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Abstract

We present a detailed analysis of the evo-
lution of genetic programming (GP) popu-
lations using the problem of finding a pro-
gram which returns the maximum possi-
ble value for a given terminal and func-
tion set and a depth limit on the program
tree (known as the MAX problem). We
confirm the basic message of [Gathercole
and Ross, 1996] that crossover together with
program size restrictions can be responsi-
ble for premature convergence to a sub-
optimal solution. We show that this can
happen even when the population retains a
high level of variety and show that in many
cases evolution from the sub-optimal solu-
tion to the solution is possible if sufficient
time is allowed. In both cases theoretical
models are presented and compared with
actual runs.
Price’s Covariance and Selection Theo-

rem is experimentally tested on GP pop-
ulations. It is shown to hold only in some
cases, in others program size restrictions
cause important deviation from its predic-
tions.

1 Introduction

While genetic programming (GP) has been demon-
strated on a wide and increasing range of applications
comparatively little work has been devoted to a the-
ory of GP. However such a theory is of great impor-
tance to the field as a whole. Work so far has been
principly split between extending the Schema Theorem
[Holland, 1992] from Genetic Algorithms to GP [Koza,
1992; O’Reilly and Oppacher, 1995; Whigham, 1995;
Poli and Langdon, 1997], studying benchmark problems
(e.g. Royal Trees [Tackett, 1995; Punch et al., 1996]) and
applying population genetics to GP [Altenberg, 1994;
Altenberg, 1995]. In this paper we combine the later

two approaches by applying Price’s Theorem from theo-
retical biology, plus other detailed analysis, to the MAX
problem.

[Gathercole and Ross, 1996] introduce the MAX prob-
lem to GP to highlight deficiencies in the standard GP
crossover operator which result from the practical re-
quirement to limit the size of evolved programs. They
concentrate on the case where program trees are re-
stricted to a maximum depth but suggest similar effects
will be seen when programs are restricted to a maximum
number of nodes.

The MAX problem has known optimal solutions
which are composed of regularly arranged sub trees or
building blocks. Despite this GP finds solving larger
versions of the MAX problem difficult.

In this paper we extend [Gathercole and Ross, 1996]
by considering bigger trees, different selection pressures,
different initialisations of the population, measuring the
frequency with which the depth limit affects individ-
ual crossovers, measuring population variety and the
number of steps required to solve the MAX problem.
Qualitative models of crossover and population variety
are presented and compared to measurement. We give
an improved explanation for the premature convergence
noted by [Gathercole and Ross, 1996] and this leads to
the realisation that there are two separate reasons why
GP finds the MAX problem hard. Firstly the tendency
for GP populations to converge in the first few genera-
tions to suboptimal solutions from which they can never
escape. Secondly convergence to suboptima from which
escape can only be made by slow search similar to ran-
domised hill climbing.

Section 2 describes the various MAX problems used
in these experiments. Section 3 describes the GP used
in our experiments, Section 4 gives the results obtained
and provides a detailed analysis and comparison with
[Gathercole and Ross, 1996]. Section 5 shows typi-
cally the population retains a high level of diversity
and presents models of the variety in the initial popu-
lation and its subsequent evolution. Section 6 considers
the role of selection pressure and shows reduced perfor-
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mance with small tournament size. Section 7 describes
Price’s Theorem, presents experimental evidence on its
applicability to GP and shows it can be used to predict
the behaviour of subsequent generations of the MAX
problem.

2 The MAX Problem

In the MAX problem “the task is to find the program
which returns the largest value for a given terminal and
function set and with a depth limit, D, where the root
node counts as depth 0” [Gathercole and Ross, 1996,
page 291]. In this paper we use the function set { +, × }
and there is one terminal 0.5. For a tree to produce the
largest value + nodes must be used with 0.5 to assem-
ble subtrees with the value of 2.0. These can then be
connected via either + or × to give 4.0. Finally the rest
of the tree needs to be composed only of × nodes to
yield the maximum value of 42D−3

. It is important to
note that this artificial problem forces every component
of the evolved programs to contribute to the programs’
fitness and no part of any program can escape from the
effect of selection. I.e. there can be no introns.

3 GP Parameters

Our GP system was set up to be the same as given in
[Gathercole and Ross, 1996]. The details are given in
Table 1, parameters not shown are as [Koza, 1994, page
655]. On each version of the problem 50 independent
runs were conducted (with 6 depths and two types of
initialisation in the three bigger problems and 7 tourna-
ment sizes this makes a total of 3150 runs).

In this paper two sets of experiments are presented. In
the first the usual ramped half-and-half method [Koza,
1992, page 93] which creates random trees with depths
between 2 and 6 (i.e. D = 1 . . . 5) was used. (How-
ever the initial trees obeyed the problem specific height
restriction). A second set of runs (with D > 5) were
made with the maximum tree height in the initial pop-
ulation identical to the problem specific limit. (Unless
otherwise stated the discussion refers to this second set
of experiments). Gathercole and Ross created their ini-
tial populations “with no constraint on tree size (other
than the overall size limit), i.e. not ramped” [Gather-
cole, 1997].

4 Results

Figure 1 shows the mean number of generations taken by
the GP to solve the MAX problem in the successful runs.
The percentage of unsuccessful runs is given in Figure 2.
These results are similar to those in [Gathercole and
Ross, 1996] except [Gathercole and Ross, 1996, Figures
3 and 4] do not contain data for depths of 7 or 8.

Table 1: MAX Problem

Objective: Find a program that returns the
largest value

Primitives: +,×, 0.5
Max depth 3 . . . 8 (NB root node is depth 0)
Init depth 5 or Max depth
Fitness: Value of tree
Selection: Tournament group size of 2 to 8, gen-

erational plus elitism.
Parameters Pop = 200, G = 500, 99.5% crossover,

no mutation. Crossover points se-
lected uniformly between nodes.
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Figure 1: Mean number of generations need by the suc-
cessful runs. Error bars indicate standard error.

4.1 Impact of Depth Restriction on Crossover

The size of programs within the population grows
quickly until almost all individuals are full trees. Due
to the depth restriction crossover cannot make the trees
any bigger and so crossover fragments are either the
same size as the code they are replacing or smaller. In
the case of full trees this means crossover can move code
at the same level in the trees or higher but not lower.

In the first run with D = 8 a third of crossovers are
rejected because the subtree to be inserted would cause
the offspring to violate the maximum depth. In these
cases the roles of the two parents are reversed and a
shorter subtree is inserted instead. Of the remaining
two thirds half (i.e. 1

3 of the total) result in replacing
a subtree with one of the same height, so in total two
thirds of crossovers replace a subtree with a shorter one.
Only 0.74% of crossovers resulted in a taller subtree re-
placing a shorter one. These occur throughout most of
the run, half occurring by generation 85 and the last in
generation 441 (the mean generation is 105).
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Figure 2: Percentage of runs ending in failure

4.2 Trapping by Suboptimal Solutions

[Gathercole and Ross, 1996, page 295] suggest the reason
why GP finds the MAX problem hard is that the pop-
ulation quickly finds suboptimal solutions which con-
tain + nodes near the root of the tree. To improve
on such solutions crossover must replace them with ×
nodes. They suggest that “once the trees have reached
the depth limit, the only way the higher levels are af-
fected is through the promotion of lower level subtrees,
which contain no × nodes, and the movement of sub-
trees within the same level”. However the lack of ×
nodes in lower levels was not observed in our popula-
tions. For example at the end of all but one of the 50
runs with D = 8 the population contains thousands of
× nodes at levels 3 and 4, even in runs where levels 0,
1 or 2 contain large numbers of + nodes.

Crossover readily moves such nodes to higher levels.
To explain why the suboptimal + nodes are able to re-
main in the population we need to consider the fitness of
the resulting offspring. Suppose both parents are near
optimal (i.e. they consist mainly of +,× and 0.5 at the
right level of the tree). The value of each subtree with
a × as its root node is 42D×−3

(where D× is its depth)
while if rooted with a + node it is 2 × 42D+−4

. If an
otherwise optimal subtree with a + as its root node
is replaced with an optimal subtree from a lower level
(i.e. D+ > D×) then the value of this part of the offspring
is reduced. For example if an otherwise optimal subtree
of depth 5 rooted with a + node (value 32) is replaced
by an optimal subtree which is one level shorter (value
16). Then given the other subtrees at the same level are
also near optimal (i.e. have values ≥ 1), the value (and
hence fitness) of the offspring as a whole will be less than
that of its parent by a factor of at least 1

2 . Therefore
the offspring is unlikely to have children in the next gen-
eration. In contrast the 1

3 of crossovers that exchange

subtrees at the same level may produce offspring with
same fitness as their parents and thus are more likely
to have children themselves. NB programs with a few
+ nodes near the root can readily reproduce copies of
themselves but their children where a + is replaced with
a × are unlikely to survive and so the GP can remain
trapped for long periods.

4.3 Modelling the Rate of Improvement

[Gathercole and Ross, 1996, page 295] says “if there are
no × nodes in any tree at a particular high level, it [is]
now impossible for crossover to introduce a × node to
this level; the population has converged to being dupli-
cates of a sub-optimal tree, and no further improvement
is possible.” However (taking the example with D = 8
again) in only 7 cases does the population at the end
of the run contain zero × nodes at any level from 0 to
3, i.e. in 22 of the runs that failed the population did
contain × nodes in all of the higher levels. (The impos-
sibility of the 7 runs succeeding was confirmed experi-
mentally by running them again but this time to 5,000
generations. None succeeded, however in one case the
population did improve finding better suboptimal solu-
tions by replacing + nodes with × nodes where these
were available at the same level).

The reason why the 22 runs failed (and why the suc-
cessful runs took so long) despite having × nodes avail-
able is in part due to the low level of crossover activity
near the root of the trees. That is crossover is able to
improve suboptimal trees but it takes a long time. We
can estimate how long with the following model.

Assume the population has converged to a subopti-
mal tree containing n+d + and n×d × nodes at level d
(d < D − 3) (so n+d + n×d = 2d). Each individual will
be a full (or nearly full) binary tree of height D and so
contain 2D+1− 1 nodes. Therefore the chance of select-
ing one of the + nodes at level d to be the crossover
point is

n+d

2D+1 − 1

and the chance of replacing it with a × node from the
same level is

n×d

2D+1 − 1
(1)

Firstly we note that the chance of improvement is
much higher with large d. I.e. the nearer to the root the
+ node is the harder it will be for crossover to shift (in
the case of the root node, it is impossible as there can
be no × nodes also at the root). Secondly improvement
is easiest when the number of + nodes is equal to the
number of × nodes and the last + node at each level
is the most difficult to remove. Also note that if the
number of × nodes is small it will be difficult to increase
it.
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As replacing a + node at any of the higher levels will
produce an improvement, by only considering crossovers
which find improved solutions by moving subtrees at the
same level as the + nodes we can form a lower bound
on the overall chance of the offspring being an improve-
ment:

D−4∑
d=0

n+dn×d

(2D+1 − 1)2
=

D−4∑
d=0

n+d(2d − n+d)
(2D+1 − 1)2

(2)

Crossover closer to the root can also find improved so-
lutions by replacing trees containing + nodes with oth-
ers where they are replaced by × nodes, including where
the inserted subtree contains + nodes further from the
root. In general where there are + nodes at different
levels deciding how many crossover points will yield an
improved solution becomes complex. However if there
are few incorrectly positioned + nodes we need only
consider crossovers where the crossover points in both
parents are at the same level. For the special case of
a single + node at level d then crossover at any node
connecting it to the root with a different node at the
same level will yield the optimal solution. There are

d∑
i=1

2i − 1 = 2d+1 − d− 2 (3)

such crossover point pairs. Note in this case the exact
figure is about twice the approximation of n×d used in
(1) and (2).

As each crossover is independent, the number required
to replace a + node with a × node has an exponential
distribution. We can estimate the mean and standard
deviation using (2) as

crossovers to improvement ≤ (2D+1 − 1)2∑D−4
d=0 n+d(2d − n+d)

Thus the expected number of generations until the next
improved solution is found in a population which has
converged towards a good but sub-optimal solution is

gens to improvement ≤ (2D+1 − 1)2

p pc

∑D−4
d=0 n+d(2d − n+d)

(4)

where p is the population size and pc is the crossover
probability (NB no mutation).

The predictions of (3) where tested by measuring the
number of generations required to replace the last mis-
placed + node with D = 8 (this required extending 14
runs up to 5,000 generations). Figure 3 shows good
agreement between prediction and measurement. At ev-
ery depth the mean lies within 1.4 standard errors of the
predicted value.

To test further the model we looked at multiple
+ nodes. Since this is more complex we looked at only
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Figure 3: Number of generations to displace last mis-
placed + (D = 8). Error bars indicate standard error.

Table 2: Generations at which improved solutions were
found in an extended run (D = 8). The estimated num-
ber of crossover pairs which give improved solutions and
the corresponding expected number of generations be-
tween improved solutions are given, for both the sim-
ple

∑
n+(2d − n+) model and for the detailed counting

model.

depth Gen ∆Gen
∑

n+ . . .Pred Count Pred
4 523 23 55 24 73 18
4 542 19 46 29 65 20
4 569 27 35 37 51 35
3 584 15 21 62 34 39
4 611 27 15 87 26 50

one run. We selected the first unsuccessful run for D = 8
after the run used in Section 4.1. In this run the popu-
lation had converged towards a tree with one + node at
level 3 and four at level 4. It was run on past genera-
tion 500 and the generations where improved solutions
were found was noted. The results are shown in Ta-
ble 2. In the last but one column of Table 2 the exact
count of crossovers which would generate an improved
solution is given, the right most column gives the cor-
responding expected number of generations to find an
improved solution. There is reasonable agreement with
the actual number of generations, recorded in column 3,
whereas the simpler model (4), columns 4 and 5, consis-
tently overestimates the time required to find the next
solution.

4.4 No. of Steps to Climb the Hill

The number of improved solutions found before the op-
timal solution is found is plotted in Figure 4. In success-
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Figure 4: Mean number of improved solutions found
before optimal solution in successful runs. Error bars
show standard error for tournament size of 6.

ful runs, it takes about as many improvement steps as
there are functions in the optimal solution (i.e. 2D − 1).
This supports the notion that, in this problem, GP finds
solutions one step at a time and is not benefiting from
implicit parallelism expected where complete solutions
can be assembled from building blocks. From (4) we see
each step takes O(22D) generations, so we expect the
total number of generations required, in successful runs,
to grow as O(22D), i.e. parallel to the straight line in
Figure 1. Figure 1 shows good agreement until the limit
of 500 generations per run acts to cut short runs which
would otherwise have eventually found a solution.

5 Variety

5.1 Variety in the Initial Population

The rightmost column of Table 3 contains the average
number of different programs in the initial populations.
It highlights another potential problem with GP when
it is applied to the MAX problem: in contrast with nor-
mal GP practice the initial populations contains a large
number of duplicates (see also Figures 5 and 6). This is
inherent in the ramped half-and-half method when used
in a problem with such small function and terminal sets.
Recall that with the ramped half-and-half method ran-
dom trees are created with a maximum depth evenly dis-
tributed between 1 (counting the root node as zero) and
the maximum depth allowed in the initial population.
Half are created as full trees of this maximum depth
and half are created using a grow method which creates
trees of different shapes. ([Iba, 1996] and [Bohm and
Geyer-Schulz, 1996] discuss alternative means of gener-
ating random trees for use as the initial population in
GP runs.)

With D = 8 about 1
8 (i.e. 1

D ) of trees will be created

Table 3: Variety in initial populations, Predicted v.
Mean of 50 runs (ramped half-and-half)

D 1
8 + 7

4D × popsize Predicted Mean
3 .7083 141.67 58.33 66.3
4 .5625 112.5 87.5 94.1
5 .475 95 105 111.2
6 .4167 83.33 116.67 120.6
7 .375 75 125 128.9
8 .3438 68.75 131.25 136.4
∞ .125 25 175

with a maximum depth of 1 and therefore will contain
a single function. I.e. about 25 trees will consist of a
single + node and two 0.5 terminals or a × node and
two 0.5 terminals, and therefore they are very likely to
be identical to at least one other member of the popu-
lation. 1

D of trees are created with a maximum depth
of 2 and so will contain no more than two or three func-
tions. As there are 16 possible trees with two or three
functions it is likely most trees with a depth of two will
not be unique. With larger trees the number of possible
trees grows rapidly and so most will be unique. 1

4 of
trees generated by the grow method will not grow ei-
ther branch from the root and so a further ≈ 1

2
D−2

D
1
4

(i.e. 18.75) trees will be very small and so unlikely to be
unique.

In summary we expect at least 1
D + 1

D + 1
8

D−2
D = 1

8+ 7
4D

duplicates in the initial population (unless the initial
population is rather less than 200). Table 3 shows this
close to the mean number of duplicate individuals found
in 50 initial populations. In problems with larger func-
tion or terminal sets the chance of randomly generating
duplicates will be much smaller, but a high proportion
of small programs can still be expected.

5.2 Evolution of Variety

While the populations converge to the extent that most
of the trees in the population are similar to each other,
the population does not converge to the extent that all
of the population are identical. Where the maximum
depth is large, on average after 250 generations, the
number of different programs in the populations is about
two thirds of the total population size (variety ≈ 133,
cf. Figure 5). I.e. one third of the population is com-
posed of programs which are identical to at least one
other in the population. Figure 6 shows in the case of
smaller trees population variety is lower still.

5.3 Modelling Variety

Recall from Section 4.1 that about two thirds of chil-
dren are of a different length to their host parent and
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about one third are the same. With a relatively small
population it seems reasonable to assume that children
which are different from their parent are also likely to
be different from every other child in the population.
I.e. 2

3 of children are likely to be unique. On the other
hand, due to the convergence of the population, children
produced by the 1

3 of crossovers which swap subtrees at
the same level are likely to be the same as one parent.
Therefore they are likely to be the same as another child
of the same parent or an identical individual in the pre-
vious generation. Therefore we expect the population to
be composed of one third copies and two thirds unique
individuals. This is approximately the case for D = 8.

The lower variety measured for D < 8 can be ex-
plained if one considers the breeding population to be
composed mainly of copies of a full binary tree with
only one node type at each level. The number of dif-
ferent trees that can be produced by crossover between

Table 4: Number of different trees that can be produced
by crossing over two identical full binary trees, where
each level contains only one type of node

D 3 4 5 6 7 8
number 12 27 58 121 248 503

such trees is limited (see Table 4). In the cases of D = 4
and 5 variety is on average close to the figure given Ta-
ble 4 while for D = 6 and 7 the 2

3 limit is also important.

6 Selection Pressure

In the MAX problem, with high selection pressure, we
see a rapid convergence of the population towards so-
lutions that are beneficial in the first few generations.
However early solutions may not readily evolve to ac-
ceptable solutions. We suspect this is common to many
GP problems. In the case of the MAX problem early
high fitness individuals may use + functions to form
comparatively large values. Later generations can then
yield still larger values by joining subtrees composed of
+ nodes with × functions. However, as [Gathercole and
Ross, 1996] point out, the depth restriction and the me-
chanics of the crossover operator make the insertion of
× nodes near the root of large trees difficult. This sec-
tion was motivated by the suggestion that the selection
pressure was too high (i.e. the tournament size was too
big) and this was responsible for driving the initial gen-
erations towards convergence too quickly.

The chance of an individual i being selected by a tour-
nament is given by its rank ri within the population of
size p and the tournament size t by the formula [Blickle
and Thiele, 1995; Langdon, 1996]

(ri/p)t − (ri−1/p)t

ri − ri−1

In a large and diverse population this can be approxi-
mated by

t(ri/p)t−1 (5)

The expected number of children produced by individ-
uals of rank R or less is

p
R∑

i=1

(ri/p)t − (ri−1/p)t

ri − ri−1
≈ p(R/p)t

I.e. the worst ≈ t
√

1/2 of the current generation produce
half the children of the next generation, as do the best
1 − t

√
1/2. With a tournament size of 6 this means on

average the best 11% of the population (i.e. 22 individu-
als) produce half the next generation (i.e. 100 children).
Given one third of these are likely to be identical to their
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Figure 7: Mean number of generations need by the suc-
cessful runs with tournament sizes from 2 to 8. Error
bars indicate standard error.

parents, the elite members of the population can read-
ily pass identical copies of themselves to the next and
succeeding generations.

Figures 7 and 8 give the average number of gener-
ations in successful runs and proportion of runs that
failed respectively with different tournament sizes. Each
point represents the mean of 50 independent runs. For
clarity only the data for the runs where the maximum
height in the initial population is the same as that in
later generations are displayed. We see performance is
essentially independent of selection pressure except for
tournament sizes of two and three.

With lower selection pressure (t = 2 or 3) GP per-
form worse on the MAX problem. This may be because
the fitter members of the population have on average
only two or three (i.e. t) children. Since only one third
of these will be identical it becomes impossible for them
to keep passing on identical copies of themselves to later
generations. (The GP remains elitist and so passes on
one copy of the best individual to the next generation
without crossover). So lower selection pressure increases
the diversity of the population. This permits greater ex-
ploration but at the expense of making the GP perform
worse as a hill climber. The anticipated benefit of re-
duced premature convergence does not happen (cf. lower
curves on Figure 8). Perhaps selection pressure below
that given by a tournament of two is needed?

7 Price’s Covariance and Selection The-
orem

Price’s Covariance and Selection Theorem [Price, 1970]
from population genetics relates the change in frequency
of a gene in a population from one generation to the
next, to the covariance of the gene’s frequency in the
original population with the number of offspring pro-
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Figure 8: Percentage of runs ending in failure with tour-
nament sizes from 2 to 8. Lower curves shows percentage
of failed runs with no × in a higher level.

duced by individuals in that population.

∆q =
covariance(z, q)

z
(6)

q = Frequency of gene
z = Number of offspring
z = Mean number of children

The theorem holds “for a single gene or for any linear
combination of genes at any number of loci, holds for
any sort of dominance or epistasis (non-linear interac-
tion between genes), for sexual or asexual reproduction,
for random or non-random mating, for diploid, haploid
or polyploid species, and even for imaginary species with
more than two sexes” [Price, 1970]. While [Altenberg,
1994] says it applies to genetic algorithms (GAs) this
(and [Langdon, 1996]) are the first experimental tests of
its applicability to GP.

In our GP the size of the population does not change
so z = 1 and the expected number of children an
individual has is given by its rank. So we expect
the change in frequency of a gene to be given by
covariance(q, t(ri/p)t−1), cf. (5), as long as crossover is
random. Figure 9 shows good agreement between the-
ory and measurement for + nodes near the root but at
the maximum allowed depth for + nodes, the crossover
depth restriction acts to depress the change in frequency.
After three generations the number of + nodes no longer
increases dramatically and instead clusters near zero
even though the covariance is positive. Similar effects
are seen with × nodes and the opposite with 0.5 nodes
where the change in frequency tends to be larger than
predicted later in the run when most trees have reached
near the maximum size.

Figure 10 considers 3 runs, the first one (which failed
but does find a solution if run for long enough), a suc-

228



-1

-0.5

0

0.5

1

1.5

2

-1 -0.5 0 0.5 1 1.5 2

C
ha

ng
e 

in
 fr

eq
ue

nc
y

Covariance with rank based fitness

+ depth 2
+/16 depth 7

Figure 9: Change in Frequency v. Covariance for + in
the first D = 8 run (+ at depth 7 rescaled by dividing
by 16).

cessful run and one which can never find the optimal so-
lution. The three are principally separated by the num-
ber of × nodes at the second level of the tree (i.e. d = 1).
In the successful run this rises rapidly so by generation
four there are on average nearly 2.0 such nodes per indi-
vidual in the population. This remains true throughout
the rest of the run.

In the first run, the number of × nodes at level 1 rises
in generations 1 and 2 as it does in the successful run but
then its covariance with fitness drops to near zero and
the its frequency converges towards 1.0 where it remains
until the end of the run. The unsuccessful run starts like
the other two runs but then in generation three the co-
variance becomes negative and frequency falls to near
zero in the next generation. The population eventually
converges to zero i.e. there are no × nodes at level 1
anywhere in the population and (as explained above) it
cannot escape from this trap. NB the eventual outcome
of these three runs 500 generations later can be pre-
dicted from the covariance of gene frequency with (rank
based) fitness in generations two and three.

Figure 11 considers the fate of × nodes in success-
ful and unsuccessful runs with D = 5. We see from
Figure 11 that the two sets of runs start from approx-
imately the same point as their initial population but
diverge radically after the first generation created by
crossover. The mean covariance in successful runs is
positive and remains positive, with the frequency rising.
In contrast in unsuccessful runs the covariance remains
low and the frequency of × nodes fails to rise, eventually
being totally displaced by + nodes.

8 Conclusions

Analysis shows on the larger MAX problems GP has
two serious problems:
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Figure 10: Covariance with fitness and frequency for ×
in the second level of the tree in the first run, a successful
run and a prematurely converged run (D = 8).

1. As described in [Gathercole and Ross, 1996] GP pop-
ulations have a significant risk of losing vital compo-
nents of the solutions at the very beginning of the
run and these components can not be recovered later
in the run. We have used Price’s Theorem to anal-
yse why this happens and which runs will be effected.
(Similar effects are reported in [Langdon, 1996]).

2. Where solution is possible, the later stages of
GP runs are effectively performing randomised hill
climbing and so solution time grows exponentially
with depth of the solution.

We have extended the analysis of the difficulties
crossover experiences presented in [Gathercole and Ross,
1996] to include a quantitative model of the later evo-
lution of MAX problem populations. Comparison with
experimental results indicate the model gives a reason-
able indication of the likely rate of improvement.

While [Gathercole and Ross, 1996] suggest that MAX
problem populations converge, measurements indicate
after many generations up to two thirds of the popu-
lation are unique depending upon maximum depth and
selection pressure. A model of this based on the in-
teraction between crossover and the depth restriction
has been presented. Additionally a model of the num-
ber of duplicate individuals in the initial populations
has been presented which highlights a potential prob-
lem with the standard technique for generating the ini-
tial random population.

In the last section we used the MAX problem to
demonstrate the applicability of Price’s Covariance
and Selection Theorem of gene frequencies to GP
populations, but noted GP’s depth restriction influ-
ences crossover and the consequent implications on the
changes in gene frequencies. Gene covariance was anal-
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Figure 11: Covariance with fitness and frequency for ×
in the second level of the tree. Means of successful and
unsuccessful runs. Error bars indicate standard error
(D = 5).

ysed to help explain why GP populations get locked into
suboptimal solutions in the first few generations.
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