
RN/95/29

Pareto, Population Partitioning, Price and Genetic Programming

W. B. Langdon, Email: W.Langdon@cs.ucl.ac.uk

Dept. of Computer Science,
University College London,

Gower Street, London WC1E 6BT, UK

Switchboard tel: +44 (0) 171 387 7050 xtn. 3701
Dept. Office Tel: +44 (0) 171 380 7214
Fax: +44 (0) 171 387 1397

7 April 1995

Abstract

A description of a use of Pareto optimality in genetic programming is given and an
analogy with Genetic Algorithm fitness niches is drawn. Techniques to either spread the
population across many pareto optimal fitness values or to reduce the spread are described.
It is speculated that a wide spread may not aid Genetic Programming. It is suggested
that this might give useful insight into many GPs whose fitness is composed of several
sub-objectives.

The successful use of demic populations in GP leads to speculation that smaller evolu-
tionary steps might aid GP in the long run.

An example is given where Price’s covariance theorem helped when designing a GP
fitness function.

1 Pareto Optimality

A number of issues have arisen from work on evolving data structures; pareto optimality,
population partitioning using demes (Section 2) and Price’s covariance theorem (Section 3),
which could be applied more widely in genetic programming. Section 4 suggests some ways in
which GP run times might be reduced.

Having evolved stacks and queues data structures using genetic programming [Lan95], I am
currently working on the evolution of list data structures. Aho etal [AHU87] define a list which
supports ten different operations, whereas the stack and queue both support five.

Each operation is a separate program tree within a composite individual and has its own
fitness sub-score. Each sub-score is treated as a separate objective; pareto [Gol89] tournaments
are used to select which individuals to breed from or remove from the population.

The advantage of pareto comparison is it allows programs to be compared using multiple
objectives, without forcing an arbitrary weighting of the objectives relative to each other.

Whilst working on the queue using a scalar fitness function, it was noted that as the pop-
ulation evolved it appeared to trade improvement in a score on one operation with reduction
in another. Changes made by crossover were likely to be lost, even if they increased the fitness
of one operation, unless the increase was big enough to offset any corresponding fall in fitness

1



caused by a reduction in one of the other components of fitness. Improvements in one operation
need not cause a reduction elsewhere but it did seem to be an important effect.

Pareto tournament selection with a steady state GA (i.e. non-generational) is not elitist as
there is no longer a simple definition of what the best member of the population is. Programs
which score highly on one part of the fitness function may be displaced from the population by
others which scores less well on that objective but do better on others.

Figures 1 to 8 (Appendix A) show initial results for the evolution of the best score (as
a percentage of the perfect score) on each of the ten list operations. In general, each point
on each of these lines could be a different individual. In contrast, the dotted line shows the
best-of-generation sum of the ten operations and so each point does refer to an individual (such
a sum, is a simple scalar value for each individual within the population).

These graphs make obvious the continual discovery and loss of individuals which score
highly on a given objective. There are many cases where means of producing a high score on a
particular objective is discovered multiple times, being lost from the population between each.
How this effects genetic programming as a search algorithm requires further investigation. As
mentioned above, this non-monotonic behaviour is not unique to pareto selection but has been
observed when using a scalar fitness function, when considering the individual components of
this scalar.

1.1 Size of the Pareto Front

Figure 9 shows the number of points on the pareto front as a population evolves. Each non-
dominated fitness value (i.e. value on the pareto front) is equally fit and so could be considered
to be a “niche”.

Oei etal [OGC91] considered linear GA’s with complete generational replacement and state
the “naive” use of tournament selection to spread a GA population across equally fit niches
will cause the population to behave chaotically. They predict the number of niches within a
population of equally fit individuals will fall, being given by the formula:

k =
1

1
k0

+ 2t
π2N

(1)

Where k0 is the initial number of niches, t number of generations and N is the population
size.

Figure 9 shows a general downward trend in the number of different non-dominated fitness
values in the population (i.e. niches) after the initial high rate of fitness improvement slows.
This loss of variation with time in finite populations of equally fit individuals is also known as
“genetic drift”.

Where a tournament group contains two, or more, non-dominated individuals, the remainder
of the population can be used to rank them. Thus an individual which is dominated by few
others will be ranked higher than one dominated by many. N.b. this exerts a divergent selection
pressure on the population as individuals are preferred if there are few others that dominate
them. Following [HNG93] the pareto rank is estimated by comparison with a sample of the
population rather than all of it. When a sample of up to 81 individuals is used the number
of occupied points on the pareto front rises rather than falls and reaches a much higher level,
≈ 1000, which persists at least up to generation 100.

2



1.2 Elitism

As has been shown pareto optimality does not ensure the population will retain the best (on
any given score) individual, however this can be imposed upon the population. Figures 7 and
8, show the behaviour after adding a rule that an individual may not be deleted if it has the
single highest score for any of the ten operations. Whilst these traces look better behaved, no
conclusion about the behaviour of the bulk population or even the best-sum-of-generation can
be draw before performing more comparative runs.

It is rather galling to realise about 90% of tournaments are finally resolved by chance.
This means on average only 32% of fitness evaluations lead to a deterministic choice of which
individuals to select for breeding or removal from the population. This figure is not quite as
bad as it seems because the figure of 90% includes the cases where one or two of the members
of each tournament group are discarded using fitness values leaving a random choice from the
two or three remaining.

The graphs are from single runs and so must be treated with caution however where graphs
of mean behaviour over may runs are plotted, this non-monotonic behaviour can be obscured
by the averaging process.

2 Demes

Disjoint populations have been used many times within linear genetic algorithms but very little
work has been reported on using them within GP. However both myself [Lan95] and John
Koza [KA95] report improved performance from geographically structuring the population into
semi-isolated regions or demes.

Inman Harvey suggests [Har92] that better results may be achieved with variable length
(but still linear) GAs if crossover takes place primarily between individuals that are nearly the
same length.

Perhaps part of the reason for the success of demic populations in genetic programming
is that the localization of the population causes the GA to quickly converge so that breeding
takes place between like individuals. However the population as a whole remains diverse. It
is expected that not only will the programs be of similar lengths but also genotypes will be
similar in other ways.

In my own work, I allowed self-crossover. In the bulk population, the chances of a program
being selected twice as the parent of a given individual are remote but with small demes the
chances are much higher. This would be expected to encourage the rapid local convergence of
a demic GP.

If it is found that the beneficial effect of demes is due to local convergence encouraging the
breeding of like with like, two measures could be taken to use this:

1. Selecting parents which are a like,

2. Selecting crossover points to minimise the difference between the offspring and its parents.

Both involve the replacement of a random process with a more directed (but still stochastic)
one. The definition of similarity could be on the basis of either genotype or phenotype (fitness).
The work on DNA sequencing could be a useful starting point for approximate matching of
trees, when program trees become very large. Note this is exactly the opposite of GA niches or

3



fitness sharing, where the GA population is encouraged to become spread out (either in fitness
or genotype space).

3 Price’s Covariance Theorem

Price’s Selection and Covariance theorem [Pri70] was devised for application to biological evo-
lution, however as Lee Altenberg [Alt94] has pointed out that it can be applied to Genetic
Programming (indeed to any genetic algorithm or population based stochastic search technique
where genes are passed at random to offspring in the next generation and the expected number
of children allocated to each individual is proportional to its fitness).

∆Q = Cov(z, q)/z (2)

Where:

∆Q is the expected change in the frequency of a gene (or fixed linear combination of genes)
from one generation to the next,

zi number of children produced by individual i, typically proportional to the fitness of i,

qi the number of copies of the gene (or combination of genes) in individual i,

z in the mean value of z, typically 1.9.

Thus the expected (in the statistical sense) change in the number of a particular terminal
or function (or combination) in the next generation can be calculated from the covariance of
the frequency it occurs in the current population with the fitness of the individuals.

I have found this a useful check on the fitness function. E.g. a program that is required
to push a value on the stack must use both that value and a write operation, i.e. it must
contain both the “arg1” and “write” primitives. Calculating the covariance of their frequency
in the initial population with fitness, explained (with one fitness function) why the number
of arg1 and write primitives fell rapidly. In later generations the covariance changed sign and
their numbers increased. However in some runs they became extinct in 5–10 generations, so
preventing a working program from being evolved. This highlighted the importance of the
fitness function in the initial population as well as later, where it was working as expected.

Another approach is to extend the syntax of the GP language and require the push program
tree to include those primitives which are known to be required.

4 Reducing Fitness Evaluation Times

As Handley [Han94] has demonstrated where the primitives are free from side effects consid-
erable performance improvements can result from caching results produced by subtrees. The
read and write primitives do have side effects, never the less caching can be used if parts of
the program are known to be free of side effects. For example a modest runtime saving of 32%
was achieved when evolving the queue by using a cache of values calculated by the ADF. This
was despite the fact that the ADF was called from code known to contain side effects so its
argument could not be predicted in advance. A single cache of 1000 words was shared by all
fitness evaluations during the GP run and hit ratios of ≈ 80% where obtained.

4



It might prove practicable to reduce the time required to evaluate an individual program’s
fitness by using stored knowledge of the fitness of its ancestors and how it was produced from
them. For example if the crossover (or mutation) point is known to have been located in a part
of the parent which is not executed then it cannot have affected the programs execution and so
its fitness is also unchanged. Thus the fitness of the child can be copied from the parent with
out ever running it.

Reductions in fitness evaluation time might be possible by exploiting intermediate results
calculated by program’s ancestors. For example where fitness is defined by running a number
of independant fitness cases, the scores on each test might be saved. When an offspring is
generated and the crossover point is known to be in code that is only used in some of the fitness
cases only those need be run. The fitness function might be designed to make this more likely.

There has been much made of the quantity of redundant code in GP individuals. Where
code is run many times during fitness evaluation it may be advantageous to use optimization
techniques, such as used by some high level language compilers, to produce an executable version
of the code. This need not be in machine code but could be in the GP language, albeit shorter.
This is slightly different from edit [Koz92] as the compilation phase only speeds the execution
of the program (i.e. the phenotype). The genetic material of the program is unchanged.

It has been argued that GP obeys Holland’s schema theorem with fit (parts of) programs
spreading through the population. Fitter programs being produced by crossover assembling
them from fit subprograms. The fitness of a subprogram being given by:

∑
fitness programs containing subprog

No. copies of subprog
(3)

Perhaps Graphs, similar to those used by Handley, could be used to keep track of how often
program subtrees are used and the fitness of the individuals in which they occur with a view of
analyzing the dynamics of subprogram fitness. So far it has not proved fruitful to use Fisher’s
theorem [Fis58] to relate this to the variance of fitness.

5 Conclusions

There are techniques to control the spread of a genetic programming population between dif-
ferent, but equivalent, fitness values.

Further work is required to establish whether breeding between widely separated GP pro-
grams helps GP or whether breeding between similar programs would produce smaller improve-
ments at each stage but more progress in the long run.

A Pareto Population Graphs

Solid lines in Figures 1 to 8 show the best-of-generation score (as a percentage of the perfect
score) on each of the ten list operations. Dotted line shows the best-of-generation sum of the
ten operations.

5



0

0.2

0.4

0.6

0.8

1

0 200000 400000 600000 800000 1e+06

 
%
 
s
c
o
r
e
 

Number of Individuals Created

Figure 1: Variation in maximum raw score, no comparison set, no niche sharing, not elitist,
pop=10,000, no demes

0

0.2

0.4

0.6

0.8

1

0 200000 400000 600000 800000 1e+06

 
%
 
s
c
o
r
e
 

Number of Individuals Created

Figure 2: Variation in maximum raw score, no comparison set, no niche sharing, not elitist,
pop=10,000, 3× 3 demes

6



0

0.2

0.4

0.6

0.8

1

0 200000 400000 600000 800000 1e+06

 
%
 
s
c
o
r
e
 

Number of Individuals Created

Figure 3: Variation in maximum raw score, comparison set, no niche sharing, not elitist,
pop=10,000, no demes

0

0.2

0.4

0.6

0.8

1

0 200000 400000 600000 800000 1e+06

 
%
 
s
c
o
r
e
 

Number of Individuals Created

Figure 4: Variation in maximum raw score, comparison set, no niche sharing, not elitist,
pop=10,000, 3× 3 demes

7



0

0.2

0.4

0.6

0.8

1

0 200000 400000 600000 800000 1e+06

 
%
 
s
c
o
r
e
 

Number of Individuals Created

Figure 5: Variation in maximum raw score, comparison set, niche sharing, not elitist,
pop=10,000, no demes

0

0.2

0.4

0.6

0.8

1

0 200000 400000 600000 800000 1e+06

 
%
 
s
c
o
r
e
 

Number of Individuals Created

Figure 6: Variation in maximum raw score, comparison set, niche sharing, not elitist,
pop=10,000, 3× 3 demes

8



0

0.2

0.4

0.6

0.8

1

0 200000 400000 600000 800000 1e+06

 
%
 
s
c
o
r
e
 

Number of Individuals Created

Figure 7: Variation in maximum raw score, comparison set, no niche sharing, elitist,
pop=10,000, no demes

0

0.2

0.4

0.6

0.8

1

0 200000 400000 600000 800000 1e+06

 
%
 
s
c
o
r
e
 

Number of Individuals Created

Figure 8: Variation in maximum raw score, comparison set, no niche sharing, elitist,
pop=10,000, 3× 3 demes

9



50

100

150

200

250

300

350

0 200000 400000 600000 800000 1e+06
Number of Individuals Created

Points on pareto surface

Figure 9: Number of different non dominated fitness values, no comparison set, no niche
sharing, not elitist, pop=10,000, no demes

10



References

[AHU87] A V Aho, J E Hopcroft, and J D Ullman. Data Structures and Algorithms. Addison-
Wesley, 1987.

[Alt94] Lee Altenberg. The evolution of evolvability in genetic programming. In Kenneth E.
Kinnear, Jr., editor, Advances in Genetic Programming. MIT Press, 1994.

[Fis58] Ronald A. Fisher. The Genetical Theory of Natural Selection. Dover, 1958. Revision
of first edition published 1930, OUP.

[Gol89] David E. Goldberg. Genetic Algorithms in Search Optimization and Machine Learn-
ing. Addison Wesley, 1989.

[Han94] S. Handley. On the use of a directed acyclic graph to represent a population of com-
puter programs. In Proceedings of the 1994 IEEE World Congress on Computational
Intelligence. IEEE Press, 1994.

[Har92] Inman Harvey. Species adaptation genetic algorithms: A basis for a continuing saga.
In F.J. Varela and P. Bourgine, editors, Toward a Practice of Autonomous Systems,
Proceeding of the first European Conference on Artificial Life (ECAL), pages 346–354.
MIT Press, 1992.

[HNG93] Jeffrey Horn, Nicholas Nafpliotis, and David E. Goldberg. Multiobjective optimiza-
tion using the niched pareto genetic algorithm. IlliGAL Report no. 93005, Illinois Ge-
netic Algorithm Laboratory, University of Illinois at Urbana-Champaign, 117 Trans-
portation Building, 104 South Mathews Avenue, Urbana, IL 61801-2296, July 1993.

[KA95] John R. Koza and David Andre. Parallel genetic programming on a network of
transputers. Technical Report CS-TR-95-1542, Stanford University, Department of
Computer Science, January 1995.

[Koz92] John R. Koza. Genetic Programming: On the Programming of Computers by Natural
Selection. MIT press, 1992.

[Lan95] W. B. Langdon. Evolving data structures using genetic programming. Research Note
RN/1/95, UCL, Gower Street, London, WC1E 6BT, January 1995. Accepted for
presentation at ICGA-95.

[OGC91] Christopher K. Oei, David E. Goldberg, and Shau-Jin Chang. Tournament selection,
niching, and the preservation of diversity. IlliGAL Report No. 91011, University of
Illinois at Urbana-Champaign, Urbana, Il 61801, December 1991.

[Pri70] George R. Price. Selection and covariance. Nature, 227, August 1:520–521, 1970.

11

http://dynamics.org/~altenber/PAPERS/EEGP/
http://dx.doi.org/10.1109/ICEC.1994.350024
ftp://ftp.cogs.susx.ac.uk/pub/reports/csrp/csrp221.ps.Z
ftp://reports.stanford.edu/pub/cstr/reports/cs/tr/95/1542/CS-TR-95-1542.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/GPdata_icga-95.ps

	Pareto Optimality
	Size of the Pareto Front
	Elitism

	Demes
	Price's Covariance Theorem
	Reducing Fitness Evaluation Times
	Conclusions
	Pareto Population Graphs

