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The paper proposes a new optimization technique based on genetic algorithms for the determination of the 
cutting parameters in machining operations. In metal cutting processes, cutting conditions have an influence on 
reducing the production cost and time and deciding the quality of a final product. This paper presents a new 
methodology for continual improvement of cutting conditions with GA (Genetic Algorithms). It performs the 
following: the modification of recommended cutting conditions obtained from a machining data, learning of 
obtained cutting conditions using neural networks and the substitution of better cutting conditions for those 
learned previously by a proposed GA. Operators usually select the machining parameters according to handbooks 
or their experience, and the selected machining parameters are usually conservative to avoid machining failure. 
Compared to traditional optimisation methods, a GA is robust, global and may be applied generally without 
recourse to domain-specific heuristics. Experimental results show that the proposed genetic algorithm-based 
procedure for solving the optimization problem is both effective and efficient, and can be integrated into an 
intelligent manufacturing system for solving complex machining optimization problems. 

1. INTRODUCTION 

In today’s manufacturing environment, many large industries have attempted to 
introduce flexible manufacturing systems (FMS) as their strategy to adapt to the ever-
changing competitive market requirements. To ensure the quality of machining products, 
and to reduce the machining costs and increase the machining effectiveness, it is very 
important to select the machining parameters when the machine tools etc. are selected in 
CNC machining. The traditional methods for solving this kind of optimization problem 
include calculus-based searches, dynamic programming, random searches, and gradient 
methods whereas modern heuristic methods include, artificial neural networks [1], 
Lagrangian relaxation approaches [5], and simulated annealing [3]. Some of these methods 
are successful in locating the optimal solution, but they are usually slow in convergence and 
require much computing time. Other methods may risk being trapped at a local optimum 
which fails to give the best solution. In this paper, a novel approach, genetic algorithms 
(GA), based on the principles of natural biological evolution, that received considerable and 
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increasing interest over the past decade, will be used to tackle this kind of problem. 
Compared to traditional optimization methods, a GA is robust, global and may be applied 
generally without recourse to domain-specific heuristics. It can be used not only for general 
optimization problems, but also in indifferent optimization problems and unconventional 
optimization problems, etc. So GA's are widely used for machine learning, function 
optimising and system modelling etc. [3, 5].  

Although GA is an effective optimization algorithm, it usually takes a long time to 
optimise machining parameters because of its slow convergence speed. In this paper genetic 
algorithm for optimization of cutting parameters GA is proposed based on traditional genetic 
algorithms. The operating domain is defined and changed to be around the optimal point in 
its evolutionary processes so that the convergence speed and accuracy are improved. The 
genetic algorithm is used for the optimization and simulation of cutting parameters. The 
main objective of the present paper is to determine the optimal machining parameters that 
minimize the unit production cost without violating any imposed cutting constraints.the 
limitation equations and balances the conflicting objectives. 

2. GENETIC ALGORITHMS 

Genetic Algorithms are a family of computational models inspired by evolution. These 
algorithms encode a potential solution to a specific problem on a simple chromosome-like 
data structure and apply recombination operators to these structures so as to preserve critical 
information.  

Genetic algorithms are often viewed as function optimizers, although the range of 
problems to which genetic algorithms have been applied is quite broad.  

An implementation of a genetic algorithm begins with a population of (typically 
random) chromosomes. One then evaluates these structures and allocates reproductive 
opportunities in such a way that those chromosomes which represent a better solution to the 
target problem are given more chances to "reproduce'' than those chromosomes which are 
poorer solutions. The "goodness'' of a solution is typically defined with respect to the current 
population. This particular description of a genetic algorithm is intentionally abstract 
because in some sense, the term genetic algorithm has two meanings. In a strict 
interpretation, the genetic algorithm refers to a model introduced and investigated by John 
Holland [4] and by students of Holland (e.g., DeJong, [4]). It is still the case that most of the 
existing theory for genetic algorithms applies either solely or primarily to the model 
introduced by Holland, as well as variations of genetic algorithms. 

In a broader usage of the term, a genetic algorithm is any population-based model that 
uses selection and recombination operators to generate new sample points in a search space. 
Many genetic algorithm models have been introduced by researchers largely working from 
an experimental perspective. Many of these researchers are application oriented and are 
typically interested in genetic algorithms as optimization tools. Modelling, machining, 
selection of cutting parameters and monitoring often have to deal with the problem of 
optimization. 
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3. THE ITERATION LOOP OF A BASIC GENETIC ALGORITHM 

The following flowchart (Fig. 1) shows the interative cycle of a basic genetic 
algorithm. Firstly, an initial population of strings is created. The process then iteratively 
selects individuals from the population that undergo some form of transformation (via the 
recombination step) to create new a population. The new population is then tested to see if it 
fulfills some stopping criteria. If it does, then the process halts, otherwise another iteration is 
performed. (Diagram taken from Blickle, [1], pc - number of combinations). 

Randomly created Initial
Population

Selection
(whole population)

Recombination

Problem
solved?

End

Yes

No1-pc

pc

 
Fig. 1. Flowchart of the basic genetic algorithm 

4. BASIC GENETIC ALGORITHM OPERATIONS 

With GA's having such a solid basis in genetics and evolutionary biological systems, 
one might think that the inner workings of a GA would be very complex. In fact, the 
opposite is true. Simple GA's are based on simple string copying and substring 
concatenation, nothing more, nothing less. Even more complex versions of GA's still use 
these two ideas as the core of their search engine.  

There are three basic operators found in every genetic algorithm: reproduction, 
crossover and mutation. 

The reproduction operator allows individual strings to be copied for possible 
inclusion in the next generation. The chance that a string will be copied is based on the 
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string's fitness value, calculated from a fitness function. For each generation, the 
reproduction operator chooses strings that are placed into a mating pool, which is used as the 
basis for creating the next generation. 

There are many different types of reproduction operators: 
• Proportional Selection (This method will only work with fitness values above zero 

(non-negative) and scaling may sometimes be necessary. It has been shown that 
proportional selection performs poorly compared with other selection schemes in 
many GA problems.), 

• Tournament Selection (Choose t individuals at random from the population and copy 
the best individual from this group into the new population. Repeat N times.), 

• Truncation Selection (With truncation selection that has a threshold of T between 0 
and 1, only the fraction T best individuals can be selected. They all have the same 
selection probability.), 

• Linear Ranking Selection (The individuals are sorted according to their fitness values 
and the rank N is assigned to the best individual, the rank 1 assigned to the worst. The 
selection probability is linearly assigned to the individuals according to their rank and 
a selection equation.), 

• Exponential Ranking Selection (This follows the same methodology of linear ranking 
selection, the only difference being that the probabilities of the ranked individuals are 
exponentially weighted.). 

One always selects the fittest and discards the worst, statistically selecting the rest of 
the mating pool from the remainder of the population. There are hundreds of variants of this 
scheme. None are right or wrong. In fact, some will perform better than others depending on 
the problem domain being explored. 

Once the mating pool is created, the crossover operator in the GA's arsenal comes into 
play. Remember that in biological terms refers to the blending of chromosomes from the 
parents to produce new chromosomes for the offspring. The analogy carries over to 
crossover in GA's. 

The GA selects two strings at random from the mating pool. The strings selected may 
be different or identical, it does not matter. The GA then calculates whether crossover 
should take place using a parameter called the crossover probability. 

If the GA decides not to perform crossover, the two selected strings are simply copied 
to the new population. If crossover does take place, then a random splicing point is chosen 
in a string, the two strings are spliced and the spliced regions are mixed to create two 
(potentially) new strings. These child strings are then placed in the new population. 

As an example (Fig. 2), say that the strings 10000 and 01110 are selected for crossover 
and the GA decides to mate them. The GA selects a splicing point of 3. 

The following then occurs : 
100   00

011   10

100  10

011  00 
Fig. 2. Example of the crossover operation 

The newly created strings are 10010 and 01100. 
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Crossover is performed until the new population is created. Then the cycle starts again 
with selection. This iterative process continues until any user specified criteria are met.  

Selection and crossover alone can obviously generate a staggering amount of differing 
strings. However, depending on the initial population chosen, there may not be enough 
variety of strings to ensure the GA sees the entire problem space. Or the GA may find itself 
converging on strings that are not quite close to the optimum it seeks due to a bad initial 
population. 

Some of these problems are overcome by introducing a mutation operator into the GA. 
The GA has a mutation probability, m, which dictates the frequency at which mutation 
occurs. Mutation can be performed either during selection or crossover (though crossover is 
more usual). For each string element in each string in the mating pool, the GA checks to see 
if it should perform a mutation. If it should, it randomly changes the element value to a new 
one. In our binary strings, 1s are changed to 0s and 0s to 1s (Fig. 3). For example, the GA 
decides to mutate bit position 4 in the string 10000 

10000 10010 

Fig. 3. Example of the mutation operation 

The resulting string is 10010 as the fourth bit in the string is flipped. The mutation 
probability should be kept very low (usually about 0.01%) as a high mutation rate will 
destroy fit strings and degenerate the GA algorithm into a random walk, with all the 
associated problems. 

But mutation will help prevent the population from stagnating, adding "fresh blood", as 
it were, to a population. Mutation helps to maintain that diversity throughout the GA's 
iterations. 

5. ENCODINGS AND OPTIMIZATION PROBLEMS  

Usually there are only two main components of most genetic algorithms that are 
problem dependent: the problem encoding and the evaluation function. Consider a parameter 
optimization problem where we must optimize a set of variables either to maximize some 
target such as profit, or to minimize cost or some measure of error. We might view such a 
problem as a black box with a series of control dials representing different parameters; the 
only output of the black box is a value returned by an evaluation function indicating how 
well a particular combination of parameter settings solves the optimization problem. 

6. OPTIMIZATION OF CUTTING PARAMETERS WITH GA 

Intelligent manufacturing achieves substantial savings in terms of money and time if it 
integrates an efficient automated process-planning module with other auto-mated systems 
such as production, transportation , assembly, etc. Process planning involves determination 
of appropriate machines, tools for machining parts, cutting fluid to reduce the average 
temperature within the cutting zone and machining parameters under certain cutting 



 
 

 
    text area  17.0 × 23.5 cm    this border is for reference only 

INSTRUCTIONS–page 6 

conditions for each operation of a given machined part. The machining economics problem 
consists in determining the process parameter, usually cutting speed, feed rate and depth of 
cut, in order to optimize an objective function. A number of objective functions by which to 
measure the optimality of machining conditions include: minimum unit production cost, 
maximum production rate, maximum profit rate and weighted combination of several 
objective functions. Several cutting constraints that should be considered in machining 
economics include: tool-life constraint, cutting force constraint, power, stable cutting region 
constraint, chip-tool interface temperature constraint, surface finish constraint, and roughing 
and finishing parameter relations. The main objective of the present paper is to determine 
the optimal machining parameters that minimize the unit production cost without violating 
any imposed cutting constraints. Consequently, the mathematical formulation of the 
machining optimization problem is similar to that of Cus [2] having 20 cutting constraints. A 
new local search optimization based on genetic algorithm approach is developed to solve the 
machining optimization model. The entire development of planning of the machine 
processes is based on the optimization of the economic criteria by taking the technical and 
organizational limitations into account. In the cutting operations the economic criteria are 
the costs and the manufacturing time. The objectives of the described process are: 
maximization of the production rate, reduction of the costs and improvement of the surface 
quality. GA computes score (objective) function for each string of the solution space so that 
the string that has the maximum score function value is determined. The goal of 
optimization problems is to minimize some cost function. In GA approach, the cost function 
being optimized is usually mapped to a score function. In this experiment the following 
manufacturer’s implicit value function [6] is selected: 

 
( ) ( ) ( ) ( )

( )app

Ra8.0Cp62.0Tp62.1
app

RCT12.21/72.0

e17.0e016.0e3,2R,C,Ty

⋅⋅⋅++

+⋅+⋅+⋅= −−

  (1) 

Usually, the production rate is measured as the entire time necessary for the 
manufacture of a product Tp. 

    icsp T    MRR) TT  (1V  T  T ++×+=     (2) 

where Ts, Tc, Ti and V are the tool set-up time, the tool change time, the time during 
which the tool does not cut and the volume of the removed metal.  

MRR be expressed by analytical derivation as the product of the cutting speed, feeding 
and cutting depth: 

     afv1000 MRR ×××=      (3) 

The tool life T measured as the average time between the tool changes or tool 
sharpenings.  

     3
2

1 afvk  T T
αα ×××=

α
     (4) 

where the constant parameters, are determined statistically [6]. 
The operation cost can be expressed as the cost per product Cp. In the cost of the 

operation two values connected with the cutting parameters T, Tp [6] are distinguished: 
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    ( )0ltpp C  C  TCT  C ++×=      (5) 

where Ct, Cl and C0 are the tool cost, the labour cost and the overhead cost 
respectively. In some operations the Ct, Cl and C0 are independent of the cutting parameters. 

The most important criterion for the assessment of the surface quality is roughness 
calculated according to: 

     321 xxx
a afvk   R ×××=      (6) 

where x1, x2, x3 and k are the constants relevant to a specific tool-workpiece 
combination. 

There are several factors limiting the cutting parameters. Those factors originate 
usually from technical specifications and organizational considerations. The following 
limitations are taken into account. Due to the limitations on the machine and cutting tool and 
due to the safety of machining the cutting parameters are limited with the bottom and top 
permissible limit. 

Permissible range of cutting conditions. 

     

maxmin

maxmin

maxmin

aa a

ff f

vv v

≤≤
≤≤

≤≤
       (7) 

For the selected tool the tool maker specifies the limitations of the cutting conditions. 
The limitation on the machine is the cutting power and the cutting force. The consumption 
of the power can be expressed as the function of the cutting force and cutting speed: 

    ) (6122.45 / vF  P η××= , 32 afk  F F
ββ ××=    (8) 

where Kf is obtained experimentally and η is the mechanical efficiency of the machine. 
The limitations of the power and cutting force are equal to: 

     
max

max

Fa) f, F(v,

Pa) f, P(v,

≤
≤

       (10) 

7. RESULTS  

For the experiment the genetic algorithms were used. The genetic algorithm give more 
accurate results, but they require more time for calculating the objective function than neural 
network. The programme containing this genetic algorithm is slow. Precision of results is 
very reliable. The Table 1 shows the selected optimum cutting conditions and the 
corresponding values of variables based on maximization of the implicit function obtained 
by genetic algorithm. The first line shows the optimal cutting conditions determined by 
mathematical tool, whereas the second line shows the cutting conditions determined by 
genetic algorithm approach.  
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Entering of input data

� V, Ra, Tc, To, Ts
� costs (Ct, Cl, Co)
� workpiece model
� machine tool type

Random generation of
cutting conditions

combinations (v, f, a)

 Limitation
equations

satisfy or not?

Judging the
generation
(function y)

Selection of the
best generation

Reproduction Crossover Mutation

Is the
  solution

acceptable?

Output optimum
solution

yes

Calculation of
function y

Calculation of
Tp, Cp, Ra

Calculate fitness

Tp, Cp, Ra, yOptimal cutting
conditions

Initialize parameters:
population size, rates of
genetic operators, etc.

Generation of initial
population

no

no

yes

 
Fig. 4. Flowchart of the GA solution  
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Clearly, the genetic algorithm-based optimization approach (Fig. 4) provides a 
sufficiently approximation to the true optimal solution. Fig. 5 shows the extreme of the 
optimization function with relevant optimum cutting conditions. 

Table 3: Results obtained by genetic algorithm 

Basis v (m/min) ƒ (mm/rev) a (mm) Tp (min) Cp ($) Ra (µm) 

Ideal solut. 86.837 1.8601 0.50 0.459051 0.8 0.7201 

GA 86.8549 1.8622 0.5068 0.4938 0.826 0.7203 

 
Basis MRR (mm3/min) T (min) F (N) P (kW) 

Ideal solut. 777820.74231 32.00 177.507 0.70 

GA 777820.74236 32.81 177.512 0.71 

 

 

Fig. 5. Optimization function y with the optimal cutting conditions   
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Advantages of developed GA algorithm: 
• simple complementing of the model by new input parameters without modifying the 

existing model structure, 
• automatic searching for the non-linear connection between the inputs and outputs, 
• fast and simple optimizing. 

Disadvantages: 
• time-consuming determination of training parameters, 
• experience is necessary for conceiving of the algorithm, 
• repeatability of training is not assured. 

8. CONCLUSION 

This paper presents a genetic algorithm optimization approach for solving the 
machining operations problem with milling. The results obtained from comparing the 
proposed genetic algorithm optimization approach with those taken from recent literature 
prove its effectiveness. The results of the proposed approach are compared with results of 
simulated annealing, fuzzy possibilistic-genetic algorithm, linear-programming approaches. 
The implication of the encouraging results obtained from the present approach is that such 
approach can be integrated on-line, with an intelligent manufacturing system for automated 
process planning. Since the genetic algorithm-based approach can obtain near-optimal 
solution, it can be used for machining parameter selection of complex machined parts that 
require many machining constraints. Integration of the proposed approach with an intelligent 
manufacturing system will lead to reduction in production cost, reduction in production 
time, flexibility in machining parameter selection, and improvement of product quality. This 
research definitely indicates some directions for future work. First, is the application of the 
genetic algorithm-based approach in complex machining systems and automated process 
planning-system. Second, is comparing the genetic algorithm-based approach with a number 
of other emerging optimization-techniques. 
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