
Numeric Mutation as an Improvement to

Symbolic Regression in Genetic Programming

Thomas Fernandez and Matthew Evett

Department of Computer Science and Engineering
Florida Atlantic University
Boca Raton� Florida �����

ftfernand� mattg�cse�fau�edu

Abstract� A weakness of genetic programming �GP� is the di	culty
it su
ers in discovering useful numeric constants for the terminal nodes
of the s�expression trees� We examine a solution to this problem� called
numeric mutation� based� roughly� on simulated annealing� We provide
empirical evidence to demonstrate that this method provides a statis�
tically signi�cant improvement in GP system performance for symbolic
regression problems� GP runs are more likely to �nd a solution� and
successful runs use fewer generations�

� Introduction

One of the weaknesses of genetic programming �GP� henceforth� is the di�culty
it su�ers in discovering useful numeric constants for the terminal nodes of the
s�expression trees� This problem is interesting because genetic algorithms� from
which GP is derived� are highly suited to the task of optimizing numeric param�
eters� GP�s di�culty with numeric constant generation is relatively well known�
In a speech at a recent conference John Koza said	

The
nding of numeric constants is a skeleton in the GP closet��� �and
an� area of research that requires more investigation��
�

The traditional way of generating new numeric constants is indirect� by com�
bining existing numeric constants within novel arithmetic s�expressions� The
leaves of the trees corresponding to these s�expression are all numeric constants�
and so the s�expression necessarily evaluates to a numeric value� The entire s�
expression can thus be viewed as a single numeric constant terminal node� with a
value equal to that of the s�expression� We call this process of numeric constant
creation arithmetic combination�

It is also possible to generate numeric constants even when none are provided
in the original terminal set� For example� a terminal representing a variable
could appear in an s�expression consisting of the variable being divided by itself�
e�ectively yielding the constant ���� Once the constant ��� exists� ��� can evolve
via an s�expression that adds ��� to itself� Having the constants ��� and ���� the
constant of ��� can evolve via an s�expression that divides ��� by ���� etc� In
this way the GP process can generate an arbitrary number of constants� even

when no numeric constants are included in the original terminal sets� We call
this process of numeric constant creation arithmetic genesis�

Although the spontaneous emergence of constants is possible via arithmetic
genesis and arithmetic combination� the techniques are tedious and ine�cient�
We are examining several techniques for facilitating the creation of useful� novel
numeric constants during a GP run� In this paper we report on one such tech�
nique� numeric mutation� We demonstrate that numeric mutation provides a
signi
cant improvement in the ability of GP to solve a symbolic regression prob�
lem�

� History

Some of the early enhancements to the GP process facilitated the creation of
constants� These enhancements ��� consisted of including a small number of
numeric constants and�or the ephemeral random constant� �� in the original
terminal set� �Each time the ephemeral random constant is selected as a terminal
in the creation of the population of generation �� it is replaced with a randomly
generated number within some speci
ed range��

Both of these techniques seed the genospecies with numeric constants� The
ephemeral random constant is particularly helpful because it provides many dif�
ferent numeric constants in generation �� Even so� most problems require a solu�
tion that uses numeric constants other than those provided in the original termi�
nal set or generated by the ephemeral random constant� Such constants must be
evolved tediously by arithmetic combination or arithmetic genesis �though the
larger initial pool of numeric constants in the genospecies does make arithmetic
combination more likely��

Even with the use of the ephemeral random constant and�or the presence
of prede
ned constants in the terminal set GP still has di�culty generating
su�cient numeric constants� In ���� GP is used on a problem consisting of dis�
covering just a single numeric constant� Despite the use of the ephemeral random
constant� the GP system still required �� generations to create a solution� an
s�expression comprising almost half a page� This is but one simple example� yet
it illustrates that the creation of numeric constants remains a weak point of GP�

� Numeric Mutation

Numeric mutation is a technique for facilitating the creation of useful� novel nu�
meric constants during a GP run� Numeric mutation is a reproduction operation
which� like mutation or cross�over� is applied to a portion of each population
each generation� Numeric mutation replaces all of the numeric constants with
new ones in the individuals to which it is applied� The new numeric constants are
chosen at random from a uniform distribution within a speci
c selection range�
The selection range for each numeric constant is speci
ed as the old value of
that constant plus or minus a temperature factor� The terminology derives from

the similar concept of temperature in simulated annealing ���� ��� and others�
in that when the temperature factor is larger� numeric mutation creates greater
changes in the a�ected numeric constants�

The temperature factor is determined by multiplying the raw score of the
best individual of the current generation by a user speci
ed temperature variance

constant� in this case�� ����� The
tness score �raw or standardized� depending on
the problem domain� of the best�of�generation individual approaches zero as it
approaches a perfect solution to the problem domain� Consequently� the e�ect of
this method for selecting the temperature factor is that when the best individual
of a population is a relatively poor solution� the selection range is larger� and
therefore there is an overall greater potential for change in the numeric constants
of the individuals undergoing numeric mutation�

Over successive generations� the best�of�generation individual tends to im�
prove and so the temperature factor becomes proportionally smaller� As the tem�
perature factor decreases� numeric mutation causes successively smaller changes
to the numeric constants� This should allow the GP process to �zero in on� �i�e��
retain across generations with little change� those numeric constants that are
useful in solving the given problem�

Note that the form of mutation expressed here di�ers from that of most other
evolutionary algorithms in that the mutation is not localized in the genotype�
i�e�� the mutation does not a�ect just a single GP subtree� or a single bit in a
GA genome� Those techniques yield results that are� in a sense� �close� to the
original� For example� GA mutation produces strings that are at a Hamming
distance of � �sometimes a bit more� from the original�

In a sense� numeric mutation also yields mutants that are close to the orig�
inal� but this closeness is measured in terms of the n�dimensional space of all
individuals having the same GP�tree structure containing n numeric constants�
Numeric mutation yields an individual that is only a short distance �limited by
the temperature factor� from the original� in this space�

� Experimental Evaluation

Our research with numeric mutation is at an early stage� Eventually� we plan to
investigate the e�cacy of numeric mutation in general� In this paper� however� we
investigate the use of numeric mutation only in the problem domain of symbolic
regression� Our experimental hypothesis was that numeric mutation increases
the e�ectiveness of the GP process in solving symbolic regression problems� Our
initial experiment involved the study of just one problem� de
ned by �� pairs of
numbers representing the x and y coordinates of �� points �target points� on a
plane� Note that all of these points lie along the curve de
ned by the generating
function	

y � x
�
� ���x� � ���x� ��� ���

� We are still experimenting with methods for determining the value of the temperature
variance constant�

This function �shown in Fig� �� along with the target points� is considered
the target or goal of the symbolic regression only indirectly� An in
nite number
of curves pass through these �� points� and the goal is to discover any function
that passes within a distance of plus or minus ��� along the y�axis for the x

value of each of the �� target points�

Target Dat a

-200.0

0.0

200.0

400.0

600.0

800.0

1000.0

0.0 2.0 4.0 6.0 8.0 10.0

X

Y

Fig� �� The �� target points for the symbolic regression� and generating function�

At the end of each generation� the numeric mutation technique is applied
to �� randomly selected individuals of the ��� with the best
tness from a
population of ��
�� Each selected individual is replaced with a copy wherein each
numeric constant has been mutated� as described in Sect� �� The
tness function
is reevaluated for each of the new individuals� so that the
tness�ranking of the
population corresponds to the altered population�

The choice of the number of elements to be numerically mutated� the size
of the group that they are selected from� and the use of ���� as the temper�
ature variance constant� were based on experiments involving other regression
problems that suggested that these values tended to maximize the bene
t of the
numeric mutation ����

To test our hypothesis� we ran the GP system ���� times with and with�
out numeric mutation� Each generation of a numeric mutation run included the
evaluation of the
tness function on �� additional individuals �those created
by the numeric mutation process�� To compensate for the extra work done by
the numeric mutation runs� the populations of runs not using numeric mutation
contained �� more individuals than those that did� This makes comparisons be�
tween the results of the two techniques more fair� as both algorithms are then
doing roughly the same amount of work� �Otherwise any performance advan�
tage observed in the numeric mutation runs might be ascribed to the additional
individuals evaluated therein��

Each run was allowed to continue until a function was found that met the
criterion described above� or until �� generations were completed� Runs that
discovered a function matching the target points within the �� generation limit
were considered successful� We ran our experiments on an AMD ���Mhz K�
running Microsoft Windows ��� We used our own hand�coded GP system �de�
scribed in ��� ���� using the control parameters speci
ed in the tableau shown in
Table � and an elitist graduated overselection strategy to select individuals from
the population for reproduction and crossover� as described in ����

Population size ��
� �plain�� ���� �NM�

� of individuals created by ramped complete growth ���

� of individuals created by ramped partial growth �

Crossover Percentage ��

Mutation Pertcentage �

Max Number of Runs ����

Max Number of Generations ��

Max Nodes per Tree
��

Selection Strategy Graduated Elitist

Initial Tree Minimum Depth �

Initial Tree Maximum Depth �

RandomSeed �

Table �� The tableau used to test e
ectiveness of numeric mutation�

��� Results

Of the ���� runs without numeric mutation� ��
 were successful� while ��� of the
runs with numeric mutation were successful� Thus� runs using numeric mutation
were about ��� more likely to terminate successfully than the plain runs� The
success ratio of the GP system was clearly higher when using numeric mutation�
To determine whether this outcome was statistically signi
cant� we performed
a large�sample statistical test for comparing two binomial proportions �LSTBP�
�as described in ���� page �����

The null hypothesis for the signi
cance test was that the populations have
the same success ratios� and the alternate hypothesis was that they were not the
same� This choice of the alternate hypothesis necessitated the use of a two�tail
test� It might be argued that numeric mutation is a modi
cation to the GP
technique involving additional work� and consequently we should be interested
only if it provides an improvement to GP� An alternate hypothesis that re�ects
that argument is that GP with numeric mutation has a higher success ratio than
GP without� Such a choice would permit the use a one�tailed test� We have used

the
rst hypothesis and the corresponding two�tailed test because it is more
stringent����

The results of the test were that we rejected the null hypothesis at the ����
level of signi
cance� Thus we conclude that numeric mutation�s improvement to
GP is statistically signi
cant for this problem� A further indication of this is that
not only does numeric mutation yield successful runs more frequently� but also
the successful runs require� on average� fewer generations than the successful runs
on the GP system without numeric mutation� The average number of generations
in a successful run with numeric mutation was ������ while the average without
numeric mutation was ������ Figure � is a histogram of the number of generations
required to complete the successful runs with and without numeric mutation�
Each column of the graph corresponds to a sum across
ve generations� For
example� the
gure shows that of the ���� runs using numeric mutation� ���

nished successfully between generations �� and ��� inclusive�

0

20

40

60

80

100

120

5 10 15 20 25 30 35 40 45 50

Generat ion

S
u
c
e
s
s
e
s

w/ o NM

w/ NM

Fig� �� Number of runs that terminated successfully at each generation for GP using
and not using numeric mutation�

Figure � is a similar histogram� showing the same information but as the
percentage of successful runs that terminated each generation� with and without
numeric mutation� For example� the
gure shows that ��� of the numeric muta�
tion runs
nished successfully between generations �� and ��� The shape of the
curves formed by the two data sets in the
gure clearly indicates that numeric
mutation runs terminated successfully earlier than the non�numeric mutation
runs�

This increase in e�ciency was also re�ected in run�time performance� The
���� runs using numeric mutation required
��
 hours to complete� while the

0

0.05

0.1

0.15

0.2

0.25

5 10 15 20 25 30 35 40 45 50

Generat ion

%

o
f

s
u
c
c
e
s
s
f
u
l

r
u
n
s

w/ o NM

w/ NM

Fig� �� Percentage of successful runs that terminated at each generation for GP using
and not using numeric mutation�

���� runs without numeric mutation required ����� hours� The average time
to complete a successful run with numeric mutation was �� seconds while the
average time without numeric mutation was �� seconds� �The exact value of the
timings is not important� but their relative values are� The timing information
under Windows �� is somewhat imprecise� but serves to support the conclusions
derived from the other experimental results� �

��� Interpreting the Results

We have demonstrated that numeric mutation provides an improvement to the
GP algorithm as it is applied to this symbolic regression problem� The next step
is to understand from whence this bene
t derives�

It is apparent that the numeric mutation technique provides a much greater
diversity of numeric constants to the GP� Plain GP �without numeric mutation�
starts �in generation �� with a
xed number of numeric constant leaf nodes in
the entire population �i�e�� in the genospecies�� Whenever the selection process
causes all copies of a numeric constant to be removed from the population� that
numeric constant is e�ectively lost for the remainder of the run� Thus� with each
generation the number of unique numeric constant leaf nodes can never increase
and� indeed� typically decreases monotonically� Numeric mutation replaces all
of the numeric leaf nodes with new numeric constants in all of the elements to
which it is applied� Thus the GP process gains many new numeric constants
each generation by using numeric mutation�

We conducted experiments to determine if the steady in�ux of new numeric
constants� alone� accounted for the bene
t of the numeric mutation technique�
We completed ���� GP runs in which �� elements were selected after each gener�
ation in the same way as in numeric mutation� and all of their numeric constant
leaf nodes replaced with new numeric constants� These new constants were se�
lected randomly from the interval ��������� ������� using a uniform distribution�
We call this process numeric replacement� Numeric replacement is similar to the
technique referred to as small�mutation in ��� except that numeric replacement
concerns only numeric constant leaf nodes� while small�mutation can a�ect any
type of node�

The result of the numeric replacement experiment was that only ��
 of the
runs were successful by the ��th generation as compared to ��
 successful runs
with plain GP� To determine if this di�erence was statistically signi
cant we
again used the LSTBP statistical test described above� We determined� at the
���� level of signi
cance� that numeric replacement produces a statistically sig�
ni
cant degradation of performance when compared to plain GP� Therefore it is
highly probable that the bene
t derived from numeric mutation does not derive
solely from the in�ux of new numeric constants� but also from the values of those
constants�

A potential criticism of this experiment is that the range �e�g� ������� ������
from which the new constants were chosen in numeric replacement did not corre�
late well with the problem domain� The function used to generate the regression�s
target points� ���� contains no numeric coe�cients with an absolute value greater
than ���� So the range ������� ����� may be introducing numeric constants into
the genospecies that are unlikely to be useful in solving the speci
c symbolic
regression problem under study�

To investigate this possibility we again conducted the numeric replacement
experiment� but used the range ������ ���� from which to select the new con�
stants� Of the ���� runs� ��� were successful by the ��th generation� This� at
least� was more than the ��
 successful runs that occurred with the plain GP�
but the LSTBP statistical test determined that this improvement is not statisti�
cally signi
cant at the ��� con
dence level� We again conclude that the bene
t
of numeric mutation does not derive solely from the in�ux of a large number of
new numeric constants� A summary of all these results is shown in Fig� �� The
entries in the
gure labelled �Random� correspond to numeric replacement�

Having eliminated other possible explanations� we speculate that the bene
t
of numeric mutation derives not simply from the introduction of new numeric
constants into the genospecies� but also from these new constants being in�
troduced only into s�expressions at locations in genomes where arithmetically
similar numeric constants have already demonstrated some measure of success�
insofar as they appear in individuals in the top �
��� of the population �the
top ��� out of ��
� as scored by the
tness function�� We further speculate that
the choice of new numeric constants is further enhanced by making them in�
creasingly more similar to the existing �successful� constants as the population
comes closer to
nding an acceptable solution� �As re�ected by the raw score of

0

100

200

300

400

500

600

Random(1000.0) Random(1.0) Plain GP With NM

S
u
c
c
e
s
s
f
u
l

R
u
n
s

Fig� �� Number of successful runs �of ������ handling numeric constants four di
erent
ways�

the best individual in each generation��

� Conclusion and Future Work

We conclude that the use of numeric mutation should be considered for any
GP problem in which numeric constants are used as terminal nodes� Numeric
mutation is easy to implement and does not add signi
cant additional overhead
to the GP algorithm�

Several additional experiments are suggested by this work� We are already
in the process of collecting data for other symbolic regression problems to deter�
mine if numeric mutation is generally useful for that problem domain� We also
plan to measure the value of numeric mutation in other problem domains so as to
be able to characterize those domains where numeric mutation is especially ben�
e
cial� We plan to see if additional bene
t can be derived by applying numeric
mutation only to a portion of the numeric constants in selected individuals� and
to experiment with alternative methods for determining the temperature factor�
such as using the raw score of the individual to be mutated rather than the raw
score of the best element in the generation�

Acknowledgements

We thank the reviewers for identifying several weaknesses in the original draft
of this paper�

References

�� M� Evett and T� Fernandez� A distributed system for genetic programming that
dynamically allocates processors� Technical Report TR�CSE������� Dept� Com�
puter Science and Engineering� Florida Atlantic University� Boca Raton� FL� �����

� T� Fernandez� The evolution of numeric constants in genetic programming� Mas�
ter�s thesis� Florida Atlantic University� Boca Raton� FL� ����� In preparation�

�� T� Fernandez and M� Evett� The impact of training period size on the evolution
of �nancial trading systems� Technical Report TR�CSE������� Florida Atlantic
University� Boca Raton� FL� �����

�� D� Fogel� The burden of proof� Invited lecture at Genetic Programming ����� Palo
Alto� CA� July �����

�� K� Harris and P� Smith� Exploring alternative operators and search stratagies in
genetic programming� In J� Koza� editor� GP���� Proceedings of the Second Annual

Conference� pages �������� Morgan Kaufmann� �����
�� S� Kirkpatrick� C�D� Gelatt� and M�P� Vecchi� Optimization by simulated anneal�

ing� Science�

���������� �����
�� J� Koza� Genetic programming� on the programming of computers by means of

natural selection� MIT Press� ���
�
�� J� Koza� Tutorial on advanced genetic programming� at genetic programming �����

Palo Alto� CA� July� �����
�� W� Mendenhall and O� Lyman� Understanding Statistics� Duxbury Press� Bel�

mont� CA� ���
�
��� D�E� Rumelhart and J�L� McClelland� Parallel Distributed Processing� volume ��

MIT Press� Cambridge� MA� �����

This article was processed using the LATEX macro package with LLNCS style

