
A SIMD interpreter for Genetic Programming

on GPU Graphics Cards

W. B. Langdon

Departments of Mathematical and Biological Sciences, University of Essex, UK
3 July 2007, Computer Science Technical Report CSM-470 ISSN 1744-8050

When you are in the swamp killing alligators, the thing to remember is that you are not supposed to be
killing alligators; you are supposed to be draining the swamp.

Abstract

Mackey-Glass chaotic time series prediction and non-nuclear protein classification show
the feasibility of evaluating genetic programming populations on SPMD parallel computing
consumer gaming graphics processing units. The C++ framework with a regular disk less
Linux KDE desktop equipped with a single leading nVidia GeForce 8800 GTX graphics
processing unit card is demonstrated evolving programs at Giga GP operation per second
(895 million GPops). The RapidMind general processing on GPU (GPGPU) framework
supports evaluating an entire population of a quarter of a million individual programs on a
non-trivial problem in 4 seconds. An efficient reverse polish notation (RPN) tree based GP
is given.

No

Leaf
Push onto individuals stacks

Addition
Pop+Pop, Push result

Subtraction
Pop−Pop, Push result

Multiply
Pop * Pop, Push result

Division
Pop/Pop, Push result

All programs finished? Yes

Result is on top of each stack

Figure 1: The SIMD interpreter loops continuously through the whole genetic programming
terminal and function sets for everyone in the population. GP individuals select which op-
erations they want as they go past and apply them to their own data and their own stacks.
Unwanted results are discarded. When a required instruction is executed by a program, the
program moves onto waiting for its next operation. If branches, goto jumps, loops and function
calls could be implemented. Boolean and very short integer operations can be implemented by
lookup tables. Combining tables for different operations reduces the number of options in the
loop and so could make GP faster.
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1 Introduction

Whilst modern computer graphics card deliver extremely high floating point performance for
personal computer gaming, the same low cost consumer electronics hardware can be used for
desktop (and even laptop) scientific applications. However today’s GPUs are optimised for
a single program multiple data (usually abbreviated Single Instruction Multiple Data SIMD)
mode of operation. GPU also place severe limits on data flow. Porting existing applications
is non-trivial. Nevertheless [Fok et al., 2007] were able to show speed ups from 0.62 to 5.02
when they ported evolutionary programming to a GPU. They ran EP mutation, selection and
fitness calculation on their GPU. Each stage being done by fixed specially hand written GPU
programs. [Harding and Banzhaf, 2007] were able to show far higher (peak) speed ups when he
ran the fitness evaluation of a special version of genetic programming on a GPU. The impressive
speed ups were obtained by running multiple test cases in parallel. We demonstrate a SIMD
interpreter which runs 204 800 programs simultaneously on the GPU on one or more test cases.

Our approach uses a high level language (C++) which imposes some overhead compared to
the conventional assembler approach to programming GPUs. See Figures 2 and 3. Similarly
conventional interpreted high level languages (such as Java, Perl, JavaScript) have varying
degrees of overhead compared to C or C++. Likewise each GP interpreter is usually also
associated with an overhead.

Juille demonstrated a SIMD GP system for a Maspar MP-2 super computer on a couple of
problems [Juille and Pollack, 1996]. The MP-2 was a general purpose supercomputer, costing in
the region of $105 in the mid 1990s. Its peak theoretical performance came from its many thou-
sands of processing elements (PE) and the rapid bidirectional 2D data mesh interconnecting
them. Jullie’s coevolutionary problems were able to exploit the rapid transfer between neigh-
bouring PE. Less than a couple of hundred MP-2 were sold whereas a successful GPU typically
has up to 128 independent processors and can be found in literally millions of homes. Even a
top of the range GPU can be had for less than £400.

GPUs have no notion of neighbouring processors. Data describing scenes are imagined to
flow into the processors, which transform them and transmit them onto the next processing stage
(or the user’s screen). Part of the GPUs speed comes from specialising this data stream and
avoiding the possibility of expensive side-to-side interaction. This restriction enables the GPU
to decide work freely without user intervention between the available processors. Indeed adding
more processors can improve performance immediately without redesigning the application.
However it makes it difficult to do some operations. The GPU should not be regarded as
a “general purpose” computer (GPGPU). Instead it appears to be best to leave some (low
overhead) operations to the CPU of the host personal computer or laptop.

The SIMD GP interpreter has two novel sources of overhead. First since it (in principle)
runs all programs simultaneously, short programs take as long to execute as long ones. So (to
a first approximation) run time is dominated by that of long programs. This depresses average
performance. For example, if the biggest tree is 8 terminals and 7 functions but the average tree
has only 11 nodes; the expected average performance might be reduced by a factor of 11/15.
Secondly to allow GP individual to behave differently, yet be interpreted by a single program
simultaneously. The SIMD interpreter dispatches every possible instruction at every point in
the tree. See Figure 1. Effectively each GP individual acts as a sieve saying which operation it
wants performed next. While multi-ops, conditionals, loops, jumps, subroutines and recursion
are possible they are not included in these benchmarks.

The following section discusses some other previous parallel GP systems. The next section
discusses possible implementation avenues and why we chose RapidMind. This is followed
by descriptions of our two benchmarks (Sections 4 and 5). Whilst Section 6 describes the
performance of the interpreter in practise and relates it to other work. This is followed by a
discussion, future work (Section 7) and our conclusions (Section 8).
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const int NP; //Number of programs in population, multiple of GPU_NP
const int LEN =63+1;//Maximum GP individual length, plus 1 stop code
const int GPU_NP = 4*1024*1024/LEN; //22bit GPU limit

Array<1,Value1i> Train(ntrain*ninputs);
Array<1,Value1bool> Class(ntrain);
Array<1,Value1ub> PROG(LEN*GPU_NP); //unsigned 8-bit byte
Array<1,Value1i> prog0 = grid(GPU_NP); //used to simulate indexOf

#define OPCODE ::PROG[PC+(prog0*LEN)]
#define WHICHACID OPCODE-ZeroIndex
#define Acid Train[(PROTEIN*Value1i(ninputs))+WHICHACID]
#define PUSH(V) join(join(V,stack(0,1,2)),stack(3,4,5,6))
#define CONST Value1f(10)*tan(Pie*OPCODE)
#define OP1() stack = cond(OPCODE<FirstInput,PUSH(CONST),stack)
#define OPacid() stack = cond(OPCODE>=FirstInput && OPCODE<=LastLeaf,PUSH(Acid),stack)
//conditionally POP stack (fake by using rotation)
#define OP3(XCODE,OP) \

stack(0) = cond(Value1ub(XCODE)==OPCODE,OP,stack(0)); \
stack = cond(Value1ub(XCODE)==OPCODE,join(stack(0,2,3,4),stack(5,6,7,1)),stack);

rapidmind::Program m_update = RM_BEGIN {
In<Value1i> prog0;
Out<Value1f> roc;
Value<8,float> stack;
Value1i pos; pos= 0; Value1i neg; neg= 0;
Value1i TP; TP = 0; Value1i TN; TN = 0;
for(int k=0;k<6;k++) {//two loops (k,J) needed to cycle through 1200 example proteins

Value1i J = 0;
FOR(J,J<200,J++) {

Value1i PROTEIN = (k*200+J);
Value1i PC; PC=0;
FOR(PC,PC<(LEN-1),PC++) {

OP1(); //constant leaf
OPacid(); //input leaf
OP3(OPADD,stack(1)+stack(0));
OP3(OPSUB,stack(1)-stack(0));
OP3(OPMUL,stack(1)*stack(0));
OP3(OPDIV,stack(1)/stack(0));

} ENDFOR
pos =cond( Class[PROTEIN], pos+1, pos);
neg =cond((!Class[PROTEIN]), neg+1, neg);
TP =cond( Class[PROTEIN] && stack(0)>=Value1f(0), TP+1, TP);
TN =cond((!Class[PROTEIN]) && (!stack(0)>=Value1f(0)), TN+1, TN);

} ENDFOR J
}//endfor k
roc = (Value1f(0.5)*TP)/pos + (Value1f(0.5)*TN)/neg;

} RM_END;

Figure 2: C++ RapidMind code for SIMD GP interpreter. The inner PC loop implements
the loop shown in Figure 1. On a GPU cond returns either its second or third argument
conditionally on its first.
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// Access the internal RapidMind arrays where the data is stored
// Ensure the training data, previously read from file, is copied onto the GPU
int* input_train = Train.write_data();
bool* input_class = Class.write_data();
memcpy(input_train,alltrain,ntrain*ninputs*sizeof(int));
memcpy(input_class,allclass,ntrain*sizeof(bool));

unsigned char* Pop = new unsigned char[LEN*NP];

float soutput_error[NP]; //fitness (lower is better)

int eval_Pop() {
for(int n=0;n<(NP/GPU_NP);n++) {

// Ensure the GP population is copied onto the GPU
unsigned char* input_PROG = PROG.write_data();
memcpy(input_PROG,&Pop[n*GPU_NP*LEN],LEN*GPU_NP);

Array<1,Value1f> error = gpu.m_update(prog0); //Run GPU

const float* result = error.read_data();
for(int i=0;i<GPU_NP;i++) {

soutput_error[i+n*GPU_NP] = (isinf(result[i]) || isnan(result[i]))?
FLT_MAX : 1-result[i];//AUROC

}
}//endfor each GPU sized element of Pop
}

Figure 3: Evaluating the whole population on the GPU with interpreter (Figure 2). To avoid
exceeding the GPU 22-bit limit, the populations is processed in 4 megabyte (GPU NP) units. If
the training data is to be changed, Train.write data() etc, must be executed repeatedly to
ensure the new data are copied to the GPU.
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2 Parallel Genetic Programming

While most GP work is conducted on sequential computers, the algorithm typically shares with
other evolutionary computation techniques at least three computationally intensive features,
which make it well suited to parallel hardware. 1) In many cases, calculation of an individuals
fitness requires testing its performance on multiple training examples. Mostly each training
case could be run independently in parallel. 2) Typically a fitness measure is defined for each
member of the population independently. So the fitness of each member of the population
could be calculated on independent hardware in parallel. 3) Lastly sometimes experimenters
wish to assign statistical confidence to the stochastic element of their results. With GP, and
other stochastic search algorithms, this is typically requires multiple independent runs of the
GP. Again each run can typically be performed on several workstations or a network of per-
sonal computers simultaneously. The, comparative, ease with which EC can exploit parallel
architectures has lead to the expression “embarrassingly parallel”.

Early work on parallel GP include Ian Turton’s use of a Cray super computer by a GP
written in Fortran [Turton et al., 1996]. Koza has popularised the use of Beowulf workstation
clusters where the population is split into separately evolving demes with limited emigration
between compute nodes [Andre and Koza, 1996; Bennett III et al., 1999] or workstations [Page et
al., 1999]. Indeed as Chong [Chong and Langdon, 1999] showed by using Java and the Internet,
the GP population can be literally spread globally. Alternatively JavaScript can be used to
move interactive fitness evaluation to the user’s own home but retain a centralised population
[Langdon, 2004].

Others have used special purpose hardware. For example, while [Eklund, 2003] used a
simulator, he was able to show how a linear machine code GP might be run very quickly on
a field programmable gate array using VHDL to model Sun spot data. However his FPGA
architecture is distant from a GPU.

In summary GP can and has been parallelised in multiple ways to take advantage both of
different types of parallel hardware and of different features of particular problem domains. We
propose a new way to exploit the inherent parallelism available in modern low cost mass market
graphics hardware. Towit a GP SIMD interpreter for GPUs.

3 Programming Graphics Cards

Perhaps unsurprisingly the first uses of graphics processing units (GPUs) with genetic program-
ming were for image generation (see [Ebner et al., 2005] and the references therein).

Last year [Harding and Banzhaf, 2007, Section 3] detailed the various major high level
language tools for programming GPUs (Sh, Brook, PyGPU and Accelerator). In the mean
time nVidia has promoted two additional tools: CUDA and Cg (C for graphics) [Fernando and
Kilgard, 2003]. CUDA, in particular, is specific to nVidia’s GPUs. While “Sh” is still available
from SourceForge its development is effectively frozen at Sh 0.8.0 and the first author of [McCool
and Du Toit, 2004] recommends using its replacement from RapidMind. Unlike Sh, RapidMind
is not free however www.rapidmind.net issues licences, code, tutorials and documentation to
developers. They host a developers’ forum and offer prompt and effective support. Like Sh,
RapidMind is available for both microsoft directX and unix OpenGL worlds and is not tied to
a particular manufacturer’s GPU hardware. Indeed recently they started to support parallel
programming on the cell processor. However C++ code written for RapidMind’s libraries is
not portable to other systems. RapidMind supports a number of different data types (Boolean,
byte, short int, float) and provides automatic translation from these to and the native floating
point data type used on the GPU. (And back again.) Another nice feature is RapidMind
frees the C++ programmer from the need to learn graphics terminology (e.g. it uses arrays not
textures, programs not fragment shaders) and conceals many limitation of the hardware.
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Figure 4: Major data structures for evolving Mackey-Glass. At the start of the run the
interpreter is compiled on the CPU (left hand side). It and the training data are loaded onto
the GPU (righthand side). Every generation the whole population is transfered to the GPU.
Each individual is interpreted using its own stack and local variables and its RMS error is
calculated. The error is is used as the programs’ fitness. All transfers are made automatically
by RapidMind.

4 Mackey-Glass

The Mackey-Glass chaotic time series is described in [Langdon and Banzhaf, 2005b],
[Langdon and Banzhaf, 2007] and Table 1. Briefly the GP is presented with historical data
from a series of 1200 points one time step apart and asked to predict the next value. It is
allowed to see data upto 128 time steps in the past.

4.1 Fine Grained Diffusion Model of Overlapping Demes

While it is not needed for operation with GPU, we used a fine grained diffusion model of
overlapping demes [Langdon, 1998]. See Figure 5. This population structure both allows a low
selection pressure and ready visualisation, cf. Figure 6.

N
W O

S
X

Figure 5: If North is better than Origin, it is copied over it. But if Origin is is better, O is
copied over N. (No change if equally fit.) After selection, crossover may occur between O and
X. To promote mixing, 50% of crossovers swap roles of the two parents, so a child produced by
crossover is equally likely to inherit its root from either parent. Also the neighbourhood pairing
rotates 90◦ every generation. E.g. next generation, crossover will be between O and S.
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Table 1: GPU GP Parameters for Mackey-Glass time series prediction.
Function set: ADD SUB MUL DIV operating on floats
Terminal set: Registers are initialised with historical values of time series. D128 128 time steps

ago, D64 64, D32 32, D16 16, D8 8, D4 4, D2 2 and finally D1 with the previous
value. Time points before the start of the series are set to zero. Constants 0,
0.01, 0.02,.. 1.27

Fitness: RMS error
Selection: fine grained binary tournament demes [Langdon, 1998], non elitist, Population

size 512× 400
Initial pop: ramped half-and-half 1:3 (50% of terminals are constants)
Parameters: 50% subtree crossover. 50% mutation (point 22.5%, constants 22.5%, sub-

tree 5%). Max tree size 15, Max tree depth 4.
Termination: 50 generations

Figure 6: Screen shot of 512×400 GP population evolving under selection, crossover and subtree
mutation after 100 generations. Colour hue indicates fitness (left) and syntax (right). Below are
two histograms (log scale) showing distribution of population by fitness and genotypic distance
from the first optimal solution. The population is just starting to move towards maximal fitness
(centre black, highlighted by white cross hairs). Crossover is producing large numbers of unfit
leafs (vertical lines at 540 and 600) [Poli et al., 2007]. Nevertheless, particularly when looking
at the syntax rather than fitness, local convergence and the production of species, which are
promoted by demes, can be readily seen.

7



Table 2: First row: Best Mackey-Glass prediction error after 50 generations in ten runs.
2nd row: top row multiplied by 128. 3rd Solution size (max 15). Run duration (secs).

Mean
.036646 .036459 .036646 .036646 .036634 .036646 .036646 .036646 .036646 .036646 .036626

4.69 4.69 4.69 4.69 4.69 4.69 4.69 4.69 4.69 4.69 4.69
9 11 9 9 13 9 9 9 9 9 9.6

167.283 168.062 167.467 167.500 167.337 167.437 167.454 167.466 167.464 167.556 167.464

4.2 Subtree Crossover and Mutation

Koza’s [Koza, 1992] crossover was implement for linearised reverse polish notation, except both
crossover points are chosen uniformly at random. I.e. there is no bias towards using functions
rather than terminals as crossover points. If a pair of crossover points would cause either
offspring to be either too big or too deep, both are rejected and chosen again. Children produced
by crossover are not also mutated prior to fitness evaluation.

If crossover is not used, offspring are produced by mutation. In these experiments, the
crossover and mutation rates where chosen so all of the next population are produced by genetic
operations. (Ignoring the small chance of crossover or subtree mutation creating children which
are genetically identical to their parents.) One of three types of mutation are used: subtree
mutation, point mutation and constant creep mutation.

In subtree mutation a subtree is chosen uniformly at random and replaced with a subtree
created by the ramped half-and-half (0:1) algorithm used to create the initial population. If the
mutation point is already at the maximum depth, then the subtree is replaced by a randomly
chose leaf. If the mutant tree is too big it is rejected and the mutation process restarted with
a newly chosen mutation point.

Point mutation does not change the size or shape of the parent tree. A mutation point
is uniformly chosen and replaced by a function or leaf with the same arity using the same
randomly selection as was used in the initial population. Repeated mutations are applied until,
the mutated tree is syntactically different from its parent.

In constant mutation, one of the constant leafs in the tree is chosen at random. (If there
are no constants, point mutation is used instead.) It is changed by just enough to give the next
constant’s value. (I.e. by ±0.01 in the Mackey-Glass experiments).

4.3 Mackey-Glass Model Accuracy

The results of ten independent GP runs on the GPU are summarised in Table 2. The tight limit
on tree size (15) and depth (4) lead to similar solutions that are smaller than those reported
for tree GP [Langdon and Banzhaf, 2005a, Table 2]. In 4 of 10 cases the results are better than
the ten FXO (i.e. the smallest and fastest) subtree runs. (To ease comparison the second row of
Table 2 gives the RMS error rescaled by the same scaling factor (128) as was used in [Langdon
and Banzhaf, 2005a].) The GPU GP runs are faster than all but two CPU runs despite having
a population more than 400 times as big and performing full floating point calculations rather
than 8 bit integer ones.
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Table 3: GPquick Parameters for protein localisation.
Function set: ADD SUB MUL DIV operating on floats
Terminal set: Number (integer) of each of the 20 amino acids in the protein. (Codes B and

Z are ambiguous. Counts for code B were split evenly between aspartic acid D
and asparagine N. Those for Z, between glutamic acid E and glutamine Q.)
128 unique constants chosen from tangent distribution (50% between -10.0 and
10.0)

Fitness: 1
2True Positive rate + 1

2True Negative rate [Langdon and Barrett, 2004]
Selection: fine grained binary tournament demes [Langdon, 1998], non elitist, Population

size 1024× 1024
Initial pop: ramped half-and-half 2:5 (50% of terminals are constants)
Parameters: 50% subtree crossover. 50% mutation (point 22.5%, constants 22.5%, sub-

tree 5%). Max tree size 63, Max tree depth 8.
Termination: 1000 generations

5 Evolving a Million Individuals for 1000 Generations
Protein Location Prediction

The system was expanded to cope with: 1) a population of a million programs. 2) bigger trees.
3) deeper trees. 4) Two more types of mutation (point mutation and “fine tuning constants”).
5) Randomised sub-selection of training cases. (See Table 3.) The task chosen was to predict
the location of proteins within the cell given only their amino acid composition [Langdon and
Banzhaf, 2007]. A 1024 by 1024 population of programs of up to 63 tree elements and maximum
depth of 8 was run on 200 of 1213 randomly chosen proteins selected for training. In terms of
predictive accuracy on unseen proteins this run produced results significantly better than one
technique and the same accuracy but a significantly smaller solution than the other technique
[Langdon and Banzhaf, 2007, Table 5].

During this run the average size of the trees was about 56.9 primitives. 1024× 1024× 1000
programs were evaluated 200 times each in 6:46:17 (excluding monitoring time). Surprisingly
the CPU time has grown from almost nothing to 11%. This suggests an inefficiency which might
lead to a small performance improvement. Multiplying by the average program length give us
504 million GP ops per second.

There are several reasons for the decrease. Firstly supporting deeper trees means the in-
terpreter’s stack must be bigger. On the GPU this increased the cost of each operation by
about 30%. Secondly it is possible that the chunks of work given to the CPU were reduced too
much, leading to better interactive response but more data transfer overhead. Also dynamically
choosing the training examples may also have reduced performance.

6 Performance of SIMD Interpreter

6.1 How Fast is Interpreter?

The interpreter’s performance is summarised in Table 4. The C++ Mackey-Glass GP interpreter
was compiled with GCC (version 3.4.61, optimisation level -O2) and RapidMind 2.0 (for Fedora
Core 5 x86, default optimisation 2). On an nVidia GeForce 8800 GTX, the interpreter was run
on 204 800 randomly generated programs of various lengths (mean length 11). (All programs
were padded with noops to the fixed 15 statement limit). Each program was run on each of
the first 1200 times steps of the IEEE bench-mark series. Averaging over 25 trials this took

1RapidMind suggests GCC 4 under Linux.
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Figure 7: AUROC on 200 randomly chosen training cases in generation 1000 versus AUROC
on unseen proteins (First 10 000 of 1 048 576 programs). The strong correlations shows GP has
learnt for random samples and (better yet) GP models have avoided over fitting and generalise
well.

Table 4: Speed (millions GP operations per second) of SIMD GPU Interpreter

Experiment |T | |F| Population program size test cases Speed
Mackey-Glass 8+128 4 204800 11.0 1200 895
Mackey-Glass 8+128 4 204800 13.0 1200 1056
Protein 20+128 4 1048576 56.9 200 504
Laser 3+128 4 18225 55.4 151360 656
Laser9−8 9+128 8 5000 49.6 376640 190

3.025 seconds. (We exclude the first execution which incurs an additional one off compilation
overhead of about 1.38 seconds and about 0.36 seconds to create the random programs). The
GPU interpreter ran 11×204800×1200 (2.70336 109) GP primitives. An average of 895 million
GP operations per second. This excludes a small CPU overhead (≈ 0.1%) associated with
loading the program and checking its results.

6.2 Overhead of Opcode Selection

To estimate the overhead of the SIMD loop scheduling all of the primitives and then discarding
the results of all but the 20% that are needed we selected a typical evolved Mackey-Glass
program and timed how long it took the interpreter to run it. Secondly we hand build an version
of the interpreter specific for this program, where every operation is needed and no results are
discarded. Rather than the expected five to one ratio, the standard SIMD interpreter is only
2.89 times slower than the specialised one.

On an nVidia GeForce 8800 GTX, the interpreter ran 204 800 copies of the same 13 statement
program (padded with noops to the fixed 15 statement limit) through the first 1200 time steps
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of the IEEE bench-mark series in an average of 3.0258 seconds. (We exclude the first execution
which incurs an additional one off compilation overhead of about 1.46 seconds). That is the
GPU interpreter ran 13×204800×1200 (3.19488 109) GP primitives. An average of 1.056 billion
GP operations per second. This includes a small CPU overhead (less than 1%) associated with
loading the program and checking its results.

Next an equivalent interpreter was created specific to the benchmark program which avoided
the overhead of dispatching all possible instructions and only used the 13 (plus 2 noops) actually
in the benchmark. On average the same 13×204800×1200 GP primitives took 1.0489 seconds.
(Still more than 99% of the elapse time is spent on the GPU.) Thus the SIMD overhead of the
GPU GP interpreter is only 2.89 rather than the factor of five anticipated.

One has to be cautious since RapidMind provides an optimising compiler and so observed
differences will depend to some extent on how well the optimiser deals with the various cases.
Assuming the compilation is equally good in the two cases the overhead of 2.89 compared to
the expected 5 can be explained. On the GPU floating point operations such as addition and
multiplication which form the GP function set are extremely fast. It is the GP terminals (which
make up 54% of the program) which take longer since they collect the data. The functions only
manipulate data, which is already on the stack. This asymmetry in the costs of items in the
SIMD dispatch loop means the addition of a few very fast operations has proportionately less
impact than expected. Thus we could expand the function set to include trigonometry opera-
tions, log, exponentiation and other mathematical operations which are directly implemented
by the GPU and take the same time as our existing functions (such as multiply). While this
would not be free, the additional overhead will be proportionately less.

6.3 Expected Speed of Interpreter

The GeForce 8800 GTX GPU card has 128 1.35GHz processors (The nVidia GeForce series
no longer makes a distinction between vertex and shader processors. The 128 processors are
identical and can be used either as vertex or shader processors.) Each processor is capable
of performing a floating point operation (such as multiply) in 4 clock cycles. Thus it has a
theoretical rating of 128 × 1.35/4 = 43.2GFlop. However this is infeasible since it relies on all
the data being immediately accessible all the time. In practice there is a delay on reading data
from the GPU’s memory.

We estimated each GP function takes about 23 clock cycles and each leaf 42 clock cycles.
Therefore each SIMD interpreter loop will take 42 + 23 × 4 = 134 processor clock ticks. In
contrast an observed rating of 895 million GPops per second corresponds to 895 106/128 =
7 million SIMD loops per second (i.e. one per processor). 1350 MHz/7 106 = 193 clock cycles
for each SIMD loop. This compares well to our weak estimate of 134. This suggests the
RapidMind framework is seldom stalling the GPU stream processors for lack of data.

6.4 Comparison with Traditional GP

The Mackey-Glass interpreter (of Section 6.1) was recoded with minimum changes to run in
C++ without RapidMind. (The CPU and GPU versions give the same results except for slight
differences associated with floating point accuracy). Again using the first 1200 time steps of
the Mackey-Glass benchmark the 2211 MHz AMD Athlon 64 Processor 3500+ CPU evolved 50
generations of a population of 204 800 trees in 1129.59 seconds (excluding performance moni-
toring). (The GPU version took 167.283 seconds). In 50 generation the CPU version evaluated
66 846 484 primitives each 1200 times. (The average program length was 6.4) I.e. an average of
71 million GP ops per second.

There are very few published benchmarks available for tree based genetic programming.
However Appendix D [Langdon, 1998] gives figures for Andy Singleton’s GPQuick on Gath-
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ercole’s MAX problem [Langdon and Poli, 1997] for two computers: A 400 MHz Digital Al-
phastation 500/400 and a SUN SPARCstation 2 fitted with an 80MHz CPU Weitek PowerUP
CPU and floating point processor giving a performance of about 1.6 times that of a standard
SPARCstation 2. The Alpha gave 1.25M Ops and the Sparc 160K Ops. The MAX problem has
only 3 primitives and so GP should be fast. However the MAX problem has a single training
case. Table D.2 also provides estimates (by assuming many training cases) of the best speed of
GPQuick at 24MOPs for the Alpha and 3.3MOPs for the Sparc2.

7 Discussion

In previous work [Harding and Banzhaf, 2007] used the GPU exclusively for running training
cases for cartesian genetic programming and showed impressive speed up in some cases but that
improvement was highly variable. Indeed using the GPU was slower than the CPU in a few
cases. The program size and number of training examples per fitness evaluation appeared to be
a critical factor. We have shown a way of actually executing a traditional tree GP population on
the GPU card It replaces the cost of compiling each member of the population on the CPU by
the overhead of running an interpreter on the GPU. In cases where the compiled GP program
is run many times, the compiler overhead is spread over many training cases and for large
programs, Harding’s results mostly show a big performance gain from using the GPU. However
if run few times the cost of the compiler and transference to the GPU may not be repaid. There
appears to be a nonlinearity (perhaps in the cost of starting the compiler) so that the relatively
small cost of running short programs appears large compared to the cost of compiling them and
transferring them to the GPU. With our more traditional interpreter approach, the population
is transfered without compilation overhead to the GPU and the speedup from running in parallel
on the GPU appears to be smaller than the peak value potentially obtained by compiling but
to be more consistent. We obtain a speed up of more than an order of magnitude for very small
programs.

Rather than return the results of each programs’ execution to the CPU, typically the output
is compared with the ideal answer for that fitness case and a partial fitness computed. When
all the fitness cases have been processed, the complete fitness (e.g. RMS error) is returned to
the CPU. This reduces the volume of data generated by the GPU and returned to the CPU
and so may give a modest efficiency gain.

7.1 Implementation Issues

The GPU is designed to operate on graphic images and imposes a limit that arrays be no more
than 2k by 2k (i.e. no more than 222 elements). Similarly RapidMind imposes the same limit.
Therefore to run megapopulations, we partitioned the population into convenient chunks and
executed these. Even though the GeForce 8800 contains ample memory and could store the
whole population.

RapidMind imposes a FOR loop limit of 256 iterations. However a given loop can be run
many more times by suitable nesting of RapidMind For and C++ for loops. (See column 6 of
Table 4.)

Neither FOR loop nor array size limits are automatically checked. If exceeded, the Rapid-
Mind code may compile and run but not do what was anticipated. In later versions of the code,
C assert statements where added to check that critical limits were not inadvertently exceeded.

We found that the GPU would give good performance if it was given reasonable chunks of
work to do. Say between 1 and 10 seconds. With larger lumps, the interactive response becomes
too slow to make it feasible to use the PC for anything else when running a GP. Also if the
GPU was active for more than about 16 seconds, the Linux PC became locked and had to be
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recovered by rebooting. Conversely if the GPU operates in tiny units, it did not appear to give
peak performance.

The complete population is transfered to the GPU and a vector holding the fitness of each
individual tree is returned. Therefor the data transfered via the PCs PCI express bus may be
several megabytes. While beforehand there was much concern about the cost of data transfers
to and from the GPU, our experience seemed to suggest that if the GPU is given reasonably
large units of work the cost of transferring the population and the training data into the GPU
at the start and fitness vector out at the end are not too onerous.

RapidMind on a unix platform uses the GNU C++ compiler GCC and GDB debugger.
These worked but GCC’s error reporting can be hard to interpret since RapidMind (like Sh)
makes heavy use templates. Our interpreter is written in RapidMind C++ and is automatically
compiled and loaded into the GPU by RapidMind once at the start of the GP run. RapidMind
uses a cross compiler for each GPU. This worked seamlessly.

7.2 No protected division: Closure

Since a given operation will be performed on many data items simultaneously they are designed
not to fail. The GPU could not cope with a case where one division out of 128 failed because
it required a divide by zero but the other 127 were ok. All 128 cases must be treated the same.
Therefore all operations on GPUs are intended not to fail. Special cases, like divide by zero,
are handled by special data values nan (not a number) and inf (infinity). So our interpreter
does not check for divide by zero and does not provide closure [Koza, 1992]. Undoubtedly this
makes it faster. In effect, the GPU’s floating point hardware supplies closure for us.

We do not get away scott free. Since the GPU can return nan and inf from a calculation, we
need to consider how selection and fitness calculation will deal with them. This is a relatively
simple C++ coding issue, c.f. Figure 3. However whatever our solution we still need to be
wary. Potentially large numbers of randomly generated programs, or even offspring of evolved
individuals, may have invalid fitness. Filling the population with them may inhibit or even
prevent GP successfully evolving.

7.3 Stack Depth

The GPU does not allow arbitrary write access to large arrays. Indeed forcing the data flow
out of the GPU to be streamlined is required to enable tasks to be easily split between the
128 processors and so partly responsible for the GPUs speed. However it does make it difficult
to implement a stack, which is the natural way to build a reverse polish notation expression
interpreter. Instead it was necessary to simulate a stack using joins, c.f. Figure 2. This works
fine for small stacks. Indeed with a stack depth of 4 the interpreter flew at more than a billion
GP primitives per second. For the Mackey-Glass and protein prediction experiments the depth
was doubled to 8. This imposed about a 30% performance penalty. It appears that a stack
limit of 12 or 16 would be feasible. While this may seem restrictive, it is worth remembering
all the original GP experiments [Koza, 1992] where conducted in Lisp with a depth limit of 17.

7.4 Non-Tree GP

[Harding and Banzhaf, 2007] has already demonstrated a system based on compiling cartesian
GP programs and running the compiled code on GPUs. However where the compilation over-
head is too severe, this reverse polish interpreter approach could be readily applied to cartesian
GP and also to linear GP. Usually such approaches act directly upon a small number of regis-
ters and do not require the use of a stack. Hence a linear genetic program could be interpreted
directly on a GPU without incurring the stack overhead or consequent depth limit.
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We have deliberately limited ourselves to demonstrating a traditional tree GP actually run-
ning on the GPU. We have been prepared to pay the overhead of the instruction loop scheduling
one thing at a time. However evolution can often take advantage of mudelled situations. We
could imagine an evolutionary system in which the program did not wait for exactly the next
instruction to come around. But instead the program could say I will take the result of several
instructions, whichever is scheduled first. This might be implemented by the interpreter looking
for any bit in a bit mask being set, or an opcode lying in some range, or some other form of fuzzy
match between what the program wants and what the interpreter is doing now. Of course the
order of the actions of the interpreter might also be evolved. However this form of coevolution
is unlikely to yield immediate speed ups on today’s problems, but might be a route to meta
evolution on more interesting problems in future.

7.5 Possible extensions

Whilst I have stress the use of the interpreter for genetic programming, the idea is general and
perhaps could be a convenient way to run programs created by more conventional techniques
on under used hardware included in many modern computers.

We have shown reliable speed ups can be obtained using a SIMD interpreter to execute a GP
population on the GPU. [Fok et al., 2007] have already shown (albeit for EP) that a GPU can
implement mutation and selection. Although genetic programming mutation is more complex,
we anticipate it too could be implemented on the GPU. Indeed, although [Fok et al., 2007]
shied away from crossover, I expect GP crossover could also be performed by the GPU. Whilst
[Fok et al., 2007] ran almost all the key steps in an evolutionary computation system (for a
bit string GA) on their GPU, the GPU was not independent from the CPU. They still needed
synchronised communication between the two. (E.g. they ran their pseudo random number
generator on the CPU, even though PRNG can be run on GPUs.) This might be part of the
reason why they report some parts of EC running more slowly on the GPU than on the CPU.

With the current state of the art GPU, in practise GP runs are still dominated by fitness
calculation. Meaning the remainder of the GP algorithm (selection, mutation, crossover, etc.)
cost almost nothing in comparison. Therefore the speed up to be obtained by implementing
on the GPU is negligible. However as GPUs continue to improve relative to CPUs, it may not
be long before this becomes worthwhile and complete GPU systems will run on each personal
computer’s ancillary graphics hardware.

8 Conclusions

We have demonstrated execution of traditional tree genetic programming with mega popula-
tions actually on the GPU. Parallel operation can yield a speed up of more than 12. Whilst
performance varies a little, typically a modern GPU interprets hundreds of millions of GP op-
erations per second. Indeed in one case, we exceeded a billion GP ops per second. This is about
0.1 peta GP opcodes per day for about £400.

The SIMD interpreter could be readily adapted to linear GP. Indeed a linear GP system
would avoid the overheads associated with simulating a stack. It might be possible to readily
extended it to other types of GP.

C++ code is available in ftp://cs.ucl.ac.uk/genetic/gp-code/gpu gp 1.tar.gz
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