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Abstract. A weakness of genetic programming (GP) is the difficulty
it suffers in discovering useful numeric constants for the terminal nodes
of the s-expression trees. We examine a solution to this problem, called
numeric mutation, based, roughly, on simulated annealing. We provide
empirical evidence to demonstrate that this method provides a statis-
tically significant improvement in GP system performance for symbolic
regression problems. GP runs are more likely to find a solution, and
successful runs use fewer generations.

1 Introduction

One of the weaknesses of genetic programming (GP, henceforth) is the difficulty
it suffers in discovering useful numeric constants for the terminal nodes of the
s-expression trees. This problem is interesting because genetic algorithms, from
which GP is derived, are highly suited to the task of optimizing numeric param-
eters. GP’s difficulty with numeric constant generation is relatively well known.
In a speech at a recent conference John Koza said:

The finding of numeric constants is a skeleton in the GP closet... [and
an] area of research that requires more investigation.[8]

The traditional way of generating new numeric constants is indirect, by com-
bining existing numeric constants within novel arithmetic s-expressions. The
leaves of the trees corresponding to these s-expression are all numeric constants,
and so the s-expression necessarily evaluates to a numeric value. The entire s-
expression can thus be viewed as a single numeric constant terminal node, with a
value equal to that of the s-expression. We call this process of numeric constant
creation arithmetic combination.

It is also possible to generate numeric constants even when none are provided
in the original terminal set. For example, a terminal representing a variable
could appear in an s-expression consisting of the variable being divided by itself,
effectively yielding the constant 1.0. Once the constant 1.0 exists, 2.0 can evolve
via an s-expression that adds 1.0 to itself. Having the constants 1.0 and 2.0, the
constant of 0.5 can evolve via an s-expression that divides 1.0 by 2.0, etc. In
this way the GP process can generate an arbitrary number of constants, even



when no numeric constants are included in the original terminal sets. We call
this process of numeric constant creation arithmetic genesis.

Although the spontaneous emergence of constants is possible via arithmetic
genesis and arithmetic combination, the techniques are tedious and inefficient.
We are examining several techniques for facilitating the creation of useful, novel
numeric constants during a GP run. In this paper we report on one such tech-
nique, numeric mutation. We demonstrate that numeric mutation provides a
significant improvement in the ability of GP to solve a symbolic regression prob-
lem.

2 History

Some of the early enhancements to the GP process facilitated the creation of
constants. These enhancements [7] consisted of including a small number of
numeric constants and/or the ephemeral random constant, R, in the original
terminal set. (Each time the ephemeral random constant is selected as a terminal
in the creation of the population of generation 0, it is replaced with a randomly
generated number within some specified range.)

Both of these techniques seed the genospecies with numeric constants. The
ephemeral random constant is particularly helpful because it provides many dif-
ferent numeric constants in generation 0. Even so, most problems require a solu-
tion that uses numeric constants other than those provided in the original termi-
nal set or generated by the ephemeral random constant. Such constants must be
evolved tediously by arithmetic combination or arithmetic genesis (though the
larger initial pool of numeric constants in the genospecies does make arithmetic
combination more likely.)

Even with the use of the ephemeral random constant and/or the presence
of predefined constants in the terminal set GP still has difficulty generating
sufficient numeric constants. In [7], GP is used on a problem consisting of dis-
covering just a single numeric constant. Despite the use of the ephemeral random
constant, the GP system still required 14 generations to create a solution, an
s-expression comprising almost half a page. This is but one simple example, yet
it illustrates that the creation of numeric constants remains a weak point of GP.

3 Numeric Mutation

Numeric mutation is a technique for facilitating the creation of useful, novel nu-
meric constants during a GP run. Numeric mutation is a reproduction operation
which, like mutation or cross-over, is applied to a portion of each population
each generation. Numeric mutation replaces all of the numeric constants with
new ones in the individuals to which it is applied. The new numeric constants are
chosen at random from a uniform distribution within a specific selection range.
The selection range for each numeric constant is specified as the old value of
that constant plus or minus a temperature factor. The terminology derives from



the similar concept of temperature in simulated annealing ([6, 10] and others)
in that when the temperature factor is larger, numeric mutation creates greater
changes in the affected numeric constants.

The temperature factor is determined by multiplying the raw score of the
best individual of the current generation by a user specified temperature variance
constant, in this case!, 0.02. The fitness score (raw or standardized, depending on
the problem domain) of the best-of-generation individual approaches zero as it
approaches a perfect solution to the problem domain. Consequently, the effect of
this method for selecting the temperature factor is that when the best individual
of a population is a relatively poor solution, the selection range is larger, and
therefore there is an overall greater potential for change in the numeric constants
of the individuals undergoing numeric mutation.

Over successive generations, the best-of-generation individual tends to im-
prove and so the temperature factor becomes proportionally smaller. As the tem-
perature factor decreases, numeric mutation causes successively smaller changes
to the numeric constants. This should allow the GP process to “zero in on” (i.e.,
retain across generations with little change) those numeric constants that are
useful in solving the given problem.

Note that the form of mutation expressed here differs from that of most other
evolutionary algorithms in that the mutation is not localized in the genotype,
i.e., the mutation does not affect just a single GP subtree, or a single bit in a
GA genome. Those techniques yield results that are, in a sense, “close” to the
original. For example, GA mutation produces strings that are at a Hamming
distance of 1 (sometimes a bit more) from the original.

In a sense, numeric mutation also yields mutants that are close to the orig-
inal, but this closeness is measured in terms of the n-dimensional space of all
individuals having the same GP-tree structure containing n numeric constants.
Numeric mutation yields an individual that is only a short distance (limited by
the temperature factor) from the original, in this space.

4 Experimental Evaluation

Our research with numeric mutation is at an early stage. Eventually, we plan to
investigate the efficacy of numeric mutation in general. In this paper, however, we
investigate the use of numeric mutation only in the problem domain of symbolic
regression. Our experimental hypothesis was that numeric mutation increases
the effectiveness of the GP process in solving symbolic regression problems. Our
initial experiment involved the study of just one problem, defined by 11 pairs of
numbers representing the x and y coordinates of 11 points (target points) on a
plane. Note that all of these points lie along the curve defined by the generating
function:

y = 2° —0.32% — 0.4z — 0.6 (1)

! We are still experimenting with methods for determining the value of the temperature
variance constant.



This function (shown in Fig. 1, along with the target points) is considered
the target or goal of the symbolic regression only indirectly. An infinite number
of curves pass through these 11 points, and the goal is to discover any function
that passes within a distance of plus or minus 0.1 along the y—axis for the z
value of each of the 11 target points.

Target Data

Fig. 1. The 11 target points for the symbolic regression, and generating function.

At the end of each generation, the numeric mutation technique is applied
to 40 randomly selected individuals of the 200 with the best fitness from a
population of 1081. Each selected individual is replaced with a copy wherein each
numeric constant has been mutated, as described in Sect. 3. The fitness function
is reevaluated for each of the new individuals, so that the fitness-ranking of the
population corresponds to the altered population.

The choice of the number of elements to be numerically mutated, the size
of the group that they are selected from, and the use of 0.02 as the temper-
ature variance constant, were based on experiments involving other regression
problems that suggested that these values tended to maximize the benefit of the
numeric mutation [2].

To test our hypothesis, we ran the GP system 1000 times with and with-
out numeric mutation. Each generation of a numeric mutation run included the
evaluation of the fitness function on 40 additional individuals (those created
by the numeric mutation process). To compensate for the extra work done by
the numeric mutation runs, the populations of runs not using numeric mutation
contained 40 more individuals than those that did. This makes comparisons be-
tween the results of the two techniques more fair, as both algorithms are then
doing roughly the same amount of work. (Otherwise any performance advan-
tage observed in the numeric mutation runs might be ascribed to the additional
individuals evaluated therein.)



Each run was allowed to continue until a function was found that met the
criterion described above, or until 50 generations were completed. Runs that
discovered a function matching the target points within the 50 generation limit
were considered successful. We ran our experiments on an AMD 166Mhz K6
running Microsoft Windows 95. We used our own hand-coded GP system (de-
scribed in [3, 2]), using the control parameters specified in the tableau shown in
Table 4 and an elitist graduated overselection strategy to select individuals from
the population for reproduction and crossover, as described in [1].

Population size 1121 (plain), 1081 (NM)
% of individuals created by ramped complete growth|100

% of individuals created by ramped partial growth |0

Crossover Percentage 90

Mutation Pertcentage 0

Max Number of Runs 1000

Max Number of Generations 50

Max Nodes per Tree 200

Selection Strategy Graduated Elitist
Initial Tree Minimum Depth 3

Initial Tree Maximum Depth 7

RandomSeed 0

Table 1. The tableau used to test effectiveness of numeric mutation.

4.1 Results

Of the 1000 runs without numeric mutation, 328 were successful, while 541 of the
runs with numeric mutation were successful. Thus, runs using numeric mutation
were about 65% more likely to terminate successfully than the plain runs. The
success ratio of the GP system was clearly higher when using numeric mutation.
To determine whether this outcome was statistically significant, we performed
a large-sample statistical test for comparing two binomial proportions (LSTBP)
(as described in [9], page 203).

The null hypothesis for the significance test was that the populations have
the same success ratios, and the alternate hypothesis was that they were not the
same. This choice of the alternate hypothesis necessitated the use of a two-tail
test. It might be argued that numeric mutation is a modification to the GP
technique involving additional work, and consequently we should be interested
only if it provides an improvement to GP. An alternate hypothesis that reflects
that argument is that GP with numeric mutation has a higher success ratio than
GP without. Such a choice would permit the use a one-tailed test. We have used



the first hypothesis and the corresponding two-tailed test because it is more
stringent[4].

The results of the test were that we rejected the null hypothesis at the 0.05
level of significance. Thus we conclude that numeric mutation’s improvement to
GP is statistically significant for this problem. A further indication of this is that
not only does numeric mutation yield successful runs more frequently, but also
the successful runs require, on average, fewer generations than the successful runs
on the GP system without numeric mutation. The average number of generations
in a successful run with numeric mutation was 24.44, while the average without
numeric mutation was 29.67. Figure 2 is a histogram of the number of generations
required to complete the successful runs with and without numeric mutation.
Each column of the graph corresponds to a sum across five generations. For
example, the figure shows that of the 1000 runs using numeric mutation, 103
finished successfully between generations 21 and 25, inclusive.
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Fig. 2. Number of runs that terminated successfully at each generation for GP using
and not using numeric mutation.

Figure 3 is a similar histogram, showing the same information but as the
percentage of successful runs that terminated each generation, with and without
numeric mutation. For example, the figure shows that 20% of the numeric muta-
tion runs finished successfully between generations 10 and 15. The shape of the
curves formed by the two data sets in the figure clearly indicates that numeric
mutation runs terminated successfully earlier than the non-numeric mutation
runs.

This increase in efficiency was also reflected in run-time performance. The
1000 runs using numeric mutation required 8.28 hours to complete, while the
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Fig. 3. Percentage of successful runs that terminated at each generation for GP using
and not using numeric mutation.

1000 runs without numeric mutation required 11.63 hours. The average time
to complete a successful run with numeric mutation was 16 seconds while the
average time without numeric mutation was 24 seconds. (The exact value of the
timings is not important, but their relative values are. The timing information
under Windows 95 is somewhat imprecise, but serves to support the conclusions
derived from the other experimental results. )

4.2 Interpreting the Results

We have demonstrated that numeric mutation provides an improvement to the
GP algorithm as it is applied to this symbolic regression problem. The next step
is to understand from whence this benefit derives.

It is apparent that the numeric mutation technique provides a much greater
diversity of numeric constants to the GP. Plain GP (without numeric mutation)
starts (in generation 0) with a fixed number of numeric constant leaf nodes in
the entire population (i.e., in the genospecies). Whenever the selection process
causes all copies of a numeric constant to be removed from the population, that
numeric constant is effectively lost for the remainder of the run. Thus, with each
generation the number of unique numeric constant leaf nodes can never increase
and, indeed, typically decreases monotonically. Numeric mutation replaces all
of the numeric leaf nodes with new numeric constants in all of the elements to
which it is applied. Thus the GP process gains many new numeric constants
each generation by using numeric mutation.



We conducted experiments to determine if the steady influx of new numeric
constants, alone, accounted for the benefit of the numeric mutation technique.
We completed 1000 GP runs in which 40 elements were selected after each gener-
ation in the same way as in numeric mutation, and all of their numeric constant
leaf nodes replaced with new numeric constants. These new constants were se-
lected randomly from the interval (—1000.0, 1000.0) using a uniform distribution.
We call this process numeric replacement. Numeric replacement is similar to the
technique referred to as small-mutation in [5] except that numeric replacement
concerns only numeric constant leaf nodes, while small-mutation can affect any
type of node.

The result of the numeric replacement experiment was that only 278 of the
runs were successful by the 50th generation as compared to 328 successful runs
with plain GP. To determine if this difference was statistically significant we
again used the LSTBP statistical test described above. We determined, at the
0.05 level of significance, that numeric replacement produces a statistically sig-
nificant degradation of performance when compared to plain GP. Therefore it is
highly probable that the benefit derived from numeric mutation does not derive
solely from the influx of new numeric constants, but also from the values of those
constants.

A potential criticism of this experiment is that the range (e.g. (—1000, 1000))
from which the new constants were chosen in numeric replacement did not corre-
late well with the problem domain. The function used to generate the regression’s
target points, (1), contains no numeric coefficients with an absolute value greater
than 1.0. So the range (—1000, 1000) may be introducing numeric constants into
the genospecies that are unlikely to be useful in solving the specific symbolic
regression problem under study.

To investigate this possibility we again conducted the numeric replacement
experiment, but used the range (—1.0,1.0) from which to select the new con-
stants. Of the 1000 runs, 336 were successful by the 50th generation. This, at
least, was more than the 328 successful runs that occurred with the plain GP,
but the LSTBP statistical test determined that this improvement is not statisti-
cally significant at the 95% confidence level. We again conclude that the benefit
of numeric mutation does not derive solely from the influx of a large number of
new numeric constants. A summary of all these results is shown in Fig. 4. The
entries in the figure labelled “Random” correspond to numeric replacement.

Having eliminated other possible explanations, we speculate that the benefit
of numeric mutation derives not simply from the introduction of new numeric
constants into the genospecies, but also from these new constants being in-
troduced only into s-expressions at locations in genomes where arithmetically
similar numeric constants have already demonstrated some measure of success,
insofar as they appear in individuals in the top 18.5% of the population (the
top 200 out of 1081 as scored by the fitness function). We further speculate that
the choice of new numeric constants is further enhanced by making them in-
creasingly more similar to the existing “successful” constants as the population
comes closer to finding an acceptable solution. (As reflected by the raw score of
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Fig. 4. Number of successful runs (of 1000), handling numeric constants four different
ways.

the best individual in each generation.)

5 Conclusion and Future Work

We conclude that the use of numeric mutation should be considered for any
GP problem in which numeric constants are used as terminal nodes. Numeric
mutation is easy to implement and does not add significant additional overhead
to the GP algorithm.

Several additional experiments are suggested by this work. We are already
in the process of collecting data for other symbolic regression problems to deter-
mine if numeric mutation is generally useful for that problem domain. We also
plan to measure the value of numeric mutation in other problem domains so as to
be able to characterize those domains where numeric mutation is especially ben-
eficial. We plan to see if additional benefit can be derived by applying numeric
mutation only to a portion of the numeric constants in selected individuals, and
to experiment with alternative methods for determining the temperature factor,
such as using the raw score of the individual to be mutated rather than the raw
score of the best element in the generation.
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