functions in a
similar manner to pointwise mutation (except that instead of modifying allele values, the dominant/recessive label for each
allele is what gets randomly modified.)  The following analysis assumes that a given allele is either completely dominant or
completely recessive:

For a haploid population:
For a specific binary allele value at time t, denote the expected proportion in the population for that allele by Pt.  The
expected increase due to selection, alone, is then:  -εPt:
      the expected change in  due to fitness- proportionate selection
                ( >   allele value is favored for selection)

where P: ε
ε
=

⇒1
The expected increase due to mutating the opposite value to the one in question is:

    p P where p mutation ratem
t

m( ); :1− =
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The expected increase due to mutating the given value is:  Combining selection and mutation gives:
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prop.  of the recessive allele at time 
      since selection only affects recessive alleles when they are paired ( homozygous  recessive) ,  

      the increase in recessive alleles due to selection is:   - 2      (2.93)
           ( the factor  of  2  is due to losing 2  recessive alleles every time a recessive pair is deleted)
the diploid mutation term is given by:          (2.94)

combining (2.93)  and (2.94)  gives the diploid difference equation:   
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now let P steady - state recessive allele proportion  

          (2.96)

t +1 ε

ε

Equation (2.96) shows that the pm (mutation rate) necessary to maintain the level of the allele at proportion Pss is
proportional to Pss2, a potentially much lower rate than for the haploid situation.  In addition, Smith shows that the retention
of recessive alleles from one generation to the next has a greater upper bound for the diploid case (than the haploid).

Sub-fitness Dominance Map
GA Implementation
The approach to diploid/dominance used for this dissertation is inspired by  zoology and genetics, and this basis  will now
be described.  The actual algorithm and its performance will be described in the methods and results sections.

In contrast to the Hollstein approach, this dissertation considers the diploid chromosome as two chromosomes with one
gene each, for simplicity, and one corresponding allele value each. The allele values are defined to be the fitness values of
the two strings. These two sub fitness values are then utilized as if they actually represent an intermediate phenotype level
between genotype and phenotype. This process, where two homologous alleles seemingly compete prior to manifestation
in the observed phenotype, will be referred to as sub-phenotype interaction.  This approach is problem independent and
can be extended to polyploid (greater than two homologues per individual), as will be show in the methods section.

The two sub-phenotypes are obtained by evaluating both  chromosomes using the fitness function that is to be maximized.
Dominance is implemented by mapping the two sub-phenotype fitness values to the scalar fitness value which will then be
used for selection.  The mapping function is referred to as the dominance map or dominance function, and the fitnesses of
the individual haploid chromosomes (homologues), is referred to as sub-fitness Greene (1994).  "Sub-fitness" dominance,
as used here, is similar to partial or incomplete dominance in genetics, as summarized in [Stansfield, 1983 #98], pg. 219.

Utilization of "Sub-fitness" Diploid/Dominance in Biology
In biology, it has been postulated Muller (1950) that homologous genes can interact in a non linear fashion to produce
their associated phenotype.  If the dominant form of an allele produces enough of the enzyme needed to catalyze the
reaction for, e.g., eye coloration (Muller, pg. 179) then a homozygous combination of dominants (i.e., both alleles are
dominant) will produce only a barely noticeable increase over the heterozygous combination. This idea is summarized in
Crow (1983) as follows.  "...that genes produce enzymes provides an explanation of dominance." [Consider that C is the
dominant allele and  c is the recessive form of that allele] "Since only very small amounts of enzymes are needed to
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catalyze chemical reactions, one gene usually produces more than enough enzyme to convert all the substrate into
product.... Since one C allele is sufficient, the genotypes CC and Cc both have the same amount of pigment even though
CC produces twice as much enzyme as Cc." One consequence of the dominance mechanism occurring at a level between
the string level (genotype) and fitness level (phenotype) is that homologous genes need not be explicitly linked (e.g.
through gene position), they simply compete through the similarity of their intermediate (enzyme) phenotype.

III. Methods
This section describes in detail the approaches used in the Results section, and some comments on extensions for future work.

A. Genitor
The Genitor public domain software (described in the previous section) is used because of its apparent efficiency, fairly wide
usage, and ease of implementation and modification.  Only one  evaluation is made per (haploid) generation.  Genitor is well
written and was easily ported from Unix to DOS.  It is characterized by 1) rank based selection of individuals for mating, 2)
deleting the worst individual at each generational cycle, and 3) carrying all but the worst individual forward to create the new
generation.  Further justification of using Genitor was provided in the previous section.

B. Grammar Tree Gene to Network Mapping
•   Overview
All string values are constrained to be in the range [-1.0, 1.0] both by the initialization procedure (which places random
numbers into all string positions) and is maintained by the crossover and mutation operators. Checks are done during
crossover and mutation to see if any string values are outside this range, and an immediate error is flagged if so.  To re-map
parameters to various range(s) or dimension(s) for a node operator, the node's constructor method (i.e., associated
instantiation and initiliazation function) provides one or more function arguments.  For example, the delay node scales the
associated string value linearly by 100 giving a range of 0 to 99 (after mapping the allele from [-1,1] to [0,1]).  Such scaling
factors are provided as parameters to the C++ constructors for each particular node  so that specification and modification are
easy.  In some cases where emphasis may be desired on a certain sub-range of the overall  parameter range, a node may be
"defined" more than once in the decodeNode function with differing scaling factors specified for multiple instances of the
parameter in question.  This latter approach is intended to increase search efficiency for function parameters having an
asymmetric distribution.

• Similarity to Koza
The proposed approach to genetic network synthesis uses a chromosome to network mapping that follows the approach taken
by Koza (1993).  This method has been followed by a number of others, as exemplified by the section on "Genetic
Programming" in ICGA-93 (1993).  In order to encourage the formation of viable networks, the crossover operator used here
(see below for details) works in conjunction with a global GeneMarker register  that records the string positions of valid
nodes every time the nextNode function (below) is called.  Since all nodes produce a single, floating point output and expect
floating point inputs, all nodes are compatible in this respect.

• Differences with Koza's implementation of Genetic Programming:  The nextNode function
Instead of building and exchanging Lisp s-expressions, my approach uses a traditional GA with populations of fixed length
floating point arrays, or strings.  A string decoder evaluates string elements from left to right.  The reading  head (pointer to a
given string element) matches the string value to one of the node operator types in a pre-defined function set, each member of
which has a pre-defined arity (number of children), as well as other characteristics (see below for details).  String decoding is
handled by the nextnode procedure, which:

• tests for end of string;
• tests the current tree branch to see if it is longer than MaxDepth= 4;
• if either of the above two conditions are true,  the branch is terminated by attaching a terminal node from the terminal

set and unwinding the current recursion, after which processing proceeds;
• records the current string position in a the global GeneMarker register as a point where crossover is allowed;
• maps the current string value into one of the available node-operators in the "function set", defined below.

Upon decoding, each node is instantiated as a C++ object.  The node instantiation process does two things:  1) Read
successive function parameters as sequential string values and 2) recursively calls the "nextnode" procedure to begin
instantiation of each child of the node (up to its pre-defined arity), which in general  consists of a sub-tree of nodes.



Dissertation Proposal July 29, 2001:  F. Greene   28

Having decoded the chromosome into a tree, or network, the nodes are evaluated depth-first with a single call to the eval
function of the root  node.  Similarly, the network is deleted (to reclaim the memory) with a single function call to delete the
root node, which then automatically deletes the entire tree through the nodes' destructors.

In order to develop specific numeric values, Koza uses what he calls an "ephemeral random constant" generator that accumulates
randomly generated numeric values which are subsequently retained and accumulated from generation to generation within s-
expressions.  Such an approach is Lamarkian in that it involves if not modification and subsequent inheritance of phenotypes and
therefore is somewhat at odds with biology.  The approach used here uses the actual real  string values that evolve using standard
(non-Lamarkian) mutation and crossover operators as described below.

• C++ Class Hierarchy
C++ provides for inheritance of class data and methods from parent objects or classes.  My GA implementation uses a
single level of inheritance.  A base class provides common characteristics for all node operators.
1)  Base Class
• Data:  Provides storage for arity count, pointers to children, node name, targeter flag that indicates if the node is  to

be interpreted as one which can target another node, and node name
• Methods:  Node depth control, default initialization of above variables.
• C++ Implementation (sample code):

#define MaxArgs 5
#define RETURN_TYPE float
int treeDepth= 0; // global variable to keep track of how deep each branch is

// *************************************************************************************
class nodeBase  //  <------------------- this is the "base" class that is common to all node/operators
{
   public: virtual (RETURN_TYPE) Eval();  // "virtual" methods can be overloaded by ancestor class (below)
               nodeBase() {arity= targeter= 0; depth= treeDepth++;  outputVal= 0;}
   private:  int arity, targeter, depth, outputVal;
                 RETURN_TYPE *Arg[MaxArgs];
};

2) Child Class
• Data:  Specify structures used for ufnction implementation
• Methods:  Code to implement node/operator functionality
• C++ Implementation (sample code):

// *************************************************************************************
// typical "ancestor" class that inherits properties of the above base class
class AddNode : public nodeBase
{ // example of "sub-class" that defines a node/operator to add "N" subnets
   public:
   AddNode(int N)  // constructor -- initialize node
   {
     if (N > MaxArgs) {N= MaxArgs; /* flag node definition error */; }
     arity= N;
     //
     // <--- place holder: for decoding any node parameters directly from the chromosome
     //
   }
   (RETURN_TYPE) Eval()  // eval member function -- contains actual operator  code
   { // in this case, simply add up evaluated  output of  arity number of subnets
     RETURN_TYPE r= 0; for(i=0; i<arity; i++) r+= Arg[i]->Eval();
     return outputVal= r; // store return value in "outputVal" register and also retun as functional value
   }
   ~AddNode() {for(i=0; i<arity; i++) delete Arg[i]; } // destructor, to reclaim memory when all done
   private: int i;  RETURN_TYPE *Arg[2];
}
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In summary, each string element that does not map to a node parameter decodes to a node/operator C++ object that
encapsulates its own Eval() handler.  There are two types of  node/operators:  Functions and terminals, which is the strategy
followed by Koza.  The approach taken here can in some cases utilize a node operator to be both a function and a terminal
(e.g., the targeter and mdvi operators defined below.)  I have also made no attempt to restrict the function set to the  minimum
number needed to solve the specific problem under consideration,  although doing this for a particular problem (a routine part
of  Koza's GP problem definition) would of reduce the search space and therefore simplify the specific problem under
consideration.  The function and terminal sets are defined as follows:.

•••• Function set (organized by category)
• Boolean:  arity= 2

• OR(x,y)= Max(x,y); AND(x,y)= Min(x,y); NOT(x)= -x; NOR(x,y)= NOT(OR(x,y); NAND(x,y)=
NOT(AND(x,y)

• Arithmetic
• ADDW:  weights sum of inputs,  each input is a separate chromosome value.  (assigned arities= 2 or 3)
• MUL: multiplies "safely" the input by a chromosome value scaled by an assignable range -- if result is out of

machine floating point range, the value is clipped to prevent overflow ("safe multiply").  (arity= 1)
• ADDC  adds a string defined value multiplied by pre-defined constant to input.  (arity= 1)

• Signal Processing
• One-shot (OS):  Produces one evaluation-cycle long pulse if threshold reached.  (arity= 1)
• One-pole filter (IR1):  Chromosome value determines filter time-constant. (arity= 1)
• Adaptive, two-coefficient, one-pole filter (IRB):  Selects one of two feedback paths depending on thesholded 2nd

input.  Output is filtered output of 1st input.  Each filter has its time-constant independently assigned from the
chromosome  Very useful with wave form event determination.  (arity= 2)

•••• Terminal Set (i.e., leaf nodes)
• MDVI:  Takes vector input (e.g., magnitude spectra) and returns mode between specified limits.  Offset and width of

the (band) limits are supplied by the chromosome:  arity= 0 (terminal node)
• TAR   See description below -- clips values similar to "MUL" function, arity= 0
• IN:   Input from one of up to ten or so chromosome specified input scalars:  arity= 0
• NULL: Returns a value of 0,, except for  "OR" parent nodes, for which a value of "1" is returned: arity= 0

The "TAR" node operator causes one additional string position, per node, to be read to obtain a relative network depth or
offset.  After the network is instantiated, a second instantiation pass is made during which all such targeter nodes in the
network are identified and assigned an absolute node (x,y) address from which they "target" their input.  The base class's
"outputVal" register (see above code) is utilized to obtain the last outputted value from the targeted node.  This capability
augments the network connections defined by relative string position and provides the capability for any node to connect
directly to any other node.

C; Crossover and Mutation Operators
The algorithms  for  the crossover and mutation operators are described in the literature survey section, and were originally
devised by Michalewicz (1992).  Additional details are as follows:

• Crossover
Arithmetic crossover is implemented by sweeping the blending "a" value between .5 and 1.5, in a triangular wave (with
period of approximately. 1800 generations) so that the solution space, S , is not strictly convex, as mentioned in section II.  In
other words, all possible allele values can be reached through crossover, alone, even if the initial population doesn't contain
the exact values needed.  The definition of arithmetic crossover is.

if s and s arecrossed at generation t
the resulting offspring are

s v v w a v a w a v a S

s w w v a w a v a w a S

v
t

w
t

v
t

k k k m m

w
t

k k k m m

      (     ):
   :

, ... , , ( ) , ... , ( )

, ... , , ( ) , ... , ( )  

+
+ +

+
+ +

= ⋅ + ⋅ − ⋅ + ⋅ − ∈

= ⋅ + ⋅ − ⋅ + ⋅ − ∈

1
1 1 1

1
1 1 1

1 1

1 1

    3.2

• Mutation
As with most GA's, each element in a string selected for mating is mutated according to pm, which is the mutation rate.  If an
element is thereby selected, the mutation  operator either increases or decreases the string element value with equal
probability.  An exponential weighting function is then applied that encourages a result near the original (parent's) value to an
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extent, ∆(t,y) that is controlled by the current generation index. The idea is to allow greater variation or spread in possible
new allele values compared to the results of mutation in earlier stages.  This "spread" then decreases as the generation count
increases.  I have modified this slightly so that:

     ∆(t,y)= y*(1-r**(1-T/GC**bb) (pg. 80 of Michalewicz);  where T= t mod GC
As t periodically approaches ["GC modulo N] generations (N typically 1000), the mutation spread is reduced.

• Gene markers
When sites are selected for crossover, the closest existing values in the GeneMarker register are used to select the
actual sites for the first parent.  The second parent has no such restriction.  This is similar to what Koza and Gruau
do and produces a notable improvement in GA efficiency (both the rate of problem solution and success rate) when
compared to totally random  selection of crossover points.

D. Use of Diploid/Dominance
Diploid/dominance as implemented here is defined by eq. 3.80:

f = Max(f1,f2)                 (3.80)
where:  fi is the fitness (or "sub fitness") of the ith homologue, and f is the resulting fitness for the individual.

The sub-fitness dominance mapping scheme proposed here establishes partial dominance on the basis of the relative allele
fitness between each homologue, and is also described in Greene (1994). One result of this approach is that no mutation-like
dominance shift operator is involved, as with the previously described Hollstein triallelic approach.  Gamete (or haploid
homologue) selection is done prior to chromosome crossover, which is the opposite of biology.  This is done to increase
algorithm efficiency, since no individuals get crossed without their gametes getting used.  By contrast, the possible number of
new crossover pairs per (biological) mating event are M 2 , where M= # homologues, and two are subsequently selected to
form the diploid offspring.  An attractive property of eq. 3.80 is that it retains the original units or dimensions of  the fi fitness
functions.

Extension to the Smith/Holland calculations Smith (1992), Holland (1975).
By assigning absolute states of recessive or dominant to each homologue, the following definitions suggest a reduction in the
required pm rate similar to that predicted by Smith as follows:
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This approach provides the definitions needed for eqs. 2.93-2.96.  By examining the derivation eq. 2.93, the necessary pm for
a polyploid population can be seen to be on the order of PssM, where: M= number of chromosome homologues.  The exact
algorithm (including the gamete and recombination operations) used here for implementing polyploid dominance mapping is
described in Greene (1994).

The definitions needed to analyze recessive allele proportion changes with diploid versus haploid can also be defined as
follows:
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Further Extension to the Smith/Holland calculations:  Rate of change in recessive allele proportions
The expected change in recessive allele proportion for a diploid population Smith (1992), using the above definitions can
now be derived as follows:
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and K is a constant that accounts for loss due to mutation.  For a haploid population, the result is:
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By evaluating eqs. 3.81 and 3.82 for various values of Pr, Smith shows that the rate of change of recessive alleles is
substantially slower for diploid than haploid populations with c=2.  As c goes to infinity for a diploid population, eq. 3.81 can
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,  which by induction can be written as:

P KP
tPt = +
0

01
                                                                   (3.83)

where P0= Pt at t=0 (the initial proportion of recessives).  In comparison to eq. 3.83,  letting c go to infinity in eq. 3.82 results
in Pt= 0.  This result is true for all values P0 > 0, further supporting  the view that diploid dominance retains even extremely
recessive alleles from one generation to the next.

Fitness switching with the R-Wave problem
Diploid/dominance is implemented together with environment switching, as described in the literature survey, for the Doppler
network synthesis test problem described below.  This has been done by defining one environment as the complete fitness
function, which consists of a phase portion (ft) and an energy portion (fe.)  This function is:

f1(x)= ft + fe;      (3.20)
   where: ft= avg. over N heartbeats of abs(true time of R-WAVE - network output's N highest maxima)
               fa= abs( difference in energy between true R-WAVE and network output).

The second or alternate environment is a simplified version of f1(x) that consists only of f2= fe + .02.  f2 never goes
completely to zero and so it can never indicate a solution, which occurs with Genitor when an individual's objective value in
reaches zero. Reducing f2 corresponds to finding a function with the right energy, which in the tests done corresponds to a
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unity width and amplitude, two-pulse sequence (for N=2).  f2 is obviously much easier to "solve".  Retaining the f2 solution
through the mechanism of diploid/dominance may be investigated as part of this dissertation.  Such an approach can reduce
the likelihood of  prematurely converging to a  local sub-optimum that does not at least include a solution to fe.  This
expectation is supported by findings in the results section of this proposal for the following problem, which is also relevant to
the desired goal of synthesizing networks for low-cost Doppler signal processing.  The advantage of diploid/dominance, with
or without environment switching will also be investigated if results continue to support its use.

Doppler test problem
The test problem consists of a series of simulated triangular shaped 64-bin spectra whose peaks (modes) are shifted to
produce a wave form that has two peaks corresponding to a "normal" common carotid blood velocity wave form.  These
spectra are then replicated once to produce a series of spectra with peak frequencies (modes) as shown below.

R-wave Locations

Time
0

Simulated Doppler Flow (normal common carotid artery)

Spectral
Mode

(bin index)

63

.
Figure 3.1.  Mode frequencies of simulated Doppler signal for  R-wave detector problem.

R-wave events are defined to occur at identical x-axis (time) values for the two identical wave forms, as shown: Detection of
an R-wave equivalent fiducial point from the Doppler signal has direct application, e.g. in situations where an ECG is difficult
to obtain (as mentioned in the introduction).  In practice signal noise, probe to vessel movement, and the effects of advanced
vessel occlusion can all contribute to make the problem more difficult.  To solve these types of problems additional pre-
processing can be done, as mentioned in section one.  For example, signal energy, energy derivative, and upper 9 dB
frequency, in addition to just the Doppler spectra, may be provided as available input data to the previously described "IN"
nodes during fitness evaluation.

E. Backcoding
As mentioned in the literature survey, backcoding refers to a method to pre-encode chromosomes from a pre-designated
network.  As mentioned in the introduction, a goal of this proposal is to investigate the possibility of  at least partially pre-
specifying the network design, to see if the genetic algorithm can then optimize the node parameters or add or delete nodes
and connections. A portion of the population is seeded in this way with the backcoded  chromosome..

Part of this task has been accomplished in that I can specify a list of  nodes using  node mnemonics and parameter settings
and specify a chromosome.  For the R-wave test results of the next section, 20% of the population was seeded with a "OS"
node connected to a child "MDVI" node, since it is clear that the network needs to produce a unit amplitude pulse and that we
would expect the network to utilize a single point estimate of the spectral energy.  There is more discussion of backcoding in
section 6.

IV. Results

A.  0-1 Knapsack Problem
Test results are provided in Greene (1994) which show the proposed diploid/dominance sub-fitness mapping can result in reliable
and stable convergence in the following non-stationary, 0-1 knapsack problem.  Those results were for a two-environment fitness
function defined by two alternating weight constraints.  That approach is extended here by defining two additional weight
constraints for the knapsack problem.  These four weights are alternately applied together with a triploid and tetraploid
chromosome structure for each individual (i.e., each individual in the population consists of three or four chromosomes.)  The
population is comprised of 150 individuals consisting of (polyploid) 17-bit binary strings.  The  sequence of alternating weight
constraints which get repeated (in order) are then: W=  104, 60, 85, 47.  The optima (solutions to the knapsack problem) for these
four constraints, as determined with an exhaustive search through the 217 bit combinations, are: 113, 129, 120, and 137,
respectively.  In the experiment below, the four chromosome Genitor GA converges to correct
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Figure 4.2  Tetraploid (4-homologues) convergence with a 4-state version of the  0-1 knapsack problem.

solutions for the four constraints  by t= 3500 generations, after which fitness switching is immediate (within one generation) and
stable throughout each fitness environment.  As described in the above reference, the population is completely re-evaluated after
each fitness change.  If a non-overlapping generational GA were used instead of Genitor, re-evaluation of the entire population is
always carried out every generation, in which case this increased "overhead" disappears.  Fitness in these experiments is switched
from one optimum to the next every 100 generations.

To see if a four-chromosome structure is necessary to solve a four-state problem, the same experiment was run with diploid and
triploid populations.  As shown in figure 4.21 and 4.22, even with three times as many generations, the diploid and triploid

Diploid, Four-State Non-stationary, 0-1 Knapsack Problem
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Figure 4.21.  Diploid population, still with four-state fitness function.

Triploid, Four-State Non-stationary, 0-1 Knapsack Problem
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Figure 4.22.  Triploid population, still with four-state fitness function. Arrows indicate correct solutions.

populations cannot converge to all four states as can the tetraploid, although the triploid does appear to have done a better job
than the diploid in that it gets three of the states correctly, as indicated in fig. 4.22.

These results, and the theory of the previous section,  indicate that the proposed "sub-fitness" approach to diploid/dominance
improves GA performance in non-stationary fitness environments and that the approach can be extended to a separable fitness
function.  In addition, the results show that polyploid populations can immediately recall the appropriate solution when a
previous fitness criteria is recalled.  This suggests the possibility that use can be made of alternating fitness criteria in solving
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problems with multiple stages of complexity or sub-functions.  In the next experiment, diploid/dominance is used to aid in
finding a solution to a simulated Doppler signal processing problem having two such stages of complexity.

B.  Two-Heartbeat R-Wave Detector
This series of experiments demonstrates GA development of a network of  signal processing operators whose output produces a
pulse that coincides with a simulated ECG R-wave trigger, using only the Doppler signal.  The Doppler signal is assumed to be
available in the frequency domain as a series of 64-bin spectral magnitudes.  In typical clinical spectral displays, 128-bin spectra
are computed every 10 msec.

As mentioned in the methods section, Diploid/dominance may be capable of exploiting a non-stationary fitness environment, or
fitness criteria.  This idea is extended here, so that one of the (two) fitness definitions is purposefully defined as an incomplete,
but relevant, portion of the complete fitness definition.  This incomplete function is a term in the (complete) fitness function (eq.
3.20) that monotonically increases with increasing deviation from the correct energy.

The following figures plot Genitor fitness vs. generation for the Doppler R-wave problem as described in the methods section.
Since individual fitness actually increases as the Genitor "fitness" decreases from plus infinity to  zero (zero fitness is defined to
be a perfect solution) a perfect solution goes off the bottom of the graph as indicated in Fig. 4.11 by the arrow.  For each graph,
the best and average (Genitor) fitnesses are plotted along with the crossover rate (the "a" term in eqs.  2.42 and 3.2).  These tests
use a population of N=250 and floating point string length of 30.  Fitness is switched every 500 generations producing what
appear as oscillations in the graphs.   The longer switching times, compared to the knapsack problem, are used to reduce the rate
at which the entire population gets re-evaluated.   This event takes substantially longer for the more complex R-wave problem.

In fig. 4.1, diploid/dominance with fitness switching is used and  the fe (energy only) fitness function converges to a partially
correct solution (energy error is zero) by 1500 generations as shown in Figure 4.1.  The network produced at that point has at
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  Figure 4.11                                                                                           Solution Found

its root node a one-shot whose sub-network causes exactly two pulses to be produced, although at the wrong times.  Referring to
Figure 3.1, the smaller diastolic "hump" of each heartbeat, which is a characteristic feature of common carotid velocity wave
forms, has a peak shifted 10 time units (spectra) from the first, larger hump of each heart cycle in the simulation.  As the GA run
continued, a network emerged at generation 7248 that produces two pulses that are correct both in phase and energy with the
(simulated) ECG R-wave events shown previously in Figure 3.1, as shown here:

OS(3.1)<=INV<=NOR <=MDVI(o,b)<=TAR <==Spectral Input(Network Output:) <=
<=NULL<=DLY(10)<=OR

 

 
Figure 4.115.   Synthesized network that solves the Doppler R-wave problem (see appendix for more examples).

OS(3.1)<=OR <=MDVI(o,b)
<=TAR

<==Spectral Input(Network Output:) <= <=DLY(10)  

 
                                             Figure 4.116.   Simplified version of Figure 4.115
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The evolved parameter "3.1" for the OS node in Figure 4.115, which is shown with unnecessary nodes removed in Figure 4.116,
specifies the threshold at which the one shot triggers.  The "DLY" node has an  delay of 10, which serves to disable triggering on
the second, smaller hump of each heart cycle.  The MDVI "o" and "b" parameters are the chromosome supplied offset and
bandwidth for the mode function and are equal to 6 and 51, respectively.  The solid line from the "TAR" node indicates this
node's input target.  The spikes visible in the "average" fitness subsequent to each environment change may be due to
modifications in the population of relatively recessive genes during optimization of the dominant, more highly fit, genes.

The definition of recessive/dominant used here, and as further discussed in the methods section, is a "relative" one that can be
likened to incomplete, partial, or co-dominance in biology [Stansfield, 1983 #98], where each allele can have some effect on
fitness.  This usage differs from past GA implementation of diploid/dominance (e.g., Smith (1992)), where a gene is absolutely
recessive or dominant, independent of its homologue.  Theory presented in the literature survey ("Diploid dominance in
biology", above) suggests that such dominance interaction is not uncommon in biology, and results from the natural expression of
homologous (diploid) genes and the resulting phenotypic (enzyme) product of each.
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Figure 4.12.  Environment switching with a haploid population.

The experiment of figure 4.12 solves the above R-wave problem using environment switching only, using a haploid population.
The significantly faster diploid solution strongly suggests that the Max(f1,f2) approach associated with figure 4.11 permits  faster
convergence to a global optimum.

To show that convergence to a global optimum may be robust, results for a reduced population size and reduced fitness
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Figure 4.13  Same experiment as Fig. 4.11 with slightly reduced population size.
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Figure 4.14  Same experiment as Fig. 4.11 with reduced fitness pressure.
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Figure 4.2  Same experiment as Fig. 4.11 using haploid population

pressure are shown in figure 4.13 and 4.14.  In comparison to the (non-stationary) diploid population model with environment
switching, a haploid population model, without switching (i.e., stationary), required 125,600 generations to converge to a perfect
solution as shown in figure 4.2.  If a haploid population is run without crossover (same pm= .05 and b= 1.5), convergence is not
obtained even by 200000 generations.  This latter result confirms that hill climbing (non-recombinant search) alone is less
efficient than either the haploid or diploid GA's used for this problem.

The initial increase in performance for the experiment of Figure 4.11 occurs when a single pulse network is found, followed  by
another increase when a two-pulse network is found.  There are actually a number of networks that can produce two pulses that
are incapable of producing pulses at precisely the right points in times.  These networks represent local optima in the fitness
landscape that make the problem relatively difficult to solve using hillclimbing alone.  With mutation only, a deceptive problem
such as this one may require multiple, simultaneously allele mutations to achieve the desired result.  Since mutations are done
independently, there is a vanishingly small probability of the required mutliple allele modification occurring.

Particularly since parsimony was not addressed in the fitness function, many other networks have been found that completely
solve the r-wave problem, of which three are presented in the appendix. A more thorough analysis of the R-wave problem would
most likely involve multiple trials using randomly different initial populations. So that others can more readily verify and
compare and verify the effects of diploid/dominance, to speed up execution, and to isolate fitness landscape behavior, such an
analysis has instead been done with a simpler, and faster to execute, test function which will now be described.

C.  Multiple Trial, Multimodal Test Function
A more careful multiple trial analysis to compare haploid vs. diploid was carried out with a multimodal/partially deceptive test
function that is many times faster to evaluate and considerably easier to define and replicate than the R-wave problem.  Other
functions were tried, and rejected, because they were either too easy or difficult, and consequently could not reveal differences in
performance between haploid and diploid.  The function used is:

f(x)= x• [1.1-cos(πTx)],   T= 10-2,  0 ≤ x <  230  (4.1)

Eq. 4.1 has monotonically decreasing minima with decreasing binary chromosome value x, and a global minimum at x= 0 as
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                Firure 4.3.  Multimodal fitness function showing decreasing local minima towards global optimum.

shown in Figure 4.3.  Other functions considered were Goldberg's concatenated "order-3"and "order-5"deceptive functions
Goldberg (1993)( p. 10).  While these latter functions may be more tractable per the extent of their "deceptivity", the order-3 was
too easy and the order-5 apparently too hard to see any difference between haploid and diploid.  That is, both cases either
converge in about the same number of function evaluations or didn't converge to a solution in a reasonable time (e.g., 200000
evaluations.)  A similar lack of difference was observed (with Eq. 4.1) when a value of  T=10 was used.  This choice of T
reduces any monotonic structure in the function (i.e., the search becomes more like looking for a "needle in a haystack".)  Eq. 4.1
is intended to model a well designed, but difficult application, where there are multimodal and deceptive regions in the search
space and occasional local optima that are themselves non-deceptive (namely the maxima in the cosine term that map to
decreasing local minima, which lead to the global minimum in f(x).)

Results are reported in terms of the number of fitness function evaluations, which is nearly proportional to execution time on a
single processor machine.  This is done because the diploid implementation used here requires two function evaluations per
Genitor generation.  No explicit environment switching was used because of the added complexity in splitting f(x) into an
alternate form, as was done in the R-wave problem.  With pm=.05, b= 1.05, and chromosome length of 30 bits, an evaluation of
10 independent initial populations for each of haploid and diploid resulted in average required evaluations, to zero error1, as
shown in Figure 4.4.  If we (generously) give the haploid experiment twice the population size of the diploid

      Numerator →
↓  Denominator

Haploid,
N=100

Haploid,
N=200

Diploid,
N=100

Diploid,
N= 200

Haploid, N= 200 1.1 - - -
Diploid, N=100 4.9 4.5 - -
Diploid, N= 200 5.8 5.3 1.2 -
Haploid, N= 400 5.0 4.5 1.0 0.9

Table 4.1.  Ratio of Average Fitness Function Evaluations, 10 Trials

experiment, the ratio between the average number of required function evaluations for haploid and diploid populations is
approximately 4.5 to 1, as shown in bold type in Table 4.1.  This result is comparable to the ratio between both haploid N=100
and haploid N=200 vs. haploid N=400.  In other words, Diploid at N=100 gives average efficiency comparable to Haploid at N=
400 for this experiment.  In conclusion,  the efficiency increase is not due to the increase in diversity due to diploid doubling of
string count alone

The reason for comparing with a doubled haploid population size is that the diploid population will still possess the same number
of total strings, and hence have equal or less diversity, or available allele values, in the initial population.  As mentioned in
"Methods", the second homologue of each individual in the initial diploid population is generated by making a direct copy of
each randomly generated first homologue (as opposed to, say, generating the 2nd homologue of each diploid pair randomly.)  As
a result the diploid N=100 experiment has a generation zero population diversity equal to the haploid N=100 in these
experiments.  In subsequent populations mutation will of course generate allele values not initially present.

In order to compare greater and less haploid population sizes with diploid N= 100, haploid experiments with N= 100 and N= 400
were also done.  The ratio of average function evaluations in these cases are 4.9 and 1.0  to 1, respectively.

                                             
1One haploid N= 100 trial was stopped at 200,000 function evaluations (generations) prior to complete convergence.
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Figure 4.4 .  Scatter gram of GA evaluations various haploid and diploid population sizes:  Ten trials each.

The longest convergence times occur with haploid N= 100 and N= 200, as shown in Figure 4.4, with 3 trials in each case
exceeding 100,000 evaluations.  Both the average trend as outlined in the Table 4.1 and protection against routine, very large
convergence times appear improved with the diploid scheme when compared to the haploid at population sizes N= 100 or higher.
Diploid N=200 results in smaller maximum convergence when compared to any other experiment (14,400 function evaluations),
The scatter of Haploid N=200 compared to the lowest five or six Haploid N=100 values are substantially worse, whereas diploid
N=100 is only slightly worse than haploid N=100 and then only at efficiencies less than 10000.  Diploid N=100 is usually better
than haploid N=200, and diploid N=200 always is.  This suggests that diploid may provide protection against premature
convergence over an identical haploid implementation.  Of course, as population size increases, both haploid and diploid should
improve and perhaps reach a very similar number of average required evaluations.  Making the above tests beginning at N= 100
appears to give sufficient but not excessive difficulty to make an effective comparison.  In any case the use of diploid/dominance,
even without environment switching, has a generally favorable effect on GA efficiency for this fitness function.

V. Conclusions

Results of synthesizing a signal processing  network that correctly recognizes fiducial points in a simulated two-heart cycle,
spectrally represented,  wave form suggests the ability to handle similar applications with real clinical Doppler data.  The solution
described in the previous section made use of a delay element that matches the heart-cycle period and is otherwise sensible.
Search difficulty was increased by including in the function set a number of function/operators not actually needed to solve the
problem. This was done purposely to eliminate the necessity of defining a problem dependent function set as may be necessary
for medical data.

A multiple trial,  multi-modal, partially deceptive test problem provide further evidence that the Max(f1,f2) diploid/dominance
implementation can provide better than or equal processing efficiency, compared to haploid.  This conclusion is supported by a
similar, though less thorough, comparison using the R-wave network synthesis problem.  The Max(f1,f2) approach has been
observed to do about the same as haploid with either very simple (e.g.,  unimodal) or very difficult or poorly formulated
problems.  Diploid/dominance as implemented here can be utilized in conjunction with other improvements (e.g., more refined
crossover, inversion, species formation, etc.) to the standard GA.  The experiments with alternating fitness environments show
that multiploid populations are capable of storing and rapidly recalling as many global optima as there are homologues in each
individual chromosome and shows that diploid/dominance retains recessive alleles and schema.

The diploid approach could immediately make use of a two-processor system, since the algorithm used involves two function
evaluations per generations.

VI. Future Directions
The focus of my dissertation will be to further develop a methodology to detect Doppler flow states such as flow signal
dropout and turbulent flow leading to development of a more robust upper 9dB spectral limit   These are more complex
problems than the simulated R-wave problem  especially due to the associated use of "real" clinical data.  An increase in
power over the methods previously described can be achieved using improvements that will be discussed.  For example,
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automatically defined functions, have been found by Koza and others to encourage propagation and re-use of effective sub-
networks or functions.  Improvements may also be possible using indexed (global) memory and conditional execution nodes.
First,  the steps needed to analyze the existing clinical patient data will be described.

•••• Doppler Signal Processing
•••• Creation of test data from digitally recorded wave forms
Digitized clinical Doppler data can already be FFT analyzed, displayed, and recorded.  This ability will be extended to
manually mark events, in particular signal "drop-out", and subsequently store "marked" status in replacement data files.
The spectral amplitude data from these files will be decimated during  early generations as suggested by Fitzpatrick
(1988) and as discussed in the literature survey.  Decimation can be achieved by periodically deleting entire heart cycles,
for example. Results in later generations,  when reasonable solutions start to emerge, (typically N > 10000), would use all
the data.  Energy and spectral parameters, such as raw energy and upper 9 dB frequency, can be made available to a
candidate network as scalar inputs through pre-defined "IN" node target addresses as mentioned in the methods section.

• Valid/invalid signal detection
First, clinical carotid and fetal data will be marked, manually, to indicate regions where the signal has become "invalid".
These states are easy to spot visually, similar to the example given in figure 1.2.  Networks will be evolved to produce
output with range [0,1] so that greater than .5 indicates a valid signal or heartbeat.  The raw energy, mode, and upper 9 dB
will be utilized as inputs to the network, using the existing "IN" operator, in addition to the Doppler spectra.  The
calculation of upper 9 dB can then be modified depending on spectral bandwidth, and the line color or style altered if
invalid data are detected.  One or two specific data segments can be used to define alternative fitness evaluations for
environment switching, if necessary.  A superset of these can be used to test for actual fitness.  If need be, the "size" of the
training/test data base can be artificially enlarged by introducing random Gaussian noise in the time domain or artificial
bruit noise, for example, in the frequency domain.

• Laminar/turbulent flow detection
As with "valid/invalid", segments of digitized data will be marked, but for clear cases of either laminar or turbulent
instead of valid/invalid.  The remainder of the procedure should also be similar to the valid/invalid problem.

•••• Proposed additions to node function/terminal set
• Enhanced MDVI node
Returns vector mode with adaptive band limiting.  That is,  band offset and widths would be taken from a sub-tree as
opposed to only taking it from the evolved chromosome values.  This would adapt the range of spectral interest, for
example, when bruit noise is detected or when substantial high frequencies are present as a result of flow turbulence..

• Vector filtering operator
This operator takes a vector (e.g., FFT magnitudes) input and produces a vector output. To encourage formation of
frequency domain filters, e.g., for bruit noise elimination,  this node would be decoded in a context sensitive fashion,
since such a node would require a parent that was expecting a vector input.  Alternatively, this function could be built into
the existing MDVI node.  The advantage of a separate operator is they could be stacked in serial or parallel.

• ADF's
Automatically define functions introduces a very powerful mechanism to define and recall useful sub-trees Koza (1993).
Sub-trees are encapsulated by defining a new entry into the function set, after which the ADF can be recalled as a
node/operator.  These nodes can also be given arity > 0 if they are provided with internal arguments.

• IT-THEN-ELSE
This node operator Selects one of two inputs for output depending on the sign of a third input  (arity= 3) and gives the
network the explicit building blocks to have conditional flow of "program" execution.

• READ/WRITE
Automatically defines variables in a shared memory space along with read and write nodes to access them.  "Write" stores
its input value in a chromosome specified memory location, and simultaneously provides the same value at its output.
"Read" acts as terminal node that outputs the value of a chromosome specified memory location.  Specification of
memory locations can occur when the read or write node is instantiated Teller (1993).  The use of read/write nodes has
been shown to give genetic programming the power to represent any algorithm in terms of its Turing completeness
[Teller, 1994 #99].  These nodes have arity= 1.
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•••• Extended investigation and use of diploid/dominance
It appears from the experimental results that diploid/dominance without switching may be nearly as effective as with
switching.  This should be tested using a multimodal fitness function similar to eq. 4.31.  One way to create an alternating
fitness environment for this simple equation is to alternately fix odd bits in the chromosome to zero (every 100 or so
generations.)  If switching is found to be important, omission of every other heart cycle can provide the basis for an alternate
fitness environments in solving the low-cost Doppler problems..

Additional mathematical analysis of the Max(f1,f2) approach, following direction provided by Holland and Smith should be
investigated.  Goldberg has said that this phenomenon may be due to random, repetitive runs of "bad luck" in the evolution
process that gives the same effect as deliberate fitness switching [Goldberg, 1994 #100].  One approach to such an analysis
was suggested in the methods section where absolute dominance is defined, during a given generation, with a fitness threshold
based on the current distribution of existing haploid individuals.  The suggestion there is that recessive allele retention for the
proposed method is similar to that predicted by Smith for triallelic dominance.  A logical next step might be to apply the
difference equation approach to modeling highly fit allele propagation (please see "Propagation rates for two GA
implementations ..." in the literature review section.)  These latter equations set an arbitrary fitness threshold for allele
consideration, similar to what I suggested in the methods section.  This approach might be usable in a diploid scenario in
which case more precise insight can be gained into recessive allele retention using Max(f1,f2).  Further study of biological
population genetics, from which much of the existing theory has come, will likely provide additional insight.

Further careful study should examine the range of the "T" parameter in eq. 4.31 for which diploid/dominance still shows
improvement and in addition a study of the effects of varying pm rates.  I would expect results consistent with those already
obtained for  T/2 <  T < 2T, or wider, if the observed diploid improvement is due to an overall well behaved fitness function
that has intervening deceptive regions.  Additional trials might indicate whether haploid N=100 populations can be compared
to "self-initialized" diploid N=100 experiments in terms of their population diversity, by looking for matching cases having
identical initial populations (due to allele proportion deficits) as mentioned in part "C" of the results.  The result of this would
help clarify whether one or more of the longer diploid runs observed in the multiple trials experiment were due to a severe
lack of diversity in the initial population   Investigations can be done to see if triploid and tetraploid dominance provide
additional improvement over diploid, and what the effect would be of switching the order of gamete production with
recombination, to make the approach more correct biologically.

•••• Crossover
The current approach to chromosome crossover was a clear improvement over completely random crossover , based on an
informal comparison of R-wave problem solution efficiencies.  This observation is consistent with identical findings of Koza
and others, indicating that the details of the crossover algorithm can be important.  One improvement to the existing crossover
method might be to more systematically encourage swapping of intact sub networks  One way to accomplish this is to set the
second crossover point at the end of the subnet as defined by first crossover point, instead of setting the second point at the
beginning of any node as is done now.

• Backcoding
To back code a more complex network than currently is possible (see Methods), the string position(s) of a particular node to
be encoded must be determined automatically so that when the string is instantiated, the assumed depth first encoding will
produce the desired network structure.  This can be accomplished by including node index specifications for each specified
node, and then specifying the desired children for each node by referencing the parent through its index.  Also, the maximum
tree depth (smaller maximum depth causes more branching) must be specified and taken into account.  The algorithm would
take the desired nodes and their index specifications and match up children with parents, and in the process instantiate a
temporary network.  The resulting temporary network would then be read out depth first, with or
without specified parameter values to create a chromosome with which to seed the population.  Parameter values left
unspecified would be specified with a uniformly distributed random number generator within the seeded subset of the
population.

• Network Reduction and Simplification
Simplification of network architecture is possible by deleting nodes  that have NULL inputs (e.g., output= OR(NULL, subnet)
during network instantiation.  This could speed up fitness evaluation for larger networks. The simplification can occur during
a final instantiation pass where redundant or unused nodes detected and spliced out prior to execution.  and should be
facilitated by the way nodes are connected to each other using C++ object pointers.
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Appendix

Genetic Algorithm Processing Efficiency  Goldberg (1989a)
(Expected rate of schema processing for a given population size)

Given: Chromosome length l, population size n.
To Find:  Effective number of schemata processed each generation, O(?).

1. Define a schema of length ls  < l.  The number of schemata for a given length ls, or less, at a
given spot in a given chromosome, is 2 1( )ls − .  The number of schemata at all spots in a given
chromosome is ( ) ( )l ls

ls− − ⋅ −1 2 1 .
3. In a population of n chromosomes, there will then be n l ls

ls⋅ − + ⋅ −( ) ( )1 2 1  total schemata,
although some of the low order schemata will be duplicates.

4. By choosing n= 2 2ls / , there will be less than or equal to 1 instance of every possible
schemata of order ls/2 or more, since there are insufficient number of possible schemata (i.e.,
there can be no duplicate schema of order ls/2 or more.).

5. If n=  2ls/2, and since the number of schemata must be binomially distributed, we have half
the schemata of higher order than or equal to ls/2 and half the schemata of order less than
ls/2.  If we count only the schemata with order ≥   ls/2, there will be no duplicates, and a
lower bound on the number of schemata in the entire population is then:
n n l lLB s

ls≥ − + ⋅ −( ) ( )1 2 2 .   Therefore,
n n l l n n l l const n O nLB s s≥ − + = − + = ⇒( )( / ) ( / ) ( ) ( )( ) ( )1 4 4 12 3 3 3



Examples of  Synthesized Networks than Solve the "R-Wave" Problem

***********************************************************************************************************************************************************
Example 1:
Total generations to solution:  2000 B/    0 W/1.7E+02 M/ 0.4 A/ 7.1 P/ 1.2 N/2 E/1 L 26 G16
ID No. f0512520-Diploid_W/_SWITCHING,b=1.5/m=.05_p125_DIPLOID
pop= 125, len- 30, ploids= 2, mu=  0.05 fitness/ploid=      0/ 0 re-evaluated fitness/ploid=      0/ 0
************************************************************************************************************************************************************
OS( 9.6, 1, 1.0)15-> 0->AM(3)14-> 0->NAND(2)11-> 0->AMW(2)-0.46,0.607-> 0->IR1(0.34,1)1-> 0->MdVI(7,54)0->

                                                                                                    1->Dly(1,17)6-> 0->IRB(0.70,0.57,5)5-> 0->OS( 3.1, 1, 1.0)4-> 0->Null3->
                                                                                                                   1->MdVI(8,54)2->

                                                           1->DFR(0.96,9)10-> 0->DFR(0.96,9)9-> 0->MdVI(0,63)8->
               1->MdVI(0,63)12->

      2->MdVI(0,63)13->

************************************************************************************************************************************************************
Example 2:
Total generations to solution:   6700 B/    0 W/0.27 M/0.27 A/0.18 P/0.99 N/2 E/1 L 26 G14
ID No. f051052n-DIPLOID
pop= 100, len- 30, ploids= 2, mu=  0.05 fitness/ploid=      0/ 1 re-evaluated fitness/ploid=      0/ 1
************************************************************************************************************************************************************
OS( 8.7, 1, 1.0)18-> 0->
 AMW(2)0.75,0.7517-> 0->Dly(0,3)3-> 0->IRB(0.55,0.51,6)2-> 0->INr(1.000,0)1->

                                                                       1->TAR(1)0->
                             1->AM(3)16-> 0->OR(2)13-> 0->AM(3)11-> 0->Dly(4,12)5-> 0->MdVI(0,63)4->

                                                                        1->OS( 8.7, 1, 1.0)9-> 0->IRB(0.87,0.87,8)8-> 0->MdVI(0,62)7->
                                                                                                                     1->Null6->

                                                                       2->MdVI(0,62)10->
      1->MdVI(0,62)12->

                                       1->MdVI(0,62)14->
                                                  2->MdVI(0,62)15->

************************************************************************************************************************************************************
Example 3:
Total generations to solution:  36200 B/    0 W/0.033 M/0.033 A/0.033 P/ 1.2 N/2 E/1 L 26 G14
ID No. f6105227_Diploid_#27
pop= 100, len- 30, ploids= 2, mu=  0.05 fitness/ploid=      0/ 0 re-evaluated fitness/ploid=      0/ 0
************************************************************************************************************************************************************
OS( 9.8, 1, 1.0)11-> 0->MUL( 9.6)10-> 0->DFR(0.98,9)9->

0->AMW(2)0.96,0.968-> 0->IRB(0.38,0.44,2)3-> 0->DFR(0.81,8)2-> 0->MdVI(0,63)1->
               1->TAR(4)0->
        1->DFR(0.25,4)7-> 0->ADDC(-2.3)6-> 0->OS( 1.2, 1, 1.0)5-> 0->MdVI(8,54)4->
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