ETL-TR-93-25
received Oct. 18, 1993

Evolutionary Learning of Boolean Concepts:
An Empirical Study

Hitoshi IBA! Tatsuya NIWA? Taisuke SATO!

1)Machine Inference Section,
2)Computational Models Section,
Electrotechnical Laboratory
1-1-4 Umezono, Tsukuba-city, Ibaraki, 305, Japan
{iba,niwa,sato}@etl.go.jp, +81-298-58-5918

Abstract This paper explores various problems which arise with the learning of Boolean
concepts. Boolean concept learning is an important part of more traditional machine learn-
ing. We begin by comparing the learning performances of stochastic or evolutionary methods,
namely neural networks (NN), classifier systems (CS) and adaptive logic networks (ALN). The
learning and testing tasks were performed on two sets of examples independently drawn with
uniform probability. This learning environment was strictly designed according to computa-
tional learning theory. The number of learning examples we used for training and testing was
derived from the PAC learnability formula [Anthony92]. Although it is widely believed that
neural networks provide robust learning methods for the XOR and multiplexor problems, we
have confirmed that they are inferior to other evolutionary methods when it comes to learning
more complex Boolean concepts, because of their distributed characteristics. We also discuss
both merits and demerits of the above three methods. Finally we discuss a new evolutionary
learning method which overcomes the above difficulties. -

Extended Summary

Boolean concept.learning has is an important part of machine learning. Although earlier

algorithmic approaches to Boolean concept learning such as decision trees [Quinlan86] or enu-
meration [Anthony92] proved to be sound and complete, they suffered from computational
complexity. Alternatively several stochastic or evolutionary methods have been proposed,
which aim at improving efficiency by using probabilistic search at the expense of complete-
ness. Among them are neural networks (NN) [Rumelhart86], classifier systems (CS) [Wilson87]
and adaptive logic networks (ALN) [Armstrong79]. These can be classified roughly into analog
approaches (NN) and into digital approaches (ALN, CS). However there have been few compar-
ative studies between their performances from the viewpoint of computational learning theory
[Anthony92]. In order to evaluate the merits and demerits of these methods, we designed
our experimental conditions based on PAC (Probably Approximately Correctly) learnability
theory. :
The theoretical background for our experiments is as follows. Let N be the number of
attributes and K the number of literals needed to write down the smallest DNF (Disjunctive
Normal Form) description of the target concept. Let € be the maximum percentage error that
can be tolerated during the testing task. The number of learning examples we used is given
by the following formula:-

K x logaN

o ¢
Qualitatively the formula indicates that we require more training examples as the complexity
of the concept increases or the error decreases [Pagallo90].

In our experiments we set ¢ = 10% and used 2000 examples to test classification perfor-
mance. Thus 90% (2000 x 0.9 = 1800 examples) correctness of testing data is the expected
learning success rate.

We used the following 3 problems (target concepts) [Pagallo90]; dnf3 (randomly generated
DNF, 32 attributes, 6 terms), mx6 (6-multiplexor, 16 attributes with 10 irrelevant attributes),
and par4 (4-parity, 16 attributes with 12 irrelevant attributes).

[Name | description | attributes | terms | #training data
dnf3 | random DNF [32 [6] 1650
def. T1T2TeTaT25T28Ta9 V T2L9T14T16 T22 T25 V T1T4 T1g9 T22227228 V T2210Z14T21 T24 V T11Z17219T21T25 V T T4T13T25
mx6 | 6-multiplexor | 16 [4] 720)
def. z13216%1 V T1321627 V 213T1624 V T13 T16T10
par4 4-parity [16 [8] 1280
def. 1 ® x5 Do D 213 (where @ is the XOR operator)

Table 1 Test Functions

The number of training data is derived from equation (1);i.e. 1280 (= §2%’{”—16) training data

are given for par4.
Each method was run according to standard operational criteria. The following parameters

were used for each method.

Population Size 400

Crossover Rate 12%

Crossover TYPE One-Point

Mutation Rate 0.1%
Payoff Quantity (R) 1000
Decay by Error (e) - 80%

Bias for # (G) 4.0

Reference Boole [Wilson87]

Table 2 Parameters for Classifier Systems

Initial Nodes 29999
Node Types | AND, OR, LEFT, RIGHT
Reference [Armstrong79,91]

Table 3 Parameters for ALN

Learning Rate 0.01
Momentum 0.5
of Hidden Layers 1
of Hidden Nodes | 4 (3 for dnf3)
Reference [Gormang8]

Table 4 Parameters for Neural Networks

These parameters were chosen to obtain the most effective learning results after several exper-
imental runs. Learning was terminated after convergence is attained. Thus the numbers of
iterations needed in training phases differ for the 3 methods; i.e. 0(10000) for NN, O(1000) for
CS and O(100) for ALN. However, this number did not necessarily reflect the computational
complexity, because each iteration included qualitatively different computations. We executed
several independent runs for each test function. The results are shown below.

CS | ALN | NN
mx6 | 10 10
pard | 10 10
dnf3 | O 10

o W ©

Table 5 Number of Successes for the 3 Methods

CS ALN NN

mx6 | 100.0 0.0 | 98.8 0.50 | 100.0 0.0
pard | 100.0 0.0 | 98.6 1.63 | 100.0 0.0
dnf3 — -—|876 094 _— =

Table 6 Generalization Ability of the 3 methods

Table 5 shows the number of successes in the learning training data (100% correctness) for ten
runs. Table 6 shows the averages and the standard deviations of correctness for the testing
data when the training data were learned successfully (note, in Table 6, a “” indicates that
training was unsuccessful). Following equation (1), the success rate for Boolean learning is
expected to be above 90%.

The performance results obtained from these empirical studies were as follows:-

1. Although it is widely believed that NN performs boolean concept learning well, no sig-
nificant superiority of NN was observed. As can be seen in Table 6, NN dose not always
succeed in learning the training data. NN shows poor results for mx6 or par4. This is
because the distributed representations prevent NN from distinguishing between relevant
and irrelevant attributes for mx6 and par4. Dnf3 is a hard problem for NN.

2. CS is superior to the other two methods for mx6 and par4. CS can cope with the
irrelevant attributes. Actually CS is successful in acquiring a perfect set of rules for
mx6. For instance, the acquired rules are as follows:-

Condition (z; 2 3 -+ %16) Action Strength
HE#OH#FH#F#HFA##ALFAH#O 0 5620
HHEH#HHFHFOF#FH#FOFHFH#] 0 5526
HHAH#HHF#ARFRALIFAH#OFH#O 1 5512
HHEFHFHFLF#F#FOF#] 1 5503
14 ######R#H-#FLFEH#] 1 4222
O##H#FH#BH#AH#H#H#LH#FH] 0 4090
HHE#LHFRBR##FHFLEH#O 1 3633

BRAHAAHAHAHAFOFHFOHFFHO 0 3060

Notice that these rules express the concept of mx6 by using significant bits (z1, 24, Z7, Z10, Z13, T16)
and ignoring the irrelevant attributes. On the other hand, CS fails to solve dnf3. This

is because it is difficult for CS to represent the concept of dnf3 in the form of classifier

rules. So many classifier rules are required to express 0-valued actions for dnf3 whereas

(wild-card) works very well for par4 and mx6. Therefore the rule size is an important

factor for CS. For mx6 and par4, 400 rules were enough. On the other hand, O(1000)

rules were necessary for dnf3.

3. ALN performs better for all 3 tests. However, as can be seen in Table 6 (the average
performance is below 90% for dnf3), ALN was not successful in generalizing the training
data. This results from the fact that ALN simply memorizes part of the training data,
and lacks the ability to generalize. For these reasons, ALN, in general, requires a large
number of initial nodes (for instance, [Armstrong91] used O(60000)). Although the final
node size might well be reasonable (O(100)), a small number of initial nodes results
in failure. It should be noted that ALN’s performance is heavily dependent upon the
problem size. For example, ALN failed to solve par5 (5-bit parity problem with 27
irrelevant bits)

We also conducted an experiment with the learning of noisy Boolean concepts. In noisy en-
vironments, learning attribute values are inverted from 1 to 0 or from 0 to 1 (with a probability
less than 5%). The results are shown below:-

cs ALN NN

Noise | Func. Train Test Train Test Train Test

mx6 | 100.0 0.0 | 100.0 0.0 | 100.0 0.0 {989 0.7]99.0 1.2|98.7 1.4

0% | par4 |100.0 0.0 [100.0 0.0 | 100.0 0.0|98.6 1.3 |89.1 12.7]85.9 18.3

dnf3 | 90.0 1.8| 87.8 3.1|100.0 0.0|876 1.6|96.7 0.8]92.7 3.0

mx6 | 100.0 0.0]100.0 0.0| 96.4 06955 3.5]|957 1.0]|956 1.0

2% | pard | 982 23| 971 33| 926 08999 0.3]|84.8 114|819 172

dnf3 | 71.0 27.7| 66.2 31.9| 964 0.6|8.4 1.2|945 114|924 17

mx6 | 983 25| 984 24| 909 12/{998 04907 11]90.1 0.5

5% | pard | 448 22| 366 18| 744 6.7|71.5 23.7|76.8 838|747 131

dnf3 | 27.0 29.0| 20.3 322 | 90.1 0.8|89.9 25920 08]90.7 03

Table 7 Learning Performances in Noisy Environments

Table 7 shows the averages and the standard deviations of correctness for training and testing
data by using the 3 methods. Noise-free environments (0%) are the same as those used for
Table 5 and Table 6, but the averages of correctness for the testing data were taken only when
the training data were learned successfully (i.e. 100% correct). On the other hand, in Table 7,
the averages and the deviations are calculated over all ten runs so as to estimate the influence
of the noise. Some remarkable points from the table are described below.

1. As can be seen in mx6 (2% and 5% noise) and par4 (0% and 2%), overfitting phenomena
were observed for ALN.

2. CS has poor records abruptly when the noise level exceeds 2%.

3. Considering their high deviations, the performance of CS is not stable; that is, results of
CS are likely to be influenced by noise.

4. NN copes with noise relatively successfully; i.e. so called “graceful degradation” Wwas
observed.

The detailed discussions of these experimental results are omitted here for reasons of space
limitation. , ‘

The empirical studies of the 3 methods demonstrate the difficulties of learning concepts
defined over the space of Boolean features. Both approaches, i.e. digital (ALN, CS) or analog
(NN), have their own merits and demerits. In order to solve these difficulties, we currently
research on a new learning method, which integrates analog and digital approaches. This is
an extended version of our implemented system STROGANOFF [Iba93a,b]. We show the
experiments conducted so far and discuss the validity of our approach.

References

[Anthony92] Anthony, M. and Biggs, N. Computational Learning Theory, Cambridge Tracts
in Theoretical Computer Science 30, Cambridge, 1992

[Armstrong et al.79) Armstrong, W. W. and Gecsei, J. Adaptation Algorithms for Binary Tree
Networks, IEEE TR. SMC, SMC-9, No.5, 1979

[Armstrong91] Armstrong, W.W. Learning and Generalization in Adaptive Logic Networks,
Artificial Neural Networks, (T.Kohonen eds.), Elsevier Science Pub., 1991

[Gorman88] Gorman, R. P. and Sejnowski, T. J. Analysis of Hidden Units in a Layered
Network Trained to Classify Sonar Targets, Neural Networks, vol.1, 1988

[Iba et al.93é,] Iba, H., Kurita, T., deGaris, H. and Sato, T. System Identification using
Structured Genetic Algorithms, ETL-TR93-1, to appear in Proc. of 5th International Joint
Conference on Genetic Algorithms, 1993

[Iba et al.93b] Iba, H., Higuchi, T., deGaris, H. and Sato, T. A Bug-Based Search Strategy for
Problem Solving, ETL TR92- 24 to appear in Proc. of 13th International Joint C’onference
on Artificial Intelligence, 1993

[Pagallo et al.90] Pagallo, G. and Hausslear, D. Boolean Feature Discovery in Empirical Learn-
ing, Machine Learning, vol.5, 1990

[Quinlan86] Quinlan, J.R., Induction of Decision Trees, Machine Learning, vol.1, 1986

[Rumelhart et al.86] Rumelhart, D.E. and McClelland, J.L. Parallel Distributed Processing,
MIT Press, 1986 '

[Wilson87] Wilson,S.W. Classifier Systems and the Animat Problem, Machine Learning,vol.2,
no.3, 1987 '

