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difficult and unsolved combinatorial problems. In genetic programming the initializatiog of

a population of programs is usually tackled by ad hoc methods. A few examples from the
literature are: i

1. Koza’s “full method” (naive), Koza's “grow method” (naive) and Koza's “ramped-half.
and-half” method (Koza, 1992, p. 93 and 597f]. Koza's “full method™ is a recursive
tree generation method which generates “full” parse trees whose leaves al] have paths of
the same length to the root. Koza’s “grow” method generates parse trees whose leaves
have paths of different length to the root. Koza’s “ramped-half-and-half” method uses
the “full” method for generating one half of the members of the population and the
“grow” method for the other half with the maximum depth varying between 2 and a
fixed upper bound.

2. A “naive” method with and without duplicates [Geyer-Schulz, 1995] and [Whigham,
1995a). The “naive” method of generating a detivation tree from a grammar consists
of expanding the nonterminal symbols of the frontier of a derivation tree with the
symbols on the right hand side of a production rule for this nonterminal symbol until
only terminal symbols are contained in the frontier. If more than one production rule
is available for a nonterminal symbol, the production is chosen with equal probability.
The process starts from the nonterminal symbol specified as the start symbol of the
grammar and is usually terminated after some maximum number of “expaasions” or
derivation steps.

3. “Stratified sampling” with a rejection method [Geyer-Schulz, 1995] and [Tba, 1995], Iba,
1996a) and [Iba, 1996b). Trees are generated by any method and only trees satisfying a
sampling plan are accepted as members of the population. The sampling plan specifies
how many trees with e.g. a certain number of nodes or requiring a certain number of
derivation steps for construction have to be in the population.

4, “Compound derivations” [Geyer-Schulz, 1996a] and [Geyer-Schulz, 1996b), or “grammar
bias” [Whigham, 1995b], [Whigham, 1996]). The basic idea of this method is to find
a grammar which generates the same language as the original grammar, but which
favors the construction of larger parts of a derivation tree in a single derivation step.
This effect can be achieved by simply adding redundant production rules. For example,
in the grammar shown in Figure 1 the production rule <fe> := (" <f2> <fe>
<fe> ™)™ ; may be added a second time.

§ = <fe> ;

<fe> := "(" <f0> ")" |
n(n <f1> <fe> ") |
(" <f2> <fe> <fe> ")"

<fo> := "D1* | "D2" ;
<f1> := "NOT" ;
<f2> := "OR" | "AND" ;

Figure 1: The Backus Naur Form of Lxon

The genetic programming variant used in this paper, simple genetic algorithms over k-
bounded context-free languages, is characterized by an explicit representation of the gram-
mar of the contexi-free language and by a bound k on the number of derivation steps
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available for Benerating a derivation tree [Geyer-Schulz. 1996b). Instead of bt strings as
in the canonjcal genetic algorithm of parse trees as in Koza's genetic Programming variapt
the algorithm works with complete derivation trees, For iti

context-free languages whi

ch are needed in this paper we refer the p.
Figure 1 shows th

¢ grammar of a context-free language for solving the XOR problem in
Backus Naur Forp,

For example, et us compute the probability of generating the Program
(NOT(D2)) from the grammar shown in Figure 1 by the “najve” method of [Geycr-Scbqu,
1995] and [Whigham, 1995a): We start by expanding the start symbol <fe>. For this
substitution we choose either " (" <> ") o " (» <f> <fe> n)n
<fe> <fe> " )n Tp, ili i
(" <f1> <fe> ")” and we continue by expanding <f1>, I this derivati
have no choice, With probability 1
expand <fe> in the third derivation step. The Probability of choosing  ( » <> ")n s
1/3. From " (» »NOT™ n (= <f)> ")r n)n
either "D1” of "D2".

Table 1: Programs and the Probability of Derivation {n =

Number of Derivation Steps
Required)
L Program P(Program n
(D1) 0.76667 2
(NOT{D3)) 0.0553¢ 4
(NOTINOTID2))] 0.01857 6
(OR(AND_ﬂﬁ(TNo'(I‘(D}z))](DZ)) 0.00004 12
gAND(Dz);NOT(AND(NOT(Dz))(NOT(m) M) | 47610~ |15
(NOT(NO‘I‘(NOT(NOT(NOT(NOT 6.35-107% [ 1g
(AND(D1)(D1))))))))
(AND(OR.(NOT(NDT(DI L32.1077 [ 29
(AND{DI)(Dz)))(NOT(Dz)))
(OR(DI)(NOT(AND(AND(Dz) 3.40. 107 {3
(NOT(NOT(OR(Dz)(Dz))}))
(NOT(OR(D1)(D2))})))
These methods have the disadvant

Owever, the “begt? mixture of Programs is ohtained by si
itively this implies that — without additional informa

tion - simple random sampling is the
best algorithm for initializ

ing a population of programs.
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In this paper we solve the problem of ezactly uniform generation of complete derivation
trees from k-bounded context-free languages. The resulting algorithm has all properties of
simple random sampling. The tree generating algorithm is based on a k-bounded, recursive
derivation tree generator and a nonlinear transformation on the probability of choosing the
next production rule. The nonlinear transformation is based on the automatic derivation of a
“word” counting function from the Backus Naur Form (BNF) of the (unambiguous) grammar
of a context-free language from [Geyer-Schulz, 1996b]. For ambiguous gramrnars we count
“complete derivation trees”. We count distinct trees, which means different derivations of
the same word are considered distinet. In Section 2 we introduce the notation, definitions
and results for context-free languages. An example of “counting” is given in Section 3. The
general technique is presented in Section 4 and its implementation in APL is deferred to the
Appendix. In Section 5 the results of the previous sections are used to implement an exact,
uniform initialization algorithm for k-bounded context-free languages. In Section 6 we show
that the algorithm behaves as expected and in Section 7 we discuss the impact on genetic
programming performance. For the case that no a priori information about the solution is
available, we prove that this (simple random sampling) algorithm is optimal in the sense of
a minimax strategy. Finally, in Section 8 an exact uniform initialization routine for Koza's
genetic programming variant [Koza, 1992] is derived as a special case.

2 CONTEXT-FREE LANGUAGES

In this section we introduce the notation, definitions and results of context-free languages
which are used in the rest of the paper.

By L(G) we mean the language L generated by grammar G, this is the set of sentences
(words) generated by G. By a k-bounded language L(G) we mean the set of words generated
by G with at most k derivation steps.

A contezt-free grammar G is a 4-tuple G = (Var, V1, P, 5), whete Vyr is a finite set of
nonterminal symbels, Vi is a finite set of terminal symbols disjoint from Vwvr, P is a finite
subset of Vyr x (Viwr UVT)* called the production rules or productions of the grammar and
§ is a distinguished symbol in Vi called the start symbol of & [Aho and Ullman, 1972]. We
dencte the empty word by «.

A sentential form of G is defined recursively: S is a sentential form and if zyz is a sentential
form and y = u is in P, then zuz is a sentential form too.

A sentence or a word w of L(G) is a sentential form without terminal symbols. Clearly, the
programs in genetic programming are words or sentences of a context-free language.

For specifying small grammars a very compact notation is used (e.g. [Aho and Ullman,
1972]): Symbols from Vr are taken from the small letters a,...,2, symbols from VnT
are taken from the capital letters 4,..., 2 and derives is denoted by —. For the set of
productions P = {5 — AB,§ — aS§) we use the production 5 — AB |aS5 as shorthand. |

denotes or.

For “real” graminars we use a version of Backus Naur Form (BNF) [Naur, 1963): Symbols 1
from Vi are delimited by ' *, for example ‘'D1' ', symbols from Vit are delimted by <
and >, for example <fe>. Derives is denoted by :=, or by |, and catenation is denoted by
juxtaposition of symbols. Whenever we want to represent catenation explicitly, we denote

le a§ corresponds to a = 5 with explicit representation of the

catenation as x, for examp
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catenation operation. For simplifying automatic processing of grammars ig Backus-Nayy
form we use a semicolon i as production rule separator and we include the specification
of the start symbol as the first derivation. For example, S; = <fe>; as first production
specifies that <fe> is the start symbol of the grammar i Figure 1.

Both notations are isomorphie. However, in practice Backus Naur Form is more convenient
for specifying large languages manually. By delimiting symbols no confusion about symbaols
and symbol strings can arise as for example in [Whigham, 1995b]. It is common practice
to use informal names for syntactic categories to make grammars more readable. Figure
! shows a grammar of a context-free language for solving the XOR problem in Backus
Naur Form. For the syntactic categories we have used the following informal memunonjc
scheme: <fe> is short for functional expression, <f0> denotes variables {functions with 0

arguments), <f1> denotes functions with 1 argument, and <f2> denotes functions with
2 arguments,

A derivation tree Dis a labeled ordered tree for a context-free grammar (7 = {(V, Vo, P, X)
with the following Properties: X labels the root of D. For all subtrees Dy, ..., D; of the sons
of the root X with the root of the subtree D; labeled i X=X ... X, isa production
of P X isa nonterminal symbol, D; is a derivation tree, if X; is a terminal symbol, I;
is the single node X,. If the empty word ¢ is the root of D, the only subtree of D, then
X — € is a production in P [Aho and Ullman, 1972, p. 139).

The frontier of a derivation tree is the string obtained by conicatenating the leaves of the
derivation tree (in order from the left} [Aho and Ullman, 1972, p. 140).

= denotes the relation derives, = denotes the £-fold product of the relation = apq =
denotes the k-fold product of the relation == for ag arbitrary but finite £,

Theorem 2,1 Suppose G = {Vr, Vo, P, X)isa contezt-free grammar, Then X = q if

and only if there i3 q derivation tree with the sentential form o as frontier [Ako end Ullman,
1872, p. 143].

Proof See [Aho and Uliman, 1972, p. 141] u

From theorem 2.1 the following consequences are obvious: For each word w of L(G) there
exists at least one derivation tree with frontier w. We can retrieve a word w from its
derivation tree by extracting the frontier of the derivation tree.

The leftmost (rightmost) derivation associated with a derivation tree is unique. If there
exists at least one word in L{G) which has two or more distinet leftmost (rightmost) deriva-
tions, we say that the grammar G is ambiguous, A language which has no unambiguous
Brammmar is called inherently ambiguous. The counting algorithm presented ig section 4

counts all complete derivation trees once. However, the implication that every word is
Counted once only halds for unambiguous grammars. How often a word will be counted
for ambiguous grammars, depends on the degree of ambiguity of the grammar which may
be infinite [Kuich and Salomaa, 1986, p. 296]. Consider for example the grammar G with
the production S = S |a For G we count g, the only word in L{@), infinitely often.
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Unfortunately, in general it is undecidable whether a context-free grammar G is ambiguous
or not [Aho and Ullman, 1972, p. 203].

The signature (of an algebraic specification) is defined as follows [Ebrich et al., 1989, p. 14f]:
A signature is a pair ¥ =< §,0 > with S a set of sorts and O = {05, }5¢5. g5 20 57 x 5
indexed set family of operators. For every word 3 € 5~ and every sort 5 € S exists a set
O;,, of operators in 0. §=81,...5q denotes the list of argument sorts, s the result sort of
each operator o € O;,,. Instead of 0 € O;,, we often write 0: 5y X ... X 5 — 5. For the
case n = 0 we obtain the constants of sort s which are denoted by O.,,. X = {X,},¢sisan
5 indexed set family. The elements of z € X,,5 € 5 are called variables of the sort s, We
assume that X, and O,,, are disjoint for all s € 5. This implies that variables and counstaunts
are different. With (X) we denote the signature which results from adding all variables as
constants to ¥ [Ehrich et al., 1989, p. 19 ¥ =< 5 0UX > with (OUX)e,s =0 UK,
and (OU X);, =05, foralls € S and 5€ 5*.

3 COUNTING DERIVATION TREES

In Figure 2 we show, how the set of all complete derivation trees which we can generate in
ezactly 2 derivation steps from the grammar shown in Figure 1 can be counted.

count{<fe>,2}

count(" (" <f0>"}" 1) + count(" (" <fl><fe>")",1) + count(" (" <{2><fe> <fe>")",1)
0 0

l

count("(",0) x count(<f0> 1) x count(")",0)
1

count{"D1" ,0) + count(" D2",0)
1 1

Figure 2: A Small Example

We use a divide-and-conquer approach in which the task of counting is successively split ]
into smaller tasks. Starting from the start-symbol <fe> with 2 derivation steps, we write ]
down the set of all possible derivations for this symbol. As a result, we add the results ]
of counting the derivations from the three productions for <fe> with one derivation step. 1
Next, each symbol in the production is assigned the number of derivation steps available. For
"("<f0>")" this is easy. The terminal symbols receive 0 derivation steps, the only available
derivation step is assigned to <f0>. For simplicity, whenever we aliocate derivation steps to
symbols, terminal symbols receive 0 derivation steps. The task of counting the number of
different trees which can be generated starting from "{” <f0>")" can be split into counting
the number of trees starting with (", <fJ>, and )", respectively. In our example, only
ope assignment of derivation steps is possible. In order to obtain the total number of trees
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biguous we take the product of the number of trees starting with "(", <f0>, and ")", because the
nbigw number of elements of the Cartesian Product of the set of trees 7} starting at position 1
with the set of trees Ty starting at Pposition 2 and the set of trees T} starting at position 3 is
3, p. 14f): 1T x| | x| T3 ). For Proof, see (Berge, 1971, p. 16). Not enough derjvation steps are
wmS* xS available in the remaining two cages to eliminate all termipals in the derivation, because in
ists a set both cases the number of nonterminal symbols (2 in the second case and 3 in the third) is
iit sort of higher than the aumber of available derivation steps {1 derivation step). This implies that
. For the some nonterminal symbols remain in the frontier of the derivation tree aud that no complete
bes is an derivation tree could be derived with two derivation steps in both cases, Finally, for <f0>
it 5. We with 1 derivation step we repeat splitting the counting task. The total number of complete
constants derivation trees in the example is 2,
rriables as
O, UX
hrm count(<fe>,6)
count (" (" <f0>")" 5) + count(" (" <fl> <fe>")" 5) “+count(" (" <2><fe> <fe>n) \5)
enerate in
Figure 3: Substitution of <fe>by the Right-Hand Side of the Production Rule
The pext example is large enough to illustrate aj] possible complications in search space
4
ounting. Now we count the set of aj] complete derivation trees which we can generate
in exactly 6 derivation steps from the grammar shown in Figure 1 Figure 3 repeats the
1) | first step discussed above, this time wj

" count("(” <ﬂ]>")",5)

count(" (" 0} x count(<f0>,5) x count(”)” 0)
1

1

sively split : count(" D1",4) + count("Dg" 4)
i, We write ] 0 0
the results

i tep.
th;;?: ;op, Figure 4: Counting Terminal Symbols (Case 1)
Y avaﬂlble 9 A . . n
on steps to In Figure 4 we have 5 derivation steps which we have to assign to the symbols {", <f0>,
number of and ?)", Terminal symbols do not peed any further derivation steps. So, the pumber
o counting i of derivation steps assigned to (" and )" is 0 and the remaining 5 derivation steps are
;;nple. only 2ssigned to <f0>. Because the right hand side of the production rule for <f0> consists of
ser of trees only one terminal symbol
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Allocating derivation steps to a termizal symbol indicates that no derivation with exactly 3
derivation steps exists for <f0>. Compare this with the derivation from <f0> with exactly
one derivation step shown in Figure 2. Counting terminal symbols with 0 derivation steps
assigned results in 1. Counting terminal symbols with 1 or more derivation steps assigned
results in 0.

count({" (" <fl><fe>")" 5}
count(* (7,0} x count{<fl>,1) x count{<fe>4) x count(")" 0)
count{" (*,0) x count(<fl>2) z count(<fe>,3} x count(")",0)
count("{",0) x count(<fl1>3) : count{<fe>2) x count(")",0)
count("(7,0)  count(<fl>4)  count(<fe>1) x court(J )

Figure 5: The 2-Partition Case (Case 2)

In Figure 5 there are 2 nonterminal symbols in the string and 5 derivation steps available.
In order to count all complete derivation trees which can be derived in this setting, we have
to consider all possible assignments of 5 derivation steps to 2 symbols. All possible ordered
9-partitions {compositions) of 5 ate (1,4), (2,3), (3,2), (4,1). These are all pairs (ry, 2} for
which r; +rz = 5 holds. We have to count the number of complete derivation trees for each
of these configurations and to sum over all configurations. Clearly, for a fixed configuration
the total number of complete derivation trees is the number of complete derivation trees
derivable from the first nonterminal symbol times the number of complete derivation trees
derivable from the second,

count{” (" <f2><fe> <fe>7)" 5}

count("(",0) x count(<f2>1} % count{ <fe>,1) x count(<fe>,3) x count(")"0)
count("(",0) x couut[<P2+>.l'_ﬁ % count{<fe>3) x count{<fe>1) x count(")",0)
count("{",0) % couut.(<f2+> 3) % count(<fe>,1} x count{ <fe>,1} x count(")",0}
count(” (",0) x count(<{2+>,1) % count{<fe>,2) x count(<fe>,2) x count{")",0)
comnt (" {",0} x count(<{'2+>,2) x count{<fe>,1) x count(<fe>2) x count{")",0)
count("{",0) x couut.(<f'.’+> 2} x count(<fe>,2) x count{ <fe>,1} x count(") 0}

Figure 6: The 3-Partition Case {Case 3)

In Figure 6 we have to allocate § derivation steps to three nonterminal symbols. Enumeration
of the possible configurations results in (1,1,3), (1,2,2), (1,3, 1), (2,1,2), (2,2,1), (3,1,1).
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In any context-free grammar, at most { nonterminal symbols may occur in the right hand

side of a production rule. This implies that at most ordered i-partitions of integers are
needed for our task.

<f2> <fe> <fe>, 5

<f2> <fe>, 4; <fe> | <f2> «fes, 3; <fex 2 <f2s «fe>, 2; <fex 3 <f2> <fe>, |; <fe> 4

<f2>, 1; <fex> 1; <fe> 3

<25, 1; <fex 2; <fe> 2

<f2>, I: <fes> 3 <fes <25, 3: <fe> s <fes 1 <f1>,2; <fe> 1, <fe>2

<q2>, 2; <fe>2; «fe> |

Figure 7: From the 2-Partition Case to the 3-Partition Case

Figure 7 illustrates how we can obtain a 3-partition by repeated applications of 2-partition
operations. Because of the associativity of addition, we can combine a fixed collection of 2-
partitions in any order we like to obtain the 3-partition. Verification of this for the example
in Figure 7 is not included for the sake of brevity. However, we use this fact in

generalizing
from the 2-partition case in (3) to the k-partition case in (3).

4 FROM THE BNF TO THE WORD COUNTING FUNCTION

The number of words generated by an arbitrary context-free grammar is often infinite.
However, we can partition the set of words § into an infinite number of subsets Sr,=,i- The
members of S, - ; are all words which can be generated in { derivation steps. The set S is
then defined by § = J72, 5.,

Definition 4.1 4 k-bounded search space Sp; contains ell words derivable in at most £
derivation steps: Sy, = Uf=1 Si,=.
We denote the size of a search space § by | 5 |-

For a k-bounded search space Sz s the
search space is then | S5p 4 |= Zf____l | St

=i l-
Finally, we can characterize the search space size | Sp ¢ | of L for all k € N with | S |=

Zle I{{startsymbol), i}, where [I({startsymbol}, i) denotes a recursive word counting func-
tion for | §p = ; |. (As usual, V denotes the integers 1,2,3,...and Ny = N U {0}.)

Definition 4.2 H({startsymbol), i) is a recursive word counting function for | Sp =, |
which is automatically derived from the grammar G of a contect-fre
O({startsymbol), 1) counts the number of words which can be derived from {
ezactly i derivation steps. {Recursive word counting function.)

In the followin
th,

e language L.
startaymbol) in

g we show in detail how the recursive word counting function is derived from
€ production rules of the grammar of a context-free language.




388 Bohm and Geyer-Schulz

For L(G) the recursive word counting function II can be automatically derived by a signature
mapping Fi : ¥ gnr — Lwcr from the productions P of G which are given in Backus-
Naur Form. We assume, that all semicolons (rule separators) have already been stripped in
a preprocessing phase. F) “compiles” a grammar into a word counting function.

% = (Vr, Var, 1=, | %) (1)

is the signature of the language of the BNF grammar specification, with ¥+ denoting the
terminal alphabet, Vyr the nonterminal alpbabet, := denoting derives o, | denoting or and
» denoting caienation (usually catenation is denoted by juxtaposition of symbols). Since
v € Vi may appear on both sides of a production, yz s indicates its appearance on the left
hand side and ypus its appearance on the right hand side of a production. The signature
of the recursive word counting function language is

Y = (T(z,d), Oy, d), =, +,0). (2)

WCF

T(z,d) is the set of all invocations and definitions of the recursive word counting function
I with z € Vr and d € Ng as argument. [(y,d) is the set of all invocations and defini-
tions of the recursive word counting function I with y € V7 and d € N as argument.
= denotes is defined by and + denotes addition. o is the ordered 2-partition function ex-
plained in Figures 5 to 7 which acts as a kind of a ternary function composition operation.
o(I(y1,d), O(ya, d), d) calculates the number of words derivable from the symbol string v,
in d derivation steps.

The recursive word counting function scheme I : (Vr x No) U (Vwr x N) — N is now
derived by the signature mapping Fy : Y pyr — Lwcr Which is defined as follows:

1. For all elements z of Vi, ¢ is replaced by a call to II(z,d — 1}:
VvreVriz—HO(z,d-1).

We add for all z € Vi a clause of the following kind to the recursive word counting
function scheme [I:

1 if §is true

O(z,d)=1:(d = 0), where(5) = { 0 else

for any statement S which can be either true or false. Therefore, for a terminal symbol
r, O(z,d) is 1, if d = 0 and 0 otherwise.
. For all elements y of Vyr, the substitution rules for y are given by:

YyLas € Vv yeas — O(yews, d)

Yyres € Vit : Yries — D(yrus. mi)

For & nonterminal symbol y and d < 1, II is undefined. Whenever II is undefined, it
takes the value 0. For r; see Expression 3.
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mature 3. We replace := by =: ~
Ia.r_k‘lls- =— — -
»ped in 4. We replace | by +:
=+
) 5. We replace catenation » by 2-partitions o:
* = g
ing the In the BNF notatjon catenation z, % r, is usually formed by writing the symbols jm-
on _m:d _ mediately together: T1z3. Each k-symbol string y* =4, .. - Yk is therefore replaced by
. hs"?cf‘: the function Py ...0%,d) defined below:
the le
gnature k
| T, d) = 3~ [T oy, ), (3)
A =1
(2)

where the summation runs over the set 4 =
tion I(y, .. -¥&,d) is the ordered k-

{r.-]Zfr.-:d—l,d> 0,:-.-20}. Func-

partition function as shown in Figure 7 for k=3
‘unction (3-partitions).

| defini- We denote the number of words derivable in ¢ derivation steps from a string y; ...y,
aen for one specific Partition r = p, _, -y of d by

tion ex- k

Gl 1 -, r) = 1T ogw, =) 4)
ng nim E H

=]
Note that I'(y, ., Md) =3 Ay, .. -Yky i) Let us return to the st

HOg 7127 with the
two symbols z; and Z7 with e derivation ste i

P8 available, How many different words can
we derive ip ¢ derivation steps from the start string 2yz;7 The answer is found after
y having analysed the following four cases:

(a) Both symbols 2z, and =

) i5 now
8:

t
+ number of words derivable fr
zounting 8 i .

2-partitions. By a]] ordered k-partitions of d derivation steps, we mean a]] k-tuples
of integers r,, ., -+ Tk Such that r) 4 r; 4 <ot ry = d, with r; 2 0. This means, al]
partitions generated by pairs r,, rysuch that ri 4 ry = ¢ and ry, ry 3 r3, 71 hold:

1 symbol _ o{H(zy,¢), O(z,, e),e) = Z O(zy,ry) - O(z,, Tz} (5)
3 Fitra=e,r; >0,
r320,e30
Ifr, = Ofz;, ) is undefined, because we cannot derive a string of terminal
symbols and this implies that O(z;, r;) = 0. For further information regarding the
theory of partitions of integers gee [Andrews, 1976).
2y is a termina] symbol and z, a Bonterminal symbol. Witk E
efined, it i
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(¢} xi is a nonterminal symbol and z; a terminal symbol. The roles of z; and =7 have
changed. With Expression 5 we obtain again our resutt. You cap see for yourself
that this is the case, because I(zg,rz) is 0 for all values of r2 except forr; =10

(d) Both symbols z, and z7 are terminal symbols. Expression 5 is only defined, if e,
r1 and r, are 0. In this case, its result is 1.

In order to obtain Function 3, we only have to generalize Expression 5 to the n-partition

case, taking terminal symbols into account. Obviously, by doing this we have general-

ized the 2 + l-ary operation o to a n + 1-ary operation.

For example, by applying the signature mapping F\ to the production rules for Lxor shown
in Figure I we obtain the recursive function shown in (6). Note, that we have folded the

clauses for the terminal symbols into an “otherwise” clause.

I (" <@>")",d= 1)+ (" (7 <A1><fe>") ", d = 1)+

(" (" <> <fe><fe>")",d-1} ify= <fe>
I("D1",d—1)+I("D2",d~-1) if y = <f0>
I{"NOT",d 1) ify=<f>

F(“OR”,d—1)+I‘("AND”,d—1) ify=<f>
1-(d=40) otherwise

(6)

In Table 2 we show the search space sizes of Siyop,=, up to i = 24 and the probability
that a word is drawn from Si,oq =i if we draw with equal probability from all words in
5L xon,24- Toincrease the performance of the search space counting functions we recommend
to use the corresponding memoizing functions (Geyer-Schulz, 1989). A memoizing function
computes the value of a function for an argument the first time it is called with this argument
and stores the value in a lookup table. For all other function calls with this argument the
memoizing functions return the value in the lookup table.

Table 2: The Search Space Sizes Spyon.24
Derivation Steps 1 | | SLxom=d | | L(X € Stxon.=.i)
2 2 0.0000006
4 2 0.0000006
6 10 0.0000032
8 26 0.0000082
10 114 0.0000360
i2 402 0.0001269
14 1722 0.0005435
16 6890 1.0021745
18 29794 0.0094032
20 126626 0.0399640
22 556778 0.1757227
24 2446138 0.7720167
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Exact Uniform Initialization For Genetic Programming
5 AN EXACT UNIFORM INITTIALIZING ALGORITHM

In Table 1 we observed an exponential decay in the probability of gBenerating words, as the
bumber of derivation steps n increased. However, in the following we develop an exact,
uniform sampling algorithm for initializing populations of words of k-bounded context-free
languages. The algoritbm has two phases:

1. From the sets S¢,=,: of the search space of a k-bounded context-free language draw a
partition 57 . ; to which the word we intend to generate belongs. (Draw a partition of
the search space. )

2. Geaerate a derivation tree with exactly i derivation steps. (Generate a derivation tree.)

Draw a partition of the search space. In the first step of the exact uniform initialization
algorithm we determine the partition Stz to which the word we intend to generate should
belong. The probability of drawing a complete derivation tree with {exactly) { derivation
steps from start symbol S in a k-bounded context-free language L with grammar G with
equal probability is trivially given as:

I{ s, i)
2?:0 H(S! i)
For the grammar Lxpr bounded to 24 derivation steps the probability of drawing 2 word

derivable in 20 derivation steps is 0.0399640. Colump 3 of Table 2 shows the probability of
drawing a word from partition Sy _ ;. Table 2 has been computed with the help of (6).

P(tree in { derivation steps} =

(7)

Generate a derivation tree, The function INIT.WOQRD_U (see Figure 8) implements
an algorithm for generating a complete derivation tree from start symbol § in exactly {
derivation steps with equal probability. However, for ease of use €.8. as part of other genetic
operators, if no word can be derived in d derivation steps, a word from the non-empty
partition Sy _; with the largest i < d is generated. In the initialization algorithm an
invocation of the algorithm INIT.WORD_U on empty sets Sy . ; is not possible, because
empty sets S _ . have probability 0. The algorithm consists of

L. a recursive tree generation algorithm without backtrack,

2. a randomized choice function for selecting the appropriate production rule for expan-
sion,

3. and a randomized chojce function for selecting the appropriate k-partition of derivatjon
steps. This fupction assigns to each symbol in a selected production rule the number
of derivation steps which are available for expanding this symbol on the pext level of
recursion.

The word generating function. In Figure 8 we present the pseudo-code for the word
generating function.

new. list generates an empty list,
add_list appends its second argument to the fist Eiven as its first argument and returns the
result, head returns the first element of the list given as argument, fail returns the list given

F—na

391
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tree function INIT_WORD_U(symbol root, int d);
int production;
list_of symbol production.symbols;
list.of.int partition;
list_of trees subtree list;
begin
if TERMINAL(root) then |
begin
return(new_tree(root, new_list))
end
else
begin J
production := choose_production(access.ST(root), d-1);
production_symbols := access.PT{production);
partition := choose_partition(production_symbols, d-1); i
subtree_list := new_list;
while not empty(production symbols) do
begin
subtree_list := add.list{subtree list,
INIT_WORD._U(head(production_symbols),head{partition))};
production_symbols := tail{production.symbols);
partition := tail(partition); :
end B
return(new.tree(root, subtree_list}) |
end .

end

Figure 8: Pseudocode for the Word Generating Function

as argument without first element. The predicate empty returns true if its list argument is E |
empty. 4

The derivation tree is of the form (root, list of subirees). The only operation we need is !
new_tree which generates a new derivation tree with its first argument as root and its second '
argument as list of subirees.

The predicate TERMINAL returns trueif its argument is a terminal symbol of the grammar.

The access functions access_ST and access_PT access the symbol table ST shown in Figure
9 and the production table shown in Figure 10, respectively. Both figures are explained at
the end of this section.

The choice function for production rules (choose_production). Suppose a nontermi-
nal symbol y can be substituted by p;, the right hand side of a production rule, j = 1,...,™-
Of course, each p; is a k-symbol string y; ...y If we know how many words can be gez-
erated starting from each string p;, we can easily compute the probability to choose py 80
that we draw a complete derivation tree with equal probability. See (3).
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. S I'(p;,d
P(p; in d derivation steps) = f‘;—,——ﬁ"ﬁ (8)

The choice function for k-partitions (choose_partition). For each symbol y; in the
right hand side of & production rule y, -+. Y& we have to assign the number ri of derivation
steps available for its expansion, so that d = E::: ri. We call the vector r a k-partition of
d. The number of complete derivation trees which can be generated in d derivation steps
starting from y, ...y, with k-partition r is vy, r) = Hf:: O(yi, 7). See (4). The
probability of choosing the k-partition r, so that complete derivation trees are generated
with equal probability, is:

_ Yy wr)
O e “

The symbol table used is shown in Figure 9. The first three columns contain the symbaol
name, a 1 for nonterminals, and the numerical identifier used in the implementation.

<fe>
<fo>
<f1>
<f2>

(

)
D1
D2

=1 e
=] [
(2]

QQQGOQD-—-H-—H—
HOL DR e

—

Figure 9: The Symbol Table ST

The production table i shown in Figure 10. The first column contains the left hand side of
a production, the second the right hand side

<te>  { <fo> )
Sfe>  ( <r1> <fe> )
Sfe>  ( <f2> <fe> <fe> )

<fo> m
<f0> D2
<f1> Nor
<f2> R
<f2>  AND

Figure 10: The Production Table in Symbolic Form
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6 EXPERIMENTAL RESULTS

In order to test the implementation of the exact uniform initializing algorithm developed
above we constructed the following experiments. 4
nt to test the correctness of the implementation is to generate a large
number of trees with a sufficiently small number of derivation steps and to test whether the
trees are generated with equal probability by comparing the expected number of occurrences
of each tree with the observed number in the experiment. We generated a population of
n = 1540 complete derivation trees with at most 10 derivation steps for the grammar shown
in Figure 1. Because at most 154 different complete derivation trees can be generated, under
the hypothesis that complete derivation trees are generated with equal probability, we expect
each complete derivation tree to occur 10 times in the population. In this experiment and in
the three other experiments of this section we performed a standard x?-test of goodness of
fit. See e.g. [Bhattacharyya and Johnson, 1977, pp 424). For a confidence level of o = 0.05
this hypothesis is accepted (x* = 150.8, ¥® < ¢ = 182.49, degrees of freedom DF = 153).

However, for search spaces bounded with a larger number of derivation steps this approach
is infeasible because of the rapid growth of the number of trees in the search space for most
grammars. See Table 2. For the grammar shown in Figure 1 we generated a population
of n = 2000 complete derivation trees with at most 30 derivation steps and we tested the

foliowing hypotheses: i

The simplest experime

1. The complete derivation trees are distributed uniformly over the Sp =i with i =
1,...,30. The result of this experiment is shown in Table 3. Note that the num- b |
ber of derivation trees with an odd number of derivation steps is zero. At a confidence
level of @ = 0.05 we accept this hypothesis (x* = 4.67, x? < ¢ = 7.81, degrees of

freedom DF = 3).

Table 3: Distribution of Derivation Trees over Number of Derivation Steps

Derivation Steps | Expected Observed

<24 22.22 23
26 76.65 92
28 343.81 361

1557.32 1524

30

re distributed uniformly over the following partition:
Class 1 contains all complete derivation trees starting with <fe> = " (" <f0> )
or <fe> = " (7 <f1> <fe> 7 }* and class 2 contains all derivation trees starting
with <fe> = "(" <f2> <fe> <fe> n )7 The results of this experiment are
shown in Table 4. Again, at a confidence level of o = 0.05 this hypothesis is accepted
(x* = 1.36, x* < ¢ = 3.84, degrees of freedom DF = 1).

2. The complete derivation trees a

ding to length. Table § shows the results. Again,
y distributed 8t

dom DF =T7)-

3. We further partitioned the classes accor
we accept the hypothesis that the complete derivation trees are uniforml
a confidence level of o = 0.05 (x* = 6.3, v? < ¢ = 14.07, degrees of free
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Table 4: Distributjog of Derivation Trees over Class I and Clasg 2
Class | Expected Observed
leveloped 1] 14558
te a large
ether the C L A
currences Table 5: Distribution of Derivation Trees over Classes and Derivation Steps
"Iati;n‘:: Class | Derivation Steps
rar sho
ed, under L < g;
we expect 08
ant and in I 30
rodness of <24
‘a=10.0 26
= 153). 28
approa.ch 30
= for most
wpulation
tested the I 7 THE IMPACT ON GENETIC PROGRAMMING
¢ PERF ORMANCE
with 1 = To show the impact of our exact uniform initialization Procedure on genetic Programming
the num- Performance we tried ap experiment. We repeated the genetic algorithm with each initial-
confidence ization algorithm 10p times for a population size of 50, a £-bounq of 40 and with at most
degrees of 50 generations with 2 mutation rate of 0.05, a crossover rate of 0.7 and elite selection op
the XOR-problem,
The biased genetic algorithm succeeded 45 times in finding a correct solution for the XOR.
28 function, the exact uniform genetje algorithm succeeded 61 times. A statisticaj comparison
of these success rates is most conveniently performed by means of 5 2 x 2 contingency table:
Success No Success
Bilased GA 43 55
Uniform GA 61 39
The corresponding 2 test statistic is T = 5,13 which exceeds the eritical valye ¢ = 3.84,
(DF = 1) at a significance level of @ = 9,95, For details see thattacharyya and Johnson,
¢ patition: 1977, pp 440).
) [
0> :) 1c random tree generation algorithm
es stat l:: genetic programming varjane for learning boolean functions with 3 arguments [Iba,
.l'lme“t‘ V| 1996a), simple symbolic Tegression, trigonometric identities, and predicting a Mackey-Glass
is accep time serjes [Iba, 1995).
Its. Agains
tributed at

IDF":T]'.'
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Because of the stochastic nature of genetic programming algorithms, their initialization is
essentially a problem of statistical sampling theory. There are several ways to devise a rule or
sampling design which determines the probability that a particular point of the search space
is included into the initial population or not. One such rule is uniform initialization or simple
random sampling, which assigns to each point in the search space the same probability of
being sampled. An alternative would be stratified sampling which is based on a partition of
the search space according to some reliable a priori information about the possible locations
of the optimum. Here points belonging to different parts or strata are assigned different
probability of being included into the initial population. Several other sampling designs
have been proposed in statistics, the interested reader is referred to [Krishnaiah and Rao,
1988] for further details.

The decision which design to use should be certainly oriented on some measure of efficiency
or optimality. Interestingly, it turns out, that simple random sampling is optimal in the sense
of being a minimaz procedure, provided that we do not bave 2ny usefu] a priori infermation
about the possible locations of the optimum in search space. The result we are going to
present is not new, it has in fact been known since 1954 and comes from [Blackwell and
Girshick, 1954, Chapter 8}.

In the sequel we will outline the basic ideas of Blackwell and Girshick, suitably adapted,
however, to the situation we encounter when initializing genetic programming algorithms.

Let S denote the search space which we assume to be finite with cardinality M and define
X to be the set containing S and all its permutations. Let the triple {X;, p) denote a
sample space in the sense of Blackwell and Girshick, where {2 is a parameter space being
equal to X and p is the trivial probability measure

1 f z=w

”(’"")={ 0 if z#w

Next let us define a space of actions A in the following way: A contains all possible initial
populations of size N < M which may be sampled from X, with the proviso that there are
no duplicate individuals in a € A. Thus we consider sampling designs without replacement.
Observe that a violation of this restriction is very unlikely to have serious effects, as long
as M is large compared to N, a situation which we typically encounter in practice. This
point can be made more precise, see for instance [Pathak, 1988). The action associated with
a € A is simply: run the genetic programming algorithm GP with initial population a.

Let V denote a set of sampling designs which consists of all subsets of the form

v= (jhj!i--':jN)

of the integers 1,2, ..., M, such that ¥V < M and all components in v are different. Choos-
ing a particular v € V means, create the initial papulation censisting of the individuals
jl:j21'--er-

On V we define a decision function which is the identity, i.e. @ = v, where equality meaos,
that a and v contain the same individuals regardless of order. The decision is: if v has been
drawn from X, then run the genetic programming algorithm GP with initial population 8.
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Let ¢(v, alz) be a randomized procedure,

i.e. a probability measyre definedon V x A x X
as
#{v,alz) = P(select v and start GP with population a)
mv) if v=a
{ 0 else (10)

where 7(v) is the probability that sample v is drawn. Observe that
design, which we are lookin

simple random sampling,

{(v) is just the sampling
g for. If 7(v) is equal for all possible samples v, then we have

Note that 3", 7(v) = 1 and observe also that by (10)

Z z d(v,alz) =1,

vEV acg4q

furthermote, d(v,

alz}) depends only on the individuals of £ contained in v and we assume
that

> é(v,az)

agA
is independent of z for al veEV.

constant with respect to permutations of w =z, Mor

L{w,a) = L{w, (v, a)).

Let ¢ = (o), 09,.. +1Oar) denote a permutation of 1,2,..., M, and let

o{z) = (26,,...,24,,)

and if v = (7}, j,, . . <1 ), then define

o(v) = (05,1055, ..., a5,).
Also let o(v,a) = (=(v),a).
Now observe that the losg function is trivially invariant with respect to permutations, i.e,
Lwi (v,0)) = L{o(w), o(v,a)),
and pote also that
PeE)lo@)) =1 i o(z) = ofw)m

and thus z = w and p(zjw) = 1. Moreover

Ple()lo(w) =0 if o(z) # ofw),
and therefore z # w and plzjw) = 0.
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The risk associated with the random procedure ¢(v,alz), i.e. the risk induced by starting
the genetic programming algorithm GP with a particular initial population, will be denoted
by p{w, ¢} and is defined by

pla,d) =3 3 Lw,(v,0))é(v,al)p(zw)-
FEX agA

Obviously, the risk function is invariant with respect to permutations o applied to both, w
and (v, a). It follows from theorem 8.6.4 of Blackwell and Girshick (1934), that there exists

a minimax procedure ¢*, such that

sup p(w, ¢} £ sup p(w, 8).
wefl well

Furthermore, we have by invariance that

Z ¢ (v, alz) = E & (o(v), ale(w)),

a€A agA

and both sides are independent of z by definition and equal to (v}, the probability of
selecting sample v.

Thus it follows that

(v} = 7(o(v)).

If we sum both sides of this equation over all M! permutations, then we obtain

Mix(v} = (M - N)},

since ¥, m(v) = 1 and since there are to each sample v N'! permutations which represent
the same initial population. Hence we finally get

v) = 1/(‘1{). | {11) .

However, equation (11) states, what the minimax sampling design is: draw samples uni-
formly or apply simple random sampling.

These results are in accordance with theoretical results of [Strasser, 1978) and [Strasser, 1976} _
which prove in a (Bayesian) setting that choosing the non-informative prior distribution |
improves the speed of convergence of a Bayesian learning algorithm.

In addition, sampling theory (e.g. [Hansen et al., 1953]) requires simple random sampling .
for the usual sample statistics to be unbiased estimators of the population statistics. Ina
Bayesian setting simple random sampling constitutes the obvious noninformative prior or
the “most uncertain” or maximum entropy prior [Berger, 1988].

8 EXACT UNIFORM INITIALIZATION FOR KOZA'S
GENETIC PROGRAMMING VARIANT

Because of recent interest and a large number of applications of Koza’s genetic program-
ming variant ([Koza et al., 1996] and [Koza, 1996}), it is desirable to apply the algorithms
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y starting d

. By using a well-known map-
e denoted

ions to context-free grammars (which is the
ges) we show that we can ex-
ms of a “terminal set” (parse
{interior nodes of a parse tree) in terms of a signature
¢ transformed into a context-free grammar.

D of programming languages in ter
tree leaves) and a “nonterminal set”

2.(X) and that this signature can b
to both, w

sere exists into a signature Y(X). Be

» namely functional erpressions. Koza's
s O, UX, of the sort and

Now we are again on familiar ground. For each signature L(X)=<S0ux > we obtain

an S-indexed set family G(Y) = {G(X), = (¥, T, 50, P)}, s of context-free grammars
by the following mapping [Ehrich et af., 1989, p. 16):

bability of 1. The nonterminals are ¥ = S.
2. The terminal are T = O U{(,}}U{,} with D the disjoint union of all sets Oz, for
5€5 and s 5.

3. The start symbol of G(X ), is sq.

4. The productions are defined by p = {s = o(sy,.. ) ]oe Oironnus)e

For every context-free grammar

= (N\T, P, X) a signature 2(G) =< 5,0 > can be
allocated as follows:
| Tepresent 1. The sorts are § = N,
2. The operators in O;,, are the productions with left hand side s and the string 5 of
i nonterminal symbols on the right hand side.
(11)
As a corollary we Immediately see that the Programming languages used in Koza s genetic
mples uni- g programming variant form a Proper subset of context-free languages, namely those context-
! free languages which can be generated with exactly one nontermipal symbol.
1sser, 1976] In our practical example we use a {slightly) modified version of the mapping from sigratures
listribution ! to context-free grammars:
ling L. The nonterminals are N = S. _
f’;ac:npln ~ : 2. The terminal are T = Py {(:)} with T the disjoint union of all sets 05, for 5 ¢ 5
is by
;. and s £ 5.
T
Ve PIISES 3. The start symbo] of G(} ), is sq.
4. The productions are defined by P = {s — (osy .. Sa) o Ousn s
(For those reader who prefer PostScript (an interpreter with postfix notation) we change
PtoP={s (s1...5,0) log Oiscvni})
To apply the exact uniform initialization algorithm presented in Section § all what remains
¢ program-

i z to be done is to explicitly derive the context-free grammar G(30),
algorithms 2(X) which is implicitly defined by

induced by the signature
Koza's genetic brogramming variant,




400 Bohm and Geyer-Schulz

For example, [Iba, 1996b] considers the following specification of a language in Koza's style
by defining a “terminal set” T and a “nonterminal set” F. The subscripts of a “ponterminal”
represents the arity of the “nonterminal”:

T
F

{Dlh DI|D1v DS} (12)
{AND;, OR2, NAND;, NOR;} (13)

From (13) we can easily see that all functions are of arity 2. Let A be the arity set which in
this case is A = {2}. By applying the mapping presented above to Iba's example, we obtain
the grammar shown in Backus Naur form in Figure 11.

§ = <fe>
<fe> 1= n(u LI n}n I n(n "D1™ n):n I n(n "n2" n)ﬂ | ﬂ(n "p3” n)n I
m(m mAND" <fe> <fe> )" | "(" "OR" <fe> <fe>")" |
(" "NAND" <fe> <fe>")" | (" "NOR" <fe> <fe> )" ;

Figure 11: The Backus Naur Form for Iba's Example
This mapping enables us to compare the exact uniform initialization algorithm with the

random tree generation heuristic developed by Iba in [Iba, 1995] and [Iba, 1996b] for Koza's
genetic programming variant. Iba treats Koza's parse trees as unlabeled structures.

Table 6: Counting Labeled and Unlabeled Trees

n | Catalan(n) | Unlabeled, A = {2} | Labeled
1 1 1 4
2 1 ), 0
3 2 1 64
4 5 0 0
5 14 2 2048
6 42 0 0
7 132 5 81920
8 429 0 0
9 1430 14 | 3670016
10 4862 0 0

As a first estimation for the number of parse trees with n nodes for a language he proposes
the n-th Catalan number
_1fm=2
Cn(n)—;( n—1 )

which counts the number of unlabeled trees with n nodes. This is shown in column 2 of
Table 6. However, not every unlabeled tree is a valid parse tree for Iba's language. In
[Iba, 1995] a method of counting all unlabeled trees which respect the arity constraints 13
presented. The number of these trees can be shown to be
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oza's style

iterminal” -! I{ =n
: n\ o
Ii for Iba's example with the Proviso that this binomia| coefficient js 0, whenever n is an even
(12) ] turnber. See Table 6, column 3, The general case js covered ig [Gou]deu and Jackson, 1933,

(13) Pp. 111]. The Jast columa in Table g gives the number of derivation trees for the language
specified by (12) and (13).

t which in The interested reader will certainly recognize 5 striking difference between columps 3 and
we obtain 4 of Table 6. This discrepancy cag be explained by the simple fact that derivation trees
are labeled ordered trees for context-free Erammars. 45 we have shown above, the language

specified in ( 12) and ( 13) gives rise to the context-free grammar shown in F igure 1],

- bt £ 9 CONCLUsION

The algorithms in this paper solve the prablem of €xact uniform generatjog of complete
derivation trees from k-bounded context-free languages. They are the basis for an exact
uniform initializatiop routine for simple genetic algorithms over k-bounded context-free
grammars, a varjant of genetic Programming, [t js important to hote that, in Pbrinciple, ynj-
with the form init.ialization may be used asa starting point for the design of initialization algorithms
‘ot Koza's for genetic Programming which utilize a prior; information aboyt the search space and thus
i require biased initialization procedures, However, it seems that the practical implementa-
tion of these algorithms is, in general, highly pop trivial, because such issues Jjke balapee
of trees, depth, number of inner nodes, .. have to be taken ints account, Furtherrnore,

8.

utation operators op complete derivation trees. This is of crucial importapca for deriv-
ing a schema-theorem, the corresponding loss function, and for the comparisop with other

t 2. For the tabulatiop of O{y, d), Iy ... ¥k, d) and 7w .. - Yk, d) the tomplexity s depen-
dent on the recursive structure of the Brammar and oq the number of ordered Partitions
(compositions} including zerpes c(k, d). See [Andrews, 1976, p. 54].

d+ k-1

proposes ok, d) = ( ko1

) ~ O(d*), for fixed £ and d — oo,

For most of the grammars used ip Practical applications of genetic Programming, the
largest £ is very small, becayse function aritjes are seldom larger thap 4. However,
there is sti]] hope that further complexity reductions can he achieved with the help of
normal-form theory and formal power series techniques. For example, each context-
free grammar can be transformed to Chomsky Bormal form [Aho and Ullman, 1972,
P. I51f]. In this case k will be equal to 2 and the number of ordered Partitions is
linear in the number of derivation steps, However, clrrently we do pet know how the

umn 2 of
uage. In
traints 18
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transformation to Chomsky normal form affects the recursive structure of the grammar.
This requires further research,

3. The complexity of the word generating function shown in Figure B is of O{d), the
number of derivation steps, provided I{y, d), I(y: ...y, d) and 4{, .. . y, d) have been
tabulated.
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A THE APL COMPILER

As executable notation which allows the reader immediate experimentation we add the
APL? implementation of the algorithms presented in the paper. For an introduction to
APL2 we refer the interested reader to [Brown et al., 1088) and [IBM, 1985). The APL2
source code is available from http://mortadelo.wu-wien.ac. at/usr/genetic/.

The signature mapping F1 is implemented by the APL function PI.COMP which takes a
BNF as argument and returns the canonical representation of the APL function PI which im-
plements the recursive word counting function {y, d) shown in (6). The function PL COMP
calls the function BNF.COMP given in [Geyer-Schulz, 1996b, p. 242§} which returns a four r
column symbol table ST (symbols of the language, nonterminal/terminal symbol, symbol b
identifier, list of indices of symbol in production table PT), a two column production table i }.
{symbol identifier, production) and the identifier of the start symbol START. 3

% —PI_COMP BNF;ST;PT;START;HEAD;NT.CODE;T_-CODE:NT
{11 (ST PT START) —BNF.COMP BNF .
[2] HEAD—'Z—PIA;X;D' ‘(X D)—A"' "4' * —LABEL'',TX' 'Z—"" e i

ERROR''' '—0' L
{3} T.CODE—'Z—1x{D=0}'"'—0' 4
(4] T.CODE—(({C 'LABEL'), (¥ -(0o=sT[;2]}/sT(;3])),"*: '}, T_CODE -
[5] NT_CODE—(((C'LABEL').'(v'NT—(1=ST[;2])/sﬂ;sl)),".')

[6] NT.CODE~—,(NT_-CODE, [1.5}(NT_ARG"NT)),[2]C"' —0'
{71 Z—HEAD,NT_.CODE,T-CODE
v/

The implementation of the function PI.COMP is straightforward. We know that the body of
the function PI consists of one large case-statement which provides a clause for each symbol
in the grammar. So, we have to generate the function header of PI and the branching code
(line 2 of PL.COMP), the clauses for the terminal symbols (lines 3 and 4 of PI.COMP), and
the clauses for the nonterminal symbols (lines 5 and 6 of PI.COMP).

TZ-—-NT_ARG NT;B

1) z—'z—+/(CD=1)(YKMEMO ''YK'') ™'

(2] "‘(1=+/(B'-c'('.'(?"PT[:ST[NT;'%]:?]).")')c'(')/PUSH
H Z—Z.B

4 -0
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. { [5] PUSH:Z—2,' c' g
ing. In I ] . .
Zalzala The code generator for a nonterminal symbol is shown jn function NT_sRG which applies
the function YK to the symbo] string yy ...y on the right hand side of 5 production ruje.
From the number of derivation steps d given as Jeft argument and the sententja] formyy ...
wimming. as right argument, YK computes the number of words which can be generated with exactly
d derivation steps starting from y, . -¥x. Of course, we have to apply YK to each Possible
e Algo- right-hand side of the nonterminal and to take the sum over all possibilities.
ime 414, By all ordered k-partitions of 4 derivation steps, we mean aj] k-tuples of integers ry,... r,
such that ry 4+ 4y, . + 1k =d, with r; > 0. For one k-partition of d the number of words
is the product e, O(yi,ri}. In [Geyer-Schulz, 1995] an elegant, but highly inefficient
implementation of the function YK for Iy, . »- Y&, d) has been presented which computes
all produets for alj k-partitions of d. However, a less elegant, but more efficient algorithm for
add the computing I'(y, ...y, d} is shown below. The Strategy of this algorithm which is due to H,
rction to Hérner relies on the elimination of alj products H::n O{yi, r;) with at least one Oy, r;) = 0.
G35 VI-DYKY.M
1] ~{(0>D)/z—¢
1 takes a (2] z—+/23p yxr MEMO 'YKF' v
vhich im- v
1.COMP i ) . :
e auT Function YKF starts by retrieving all search Space sizes for words starting with nonterminals
1, symbal Iny...yp for all derivation steps up to d (line 1}, Next, in line 2 we generate a list of al]
ion table ' combinations of derivation ste

VZ—D YKF YiMAX;:A:1
(1]  A—Pi MEMO "PI' " ({Y=¥}s. 0,,p)
JE ' [2] z—,3(0.,)/((0< Cl2]A)SEL" Co, D)

! (3] -(o=pz-—(o=+/‘z)/z)fEND

(4] I-C"((C:IT;:A),"'I-*—Z)
i 5] z~z P=x/"1PICK-CA
' {6] —~9

(7] END:Z—(0g0}0

1e body of
-h symbol . el " o oq
hing code The functions SEL encapsulates the APL Primitive selection, the function PICK implements
MP), and @ scatter index functiog,
3 -
VI—ASELB
(1] z-—a/B
v
VZ—1PICK A

) 1l z~15-c4
v
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B THE ALGORITHM

TZI—INIT_UNIFORM A;W:D:S

f1] (WD)—aA

2] Z—INIT_WORD.U W({({7("1+2+*31}))=2*31)IN+\S++/S— (Pl MEMO 'PI")
:] "W, D)
] v

Iy The right argument of the word generating function INIT.WORD.U consists of the start
symbol and the number of derivations drawn according to (7).

VZ—NINF
(1} Z=11(NSF)/1pF
AV

The word generating function
The pseudocode of the word generating function INIT_WORD_U is shown in Figure 8.

TZ—INIT_-WORD_U A;5;D;W;N;I;R;DN
{i}] z—12(wD)—4

{21 —(~sT[wW:z})}/o

{31 s—PI_TF_OR(,2sT[W:4]1){1—D-1) _
{4] R—0pDN~0,,DPI_TF_AND(1IN=0,,2PT[11S;21) (D) 1
{s]1 LOOP:—(o=pN—1IN)/END .
{§] R—R,CINIT_-WORD_U(1DN)}(12DN—1/DN) ]
[71] —LooP

(s8] END:Z—(W R) i

v

The choice function for production rules

The probability of choosing the right kand side of a production rule is computed in lines 3
to 5 of PI_TF_OR according to (8).

vZ—PI.TF_OR ARGS;SUM;PSUMS;D;5;P i
(1] {5 D)—ARGS '
(2] —{(1=pz2—~5)/0
(3] PSUMS—(0,:D)o.(YK MEMO 'YK'}{,"2"PT[s;2])
{41 P—,("1,(11pPSUMS)) T (0# +/[2]PSUMS}/[1]PSUMS
{5] zZ—58l((?{"1+2*31))+2+31)IN+\P++/P]

v/

The choice function for k-partitions

The probability of choosing a partition is computed in lines 3 and 4 of PI.TF_AND according
to (9).

T Z—PI_TF_AND ARGS;M;Y;D;P
[i] z—2D(Y D}—ARGS

[2] —(t=pY)/0

[3] (M P)—("1i{0#(:D)YK MEMO 'YK' CY)/:D)YKF MEMO 'YKF'Y
[4] VZ'-M[((?('1+2*3!))+2*3I)IN+\P—:-+/P]
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C COUNTING FOR Lyop

The function Py implements the fecursive funetion I(y, d) shown in (6). This function has
been automatically generate by the functiog PI.COMP of Appendix A, Lines 1 to 4 of
PI contain the branching code for the case-statement. The fou, clauses of the nonterminal
symbols of Lyog are coded in lines 5 to 16 of PL The clauses for the terminal symbols of
Lyon are shown in lines 17-25 of PL Iy Definition ¢ this is the ctherwise case,

For readers who want to verify that pr really corresponds to the (machematical) Definition
6. the symbo) table used is shown in Figure 9.

VZ=PIA;X:D
(1] (xD)—y
[2) 4 —LABEL' 7y
[3] Z— '"ERROR"
-0

1]
[[5 LABEL] .
(6] z—-+/|c1)-1)(w< MEMO '\'I\")'(azs)(ss 16)(541134)
[7] —p
fs]  LABEL2
{2} Z—-+/(CD-1)(YK.\IE.\IO "YK')-i(7)(s)
Po] —0
11] LABEL3-
fi2) Z—=+/(Co-1)(yk MEMO 'YK '} -(g)
[13] —¢
(14] LABELg
f15] z—+/(cn—1)(m MEMO 'Yl\")'(lﬂ)fll)
[16] —¢
[17] LABELs.
(18] LABELs.
[19] LABELT.
(20] LABELs:
(21] LABELy
[22] LABEL16:
(23] LABELI11,
[24] Z—1x(D=g)
]
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