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Abstract

We investigate the distribution of fitness of programs concentrating upon those repre-
sented as parse trees, particularly how such distributions scale with respect to changes in
size of the programs. By using a combination of enumeration and Monte Carlo sampling
on a large number of problems from three very different areas we are lead to suggest,
in general, once some minimum size threshold has been exceeded, the distribution of
performance is approximately independent of program length. We proof this for linear
programs and for simple side effect free parse trees. We give the density of solutions to
the parity problems in program trees composed of XOR building blocks. We have so far
only conducted limited experiments with programs including side effects and iteration.
These suggest a similar result may also hold for this wider class of programs.
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1 Introduction

The use of genetic algorithms and other stochastic search techniques to solve problems
by automatically generating programs which solve them has become increasingly popular.
Yet we know almost nothing about the distribution of solutions within these vast search
spaces. They are neither continuous nor differentiable and so classical search techniques
are incapable of solving our problems. Instead heuristic search techniques, principally
stochastic search techniques, have been used. The term genetic programming (GP) is
used for techniques which evolve suitable programs by stochastic search of the space of
possible programs. The theoretical foundations of GP are at present weak. In particular
little is known about the space which it searches, in particular how it scales. We suggest
that in general above some problem dependent threshold considering all programs their
fitness shows little variation with their size. The distribution of fitness levels, particularly
the distribution of solutions, gives us directly the performance of random search. We can
use this as a benchmark against which to compare GP and other techniques. We can
also compare the density of solutions in parse trees with those in linear programs. Our
analysis shows there is much more variation in big trees than in long linear programs.
Some functions are much more common and some much rarer.

We test our claim using a combination of enumeration and Monte Carlo sampling (de-
scribed in Section 2) on 66340 of the Boolean problems (Sections 3 and 4), on a continuous
domain symbolic regression benchmark problem (Section 5) and finally on a commonly
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Figure 1: Size of various search spaces (note log log scale)

used GP benchmark problem, the artificial ant problem, which includes both iteration and
side effects (Section 6). This is followed by a proof for long linear programs (Section 7) and
big random trees and deep random full trees where there are no side effects (Section 8). In
Section 9 we give the fitness distribution and rate of convergence to it for arbitrary order
XOR trees. (XOR is often considered a building block of solutions to the parity problems).
This is followed by a discussion of these results and their implications (Section 10) and
our conclusions (Section 11).

2 Experimental Method

For the very shortest programs it is feasible to generate and test every program of a given
length. (The length of a tree program is the size of the tree, the number of internal nodes
in the tree plus the number of leafs). However as Figure 1 makes clear the number of
possible programs grows very quickly with their size and so we must fall back on randomly
sampling programs. We use the random tree method given in (Alonso and Schott, 1995)
to sample uniformly all the programs of a specific length. Typically we sample 10,000,000
programs of each length. 1

The ramped-half-and-half method (Koza, 1992, page 93) is commonly used to generate
the initial population in genetic programming (GP). Half the random programs generated
by it are full (i.e. every leaf is the same distance from the root). Therefore we also explicitly
consider the subspace of full trees. In some cases this subspace is radically different from
the whole space.

1The C++ code used to generate random programs is available online at the following address
ftp://ftp.cs.bham.ac.uk/pub/authors/W.B.Langdon/gp-code/rand tree.cc).
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Figure 2: Proportion of NAND trees which yield each 2 input logic function.

3 Boolean Functions

The Boolean functions have often been used as benchmark problems. The program trees we
will consider are composed of n terminals (D0, D1, . . . Dn−1) which are the Boolean inputs
to the program and four sets of the Boolean logic functions NAND, XOR, {AND, OR,
NAND and NOR} and {AND, OR, NAND, NOR and XOR}. There are 22n

Boolean logic
functions of n inputs. NAND by itself is sufficient to construct any of them and therefore
so are the last two sets. XOR by itself can only generate 2n of them but as we shall see
adding it to the function set can dramatically effect the whole search space. The fitness
of each tree is given by evaluating it as a logical expression for each of the 2n possible
combinations of Dn inputs. Its fitness is the number of fitness cases when its output agrees
with that of the target Boolean function (Koza, 1992).

There are n(l+1)/2|F |(l−1)/2× (l−1)!
((l+1)/2)!((l−1)/2)! different trees of length l (Koza, 1992;

Alonso and Schott, 1995, page 213). |F | is one, four or five, depending which of the
four function sets is used. This formula is simple as each function (internal node) has
two arguments. The number of programs rises rapidly, approximately exponentially, with
increasing program length l (see Figure 1). If no bounds are placed on the size or depth
of programs then the number of them is unbounded, i.e. the search space is infinite.

4 Boolean Program Spaces

4.1 NAND Program Spaces

Due to the ease of manufacture of NAND gates in integrated semiconductors, and because
any Boolean function can be constructed from a network of NAND gates, they are the
principal active component in digital electronics. It is, therefore, an interesting function to
study. The following sections give the number of different program trees composed only of
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NAND functions that are equivalent to each Boolean logic function. We specifically look
at the programs trees composed only of NAND of various sizes for two, three and four
inputs.

4.1.1 2 input NAND Program Spaces

There are 222
= 16 Boolean functions of two inputs. The proportion of NAND trees which

evaluate to each is plotted in Figure 2.

Not surprisingly there are two peaks at size 1 of height 0.5 which correspond to the
functions D0 and D1 and no other functions are possible. There is also a peak of the
same height for size 3, which is NAND itself, and two smaller peaks for ND0 (not D0) and
ND1 (not D1). Three functions can be constructed from trees of size 5, i.e., two NAND
gates and three inputs. Seven from size 7 and so on. It is not until tree size 15 (7 NAND
gates) that all of the 16 possible functions can be constructed from a tree of one length,
although all can be constructed from trees of size 13 or less. XOR can be fabricated from 5
NAND gates and 6 terminals in a nearly full tree with 11 nodes and a height of 4.

Table 1: Proportion of Two Bit NAND Programs, and their fitness values (for two prob-
lems). Lower table gives proportion by fitness value (for the two problems)

Rule Proportion Fitness
Always on Odd-2-Parity

0 off .00490 0 2
1 nor .00415 1 1
2 .01689 1 3
3 nd1 .10710 2 2
4 .01696 1 3
5 nd0 .10745 2 2
6 xor .01430 2 4
7 nand .15121 3 3
8 and .03695 1 1
9 eq .01088 1 0

10 d0 .07727 2 2
11 .10920 3 1
12 d1 .07702 2 2
13 .10898 3 1
14 or .04753 3 3
15 on .10922 4 2

Proportion
Fitness 0 .00495 .01088

1 .08583 .25928
2 .38314 .48296
3 .41692 .23259
4 .10922 .01430

From Figure 2 we also see that each of the functions quickly converges towards some
limiting proportion of the NAND trees of a given length. Thus we can give the proportion
of the search space (formed by NAND, D0 and D1 trees) occupied by each of the sixteen
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Figure 3: Proportion of NAND trees which yield each 3 input equivalence class.

functions, see Table 1.

Each of the 22n

= 16 Boolean functions can be regarded as a problem with its own
fitness function. As indicated in Section 3, each fitness function has 2n + 1 = 5 values.
A simple problem is to find a tree which always returns 1 (the always on problem). This
corresponds to function 15. Function 15 has, of course, the maximum fitness value (4).
The fitness value of the other functions are given in column 4 of Table 1. (Column 5
gives their fitness values for the odd-2 parity (XOR) problem). The lower part of Table 1
give the fraction of the search space with a particular fitness value for the two example
problems. Note the relationship between function and fitness (on a given problem) is fixed.
Therefore (since the proportion of the search space occupied by each function does not
change w.r.t. length above the threshold) the distribution of fitness values is independent
of length above the same threshold. This is true for all possible (2 input) problems.

Functions 10 and 12 (D0 and D1) are equivalent to each other in the sense the other
is produced by exchanging inputs. Function 10 and 12 are equally common in the search
space. There are three other pairs of equivalent functions, 2 and 4, 3 and 5 (ND1 and ND0),
and 11 and 13. It is also apparent that lexical ordering of functions is not the most
convenient form for graphical presentation. In other plots they will be presented in or-
der of decreasing frequency and only data for one function of an equivalent set will be
plotted.

4.1.2 3 input NAND Program Spaces

There are 223
= 256 Boolean functions of three inputs. However, many of these are

equivalent to each other. Taking this into account, these reduce to 80 classes. In Figure 3
we plot the proportion of NAND trees which evaluate to each of these classes using the
class ordering given in (Koza, 1992, Table 9.2).

Comparing Figures 2 and 3 we see that they have several features in common. In
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Figure 4: Proportion of NAND trees which yield each 4 input equivalence class (data
with a signal to noise ratio of less than 3.0 are excluded)

particular the proportion of each function changes initially with increasing program length,
but once some threshold has been exceeded, it changes scarcely at all with size. The
variation between each function is far greater than when using just two inputs.

4.1.3 4 input NAND Program Spaces

There are 224
= 65536 Boolean functions of four inputs. Again many of these are equivalent

to each other and so these reduce to 4176 classes. In Figure 4 we plot the proportion of
NAND trees which evaluate to each of these classes. The ordering of the classes is given
by their measured frequency in trees of size 255.

Comparing Figure 4 with the two earlier Figures (2 and 3) we see the same common
features. While the proportion of each function changes initially (for clarity data for short
programs are not plotted in Figure 4) if we look at programs containing 16 or more NAND
gates (i.e. size 31 or more) the proportion scarcely changes with size. This appears to be
true for all 65536 functions but as the data is based on Monte Carlo sampling the data
for the rarer functions is correspondingly noisy.

Again the variation between each function is far greater than when using just two
or three inputs. Indeed none of the functions in the 842 rarest equivalence classes where
discovered in Monte Carlo sampling of 10,000,000 programs of length 255. This includes
both the odd and even parity functions with 4 inputs. Neither of which were discovered
in any of the 20 Monte Carlo runs (each sampling 10,000,000 points).
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Figure 5: Proportion of functions in each equivalence class {AND, OR, NAND and NOR}

4.2 3 Input AND OR NAND NOR (XOR) Boolean Program Spaces

In this section we consider all the Boolean functions for n = 3 when using the larger
function sets (i.e. {AND, OR, NAND and NOR} and {AND, OR, NAND, NOR and
XOR}). As we said in Section 4.1.2 there are 256 of them but they can be split into 80
equivalence classes.

Comparing Figure 5 with Figure 3 we see the bigger search space shares many char-
acteristics with that produced by NAND on its own. In particular it shows a certain
minimum size is required before the problem can be solved and that the minimum size de-
pends on the difficulty of the problem. Once this threshold size is exceeded the proportion
of programs which belong to the equivalence class grows rapidly to a stable value which
appears to be more-or-less independent of program size. Figure 6 shows these character-
istics are retained if we extend the function set to include XOR. Note adding the XOR
function radically changes the program space. In particular, as might be expected, the
two parity functions (equivalence classes 79 and 80) are much more prevalent. Also the
range of frequencies is much reduced. For example 68 of the 80 equivalence classes have
frequencies between 0.1/256 and 10/256 rather than 28 with the standard function set.

While Figures 5 and 6 can be used to estimate the fitness space of each three input
Boolean function across the whole space, there are some interesting parts of these spaces
where certain functions are more concentrated than elsewhere. There are far more parity
functions amongst the full trees than there are on average. When XOR is added to the
function set, there are again a higher proportion of parity functions but the difference
between the full trees and the rest of the search space is less dramatic.

4.3 6 Input Boolean Program Spaces

In this section we investigate the distribution of 6 input Boolean functions using the two
larger function sets: AND, OR, NAND and NOR} and {AND, OR, NAND, NOR and
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Figure 6: Proportion of functions in each equivalence class {AND, OR, NAND, NOR and
XOR}
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Figure 8: Even-6-parity program space {AND, OR, NAND and NOR}

XOR}. It is difficult to analyse all the Boolean functions with more than four inputs.
Instead we have concentrated the easiest and hardest Boolean functions of six inputs: the
always-on-6 function and the even-6-parity function. Figures 7 and 8 show the proportion
of programs of various lengths with each of the possible scores. Figure 9 shows the same
when XOR is added to the function set. Always-on-6 and even-6-parity, both with and
without XOR, have the same near independence of fitness from length.

The fitness distribution of the even-6-parity problem is much tighter than that of the
binomial distribution produced by selecting Boolean functions uniformly at random from
the 22n

available (centered on n
2 with variance of n

4 (Rosca, 1997, page 62). The measured
variance is only 0.12 rather than 1.5. Such a tight fitness distribution and the absence of
a high fitness tail suggests that the problem will be hard for adaptive algorithms. When
discussing the evolution of evolvability, (Altenberg, 1994) assumes that high fitness tails
exist and can be found by evolutionary search algorithms. We would hope that they would
be better than random search at finding and exploiting such tails.

Adding XOR to the function set greatly increases the even-6-parity fitness distribution’s
width and it retains its near independence of program size (see Figure 9). The standard
deviation is now 0.92 However, the more dramatic effect of the wider distribution, the
more feasible it is for our Monte Carlo simulations to find solutions, i.e., programs scoring
64 hits. They occupy about 2 10−7 of the whole search space.

Figure 7 shows the distribution of number of trues returned is a saw-toothed curve.
The proportion of programs which have one of the odd scores on the always-on-6 problem
is about 0.3%. The proportion which have an even score, not divisible by four, is about
1%, scores divisible by 4 about 2%, those by 8 3%, those by 16 6% and those by 32 10%.
Note the central peak in the even-6 parity fitness distribution (see Figure 8) is not solely
due to a large number of programs which implement always-on-6 or always-off-6. Only
18.6% of programs are of these two types.
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Figure 9: Even-6-parity program space {AND, OR, NAND, NOR and XOR}

The distribution of number of trues returned when XOR is added to the function
set is a little changed but retains its saw toothed appearance and near independence of
program size.

4.4 Even-6 Parity and Always-On-6 Full Trees

Restricting our search to just the full trees yields a similar fitness distribution for the
even-6 parity problem, see Figure 10. In particular we have the convergence of fitness
distribution once the tree size exceeds a threshold. There is a small variation with size but
it does appear to decrease as we consider bigger trees. The distribution of fitness values
observed is considerably wider with a range of 25–38 (twice that for the whole search
space, see Figure 8) and a standard deviation of 0.68. Adding XOR to the function set
further widens the distribution (the standard deviation becomes 1.8).

Searching just the full trees yields a similar fitness distribution for the always-on-
6 problem as for the whole search space However the peaks corresponding to functions
returning true multiples of 4, 8, 16 or 32 times are now far less prominent and instead
always-on-6 itself and its compliment, always-off-6, now dominate and together represent
35% of all trees, compared to 18% when considering asymmetric trees as well. Also the
troughs at odd numbers of hits are also less prominent, each representing about 0.5%
rather than about 0.3% of all programs. Adding XOR to the function set has the effect
of further smoothing the distribution. The peaks at either extreme are now 8% with a
typical odd values near 32 being 1.4% and even being 1.8%. Both with XOR and without
the distribution of the number of trues returned by full trees shows some dependence on
depth of tree. However, as with even-6 parity, this appears to fade away as the programs
become bigger.

408



24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 15
63

127

255

511
1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

Hits on Even-6 Parity Problem

Size

Proportion

Figure 10: Even-6-parity full tree program space {AND, OR, NAND and NOR}

5 Symbolic Regression

Symbolic regression is the problem of finding in a functional form a model of some dataset.
This is a very common requirement and techniques such as linear regression are widely
used. Often such models are used to predict values for unknown data points. Where data
are complex more complex regression techniques are needed. We investigate a benchmark
symbolic regression problem in this section.

We use the sextic polynomial regression problem (Koza, 1994, pages 110–122). The sextic
polynomial is x6 − 2x4 + x2, which can be rewritten as the product of three squares, i.e.,
x2(x− 1)2(x+1)2. The problem for GP is to match it over the range -1.0. . . 1.0 using +, -
×, protected division, the input x and random constants. We used 250 random constants,
chosen from the 2001 numbers between -1 and +1 with a granularity of 0.001. No constant
was repeated and none of the three special values of -1, 0 or 1 where included. The 50 test
points used were chosen uniformly at random from the range -1 and 1. No granularity
was imposed. Again, none of the three special values of -1, 0 or 1 where included and no
value was repeated. Apart from limiting ourselves to 250 constants, this is as described in
(Koza, 1994, pages 110–122).

5.1 Sextic Polynomial Fitness Function

The fitness of each program is given by its absolute error over all the test cases (Langdon
et al., 1999). This is as described by (Koza, 1994) except we divide by the number of test
cases (50) to yield the average discrepancy between the value it returns and the target
value. All calculations were performed in standard floating point representations.
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Figure 11: Distribution of fitness in Sextic Polynomial (constants and input equally
sampled)

5.2 Sextic Polynomial Fitness Distribution

The distribution of fitness is given in Figure 11. It is apparent that symbolic regression
shares many of the characteristics of the more difficult Boolean problems. The proportion
of good programs is very small (as expected) but again we see above a small threshold
the proportion of good programs in a given fitness range converges to a value which is
independent of their size. (Figure 11 shows the proportion of very bad programs does
show variation w.r.t. length. However it appears to reach a stable value but the threshold
length is bigger. Each test case where a floating point exception occurs is given a penalty
of about 2,000 (Langdon et al., 1999). Figure 11 suggests bigger programs are more likely
to cause floating point exceptions but when programs are big enough this proportion also
converges to a limit. In practice such programs have little effect as they are never selected
to be parents of the next generation).

6 Artificial Ant

Our last example is in some ways the most complex. We report the distribution of fitness
in a benchmark GP problem, which combines both side effects and iteration. The problem
chosen is the artificial ant following the Santa Fe trail. The program tree is repeatedly
executed during which it controls an artificial ant using the side effects of special leafs.
The value returned by the root node is ignored. It also includes functions with more than
two arguments. (A more complete description of this particular problem search space may
be found in (Langdon and Poli, 1998), including schema analysis. Here we concentrate
upon variation w.r.t. length).

Figure 12 again suggests that, provided programs exceed some small fitness dependent
threshold, the distribution of program fitnesses is roughly independent of their size. Much
of the fluctuation seen at the higher fitness levels is due to sampling noise inherent in
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Figure 12: Proportion of Artificial Ant programs of a given length by their fitness. Values
for lengths 15 and above are based on Monte Carlo sampling and so are subject to noise.

Monte Carlo measurements.

In Figure 13 (solid line) we present the data for just one fitness value (the solutions).
There are no solutions with less than ten nodes. From 11 to 18 nodes the proportion of
solutions in the search space rises rapidly (but not monotonically) to a peak from which
it falls. For programs with more than 30 nodes, the concentration of solutions appears to
change only slowly with program size. It appears to eventually falls to near zero.

In the standard Santa Fe problem the function set includes both Prog2 and Prog3,
however it is not necessary to have both to solve the problem. The two dashed lines in
Figure 13 show the density of solutions when only one of them is included. While the
data are subject to sampling noise, it appears that both subspaces formed by excluding
one or other of the Prog functions are richer in solutions than the original one. Again in
both subspaces it appears there is only very slow variation in the density of the maximum
fitness value w.r.t. length above some threshold (about 50 or 100 nodes).

7 Long Random Linear Programs

In this section we will proof that, provided certain assumptions hold, each output generated
by long random linear programs is equally likely and that this is true regardless of the
program’s inputs and its length. Consequently the chance of finding at random a solution
reduces exponentially with the size of the test set.

The state of a computer is determined by the contents of its memory. For our purposes,
registers, condition flags, etc. within its CPU and input and output registers, are regarded
as part of its memory but we exclude the program counter (PC). If it has N bits of
memory it can be in up to 2N states. Program execution starts with all memory initialised.
Execution of each program instruction moves the computer from one state to another.
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Usually the next state will be different but it need not be. For example an instruction
which sets a register to zero will not change the state if the register is already zero. We
will assume there is at least one such state and instruction.

We assume the designer of the computer (or GP experiment) has ensured that it
is possible to reach every state. This is done since 1) inaccessible states correspond to
unusable memory, i.e. to inefficient use of hardware and, 2) it makes it is possible to
transform any input to any output.

Finally we will assume the instruction set is symmetric in that if there is one instruc-
tion which moves the computer from one state to another there is also an instruction which
moves it in the other direction.

Consider a program as a sequence of instructions each of which transforms the com-
puter’s state. In particular consider the case where the program contains l instructions
chosen at random. The computer starts from an initial state (given by the program’s
inputs) and terminates l states later. The program’s output is then the state of the com-
puter’s outputs. Note: the program itself need not be linear, it can contain branches,
loops, function calls etc. provided it executes state changing instructions at random and
terminates after l of them. We exclude the program counter (PC) from the machine’s state
so its contents and thus the address of the next instruction need not be random. Program
termination could be forced by an external event or by fixing a path l instruction long for

412



the program counter, cf. linear GP (Nordin, 1997).

We can represent the computer by a probability vector of length 2N . When executing a
fixed program, the computer will be in exactly one state at a time, i.e., its probability vector
will contain one element of 1.0 and the rest will be zero. We can view each instruction as an
2N ×2N matrix which when multiplied by the current probability vector (state) yields the
next probability vector (next state). The elements of the matrix are either zero or one and
there is exactly one “1” in each row. Therefore it is a stochastic matrix (Feller, 1970, 375).

If we consider all possible programs of length l we can define the average state at a
particular time as the mean probability vector u at that time. In a particular program the
next state is given by the current state vector multiplied by a particular matrix. When
considering all programs, we can say the average next state is given by mean probability
vector when multiplied by the average instruction matrix. Note the next state is given by
the current state alone. It does not depend upon earlier events. Thus, on average, the
state of the computer can be represented by a Markov process. The Markov transition
probability matrix M is the mean of all the instruction state matrices.

Since M is the mean of stochastic matrices, it too will be stochastic. At least one of the
elements on its diagonal will be greater than zero. The period of this state will therefore
be 1, i.e. it will be aperiodic (Feller, 1970, page 387). Therefore the greatest common
divisor (g.c.d) of all the states is 1. Since any state can be reached, M is irreducible.
Thus M corresponds to an irreducible ergodic Markov chain so u will tend to a limit u∞
independent of the starting state (i.e. the program’s inputs) as the length l of the program
is increased (Feller, 1970, page 393).

Because the instruction set is symmetric, M will be symmetric and both its rows and
columns will each sum to 1.0 (M is doubly stochastic). Therefore, in the limit all states
are equally probable (Feller, 1970, 399), i.e., there is a limiting probability distribution for
the states of the computer and at the limit each state is equally likely. If the instruction
set is asymmetric, there is still a limit but the states are no longer equally likely.

7.1 The Chance of Finding a Solution

We define a solution to mean that the program passes all the test conditions. As an
example, suppose there are T non-overlapping tests. Each test specifies a number of
input bits and a target output pattern of n bits. After executing a long random program
each final state is equally likely. In particular each combination of bits in the output
registers are equally likely. I.e. each function of the inputs is equally likely. Thus the
chance of generating exactly the target bit pattern is 2−n. There are many functions
which implement this transformation, there is equal chance of selecting at random any of
them. In particular, if the test cases don’t overlap, the chance of having selected one of
them which also passes the second test case is also 2−n. Therefore the chance of finding
a program which passes both first and second test case is 2−2n. Generalizing, the chance
of finding a program which passes all T tests (i.e. of solving the problem) is 2−nT . This
can be viewed as the chance of finding a solution is given by the information content of
the the test set (nT bits).

7.2 An Illustrative Example

Consider a system with two Boolean registers R0 and R1. At the start of program execution
each is loaded with an input. When the program terminates its answer is given by R0.
There are eight instructions:
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R0 ←AND (R0, R1) R1 ←AND (R0, R1)
R0 ←NAND (R0, R1) R1 ←NAND (R0, R1)
R0 ←OR (R0, R1) R1 ←OR (R0, R1)
R0 ←NOR (R0, R1) R1 ←NOR (R0, R1)

There are 22 = 4 states (R0R1 = 00, 01, 10, 11).

R0 ← AND
1 0 0 0
1 0 0 0
0 0 1 0
0 0 0 1

R1 ← AND
1 0 0 0
0 1 0 0
1 0 0 0
0 0 0 1

R0 ← NAND
0 1 0 0
0 1 0 0
0 0 0 1
0 0 1 0

R1 ← NAND
0 0 1 0
0 0 0 1
0 0 1 0
0 1 0 0

R0 ← OR
1 0 0 0
0 1 0 0
0 0 0 1
0 0 0 1

R1 ← OR
1 0 0 0
0 0 0 1
0 0 1 0
0 0 0 1

R0 ← NOR
0 1 0 0
1 0 0 0
0 0 1 0
0 0 1 0

R1 ← NOR
0 0 1 0
0 1 0 0
1 0 0 0
0 1 0 0

If we use each of the instructions with equal probability the Markov transition matrix
is the average of all 8, i.e.

M = 1/8


4 2 2 0
2 4 0 2
2 0 4 2
0 2 2 4


We can see u∞ = 1/4(1, 1, 1, 1) satisfies u∞M = u∞ so it is the limiting probability

distribution. Alternatively we can proof this by noting M is symmetric and hence doubly
stochastic, it has at least one non-zero diagonal term thus the theorem from (Feller, 1970,
399) holds and so in the limit all states are equally probable.

The eigenvalues λ and corresponding eigenvectors E of M are

λ00=1/2 ( 0 −1 1 0 )
λ01=1/2 (−1 0 0 1 )
λ10=1 ( 1 1 1 1 )
λ11=0 ( 1 −1 −1 1 )

Note since M is symmetric the other eigenvalues are also real.

7.3 Rate of Convergence and the Threshold

The eigenvectors E form an orthonormal set and so any vector can be expressed as a linear
combination w of them u = wE (w = uE−1). Where E is the n×n matrix formed by the
n eigenvectors of M and E−1 is its inverse. So EM = λE, where λ is the n× n diagonal
matrix formed from the eigenvalues of M . Thus the probability vector of the next state is
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u1 = uM

wEM

wλE

w1E

Where w1 = wλ. The new probability vector u1 can also be re-expressed as a linear
combination of the eigenvectors of M . It is actually w1. Note that the components have
been shrunk by a factor given by the corresponding eigenvalue.

The probability distribution of the second state is u2 = u1M = wλEM = wλ2E and
so that of the ith state is ui = wλiE.

As i increases only the components with the largest eigenvalues will survive, other
components will vanish exponentially quickly. I.e. the probability distribution will converge
to the limit. The slowest terms to be removed that are not part of the limiting distribution
are given by the eigenvectors corresponding to the second largest eigenvalue λ2. The
number of steps, i.e. the threshold size, is dominated by the magnitude of this eigenvalue.

If we require the largest transient term to be less than some e > 0 then

λh
2 < e

h log(λ2) < log(e)
h > log(e)/ log(λ2)

Threshold size = O(1/ log(λ2))

Returning to our example. Suppose both inputs are 0. Then u = (1, 0, 0, 0). From M we
can calculate λ = (1/2, 1/2, 1, 0), E and E−1.

E =


0 −1 1 0
−1 0 0 1

1 1 1 1
1 −1 −1 1

 E−1 = 1/4


0 −2 1 1
−2 0 1 −1

2 0 1 −1
0 2 1 1



w = uE−1 = (0,−1/2, 1/4, 1/4)
w1 = wλ = (0,−1/4, 1/4, 0)
u1 = w1E = (1/2, 1/4, 1/4, 0)
u2 = wλ2E = (0,−1/8, 1/4, 0)E

= (3/8, 1/4, 1/4, 1/8)

Note all elements of u2 are already with 50% of their limit values. In this example the other
eigenvalues are not close to 1.0, so convergence is rapid. −1/ log(next largest eigenvalue) =
−1/ log(1/2) = 1.442695.
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Figure 14: The expression (x− y/3)× (10 + 2) represented as a tree

8 Big Random Tree Programs

In this section we will proof that, provided certain assumptions hold, there is a limiting
distribution for functionality implemented by large binary tree programs. Initially we
allow functions with any number of inputs but later sub-sections simplify this by only
considering binary functions.

8.1 Introduction

We wish to establish a similar result for trees that we have already shown for linear
programs. We will start by assuming that all the state information is held within the tree
(i.e. the functions have no side effects) and that the output of the program is returned
only via its root. It should be possible to combine the two results to include trees with
external memory. We start with an example tree.

Consider the expression (x − y/3) × (10 + 2). It has four functions (−, /, × and +)
and five leafs (x, y, 3, 10 and 2). We represent it as a tree, see Figure 14. It would usually
be interpreted depth first, i.e. by evaluating x, then y/3, then (x− y/3), then 10 + 2 and
finally multiplying them together. However, as there are no side effects the expression
can be evaluated in a variety of different orders all of which yield the same answer. In
particular the tree can be evaluated from the deepest node upwards. E.g. evaluate y first,
then y/3. As we reach each new function node in the tree we have to stop and save the
value we have calculated until the value of the function’s other arguments have also been
calculated. When one execution thread is blocked we create a new one from the next
unprocessed leaf. In this case 10 and then 2, so we can calculate 10+2 but when this new
thread reaches the × node it also has to stop. So we start a new thread from x. When it
reaches the − node, all its arguments are known and so we can restart the deepest path
thread. It calculates x − y/3 and moves up the tree. On reaching the root (×) all its
arguments are now known so we can perform the final multiplication using the current
value and the previously stored result of 10+2. This is the value of the tree and evaluation
halts.

We will now repeat the analysis used for linear programs. Instead of having a linear
execution path the program is a tree but we will concentrate on the longest path within
the tree (shown with thick lines in Figure 14).

The state of the program at each point in this path is determined by the current value
(we are excluding additional memory in this paper). Its initial value is given by the leaf
we start from. Each function along the way to the root will potentially change it and then
the new value will be propergated towards the root. If the function has more than one
argument then, in general, before we can determine the transformation the function will
make, we will have to evaluate all its other arguments.

In our example the first function we reach is divide. Divide has two arguments.
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However once we have calculated the value of its other argument (it is 3 in our example)
we can treat divide as a function with one argument. Note the transformation at a given
step will change each time the program is executed with different inputs.

This framework is similar to the linear case in that in random trees we can view each
function along the longest path (in conjunction with its other inputs) as causing a random
transformation of the current value. However the process is not, in general, a Markov
chain because even for random trees the transformation matrices change as we get further
from the leaf.

Let u be a vector whose elements correspond to each of the possible values. For
example if we are dealing with an integer problem then there are 232 possible values
(n = 232) and u has 232 elements. u is the probability density vector of the current value.
For a given program at a given time, one element of u will be 1.0 and all the others will
be zero.

For each function of arity a there is na+1 hypercube transformation matrix. When
all the inputs to the function are known they are converted to a probability vectors like
u. By multiplying the transformation matrix by each of them in turn we get the output
probability vector. The output of the function is given by the non-zero element in the
output probability vector.

Since we wish to treat the current path separately from the function’s other inputs
we split its na+1 hypercube transformation matrix into a na+1 transformation matrices,
one for each argument. Firstly we determine which argument of the function the current
path is. We then choose the corresponding transformation matrix and multiply it by each
input in turn but excluding the current path. This yields an n × n matrix which when
multiplied by the current probability vector yields the next probability vector. E.g. each
binary function has 2 n × n × n transformation matrices. If the current path is its first
argument, we use the first, otherwise we use the second.

We now start the analysis of random programs. Starting from a leaf the non-zero
element of u will correspond to one of the inputs to the program. (For simplicity we will
treat constant values as being inputs to the program). We define the average value of u as
being the mean of its values across all possible programs. Thus initially all the elements
of u which correspond to one of the input values will be non-zero and all other elements
will be zero. Call this u0.

We then come to a particular arity a function as its ith input. The probability
distribution u1 after the first function is given by u0M1 where M1 is the transformation
matrix corresponding to the ith input of the first function. Since this is the deepest function
the other branches must also be random leafs and so their probability distributions will also
be u0. Thus M1 = ua−1

0 Nafi where Nafi is the na+1 hypercube transformation matrix for
function f input i (a indicates its arity). On average the new probability density function
will be the mean of all functions of arity a. Also on average the path we have chosen is
equally likely to reach any of the inputs of f , so we can also average across all value of i.
Let Na = 1/fa

∑j=fa

j=1 1/a
∑k=a

k=1 Najk where fa is the number of functions of arity a in the
function set. So on average M1 = ua−1

0 Na and u1 = u0M1.

8.2 Large Binary Trees

To avoid the complexity associated with considering multiple function arities we will as-
sume that all internal nodes are binary. We define N = N2. So M1 = u0N .
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The probability vector u1 is now propergate up the tree to the next function. Its
other argument is determined, N2jk is multiplied by them to yield M2. Again we have to
average across all programs so we use the mean N transformation matrix. The functions’
arguments may be either leafs or trees of height one. If they are leafs, their probability
vector will be identical to u0 (since they are also random). If they are functions, the
probability vector is the same as in the longest path because the same functions are
equally probable in each branch. So u′1 = u1 = u0M1. Let p′20 be the average number of
functions which are children of the function at distance 2 from the leaf along the longest
path (excluding those on the longest path). Also p′00 = 1 − p′20 is the average number of
children which are leafs. Thus M2 = p′00u0N +p′20u1N . Note M2 6= M1 and so the process
is not Markov.

M1 = u0N

u1 = u0u0N

M2 = p′00u0N + p′20u1N

M2 = p′00u0N + p′20u0u0NN

At the third level,

M3 = p′000u0N + p′200u
2
0NN + p′220(u

2
0N)(u0N)N + p′222(u

2
0N)(u2

0N)N ,

where p′iii refer to the proportion of children of the fourth node along the longest path
(but excluding those on the longest path). p′000 is the proportion of programs where there
is only one child (so it is a leaf). p′200 is the fraction where the child is a function but both
its children are leafs. p′220 is the fraction where the child has one child which is a function
and p′222 is the remainder. I.e. p′222 is the fraction of programs where the other child of
the fourth node is a full subtree as deep as the child on the longest path.

The n×n sub matrices of N are stochastic. u0N for arbitrary u0 will also be stochastic.
u0 =

∑
we where e are the eigenvectors of u0N with corresponding eigenvalues λ. Note

|λ| ≤ 1. Thus, v1, the probability distribution produced by a random full binary tree of
depth 1 is:

v1 = u0u0N

=
∑

weu0N

=
∑

wλe

v1 is closer to (or at least no further away from) the limiting distribution of u0N than u0

itself. Similarly v2 the distribution produced by full trees of depth 2 is

v2 = v1v1N

=
∑

i

wiλieiv1N

=
∑

i

wiλieiu0u0NN
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=
∑

i

wiλiei

∑
j

wjeju0NN

=
∑

i

wiλiei

∑
j

wjλjejN

=
∑

i

∑
j

wiλiwjλjeiejN

Since |λ| ≤ 1 v2 is also closer (or at least no further away) to the limiting distribution
eeN (where e is the eigenvector of u0N with the largest eigenvalue. If u0N has a diagonal
element greater than zero, there will be just one eigenvalue with a modulus of 1 and
the limiting distribution v∞ will not cycle. (The matrix components corresponding to
asymmetric subtrees are similarly bounded). Thus as we go higher in the tree the matrix
elements of the higher order components of Mi will be bounded.

As we go higher in the tree the number of branches we encounter that are the same
length as the longest one falls rapidly. I.e. the higher coefficients p′ are not only bounded
(they are non-negative but sum to 1.0) but the higher order ones vanish. In fact in large
random binary trees the chance that the other subtree is empty tends to a constant value
of approximately 0.5 (Sedgewick and Flajolet, 1996, page 241). I.e. p′0...0 tends to 0.5 as
we get further from the leaf, i.e. as i increases, so Mi is dominated by the first few terms.
Hence while Mi 6= M1, Mi+1 = Mi and so the current value along the longest path will
become Markovian. Therefore the probability distribution of the output of large random
trees does not depend upon their size. From the eigenvalues and eigenvectors of M∞ we
can calculate the probability distribution of the output of large random trees and how
big the threshold size is. Note that unlike linear programs, these may depend upon the
programs inputs.

8.3 An Illustrative Example

We take the same four Boolean functions as before (i.e. AND, NAND, OR and NOR) and
apply them to a Boolean regression problem of n-bits. Each is a binary function of one
bit input and so has two 2× 2× 2 transition matrices. Since each function is symmetric,
in each case the two matrices are the same.

As for each function, we also include the function with the opposite output (AND
and NAND). The mean matrix has the same value at every element. This means M1 is
independent of u0 with every element being the same –M1 is irreducible, doubly stochas-
tic, with non-zero diagonal elements. Thus, the output of the first random function is
independent of its inputs and is equally likely to be 0 as 1. Since the coefficients p′ sum
to 1, this is true for every Mi. The output of the whole tree is independent of its inputs
and is equally likely to be 0 as 1 regardless of the size of the tree.

8.4 The Chance of Finding a Solution

Because random trees have some inputs near their root, they are more likely to implement
program functionality which needs few operations on the inputs compared to functions
chosen at random. We can repeat the analysis in Section 8.1–8.2 but replace the current
value with the current functionality. Instead of considering the value output at each node
in the tree, we use an index number of the function implemented by the subtree rooted at
that node. For example, in an i-bit-input m-bit-output problem there are 2m2i

possible
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Figure 15: Distribution of 2 input functions produced by random trees comprised of AND,
NAND, OR and NOR. The solid line give the measured. Dotted lines are numerical
predictions based on simplified models of random trees.

functions and each can be given an m2i bit index number. So the number of possible values
n = 2m2i

. The na+1 hypercube transformation matrices Najk now operate on function
index values rather than actual values but we can define average behaviour etc. as before
and the analysis follows through. I.e. the functionality of large random trees tends to a
distribution which is independent of the tree size. The distribution and the threshold size
are again given by the eigenvalues and eigenvectors of the limit value of M .

8.5 A Second Illustrative Example

Returning to the example in Section 8.3, The transformation matrices now depend upon
the order of the problem. If we take the case where there are two inputs then there are a
2122

= 16 possible functions. So each function has two 16 × 16 × 16 transition matrices.
The functions are still symmetric so again we need only consider one of each pair.

However this does not mean each function is equally likely. When we consider the
average function transition matrix it is irreducible, stochastic, with non-zero diagonal
elements but not symmetric. Thus there is a limiting distribution independent of the
inputs but is not uniform. Also it has several non-zero eigenvalues, so while convergence
is rapid it is not instantaneous. Thus M∞ depends on the distribution of p′, i.e. of subtree
sizes. In Figure 15 the function distribution produced assuming a simple model in which
functions within the trees have one branch which is a leaf is compared with the measured
distribution. The distribution for full trees is shown for comparison.
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It is clear that the simple mode is approximately correct. A full model would need
to consider the distribution of subtree sizes (i.e. p′) more carefully. In the case of trees
containing only XOR the output of a tree does not depend upon its shape and we can give
an exact theoretical result for the limiting distribution.

9 XOR Program Spaces

In this section we give a theoretical analysis which shows in the limit as program size grows
the density of parity solutions when using EQ or XOR is independent of size but falls
exponentially with number of inputs (Section 9.2). But first we start with the functions
which can be created using EQ and XOR and in particular the form of the solutions to
the parity problems.

9.1 Parity and Always-on/off Program Spaces

Even parity solutions, where n is even, are of the form D0 = D1 = D2 = . . . = Dn−1.
However given the symmetry of the EQ building block the inputs to the program can
occur in any order. Further Dx = Dx is true so (Dy = Dx = Dx) = Dy therefore any pair
of repeated inputs can be removed from the program without changing its output.

Odd parity solutions, where n is odd, are of the form D0 6= D1 6= . . . 6= Dn−1. Again
given the symmetry of the XOR building block the inputs to the program can occur in
any order. Further Dx 6= Dx is false but (Dx 6= false) = Dx so (Dy 6= Dx 6= Dx) = Dy.
Therefore again any pair of repeated inputs can be removed from the program without
changing its output.

Therefore any program will be a solution to the parity problem provided it contains
an odd number of all n terminals. Thus all solutions contain t = n + 2i terminals, where
i = 0, 1, 2, . . . Both EQ and XOR are binary functions, so programs are of odd length
l = 2t− 1 and solutions are of length l = 2t− 1 = 2n + 4i− 1.

Any program with an even number of one or more inputs effectively ignores those
inputs. Given the nature of the parity function, such a program will pass exactly half the
fitness cases.

Note while XOR (or EQ) may more readily create solutions to the parity problems
they are considerably more limited than NAND and can only generate 2n of the possible
22n

functions (NAND can generate them all, thus the results of Section 7 do not directly
apply). Unlike NAND they show long range periodicity generating 2n−1 functions in trees
of length l = 2n + 4i − 1 (for large i) and the other 2n−1 functions in trees of length
l = 2n + 4i + 1.

9.2 Proportion of Solutions

If a program’s length does not obey l = 2n + 4i − 1 then it cannot be a solution to
the order n parity problem and will score exactly half marks on the parity problems. If
l = 2n+4i−1 is true, there is a chance that a randomly generated program will contain an
odd number of each input and so be a solution. When calculating the fraction of programs
of a given length that are solutions we can ignore the number of different tree shapes. This
is because the output of an XOR tree is determined only by how we label its leafs and not
by its shape.

To apply our Markov analysis we consider the current state to be given by the oddness
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Figure 16: Fraction of programs that solve Even-6-parity or Always-on-6 problems, using
EQ (note log scale). Error bars show standard error.

or evenness of the number of each of n − 1 inputs. (Given these and that we are only
considering programs which obey l = 2n+4i−1 the oddness or evenness of the remaining
input is fixed. Therefore we need only consider n−1 rather than n inputs). The distribution
of solutions to the parity problem is given by the chance of selecting a solution at random,
i.e. of all n − 1 inputs having the right parity. Suppose we create long random programs
by adding two randomly chosen inputs i, j at a time. I.e. the number of inputs of types
i and j will both increase by one and so will change from an odd to and even number or
vice versa. (If both inputs are of the same type (i = j) then it will swap back and there
is no change of state). The chance of moving from one state to another does not depend
upon how we got to that state, i.e. the process is Markovian and can be described by
a stochastic state transition matrix. The chance of moving from one state to another is
equal to the chance of moving in the opposite direction, i.e. the state transition matrix is
symmetric. There is a 1/(n− 1) > 0 chance of remaining in the same state after selecting
the next pair of inputs. Thus there is an acyclic limiting distribution and in it each of
the states is equally likely (Feller, 1970, page 399). There are 2n−1 states, one of which
corresponds to a solution to the parity problem. I.e. in the limit of large programs the
chance of finding a solution to the parity problem of order n in a parse tree composed of
XOR (or EQ) is 1/(2n−1) provided the tree is the right size (and zero other wise). In fact
at the large program limit this is true for each of the possible functions.

Figure 16 shows the fraction of 100,000 random programs which are solutions to
the Even-6 parity or always-on-6 problems, for a variety of lengths. Figure 16 shows
measurement approaches the theoretical large program limit for t ≥ 16, i.e. l ≥ 31. This
is to be expected as the second largest eigenvalue of the Markov transition matrix is 0.36
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which is far from the first. This means transient terms decrease by about e−1 every time
the program length increases by 2 leafs.

Figure 17 shows the fraction of random programs which are solutions to the Even or
Odd parity problems (100,000 or a million random trials). The lengths of the programs
were chosen so that l = 2n + 4i− 1 is true and the number of leafs exceeds 6n/16. (6n/16
was chosen as a linear variation of threshold with number of inputs was assumed and
2.33n was sufficient for n = 6. While the second eigenvalue changes only slowly with
the number of inputs in the problem, the threshold appears to rise linearly with it. The
threshold length ≈ n − 2). Figure 17 again shows agreement between measurement and
the theoretical large program limit.

As the Markov analysis predicts, we have observed (for n = 4) the proportion of all
possible functions generated by XOR and EQ rapidly converges to the same value with
increasing tree size.

10 Discussion

In the previous sections we have shown 66344 examples from diverse problems where our
claim appears to be justified and we have proved it for linear programs and standard GP. In
the case of the XOR trees, we have given the limiting distribution for each fitness level.
In the more difficult problems at the extremes of the fitness range (solutions to the parity
and the sextic polynomial problems), even sampling huge numbers of random trees, we
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have not be able to amass enough examples to demonstrate our claim. However, our proof
covers such cases. We next consider extending our claim.

10.1 Automatically Defined Function

We can extend our argument to cover programs evolved using Automatically Defined
Functions (ADFs) (Koza, 1994). Each ADF can be viewed as a tree in its own right and
so, if the ADF exceeds the threshold size, the distribution of possible functions the ADF
can implement will also converge to a limiting distribution as the ADF gets bigger. For
each function its value is determined by its input(s). The value of each of its inputs is
given by a subtree in the calling ADF or main program. When the subtree exceeds the
threshold size, the distribution of values used when calling the ADF will also converge and
thus the distribution of values returned by the ADFs will also converge and so, finally, will
be the distribution of values returned by the program as a whole.

10.2 Memory

It should be possible to produce a combined proof based on Sections 7 and 8 which covers
tree programs which have additional state (i.e. memory) outside the tree. We have not
measured the distribution of programs with external memory. It may be memory radically
changes the threshold size. However we suggest that our claim will hold for non-recursive
programs which include memory and subroutines.

10.3 Turing Complete Programs

Finally to consider all programs we need to consider Turing completeness. This requires
the addition of either recursion or iteration. The proof advanced in Section 7 for long
linear programs can be extended to Turing complete programs provided they halt. Firstly
we note Section 7 requires the programs complete l instructions. But if l is big enough,
programs longer than l have the same distribution. So exactly when the program halts is
not crucial. Secondly it is assumed each instruction is independent of the previous one. In
program loops, the instructions are executed in an ordered sequence. However if each loop
is small compared to the program it is reasonable to treat a repeated sequence of random
instructions as if it was just a random sequence.

It seems to reasonable that a similar result will also apply to big trees including itera-
tion or recursion and memory. However in both cases we anticipate the greater complexity
available may radically effect the threshold length. Perhaps to such an extent that it is
thus not obvious that our claim will hold in general to Turing complete programs.

10.4 Parity Problems Landscapes and Building Blocks

Section 9 describes the program space of the parity functions when given the appropri-
ate functional building block (i.e. XOR or EQ). For all but the simplest problems at all
program lengths the fitness space is dominated by a central spike indicating almost all
programs score exactly half marks. However a small fraction of programs do solve the
parity problems. We have derived a simple analytical expression for the case of large pro-
grams which shows, the proportion of solutions falls exponentially with increasing number
of inputs. However for modest numbers of inputs the proportion is not so small as to be
infeasible to find using modern computers.
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To derive a fitness landscape, we would also need to consider how genetic or other
operators move between points in the search space, as well as the fitness of those points.
This is unnecessary in this case, because either we have found a solution or the point
in the search space scores half marks. That is, the program space contains no gradient
information. Search techniques such as GP, which rely on gradient information will be
unable to out-perform random search on such a landscape. We might anticipate population
based search without mutation performing worse than random search as genetic drift in a
small population means the population may loose one or more primitives. If this happens,
then it becomes impossible to construct a solution.

This suggests techniques which seek to solve the parity problems by evolving the ap-
propriate building blocks are unlikely to find minimal solutions directly. Such evolutionary
techniques will probably have found programs with fitness well above half marks and so
will reject any partial solution only composed of the discovered building blocks since these
will score less than the partial solutions it has already discovered. It is possible impure
solutions to the problem may be found which subsequent evolution, perhaps under the
influence of parsimony or beauty pressures, may evolve into a solution comprised only of
building blocks.

It is worth noting that we have only considered the case where all components of the
programs are of the same type. So there are no restrictions on how functions work with each
other. Performance gains for GP have been reported by using strong typing (Montana,
1995) or grammars (Whigham, 1996) which control program components’ interactions.
In the case of the Boolean problems, examples include (Janikow, 1996) who gainfully
employed typed inputs, while (Yu and Clack, 1998) structures their inputs as a list. Work
is continuing to understand the role of different function sets and search operators on the
Boolean problems (Page et al., 1999; Poli et al., 1999).

10.5 “Random Trees”

On average half the random trees sampled using the ramped-half-and-half method (Koza,
1992, page 93) are full. Therefore, particularly if the depth parameter is increased beyond
the usual 6 (equivalent to maximum size of 63), the chances of finding at random both the
even-3 and the odd-3 parity functions are considerably higher using it than using uniform
search. In contrast ramped-half-and-half is less likely to find solutions to the Santa Fe ant
trail problem than uniform search. See (Langdon and Poli, 1998, Table 3). This suggests
that the best method to use to create the initial random population is problem dependent.

In large binary random trees about half the functions have one or more terminals as
their arguments (Sedgewick and Flajolet, 1996, page 241). I.e. not only are they relatively
sparse (their average height is 2

√
π(l − 1)/2 + O(l1/4+ε) (Sedgewick and Flajolet, 1996,

page 256), which is greater than the height of full binary trees dlog2 l + 1e) but so too are
the subtrees within them. I.e. the whole search space contains a lower proportion of full
or nearly full subtrees than do full trees. Since nearly full subtrees can be used to form
XOR from NAND gates, this may be a partial explanation for why the parity functions
are so rare in the whole search space but are comparatively more frequent in full trees.

Our studies of the “bloating” phenomena (Langdon et al., 1999) in GP and other
search techniques indicate that, in the absence of parsimony or size or depth restrictions,
GP populations tend to evolve towards these large relatively sparse trees which may have
few full subtrees within them. This suggests problems may arise if the problem (and
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function set used) needs full or nearly full subtrees to solve it. The use of a depth limit
rather than size limit on the evolution of the program trees may encourage the formation of
nearly full trees of the maximum permitted depth. These will contain more full subtrees.
A depth limit may ease the solution of problems in which full trees contain a higher
proportion of solutions. A size limit will discourage the formation of full trees and may
help in problems where the density of solutions is lower in full trees.

10.6 GP and Random Search

We have discussed the number of programs which implement each function as a fraction of
the total number of programs. Particularly the proportion of solutions. This corresponds
directly to the difficulty of the problem for random search and establishes a benchmark with
which to compare GP and other techniques. In (Koza, 1992, Chapter 9) GP performance
is shown not to be the same as random search. Indeed in the case of all but a few of the
simplest problems, which both GP and random search easily solve, GP performance is
shown to be superior to random search. It is commonly assumed that problems that are
harder for random search will also be harder for any search technique. There is a little
evidence to support this. For example (Koza, 1992, Figure 9.2) shows a strong correlation
in the 3 input Boolean problems between difficulty for random search and difficulty for GP.
Thus the distribution of solutions in the search space can give an indication of problem
difficulty for GP.

10.7 Searching Long Programs

As the density of solutions changes little with program size then there is no intrinsic
advantage in searching programs longer than the threshold. It may be that some search
techniques perform better with longer programs, perhaps because together they encourage
the formation of smoother more correlated or easier to search fitness landscapes (Poli and
Langdon, 1998). However in practice searching at longer lengths is liable to be more
expensive both in terms of memory and also time (since commonly the CPU time to
perform each fitness evaluation rises in proportion to program size).

At present we do not know in advance where the threshold is. A line of research
would be devise a means of predicting it. This could be of practical value by replacing
existing ad-hoc measures to preset the upper bound on the size of programs with a more
principled approach.

11 Conclusions

In Section 7 we proved that the distribution of functions implemented by linear programs
converges in the limit of long programs, and at that limit each is equally likely. While
convergence to the limit is exponentially fast with the size of the program the number of
functions is exponential in the sizes of both input and output registers. The chance of
finding a long solution at random falls exponentially with the problem size.

Section 8 gives the corresponding proof for binary parse trees. Most parse trees are
asymmetric and even if the function set is symmetric the limiting distribution is asym-
metric. I.e. there is a much higher number of some functions than others. Functions that
can be produced by small trees are frequent not only in short programs but also in very
big ones.

In Section 9 we showed trees composed of only XOR or EQ functions can be treated
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as special cases of linear programs. This yields a limiting proportion of solutions to the
n input parity problems of 1/2n−1. This was confirmed by experiment. An empirical
measure for the rate of convergence is also given. Together with the fitness function, these
give the complete fitness landscape.

In three very different classes of problems (the Boolean problems, symbolic regression,
evolving agent) we have now shown that the fitness space is in a gross manner independent
of program length. In general the number of programs of a given length grows approxi-
mately exponentially with that length. Thus the number of programs with a particular
fitness score or level of performance also grows exponentially, in particular the number of
solutions also grows exponentially.
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