HotCat: Green and Effective Feature Selection
toward Hotfix Bug Taxonomy

Luis de la Cal'l®, Yazhuo Cao?®, Ayse Irmak Ercevik?®, Giovanni Pinna3®,

Lukas Twist2®, David Williams*®| Karine Even-Mendoza?®|
W.B. Langdon*®, Hector D. Menendez?®, and Federica Sarro*

! Universidad Politécnica de Madrid 1.delacal@upm.es
2 King’s College London {yazhuo.cao, ayse.ercevik, lukas.twist,
karine.even_mendoza, hector.menendez}@kcl.ac.uk
3 University of Trieste giovanni.pinna@phd.units.it
4 University College London {david.williams.22, w.langdon,
f.sarro}@ucl.ac.uk (corresponding author: f.sarro@ucl.ac.uk)

Abstract. HotBugs.jar is a novel benchmark targeting time-critical (a.k.a.
hot) fixes. We propose an approach to analyze the taxonomy of the bugs
in HotBugs.jar by extending PatchCat into HotCat, integrating hotfix
metadata with multi-objective optimization. Using NSGA-II, we evolve
bitmask-based feature subsets that balance accuracy, Normalized Mutual
Information (NMI), and runtime. On 88 records across 17 categories, Hot-
Cat achieved 0.59 accuracy and 0.58 NMI in 129 seconds, with maximum
accuracy of 0.63 in 132 s, demonstrating accuracy improvements with-
out additional resource use, thus supporting sustainability. Future work
will expand and augment the dataset, refine optimization objectives, and
improve semantic categorization, robustness, and cluster balance.

Keywords: Genetic Algorithm - LLM - SSBSE - Time-critical Apache
Java Software Errors - Hotfix - HotBugs-dot-jar - PatchCat - Jira issue

1 Introduction

Hotfixes represent a critical category of software patches that address time-
sensitive issues requiring immediate deployment to production systems [9]. These
patches aim to minimize system downtime while fixing urgent vulnerabilities.
Recently, Even-Mendoza et al. [6] introduced PatchCat, which leverages
Sentence-BERT embeddings with short-text clustering [I3J12] as a lightweight
machine learning approach to approximate patch edits based on descriptions syn-
thesized by Large Language Models (LLMs). PatchCat demonstrated the feasibil-
ity of semantic-aware patch classification, capturing edit intent (e.g., “added dead
code”, “duplicated code”) and integration with issue-tracking systems for analysis.
We extend PatchCat from patch clustering to classifying and organizing hot-
fixes into coherent semantic categories, combining clustering results with project
metadata, such as Jira issue reports, to derive a taxonomy that reflects real-
world maintenance practices. This taxonomy enables systematic analysis of ur-
gent patches and opportunities for automated reasoning in software maintenance

https://orcid.org/0000-0002-1798-8743
https://orcid.org/0009-0002-1201-9908
https://orcid.org/0009-0000-0974-2527
https://orcid.org/0000-0001-8268-3447
https://orcid.org/0009-0009-6640-2532
https://orcid.org/0009-0004-9828-2639
https://orcid.org/0000-0002-3099-1189
https://orcid.org/0000-0002-6388-4160
https://orcid.org/0000-0002-6314-3725
https://orcid.org/0000-0002-9146-442X

2 de la Cal et al.

Patchcat

(LLM based summarization &
semi-supervised clustering)

Column
projection

Subsection 2.1
Z'Z uojasqng

z - = — =
5 N \
g5 | - NSGA-I configuration,

8 configuration optimization score

] [generation P - ‘
F] =

Fig. 1. Architecture diagram of HotCat.

while targeting challenges: 1) Hotfix data is typically sparse and imbalanced,
limiting the effectiveness of traditional classification approaches [4]; and 2) bal-
ancing accuracy with the high computational cost of large-scale LLM-based anal-
yses is crucial, motivating the integration of Search-Based Software Engineering
(SBSE) techniques, where multi-objective optimization has proven effective in
feature selection under competing objectives.
Our Contribution. We propose an automated pipeline that adapts and extends
PatchCat [6] for hotfix analysis of the HotBugs.jar [7] SSBSE’25 Challenge Case:
— We adapt PatchCat to operate directly on hotfix patches from the HotBugs.jar
dataset [7], integrating project metadata and LLM-based summarization.
— We address sparsity and imbalance by combining centroid-based description,
LLM-generated augmentation, and semantic enrichment [4J9].
— We use NSGA-II for feature selection, balancing quality with computational
efficiency, and green responsible resource usage.
— We empirically demonstrate that extending PatchCat with search-based op-
timization is a step toward an automatically extracted hotfix bug taxonomy.
Related Work. Hotfixes require immediate deployment and must balance ur-
gency with system stability [9]. This urgency has motivated advances in semantic
patch analysis, where approaches such as SemFix [10] and CapGen [15] showed
that capturing edit intent yields better results than syntactic methods. In paral-
lel, bug taxonomies have progressed from manual schemes like Orthogonal Defect
Classification [3] to machine learning approaches [2]. However, a key challenge
lies in the sparse and imbalanced nature of hotfix data. To tackle this, data
augmentation has shown promise, improving classification accuracy to 88% in
imbalanced settings [4]. Yet, despite advances with PatchCat [6] and Gin [11],
the combination of semantic clustering and multi-objective optimization for hot-
fix taxonomy construction remains unexplored.

Awailability. HotCat and all artifacts are available at, NIV S R ARLZLEY.

2 Methodology

Our objective is to leverage PatchCat [6] to classify Jira issues based on the
features in the SSBSE hotfix dataset [7]. PatchCat [6] was originally designed to
classify software patches in |Gin|: given a code diff, it generates a short natural
language summary via an LLM, applies semi-supervised clustering via K-Means

https://zenodo.org/records/17170205#:~:text=Files-,README,-.pdf
https://github.com/gintool

HotCat: Green and Effective Feature Selection toward Hotfix Bug Taxonomy 3

Table 1. Bug taxonomy description & data sources for categories 1-17.

Description Hotfix Centroids Le Chat PatchCat
1 Test suite, tests, test folder v v

2 Crash or Hang v v

3 Missing Code or Components, or Incomplete v v v 14,3
4 Start, Access, or Availability of Service Issues v v

5 Security Vulnerability or Permission Issues v v

6 Configuration Dependency, Versioning or Deprecation v v v

7 Configuration Build or CI Failures v v v

8 Buggy Configuration or Broken Config Files v v

9 Database v v 's

10 API / Parsing / Syntax errors v v

11 Exceptions, Error Handling, or Missing Checks v v v

12 unsupported, Undefined or unspecified behavior v v v 18
13 Network 's v

14 Performance v v v 11,14
15 Permission Deprecation, Access Control or Policy Issue: v v v

16 Functionality issue (Logical Bugs) Vv v

17 Concurrency or Race Conditions v v v 11

and Sentence-BERT embeddings [I3] refined by iterative classification [12] to
assign patches to semantic categories, and outputs accuracy and Normalized
Mutual Information (NMI) scores, indicating clustering performance.

We adapt PatchCat to operate not only on patch diffs but on selected subsets
of attributes from the hotfix dataset, thereby extending its scope from catego-
rizing code-level edits to classifying hotfix issues using a richer representation of
metadata. Using all features is neither sustainable nor effective. Larger prompts
increase energy use and costs [14], while some features add more noise than value.
We employ NSGA-II to identify feature subsets that strike a balance between
predictive accuracy and efficiency. The overall process is illustrated in Figure
subset selection produces a projected dataset (§2.1)), each projection is evaluated
with PatchCat to assess performance (§2.2)), and resulting fitness scores are fed
into NSGA-II to evolve improved generations of feature subsets (§2.3)).

2.1 Dataset, Projected Dataset and Configuration Definition

The HotBugs.jar dataset [7] contains 88 entries and provides metadata per
hotfix instance, like project name, Jira reference, build configuration, assigned
bug category, and rationale for classifying it as a hotfix. We further enrich the
dataset with code diffs and additional information, such as time-to-fix and the
number of participants, gathering information from multiple sources listed in
The enriched and augmented dataset comprises 155 records, each
with 18 features (i.e., bitmask vector size) across 17 categories .
We applied two-stage data augmentation: 1) balancing category sizes so no
category contained fewer than three records (yielding 155 records), and 2) adding
50 records per category post-optimization to evaluate if augmentation improves
quality (yielding an additional 17x50 records, used in RQ2 only). Features span
hotfix data, bug details, and code commit diffs detailed at [§].

We load the dataset and apply a bitmask to project onto selected features,
where, per feature, 1 denotes inclusion and 0 exclusion. The projected dataset
(referred to as "hotfix"), together with its bitmask, is then passed to PatchCat
for fitness evaluation. In this setting, the configuration is the bitmask.

4 de la Cal et al.

2.2 PatchCat and Fitness Function

We modify PatchCat in two ways: 1) extending it to incorporate additional
hotfix fields, specified through the configuration bitmask, as opposed to code
diffs alone, and 2) automating its operation within the optimization loop to serve
as the NSGA-II fitness function. We then, per configuration, employ modified
PatchCat as a black box, taking the projected dataset as input and returning
category-quality metrics that directly serve as fitness values.

Hotfix projected records are passed to an LLM (via|Ollama or similar inter-
faces) to generate short, clean summaries of each hotfix. Prompting is altered
to include two prompts in sequence. The first sets the LLM’s role, and the sec-
ond defines the concrete task. Prompts templates are at [8]. Bug category IDs
are fixed: While projections yield different summaries, labels remain constant as
defined by the original hotfix dataset’s expert as ground truth.

2.3 Optimization

Determining the right balance between too much and too little information is
an open question in the context of hotfixes and bug reports, which we begin
to investigate in this work. We define the bitmask pattern as a configuration in
our optimization setting: each bit encodes whether a dataset field is included or
excluded (1 or 0, respectively). Searching for bitmasks corresponds to exploring
different projections of the dataset, with optimization aiming to identify those
projections that yield the most meaningful summaries and category performance.

NSGA-II Optimization. Using NSGA-II [5/1], we evolve new generations of
candidate configurations, keep those that strike the best balance across objec-
tives, promote diversity via binary crossover and occasional bit flip mutations,
and discard duplicates. Since our problem is multi-objective, we will produce an
approximation to the Pareto front, representing the set of non-dominated config-
urations that characterize the trade-offs between classification performance and
computational efficiency for hotfix analysis.

3 Evaluation

Research Questions. We ask the following research questions (RQ):
RQ1: What is the trade-off between classification performance and runtime
when classifying hotfizes using HotCat?
RQ2: Do our predicted bug categories improve real maintenance workflows?

Setup. We implemented HotCat in Bash and Python, with performance assessed
by execution time. Configurations were evaluated using [PatchCat. Optimization
used the NSGA-II algorithm [5] from pymoo library v0.6.1.5/[1], with a population
size of 20 over 20 generations, which balances exploration and exploitation. Ob-
jectives minimized runtime and maximized accuracy (label-ground truth align-
ment), and NMI, yielding a Pareto front of non-dominated configurations, cap-
turing the best trade-offs. Post-optimization, Pareto-front configurations train
PatchCat models to classify manually labeled unclassified hotfix entries.

https://github.com/ollama/ollama
https://doi.org/10.5281/zenodo.15834984
https://pypi.org/project/pymoo/0.6.1.5/

HotCat: Green and Effective Feature Selection toward Hotfix Bug Taxonomy 5

indiv. accuracy NMI seconds

1.1 0.59 0.58 129
1.2 0.55 0.56 125
1.3 0.54 0.50 119
1.4 0.56 0.56 125
2 0.59 0.55 125
3 0.63 0.57 132
4.1 0.58 0.53 121
4.2 0.54 0.52 120
5.1 0.52 0.48 116
5.2 0.54 0.49 119
6 0.57 0.54 123
7 0.51 0.49 118
8.1 0.57 0.53 121
8.2 0.55 0.55 124 3D Pareto Front Visualization
9

052 ods s

116 118 120 122 124 126 128 130 132
Time

Fig. 2. Pareto Front individuals and visualization.

Results. Our optimization process focused on three specific objectives using the
NSGA-II algorithm: accuracy, NMI, and execution time. It also accounts for the
non-deterministic behavior of the bug categorization process, which may yield
repeated solutions with different fitness values. These solutions are denoted as
X.Y, where X is the individual number and Y is the repetition identifier. In
Figure 2| (left side, table), we present the Pareto-optimal individuals obtained
after running the algorithm with these objectives. Individual 3 is the slowest
(132 seconds) and the fastest is 5.1 (116 s). Individual 3 achieves the highest
accuracy (0.63), whereas individual 7 records the lowest (0.51). The best NMI
value is obtained by individual 1.1 (0.58), while the lowest is found in individual
5.1 (0.48). Individual 6 combines solid accuracy (0.57) and NMI (0.54), with
a competitive runtime (123 s), making it a reasonable candidate. The most
balanced solution is individual 1.1.

RQ1 Answer. The best trade-off (individual 1.1) identified by NSGA-II
achieved high accuracy (0.59), the best NMI (0.58), and a runtime close to
the median (129 s), representing a strong balance across the three objectives.

To evaluate generalization, we manually annotated 51 challenging bug re-
ports that were tagged in the dataset but excluded from HotBugs.jar [7] to
test our Pareto-optimal models with five repeats per configuration, obtaining
average accuracy/NMI of 0.55/0.52 on the original dataset and 0.72/0.75 on the
augmented dataset. Each model was provided with the corresponding Jira ticket
(including description and metadata), and final labels were assigned by a major-
ity vote across the ensemble. The ensemble underperformed relative to training
results, likely due to the small, imbalanced training set (88 records across 17
classes) and vocabulary overlap that blurs fine-grained boundaries, tending to
collapse predictions into a few dominant categories (notably 13 and 16).

RQ2 Answer. On 51 specially hard hotfixes, the ensemble underperformed.
Labels collapsed into a few classes due to a tiny, imbalanced training dataset of
88 records across 17 categories and a strong vocabulary overlap. Improvements
are likely with data augmentation techniques and class balancing.

6 de la Cal et al.

4 Conclusion

We propose an initial taxonomy for classifying hot fixes. We showed that multi-
objective optimization improves accuracy while maintaining sustainability: the
best-balanced solution (1.1) reached 0.59 accuracy and 0.58 NMI at 129 sec-
onds runtime, while the maximum accuracy (0.63) required only slightly longer
runtime (132 seconds). These results demonstrate that higher accuracy can be
achieved without increasing resource use.

During optimization, we used runtime as a proxy for efficiency and mea-
sured energy and emissions post hoc; future work should make these first-class
objectives and mitigate LLM run-to-run variance. Our results are limited by
a small, imbalanced dataset (88 records across 17 categories) and overlapping
vocabularies that blur class boundaries (e.g., memory leaks vs. performance vs.
concurrency), which led to overprediction of a few bug categories (13, 16). We
also evaluated on harder, previously excluded records. Expanding the dataset
and refining the objectives should improve robustness, avoid local optima, and
yield better accuracy-efficiency trade-offs.

References

1. Blank, J., Deb, K.: Pymoo: Multi-objective optimization in python. IEEE access
8, 89497-89509 (2020)
2. Catolino, G., et al.: Not all bugs are the same: Understanding, characterizing, and
classifying bug types. J. Syst. Softw. 152, 165-181 (2019)
3. Chillarege, R., et al.: Orthogonal defect classification-a concept for in-process mea-
surements. IEEE TSE 18(11), 943-956 (1992)
4. Ciborowska, A., Damevski, K.: Too few bug reports? exploring data augmentation
for improved changeset-based bug localization. arXiv:2305.16430 (2023)
5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: Nsga-ii. IEEE TEVC 6(2), 182-197 (2002)
6. Even-Mendoza, K., et al.: LLM-guided genetic improvement: Envisioning semantic
aware automated software evolution. In: ASE NIER (2025)
7. Hanna, C., Sarro, F., Harman, M., Petke, J.: Hotbugs.jar: A benchmark of hot
fixes for time-critical bugs (2025), https://arxiv.org/abs/2510.07529
HotCat: The paper’s artifact (2025). https://doi.org/10.5281/zenodo.17170205
9. Islam, C., Prokhorenko, V., Babar, M.A.: Runtime software patching: Taxonomy,
survey and future directions. J. Syst. Softw. 200, 111652 (2023)
10. Nguyen, H.D.T., Qi, D., Roychoudhury, A., Chandra, S.: Semfix: Program repair
via semantic analysis. In: ICSE. pp. 772-781. IEEE (2013)
11. Petke, J., et al.: Program trans... using Gin. ESE 28, article no: 104 (2023)
12. Rakib, M.R.H., Zeh, N., Jankowska, M., Milios, E.: Enhancement of short text
clustering by iterative classification. In: NLDB 2020. pp. 105-117. Springer (2020)
13. Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese
BERT-networks (2019), https://arxiv.org/abs/1908.10084
14. Robinson, J., Kummerfeld, J.K.: Simple and effective baselines for code summari-
sation evaluation. arXiv:2505.19392 (2025)
15. Wen, M., Chen, J., Wu, R., Hao, D., Cheung, S.C.: Context-aware patch generation
for better automated program repair. In: ICSE (2018)

o

https://arxiv.org/abs/2510.07529
https://doi.org/10.5281/zenodo.17170205
https://doi.org/10.5281/zenodo.17170205
https://arxiv.org/abs/1908.10084

	HotCat: Green and Effective Feature Selection toward Hotfix Bug Taxonomy

