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Abstract. We show genetic programming (GP) populations can evolve
under the influence of a Pareto multi-objective fitness and program size
selection scheme, from “perfect” programs which match the training ma-
terial to general solutions. The technique is demonstrated with program-
matic image compression, two machine learning benchmark problems
(Pima Diabetes and Wisconsin Breast Cancer) and an insurance cus-
tomer profiling task (Benelearn99 data mining).

1 Introduction

In every day speech we regard learning and remembering as somewhat similar.
However machine learning means something very different from memorising. In
machine learning we are not interesting in letting the computer memorise a num-
ber of facts, we know this is something it does very well. Instead we want our
algorithm to find patterns in data, particularly patterns that enables generali-
sation on so far unseen data. We would like the computer find the “essence” of
the information that we present to it.

Here we try and turn genetic programming (GP) on its head. Instead of
asking GP to find a function which matches some training data and then seeing
how well the evolved function generalises, we construct such a function before
hand and give it to GP. We then run GP and see if it can evolve the function to
be more general. That is GP starts from a solution rather than a random starting
point. This is done by seeding the initial population with perfect individuals that
can already solve the fitness cases. We thus skip the memorisation part and go
right to the generalisation part.

We use simple deterministic algorithms to produce perfect individuals from
the fitness cases used for training. There are many possible ways of doing this.
In this paper (rather than creating initial programs at random) we assemble
them from a large number of if-then-else clauses that either find a combination
of input variables for each training case or we produce something like a decision
tree where the desired output is narrowed down through interval tests on all
of its input variables. The evolution is started with a Pareto fitness function
[11] where multiple objectives are sought concurrently. In our case we want to
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optimise (keep) a good performance while reducing the size of the individuals. In
GP there is strong evidence of the link between small size and good generalisation
capabilities [15,17]. So we need some kind of parsimony pressure. This is achieved
by a Pareto tournament where individuals can win either by being good or being
short. Our hope is that the parsimony pressure will replace the bulky if-then-else
clauses with more elegant, short and general expressions.

Seeding of initial populations is not a very well studied technique in GP.
It has been used in some financial applications [2], game playing [5], informa-
tion retrieval [6,9], speeding evolution [11, 6.9], scheduling [11, C.9.4], image
compression [14] and planning [1]. There has also been research in genetic al-
gorithms for instance [3,4,18]. Here seeding is used not to find a good starting
point for learning but to give a perfect individual and a good starting point for
generalisation.

In Sect. 2 we describe our experiments on the programmatic image compres-
sion problem [7,14], where the objective is to evolve a program that reproduces
a bitmap image when run. This is an extremely hard problem and although our
method is possible, we had to abandon these experiments in favour of problems
which need less computational power. We chose (Sect. 3) the North American
Pima Indians diabetes problem. Despite starting with a very specific individual,
GP was able to quickly boil the genetic soup down to very simple expressions. In
one instance, to a program with only one input, see Fig. 1. This is a remarkable
data mining and data selection feat. We suggest GP has an inherent capabil-
ity to perform variable selection where by non-relevant variables are discarded
during evolution. Finally we also report results from the Wisconsin Breast Can-
cer Database (9 attributes, Sect. 4) and from a real-world customer profiling
problem with 85 attributes (Sect. 5).

D1 155

SUB

Fig. 1. Short program evolved by the second seeded Pima Diabetes run. It
means if Plasma glucose concentration at two hours in an oral glucose tolerance
test exceeds 155.5 then the Diabetes test will be positive. (All values in the training
and verification sets are actually integers). This very simple program scores
approximately as well as sophisticated machine learning techniques [12].

2 Programmatic Compression

We can view any system which creates programs which create data as a com-
pression system if the programs are smaller than the data they create. In GP
terms, the data to be compressed are fitness cases for symbolic regression. GP
tries to evolve an individual program that outputs the uncompressed data, to a
certain degree of precision. If the evolved program solution can be expressed by
fewer bits than the target data, then we have achieved a compression. Here the
data are the individual pixels of a picture (Fig. 2).
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Fig. 2. Target image (256× 167). Note variety of repeating patterns.

After 50 generations in a GP run (using crossover only) with Pareto selection
and a population of 100, the seed program proved to be extremely robust. On
average across the whole population each pixel was less than 1 grey level out,
with 99.41% being exactly correct. However on average the seed had only shrunk
from 275,083 to 273,259 i.e. by 0.7%. (Mean depth has increased from 18 to 19.9).

3 Pima Diabetes

This real-world medical classification problem is taken from the UCI Machine
Learning repository http://www.ics.uci.edu/~mlearn/MLSummary.html. The
target is to predict whether the patient shows signs of diabetes. Five sets of
runs where conducted (with five independent runs for each experiment, details
in Table 1). Three experiments used three different seeds and in another two the
initial population was created at random.

All the seeds were created deterministically by creating a function composed
of IF statements, one per training case (less one). Each IF tests all attributes
and if they all match returns this training case’s class. If not the else branch
contains an IF relating to the next training case. And so on. If none of the IF’s
match, the program returns the class of the last training case.

Terminals containing each attribute’s value are compared with constant ex-
pressions using the APPROX primitive. APPROX returns true if its two argu-
ments are within 10% of each other. The outputs of the eight APPROX functions
per training case are combined using 7 AND functions. The seed generation pro-
gram chooses the closest available constant to the actual attribute value in the
training record. If none are within 10% then an expression combining two con-
stants with ADD, SUB, MUL or DIV is used instead. Typically such expressions
will occur more than once in the seed but no effort is made to avoid creation of
duplicate code. As we expect these expressions are large, asymmetric, have high
fitness on the training cases but fail to generalise.
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Table 1. GP parameters for Pima Indians Diabetes (defaults are as [8, page 655])

Objective: Find a program that predicts Diabetes.

Terminal set: One terminal per data attribute (8). For each attribute, create unique
random constants between its minimum and maximum value (in the
training set). Use integers where the attribute has integer only values
(total 255 primitives).

Function set: IF IFLTE MUL ADD DIV SUB AND OR NAND NOR XOR EQ
APPROX NOT

Fitness cases: Training 576 (194 positive). 192 (74 positive) for verification only.

Fitness: number correct (hits).

Selection: 2 objectives, hits and size, combined in Pareto tournament group size
7. Non-elitist, generational. Fitness sharing (comparison set 81) [11].

Wrapper: Value ≥ 0.5 taken as true

Pop Size: 500

Max prog. size: no limit

Initial pop: 100% seeded or created using “ramped half-and-half” [7, pages 92–93]
(no duplicate checking).

Parameters: 90% one child crossover, 2.5% function point mutation (rate
100/1024), 2.5% constant mutation (rate 100/1024), 2.5% shrink
mutation, 2.5% size fair mutation (subtree size≤30) [10].

Termination: Maximum number of generations G = 50

The first and smallest seed was generated using the first ten negative training
case and the first ten positive. These twenty cases alternate, starting with the
first negative training case. The second seed was generated using the first half,
i.e. 288 cases, of the training set. While the last was generated from all 576
training cases.

Table 2 summarises the verification performance of the five approaches to
the Pima problem. For each approach there are two rows. The top relates to the
mean of the highest verification score found in each of the five runs, while the
lower relates to the first occurrence of programs which score 137 or more. (We
chose 137 to indicate satisfactory performance since it is one standard deviation
below the best reported results on this problem). For each we report its actual
performance “hits”, its size (reporting the smallest where multiple programs have
the same performance in the same generation) and the first generation when it
evolved. In each category: the mean (of five runs), the standard deviation (in
brackets) and the minimum and maximum are given.

GP starting from 500 random programs (i.e. no seed) and using a Pareto
fitness measure did not perform well. Possibly because it converged too readily
to small programs. When we removed the small size objective and just used
scalar fitness, 40% of runs achieved reasonable performance. However 100% of
runs starting with seeded populations did. It appears there is little actual infor-
mation in the problem data as a seed constructed from only 20 training records
contains enough information to start the GP process off in the right direction.
The solutions found when using the two larger seeds are very much bigger. While
we anticipate further evolution over more generations would eventually lead to a
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Table 2. Highest verification score in run. 5 Pima runs with each seed

Seed size Hits Size Generation % runs
≥ 137

none 121.0 (4.0) 119–129 25.4 ( 23.8) 3–56 8.0 ( 6.6) 1–17
(Pareto) 0

none 131.4 (7.6) 122–143 30.6 ( 20.8) 6–64 9.6 ( 4.8) 4–18
(scalar) 138.5 (1.5) 137–140 4.5 ( 1.5) 3–6 17.0 ( 3.0) 14–20 40

20 143.4 (0.5) 143–144 34.2 ( 30.2) 3–91 35.4 ( 6.0) 28–43
139.4 (2.9) 137–143 3.0 ( 0.0) 3–3 26.0 (12.3) 14–42 100

288 144.0 (1.3) 142–145 1603.0 (2462.9) 21–6489 39.8 ( 6.9) 29–47
137.4 (0.8) 137–139 4.0 ( 2.0) 3–8 22.4 ( 6.5) 17–34 100

576 141.8 (2.4) 139–146 6369.4 (4603.7) 294–13479 40.6 ( 6.5) 31–50
137.0 (0.0) 137–137 62.4 ( 118.8) 3–300 32.8 (13.2) 18–50 100

reduction in size, we use GPQUICK where run time is O(|programs|× |test set|)
[11, 8.8]. Thus runs starting from larger seeds are much slower than runs using
shorter seeds or starting from random populations.

Figures 3, 4 and 5 plot the evolution of the first run with each of these three
seeds. Figure 6 refers to a run starting from random. The graphs on the left hand
side refer to training set performance. The two smaller seeds do not generalise
to the remainder of the training set and consequently initially fitness is low (cf.
gen 0), while the largest seed matches the whole training set and so scores 100%.
All three fail to generalise and so have low scores on the verification set (right
hand graphs).

The top graphs refer to the Pareto front, i.e. those individuals in the popula-
tion which are not dominated by others. (Note we have two objectives, training
set hits and reducing size). The Pareto front always spreads rapidly away from
the initial seed as shorter programs are produced. With the two smaller seeds,
there is also a rapid initial increase in fitness in the first generation but slow
change after that. With the small seed (20) the population shows less signs of
over training and the programs in it shrink. By the end of the run they are on
average less than a tenth of the size of the initial seed. With the two bigger
seeds, the Pareto front does not collapse in this way but instead the population
continues to retain large programs which score well on the training set.

In the case of the two smaller seeds the best validation score in the whole
population remains near (but slightly above) the best validation score of the
individuals reported on the Pareto front. In the case of the biggest seed, these
individuals are large and actually perform much worse on the validations tests
than the best program in the population. (The size of these is plotted in the x-y
plane of the top right hand graphs of Figs. 3, 4 and 5).

In each case within a few generations programs which score above 70% on
the verification set are found. Slow improvements continue so that, by the end
of the run, scores (75%) comparable with the best models produced by many
machine learning techniques on this problem have been found.
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Fig. 3. Evolution of Pareto front in first seeded (20) Pima run
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Fig. 4. Evolution of Pareto front in first seeded (288) Pima run
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Fig. 5. Evolution of Pareto front in first seeded (576) Pima run
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Table 3. Wisconsin Breast Cancer (as Table 1 except were given)

Objective: Find a program that predicts Breast Cancer.

Terminal set: One terminal per data attribute (9). Constants -1 to 10

Fitness cases: 351 (130 positive). 348 (111 positive) verification tests.

Table 4. Cancer. Highest verification score on Pareto front (5 runs on each
seed)

Seed size Hits Size Generation % runs
≥ 326

none 333.2 (4.4) 326–338 22.6 ( 21.7) 5–65 28.4 (17.0) 3–50
(Pareto) 328.2 (2.4) 326–332 6.2 ( 1.6) 5–9 14.2 (11.1) 3–35 100

20 329.8 (1.2) 329–332 101.4 ( 122.2) 19–342 34.0 (10.1) 20–49
327.0 (1.3) 326–329 65.0 ( 95.8) 5–256 32.0 (10.9) 16–47 100

128 327.0 (2.9) 323–332 46.4 ( 38.1) 20–122 38.8 ( 8.1) 29–47
327.2 (1.1) 326–329 42.0 ( 29.1) 20–92 38.0 ( 9.2) 29–50 80

351 327.4 (2.4) 323–330 6422.0 (2610.8) 3703–11257 41.8 ( 2.7) 37–45
326.5 (0.5) 326–327 2621.8 (2197.1) 871–6390 46.5 ( 6.1) 36–50 80

4 Wisconsin Breast Cancer

Like the Pima Diabetes, Wisconsin Breast Cancer is a real-world binary medical
classification problem often used as a machine learning benchmark. Again three
seeds were constructed in the same way as in Sect. 3. Details of the GP parame-
ters are given in Table 3, while Table 4 summarises the verification results of five
independent runs starting with each seed. We choose a score of 326 out of 348
on the verification set as indicating satisfactory performance. (State of the art
ML performance is about 96% on this problem, so 326 is 2σ below it). Table 4
indicates GP can obtain satisfactory performance without seeding. Indeed the
large size of programs in the initial population created from the two bigger seeds
appears to hamper GP in this problem.

5 Insurance Customer Profiling

Given 85 attributes relating to a customer, such as age, number of children, num-
ber of cars, income, other insurance policies they hold, predict if they want cara-
van insurance. 5922 records (of which 343 are positive and the rest negative) are
available as training data from http://www.swi.psy.uva.nl/benelearn99/
comppage.html as part of Benelearn’99. The task is to find 800 records of a
further 4000 records which contain as many positive examples as possible.

We conducted two experiments: 1) GP starting from a random population
and 2) the initial population was filled with copies of a seed created by C4.5
release 8 [16]. (The unpruned C4.5 trees produced using default parameter set-
tings were used). The 5922 records were randomly split in half. One half (with
179 positive examples) was used as the training set and the other half was used
as a verification set. The details are given in Table 5.
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Table 5. Insurance Customer Profiling (as Table 1 except were given)

Objective: Find a program that predicts the most likely 1/5th of people to become
caravan insurance customers.

Terminal set: One terminal per data attribute, 0..41 and 110 different random num-
bers uniformly selected from 0..10 (total 255 primitives)

Function set: IF IFLTE MUL ADD DIV SUB AND OR NAND NOR XOR EQ
APPROX GTEQ LTEQ GT LT NOT

Fitness cases: 2911 (179 positive)

Hits: number of positive cases predicted

Fitness: At end of each generation each positive fitness case given a weight
equal to the reciprocal of the number of individuals which correctly
predicted it. Fitness given by sum of weights of positive cases pre-
dicted.

Wrapper: 2911 values sorted, top 1/5 (583) treated as positive predicted

Pop Size: 100, 1000, 5000, 20000

Max prog. size: no limit

Initial pop: “ramped half-and-half” depth 5–9
Or 100% seeded with C4.5 decision IFLTE tree

Parameters: 90% one child crossover, 5% point mutation (rate 10/1024), 5% size
fair mutation

Termination: Maximum number of generations G = 50

Figure 7 shows the distribution of performance on both the training and
verification sets in the final population. The population changed dramatically
from the initial seed. As expect the initial seed performs reasonably well on
the training set (from which was created) but only slightly better than random
guessing on the verification set. By the end of the run the population is widely
spread. On the training set, most of the population lies close to the Pareto front
(solid line). Since GP has discovered programs that are shorter and/or fitter than
the seed, the front is well to the left of it. After 50 generations the population has
bloated as is indicated by the cluster of points at the top left. These programs
are long and have high training scores but they do not score markedly more than
shorter programs in earlier generations. In fact while almost all programs longer
than the seed (681) score better than it on the training case, they are worse
than it on the verification set, scarcely better than random guessing. That is the
population contains long programs which are heavily over trained.

The performance on the verification set of the best members on the training
set is also plotted (lower solid line). Above size ≈ 200 many programs perform
above the line on the verification set. I.e. many programs do better on the veri-
fication set than the best (on the training set) programs.

The lower dotted line shows the best 1% of the population on the verification
set. This line is almost flat, Showing that bigger programs give little if any
real performance advantage. Indeed in this population programs as short as five
appear to be the best. The upper dotted line shows the performance on the
training set of the same 50 programs. Not surprisingly it is more erratic than
the lower curve and climbs with programs size, again indicating over training.
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It is clear that GP has been able to generalise the initial seed program and
thereby considerably improve its performance. However there are also clear signs
of over training and this increases with size of programs in the population.
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Fig. 7. Distribution of training (+) and verification (×) performance in gen-
eration 50 of the first seeded run of the customer profiling problem. Solid lines
indicate individuals on the Pareto (training, size) front, while dotted lines indi-
cate the best 1% of the population on the verification set. Note log scale.

Figure 8 show the final population of an unseeded GP run. The best perfor-
mance on the training set is much lower than for the seeded run. However the
population shows only a little sign of over training, and there is less variation
with size. The verification performance is approximately the same as the seeded
run, Fig. 7.

6 Conclusions

We have seen that it is indeed possible to start GP with non-random populations
constructed from perfect individuals and use evolution under parsimony as a way
to find good generalisers.

However constructing programs which memorise the training data (as used
in Sects. 2, 3, 4 and 5) gives rise to large and unwieldy seeds if the whole training
set is used. In our approach GP took many generations to reduce these to general
solutions. Sections 3 and 4 show it is not necessary to use the whole training set
and sometimes a very small sample of it will do.

GP is unique compared to other soft-computing technique in that it relies on
symbolic structures in individuals and population. It is this property that enables
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seeding of perfect or near perfect starting points. As we saw in Sect. 5, the sym-
bolic nature of GP-individuals also makes the integration of results from other
techniques possible and opens possibilities for all sorts of hybrid approaches.

Our studies of populations evolved using Pareto multi-objective size versus
performance selection clearly shows the often assumed relationship between long
programs and poor generalisation.

In the light of the large amount of previous work trying to make GP memorise
examples from Boolean functions or complex multidimensional data, it might
seem a bit provocative to have a perfect individual from the start, but the
approach turns out to be feasible. We think that this is because GP has a built
in ability to generalise [11,13,15].
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