
RN/96/125 Revision : 1.4

Evolution of Genetic Programming Populations

W. B. Langdon

Genetic Programming Group,

Dept. of Computer Science,

University College, London,

Gower Street, London WC1E 6BT, UK

Email: W.Langdon@cs.ucl.ac.uk

www: http://www.cs.ucl.ac.uk/staff/W.Langdon/

Tel: +44 (0) 171 380 7214, Fax: +44 (0) 171 387 1397

Keywords: population variety, diversity, genetic programming, Price’s theorem, Fisher’s
theorem.

Abstract

We investigate in detail what happens as genetic programming (GP) populations evolve.
Since we shall use the populations which showed GP can evolve stack data structures as
examples, we start in Section 1 by briefly describing the stack experiment [Langdon, 1995].
In Section 2 we show Price’s Covariance and Selection Theorem can be applied to Genetic
Algorithms (GAs) and GP to predict changes in gene frequencies. We follow the proof of
the theorem with experimental justification using the GP runs from the stack problem.
Section 3 briefly describes Fisher’s Fundamental Theorem of Natural Selection and shows
in its normal interpretation it does not apply to practical GAs.

An analysis of the stack populations, in Section 4, explains that the difficulty of the
stack problem is due to the presence of “deceptive” high scoring partial solutions in the
population. These cause a negative correlation between necessary primitives and fitness.
As Price’s Theorem predicts, the frequency of necessary primitives falls, eventually leading
to their extinction and so to the impossibility of finding solutions like those that are evolved
in successful runs.

Section 5 investigates the evolution of variety in GP populations. Detailed measure-
ments of the evolution of variety in stack populations reveal loss of diversity causing
crossover to produce offspring which are copies of their parents. Section 6 concludes with
measurements that show in the stack population crossover readily produces improvements
in performance initially but later no improvements at all are made by crossover.

Section 7 discusses the importance of these results to GP in general.

1

http://www.cs.essex.ac.uk/staff/W.Langdon/

pop pushtopmakenull empty

Figure 1: One Individual – One Program: Five Operations – Five Trees

1 Architecture of Stack Individuals

Before going into the details of the evolution of variety in the stack populations, this section

re-caps the basic multi-tree architecture used in [Langdon, 1995] to evolve a single program

which implements five actions required of a stack data structure, initialise (makenull), read

top of the stack, pop the top of the stack and return its value, push an integer onto the

stack and and test to see if the stack is empty or not.

Each evolved program must implement all five actions. This is represented in the chro-

mosome by allocating an evolvable tree per action. When the program is used, e.g. during

its fitness testing, then the tree corresponding to the desired action is called. I.e. each

individual within the population is composed of five trees, see Figure 1.

This multiple tree architecture was chosen so that each tree contains code which has

evolved for a single purpose. It was felt that this would ease the formation of “building

blocks” of useful functionality and enable crossover, or other genetic operations, to assem-

ble working implementations of the operations from them. Similarly complete programs

could be formed whilst each of its trees improved.

The genetic operations, reproduction, crossover and mutation are redefined to cope

with this multi-tree architecture. We define the genetic operations to act upon only one

tree at a time. The other trees are unchanged and are copied directly from the first parent

to the offspring. Genetic operations are limited to a single tree at a time in the expectation

that this will reduce the extent to which they disrupts “building blocks” of useful code.

Crossing like trees with like trees is similar to the crossover operator with “branch typing”

used by Koza in most of his experiments involving ADFs in [Koza, 1994].

In the case of reproduction, the only action on the chosen tree is also to copy it, in

other words each new individual is created by copying all trees of the parent program.

When crossing over, one type of tree is selected (at random, with equal probability,

i.e. 1/5). This tree in the offspring is created by crossover between the trees in each

parent of the chosen type in the normal GP way [Koza, 1992] (see Figure 2). In the stack

2

Crossover

Figure 2: Crossover in One Tree at a time

Table 1: Tableau for Evolving a Stack
Objective To evolve a pushdown stack

Architecture Five separate trees

Primitives +, −, 0, 1, max, arg1, aux, inc aux, dec aux, read, write, write Aux

Fitness Case 4 test sequences, each of 40 tests

Fitness Scaling 1.0 for each test passed

Selection Scalar tournament of 4

Hits n/a

Wrapper makenull result ignored
top no wrapper
pop no wrapper
push result ignored
empty result > 0⇒ TRUE, otherwise FALSE

Parameters Population = 1000, G=101, program size <= 250

Success Predicate Fitness >= 160.0

experiments, all trees have identical primitives, c.f. Table 1.

1.1 Stack Primitives

Primitives like those a human programmer might use, were chosen. Firstly this ensures a

solution is possible, i.e. a program which solves the problem can be written using only these

primitives. (The need for the available primitives to be powerful enough so that a solution

to the problem can be express using them is called the sufficiency requirement [Koza,

1992, page 86]). Secondly as some constructs are useful to human programmers it was

expected that corresponding primitives might be useful to the GP. For example primitives

were included that aid maintenance of a stack pointer, although their functionality could

in principle be evolved using combinations of the other primitives.

The following primitives were available to the GP:

• arg1, the value to be pushed on to the stack. When arg1 is used by any of the

3

operations except push it has the value zero. Evolving programs can read arg1 but

they can not change it.

• arithmetic operators + and −.

• constants 0, 1 and the maximum depth of the stack, max (which has the value 10).

• indexed memory functions read and write.

• primitives to help maintain a stack pointer; aux, inc aux, dec aux and write Aux.

1.2 Indexed Memory

63 integer memory cells (numbered −31 . . . 31) were available.

1.3 Register

In addition to the indexed memory [Teller, 1994] a single auxiliary variable “aux” was

provided which, like each addressable memory cell, is capable of storing a single 32-bit

signed integer. The motivation for including it and the primitives that manipulate it was

that it could be used as a stack pointer, holding addresses to be used with the index

memory. However, as with all the other primitives, the GP is not forced to use it in any

particular way or even use it at all.

There are four associated primitives:

1. aux, which evaluates to its current value.

2. inc aux, which increases the current value by one and returns the new value.

3. dec aux, which decreases the current value by one and returns the new value.

4. write Aux, which evaluates its argument and sets aux to this value. It behaves like

write in that it returns the original value of aux rather than the new one.

2 Price’s Selection and Covariance Theorem

Price’s Covariance and Selection Theorem [Price, 1970] from population genetics relates

the change in frequency of a gene in a population from one generation to the next, to the

covariance of the gene’s frequency in the original population with the number of offspring

produced by individuals in that population (see Equation 1). The theorem holds “for a

single gene or for any linear combination of genes at any number of loci, holds for any

sort of dominance or epistasis (non-linear interaction between genes), for sexual or asexual

4

reproduction, for random or non-random mating, for diploid, haploid or polyploid species,

and even for imaginary species with more than two sexes” [Price, 1970]. In particular it

applies to genetic algorithms (GAs) [Altenberg, 1994].

∆Q =
Cov(z, q)

z
(1)

Q = Frequency of given gene (or linear combinations of genes) in the population
∆Q = Change in Q from one generation to the next.
qi = Frequency of gene in the individual i (more information is given in Section 2.1.
zi = Number of offspring produced by individual i.
z = Mean number of children produced.
Cov = Covariance

2.1 Proof of Price’s Theorem

In this section we follow the proof of Price’s Theorem given in [Price, 1970] (which assumes

sexual reproduction) and show it applies to Genetic Algorithms (GAs) [Holland, 1992]

in general and to genetic programming (GP) [Koza, 1992] in particular. In the next

section (2.2), we extend the proof to cover asexual reproduction. This more general proof

also applies to Genetic Algorithms, including GAs with asexual reproduction (i.e. copying

and mutation). Firstly we define the additional symbols we shall use.

P1 = Initial population
P2 = Population at next generation (for purposes of the proof generations are assumed

to be separated)
N = Size of initial population.
nz = “Zygotic ploidy of the species for the gene”. E.g. in natural species nz may be 2,

i.e. the gene can exist on two chromosomes.
In traditional GAs chromosomes are not paired so nz is 1. In GP there is still only
one chromosome but the same gene (primitive) can occur multiple times within it.
For GP we define nz to be unity.

gi = Number of copies of gene in individual i

qi = Frequency of gene in the individual i. That is the number of times the gene appears
in individual i divided by the “zygotic ploidy” of the species for the gene (i.e. 1 if
haploid, 2 if diploid).

qi = gi/nz

When nz is unity (e.g. most GAs and GP) qi becomes the number of copies of the
gene in individual i (i.e. qi = gi). So gene frequencies are defined to be relative to
number of individuals in the population rather than per available loci.

q = Arithmetic mean of qi in population P1

5

Q1 = Frequency of given gene (or linear combinations of genes) in the population.
I.e. number of copies of gene in population divided by the number of chromo-
somes it could occupy.

Q2 = Frequency of gene in population P2

nG = “Gamete ploidy for the gene”. In natural species nG is typically 1, i.e. the gene
can exist on one chromosome in the gamete (germ cell).
In traditional GAs there is no separate germ cell and whether the chromosome
fragment can contain the gene depends upon whether the locus of the gene is
present in the fragment or not.
In GP there is still only one chromosome but there are no fixed loci and the same
gene (primitive) can occur multiple times within a crossover fragment.

zi = Number of offspring produced by individual i. Note this is the same as the number
of successful gametes it produces. (In GA terminology the number of chromosome
fragments produced from i which occur in individuals in the next population).

z = Mean number of children produced.
g
′
i = Number of copies of the gene in all the successful gametes produced by individual

i.
In traditional linear chromosome GAs, g

′
i is the number of chromosome fragments

copied from individual i that are passed to the next generation which contain the
gene’s location and where the location contains the gene. (NB the value at the
gene’s location has not been changed by mutation).
If a traditional GA, with zero mutation rate, the expected value of g

′
i is zi/2.

With mutation g
′
i is reduced proportionately to the gene mutation rate.

In GP, g
′
i is the number of copies of the gene that are copied from i and passed

to the next generation.
q
′
i = Frequency of gene in the offspring produced by individual i. Defined by

q
′
i = g

′
i

zinG
, if zi 6= 0

= qi , otherwise
∆qi = q

′
i − qi

Proof of Price’s Theorem with Sexual Reproduction

We shall start with the frequency of the gene in the current population, Q1. Then find

the frequency in the subsequent generation, Q2. Subtracting them yields the change in

frequency, which we shall simplify to give Price’s Theorem.

Q1 =
∑

gi

nzN

=
∑

nzqi

nzN

= q

Each individual in the new population is created by joining one or more “gametes”

(in GAs and GP by joining crossover fragments) and the number of each gene in the

individual is the sum of the number in each of the gametes from which it was formed.

Thus the number of genes in the new population is equal to the number in the successful

gametes produced by the previous generation.

6

Similarly the number of chromosomes in an individual is the sum of the number in

each of the gametes which formed it, nG. Thus if nG is the same in all cases:

Q2 =
∑

g
′
i∑

zinG
(2)

=
∑

zinGq
′
i∑

zinG

=
∑

ziq
′
i

Nz
(3)

=
∑

ziqi

Nz
+
∑

zi∆qi

Nz

=
∑

((zi − z)(qi − q) + z qi + ziq − z q)
Nz

+
∑

zi∆qi

Nz

=
1
N

∑
(zi − z)(qi − q) + z 1

N

∑
qi + q 1

N

∑
zi − 1

N

∑
z q

z
+
∑

zi∆qi

Nz

=
1
N

∑
(zi − z)(qi − q) + z q + q z − z q

z
+
∑

zi∆qi

Nz

=
1
N

∑
(zi − z)(qi − q) + q z

z
+
∑

zi∆qi

Nz

=
Cov(z, q)

z
+ q +

∑
zi∆qi

Nz

∆Q =
Cov(z, q)

z
+
∑

zi∆qi

Nz

“If meiosis and fertilization are random with respect to the gene, the summation term

at the right will be zero except for statistical sampling effects (‘random drift’), and these

will tend to average out to give equation 1.” I.e. the expected value of
∑

zi∆qi is zero.

So while survival of an individual and the number of children it has may be related

to whether it carries the gene, it is assumed that the production of gametes (crossover

fragments) and their fusing to form offspring is random. In GA terms selection for re-

production is dependent upon fitness and in general dependent on the presence of specific

genes but selection of crossover points is random and so independent of genes (Section 2.4

discusses this further for GPs).

2.2 Proof of Price’s Theorem with Asexual Reproduction

The proof of Price’s theorem given in [Price, 1970] (reproduced above) assumes sexual

reproduction. For it to be applied to GAs and GP it needs to be extended to cover asexual

reproduction (i.e. copying and mutation). Before doing so, we define further symbols we

shall use.

7

g
′
a i = Number of copies of the gene in the offspring created asexually by individual i.

g
′
x i = Number of copies of the gene in all the successful gametes (n.b. sexual reproduc-

tion) produced by individual i.
ai = Proportion of offspring of individual i created asexually (in GAs mutation or direct

copying).
ai = g

′
a i/g

′
i

a =
∑

aizi/N z

xi = Proportion of offspring of individual i created sexually, i.e. by crossover.
xi = g

′
x i/g

′
i

x =
∑

xizi/N z

q
′
a i = Frequency of gene in the offspring produced asexually by individual i. Defined by

q
′
a i = g

′
a i

aizinz
, if aizi 6= 0

= qa i , otherwise
q
′
x i = Frequency of gene in the offspring produced sexually by individual i. Defined by

q
′
x i = g

′
x i

xizinG
, if xizi 6= 0

= qx i , otherwise

So Equation 2 becomes

Q2 =
∑

g
′
a i + g

′
x i∑

aizinz + xizinG

=
∑

aizinzq
′
a i + xizinGq

′
x i∑

aizinz + xizinG

If reproduction type (sexual or asexual) is independent of the gene then the expected

values of the gene frequencies, q
′
a i and q

′
x i will be equal (and equal to q

′
i) and so in large

populations

Q2 =
∑

aizinzq
′
i + xizinGq

′
i∑

aizinz + xizinG

=
∑

aizinzq
′
i + xizinGq

′
i

N az nz + N xz nG

If reproduction type is independent of the gene then in large populations

Q2 =
∑

azinzq
′
i + xzinGq

′
i

N z(anz + xnG)

=
∑

ziq
′
i

N z

The rest of the proof (i.e. from Equation 3 onwards) follows.

8

2.3 Price’s Theorem for Genetic Algorithms

Where the population size is unchanged, as is usually the case in GAs and GP (and two

parents are required for each individual created by crossover), z = pr + pm + 2pc (where

pr = copy rate, pm = mutation rate and pc is the crossover rate. Since pr + pm + pc = 1,

the mean number of children z = 1 + pc and Equation 1 becomes:

∆Q =
Cov(z, q)
1 + pc

(4)

2.4 Applicability of Price’s Theorem to GAs and GPs

The simplicity and wide scope of Price’s Theorem has lead Altenberg to suggest that

covariance between parental fitness and offspring fitness distribution is fundamental to

the power of evolutionary algorithms. Indeed [Altenberg, 1995] shows Holland’s schema

theorem [Holland, 1973; Holland, 1992] can be derived from Price’s Theorem. This and

other analysis, leads [Altenberg, 1995, page 43] to conclude “the Schema Theorem has no

implications for how well a GA is performing”.

While the proof in [Price, 1970] assumes discrete generations the result “can be applied

to species with overlapping, inter-breeding generations”. Thus the theorem can be applied

to steady state GAs [Syswerda, 1989; Syswerda, 1991] such as used in [Langdon, 1995].

For the theorem to hold the genetic operations (crossover and mutation in GA terms)

must be independent of the gene. That is on average there must be no relationship between

them and the gene. In large populations random effects will be near zero on average but

in smaller populations their effect may not be negligible. In GAs selection of crossover and

mutation points is usually done independently of the contents of the chromosome and so

Price’s theorem will hold (except in small GA populations where random fluctuations may

be significant). In GP populations are normally bigger (and the number of generations

similar) so random effects, “genetic drift”, are less important.

In standard GP it is intended that the genetic operators should also be independent,

however in order to ensure the resultant offspring are syntactically correct and not too

big, genetic operators must consider the chromosome’s contents. This is normally limited

to just its structure in terms of tree branching factor (i.e. the number of arguments a

function has) and tree depth or size limits. That is, they ignore the actual meaning of a

node in the tree (e.g. whether it is MUL or ADD) but do consider how many arguments

it has. Thus a function with two arguments (e.g. MUL) and a terminal (e.g. max) may

be treated differently.

9

It is common to bias the choice of crossover points in favour of internal nodes (e.g. in

these GP experiments internal points in program trees are deliberately chosen 30% of the

time, the other 70% are randomly chosen through the whole tree. [Koza, 1992, page 114]

weights internal nodes to external nodes 9:1, while [Angeline, 1996, page 27] argues “that

no one constant value for leaf frequency is optimal for every problem”). This reduces the

proportion of crossover fragments which contain only a single terminal. Once again the

genetic operators ignore the meaning of nodes within the tree.

In a large diverse population these factors should have little effect and Price’s Theorem

should hold. However when many programs are near the maximum allowed size a function

which has many arguments could be at a disadvantage since the potential offspring con-

taining it have a higher chance of exceeding size limits. Therefore restrictions on program

size may on average reduce the number of such functions in the next generation compared

to the number predicted by considering only fitness (i.e. by Price’s Theorem). [Altenberg,

1994, page 47] argues Price’s theorem can be applied to genetic programming and we shall

show experimental evidence for it based on genes composed of a single GP primitive.

2.5 Application of Price’s Theorem to the GP Stack Problem

In this section we experimentally test Price’s Theorem by comparing its predictions with

what actually happened using GP populations from the 60 runs of the stack problem

described in [Langdon, 1995]. Firstly we consider the change in numbers of a single

primitive and then we examine the change in frequency versus fitness for all primitives in

a typical and in a successful run.

In GAs the expected number of children each individual has is determined by its

fitness. On average the expected number is equal to the actual number of offspring z

(as used in Price’s theorem, i.e. in Equations 1 and 4). For example when using roulette

wheel selection the expected number of children is directly proportional to the parent’s

fitness. When using tournament selection (as in [Langdon, 1995]) the expected number

of children is determined by the parent’s rank within the population and the tournament

size. The remainder of this section uses the expected number of offspring as predicted by

the parents fitness ranking within the current population in place of z.

Price’s theorem predicts the properties of the next generation. In a steady state popu-

lation it can be used to predict the average rate of change. However in general subsequent

changes to the population will change the predicted rate of change. For simplicity we

assume that during one generation equivalent (i.e. the time taken to create as many new

individuals as there are in the population) such effects are small and base the predicted

10

-200

-100

0

100

200

300

400

500

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

N
o
.

1

i
n

M
a
k
e
n
u
l
l

t
r
e
e

Number of Individuals Created

Number
Predicted change

Actual change

Figure 3: Evolution of the number of the terminal “1” in the makenull tree plus predicted
change and actual change in next generation, in typical stack (51) run.

properties of the new population on linear extrapolation using the predicted rate of change.

The 60 runs of the stack problem use identical parameters and differ only in the

initial seed used by the [Park and Miller, 1988] pseudo random number generator. For

convenience individual runs are numbered (1) to (60).

The solid line in Figure 3 plots the evolution of the number of a particular primitive

in a particular tree in the population for a typical run. (As there is no crossover between

trees of different types, primitives of the same type but in different trees are genetically

isolated from each other and so Equation 4 can be applied independently to each tree). The

change from one generation equivalent to the next is plotted by crosses which show good

agreement with the change predicted by linearly extrapolating the rate of change predicted

by Price’s theorem. Some discrepancy between the actual change and the predicted change

is expected due to “noise”. That is the number of children an individual has is a stochastic

function of its fitness (see Figure 8). However non-random deviations from the prediction

are to be expected as linear extrapolation assumes the rate of change will not change

appreciably in the course of one generation equivalent (such as happens at generations 6

and 8).

Figures 4 to 7 plot the covariance of primitive frequency with normalised fitness against

the change in the primitives frequency in the subsequent generation (equivalent). While

these plots show significant differences from the straight line predicted by Equation 4, least

11

squares regression yields best fit lines which pass very close to the origin but (depending

upon run and primitive) have slopes significantly less than 1 + pc = 1.9 (they lie in the

range 1.18 to 1.79, see Table 2).

Random deviations from the theory are expected but should have negligible effect

when averaged by fitting the regression lines. The fact that regression coefficients differ

from 1.9 is explained by the fact that we are recording changes over a generation, during

this time it is possible for the population to change significantly. We would expect this

effect to be most noticeable for primitives with a high rate of change since these effect

the population! A high rate of change may not be sustainable for a whole generation

and so the actual change will be less than predicted by extrapolating from its initial rate

of change. However large changes have a large effect on least squares estimates so these

outliers can be expected to reduce the slope of the regression line.

Regression coefficients can be calculated after excluding large values leaving only the

smaller changes. However this makes the calculation dependent on small values with high

noise. This may be exacerbated if the primitive quickly became extinct as there are few

data points left. (When considering a typical run (51) of the stack problem and excluding

covariances outside the range −0.1 . . . + 0.1 regression coefficients were often effected by

this noise and lie in the range −0.96 . . . 6.28 for the twelve primitives in the empty tree).

In conclusion Price’s Theorem gives quantitative predictions of the short term evolution

of practical GP populations, however such predictions are effected by sampling noise in

finite populations and may be biased if predictions are extrapolated too far in rapidly

evolving populations. The theorem can also be used to explain the effects of fitness

selection on GP populations.

12

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-0.4 -0.2 0 0.2 0.4

C
h
a
n
g
e

i
n

F
r
e
q
u
e
n
c
y

p
e
r

G
e
n
e
r
a
t
i
o
n

Covariance of Frequency with Rank(i)**4 - Rank(i-1)**4

y = 1.9 x

makenull
top
pop
push

empty
1.9*x
1.79*x
1.18*x

Figure 4: Covariance of Primitive frequency and
(

Ri
N

)4
−
(

Ri−1

N

)4
v. change in frequency

in next generation, in typical stack (51) run. Data collected every generation equivalent.

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

-0.1 -0.05 0 0.05 0.1

C
h
a
n
g
e

i
n

F
r
e
q
u
e
n
c
y

p
e
r

G
e
n
e
r
a
t
i
o
n

Covariance of Frequency with Rank(i)**4 - Rank(i-1)**4

y = 1.9 x

Figure 5: Covariance of Primitive frequency and
(

Ri
N

)4
−
(

Ri−1

N

)4
v. change in frequency

in next generation, in typical stack (51) run. Only data near the origin shown.

13

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-0.4 -0.2 0 0.2 0.4

C
h
a
n
g
e

i
n

F
r
e
q
u
e
n
c
y

p
e
r

G
e
n
e
r
a
t
i
o
n

Covariance of Frequency with Rank(i)**4 - Rank(i-1)**4

y = 1.9 x

makenull
top
pop
push

empty
1.9*x

Figure 6: Covariance of Primitive frequency and
(

Ri
N

)4
−
(

Ri−1

N

)4
v. change in frequency

in next generation, in successful stack (2) run. Data collected every generation equivalent.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-0.1 -0.05 0 0.05 0.1

C
h
a
n
g
e

i
n

F
r
e
q
u
e
n
c
y

p
e
r

G
e
n
e
r
a
t
i
o
n

Covariance of Frequency with Rank(i)**4 - Rank(i-1)**4

y = 1.9 x

Figure 7: Covariance of Primitive frequency and
(

Ri
N

)4
−
(

Ri−1

N

)4
v. change in frequency

in next generation, in successful stack (2) run. Data near origin.

14

Table 2: Least squares regression coefficients of covariance of primitive frequency and(
Ri
N

)4
−
(

Ri−1

N

)4
with change in frequency in the next generation for a typical (51) stack

run.

Primitive makenull top pop push empty
∆ Frequency – Intercept : Gradient

ADD -0.026 : 1.26 -0.007 : 1.39 -0.007 : 1.33 0.035 : 1.34 0.010 : 1.78
SUB -0.017 : 1.21 -0.016 : 1.44 0.006 : 1.75 -0.017 : 1.30 0.006 : 1.83
0 -0.001 : 1.35 0.002 : 1.46 0.011 : 1.50 0.031 : 1.34 -0.002 : 1.41
1 -0.015 : 1.18 -0.001 : 1.34 -0.018 : 1.17 -0.003 : 1.76 -0.002 : 1.24
max 0.001 : 1.52 -0.017 : 1.34 -0.008 : 1.44 0.007 : 1.73 -0.009 : 1.79
arg1 0.000 : 1.50 -0.008 : 1.60 0.018 : 1.74 0.012 : 1.39 0.001 : 1.17
aux -0.025 : 1.20 0.003 : 1.61 -0.004 : 1.31 0.004 : 1.37 -0.024 : 1.29
inc aux 0.006 : 1.38 0.004 : 1.67 -0.002 : 1.49 -0.011 : 1.50 -0.012 : 1.19
dec aux -0.002 : 1.51 -0.001 : 1.40 -0.005 : 1.72 0.004 : 1.26 -0.001 : 1.40
read -0.020 : 1.21 -0.002 : 1.40 -0.015 : 1.71 0.009 : 1.38 -0.037 : 1.54
write -0.003 : 1.42 -0.002 : 1.30 0.008 : 1.46 0.015 : 1.30 -0.038 : 1.54
write Aux -0.001 : 1.30 -0.011 : 1.20 -0.011 : 1.58 0.011 : 1.39 0.049 : 1.33

0

0.5

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
a
t
e

o
f

p
r
o
d
u
c
i
n
g

o
f
f
s
p
r
i
n
g

Rank(i)**4 - Rank(i-1)**4

y = 1.9 x

Figure 8: Rate of producing offspring v.
(

Ri
N

)4
−
(

Ri−1

N

)4
in typical stack (51) run. Data

collected every generation equivalent.

15

3 Fisher’s Fundamental Theorem of Natural Selection

Fisher’s fundamental theorem of natural selection states “The rate of increase in fitness of

any organism at any time is equal to its genetic variance in fitness at that time” [Fisher,

1958, page 37]. “Under the usual interpretation the theorem is believed to say that the

rate of increase in the mean fitness of a population is equal to the population’s additive

variance for fitness”. Since the variance can never be negative “natural selection causes a

continual increase in mean fitness of a population. This interpretation of the theorem is

only true when the population mates randomly and there is no dominance or epistasis”

[Frank, 1995, page 382].

An example of this usage is given in [Tackett, 1995, page 289] which claims “According

to Fisher’s fundamental theory of natural selection the ability of a population to increase

in fitness is proportional to the variance in fitness of the population members.”

We would certainly expect epistasis (non-linear interaction between genes) to occur in

most GAs and so would not expect this interpretation of the theorem to hold. Figure 9

shows the evolution of a stack population’s fitness for one run. The error bars indicate

a standard deviation either side of the mean population fitness. From Figure 9 we can

see the standard deviation through out the bulk of the run is consistently close to 20, i.e.

the variance of the population’s fitness is near 400 (20× 20). The usual interpretation of

Fisher’s theorem predicts the mean fitness will continually increase but obviously this is

not the case as it remains fairly constant throughout the run and even falls occasionally.

We conclude that under the usual interpretation Fisher’s theorem does not normally

apply to GAs. This is important because this interpretation of Fisher’s theorem has been

used as an argument in favour of GA selection schemes which produce a high variance in

population fitness [Tackett, 1995, pages 272 and 290]. (There may be other reasons for

preferring these selection methods. A high fitness variance may indicate a high degree of

variation in the population, which might be beneficial).

[Price, 1972] makes the point that Fisher’s publications on his fundamental theorem

of natural selection “contains the most confusing published scientific writing I know of”

[page 134] leading to “forty years of bewilderment about what he meant” [page 132]. [Price,

1972] and [Ewens, 1989; Ewens, 1992b; Ewens, 1992a] argue that the usual interpretation of

Fisher’s theorem is incorrect and his “fitness” should be considered as just the component

of fitness which varies linearly with gene frequency. All other effects, such as “dominance,

epistasis, population pressure, climate, and interactions with other species – he regarded

as a matter of the environment” [Price, 1972, page 130]. Price and Ewens both give proofs

16

0

20

40

60

80

100

120

140

160

0 20000 40000 60000 80000 100000

T
e
s
t
s

p
a
s
s
e
d

Number of Individuals Created

Mean & SD
Min

Best of Generation

Figure 9: Evolution of Fitness in a typical stack run (51)

for this interpretation of Fisher’s theorem but conclude that it is “mathematically correct

but less important than he thought it to be” [Price, 1972, page 140].

4 Evolution of Stack Problem Populations

In this section we return to the stack problem of [Langdon, 1995] and investigate why

most runs failed to find a solution. Investigation of the evolved solutions shows which

primitives are essential to the correct operation of all the evolved solutions and in most

runs one or more of these becomes extinct, thus preventing the evolution of a solution

like those found. The loss of these primitive is explained using Price’s Theorem by the

negative covariance of their frequency with their fitness. Similar covariances are found in

successful runs and we conclude success requires a solution to be found quickly, before

extinction of critical primitives occurs.

Table 3 contains an entry for each of the five program trees (which each trial stack data

structure comprises) and the primitives that the tree can use (see Section 1 and Table 1).

Where the primitive is essential to the operation of one of the four stack solutions found,

the entry contains the number(s) of the solutions. If the primitive is not essential to the

correct operation of any of the four evolved solutions (in the particular tree) the entry is

blank. Primitives ADD and max are omitted as they are always blank. (The essential

primitives are shown within shaded boxes in Figures 10, 11, 12 and 13. NB in the stack

17

Table 3: Primitives Essential to the Operation of Evolved Stack Programs

Tree/Primitive Essential to Evolved Stack Solutions

Tree SUB 0 1 arg1 aux inc dec read write write
aux aux Aux

makenull 4 4 1 2 3 4 1 2 3 4
top 1 2 3 1 2 3 4 1 4
pop 1 2 4 1 2 3 4 3 1 2 4 3
push 1 2 3 4 4 1 2 3 1 2 3 4
empty 4 4 1 3 4 2

Table 4: Stack Primitives Essential to All Evolved Solutions

Tree Primitive Lost

makenul 1 14
makenul write Aux 7
top read 21
push arg1 6
push write 29

Tree Alternative Primitives Both Lost

top aux or write Aux 12
pop inc aux or dec aux 27
pop read or write 15
push inc aux or dec aux 40
empty aux or write Aux 9

problem each tree can use all of the primitives).

From Table 3 we can identify five primitives which are essential to the operation of all

four evolved solutions and five pairs of primitives where one or other is required. These

are shown in the two halves of Table 4 together with the number of runs where they were

removed from the population by 21 generation equivalents (i.e. by the point where all four

solutions had evolved).

After the equivalent of 21 generations in 43 of 60 runs, the number of one or more of

the tree-primitives shown in the left had side of Table 4 had fallen to zero. That is the

population no longer contained one or more primitives required to evolve a solution (like

the solutions that have been found). In 12 of the remaining 17 populations both of one or

more of the pairs of primitives shown on the right hand side of Table 4 had been removed

from the population. Thus by generation 21 in all but 5 of 60 runs, the population no

longer contained primitives required to evolve solutions like those found. In four of these

five cases solutions were evolved (in the remaining case one of the essential primitives was

already at a low concentration, which fell to zero by the end of the run at generation 101).

Figure 14 shows the evolution of six typical stack populations (runs 00, 10, 20, 30, 40

18

ADD

1 inc_aux

aux

write

makenull

SUB

write_Aux

1

0

top

read

write_Aux

aux

pop push

write

dec_aux arg1

empty

aux

Figure 10: Evolved Stack 1

read

aux

ADD

write_Aux

1

max

write

aux inc_aux

makenull top pop push

write

dec_aux arg1

write_Aux

write_Aux

0

write_Aux

write_Aux

empty

Figure 11: Evolved Stack 2

read

SUB

aux 0

read

write_Aux

inc_aux

SUB

makenull top pop push

write

write_Aux

1

1 arg1

ADD

dec_aux

write_Aux

write_Aux

SUB

1

ADD

arg1 arg1

SUB

dec_aux

write

aux

empty

aux

Figure 12: Evolved Stack 3

push empty

ADD

aux ADD

aux max

inc_aux arg1

write

SUB SUB

0 aux

read

write_Aux

write_Aux

read

arg1

topmakenull

SUB

ADD

1 write_Aux

arg1

SUB

write_Aux

SUB

0 ADD

1 aux

read

arg1

pop

write

aux 0 write_Aux

dec_aux SUB

1 arg1

SUB

1 arg1

SUB

write

SUB

Figure 13: Evolved Stack 4

19

and 51). For each run the first essential primitive (or pair or primitives) that becomes

extinct is selected and its covariance of frequency with fitness in the population is plotted.

Figure 14 shows the covariance is predominantly negative and thus Price’s theorem predicts

the primitives’ frequencies will fall. Figure 16 confirms this. In most cases they become

extinct by generation nine.

Figure 15 shows the evolution of frequency, fitness covariance for the same primitives

in a successful run (1) (Figure 17 shows the evolution of their frequency). While two of

the primitives (Push/arg1 and Push/dec aux) have large positive covariances for part of

the evolution the other four are much as the runs shown in Figure 14 where they were

the first essential primitive to become extinct. That is, in terms of correlation between

population fitness ranking and essential primitives, successful and unsuccessful runs are

similar. It appears there is a race between finding high fitness partial solutions on which a

complete solution can evolve and the removal of essential primitives from the population

caused by fitness based selection. I.e. if finding a critical building block had been delayed,

it might not have been found at all as one or more essential primitives might have become

extinct in the meantime.

In successful stack run (1) by generation five, a solution in which top, pop and push

effectively use aux, write Aux, inc aux and dec aux to maintain aux as a stack pointer has

been discovered (c.f. Figure 17). This is followed by the fitness of Pop/inc aux increasing

and whereas its frequency had been dropping it starts to increase preventing Pop/inc aux

from becoming extinct, which would have prevented a solution like the one found from

evolving. This maintenance of aux as a stack pointer requires code in three trees to co-

operate. An upper bound on the chance of this building block being disrupted in the

offspring of the first program to contain it can be calculated by assuming any crossover

in any of the three trees containing part of the building block will disrupt it. This yields

an upper bound of 3pc/5 = 54%. In other words on average at least pr + 2pc/5 = 46%

of the offspring produced by programs containing this building block will also contain

the building block and so it should spread rapidly through the population. With many

individuals in the population containing functioning top, pop and push trees, evolution of

working makenull and empty trees rapidly followed and a complete solution was found.

4.1 Discussion

The loss of some critical primitives in so many runs can be explained in many cases by the

existence of high scoring partial solutions which achieve a relatively high score by saving

20

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

C
o
v
a
r
i
a
n
c
e

o
f

F
r
e
q
u
e
n
c
y

w
i
t
h

R
a
n
k

B
a
s
e
d

F
i
t
n
e
s
s

Number of Individuals Created

 40 Push dec_aux

Push & Pop inc & dec runs 20, 40
Push arg1 runs 00, 10

Makenull 1 runs 30, 51

Figure 14: Evolution of the covariance of primitive frequency and
(

Ri
N

)4
−
(

Ri−1

N

)4
for

the first critical primitive (or critical pair) to become extinct. Six typical stack runs.

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

C
o
v
a
r
i
a
n
c
e

o
f

F
r
e
q
u
e
n
c
y

w
i
t
h

R
a
n
k

B
a
s
e
d

F
i
t
n
e
s
s

Number of Individuals Created

 Push dec_aux

 Pop inc_aux

Push & Pop inc & dec
Push arg1
Makenull 1

Figure 15: Evolution of the covariance of primitive frequency and
(

Ri
N

)4
−
(

Ri−1

N

)4
for

critical primitives. Successful stack 1 run.

21

0

200

400

600

800

1000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

N
u
m
b
e
r

o
f

P
r
i
m
i
t
i
v
e
s

i
n

P
o
p
u
l
a
t
i
o
n

Number of Individuals Created

Push & Pop inc & dec runs 20, 40
Push arg1 runs 00, 10

Makenull 1 runs 30, 51

Figure 16: Evolution of number of primitives in the population for first critical primitive
(or critical pair) to become extinct. Six typical stack runs.

0

200

400

600

800

1000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

N
u
m
b
e
r

o
f

P
r
i
m
i
t
i
v
e
s

i
n

P
o
p
u
l
a
t
i
o
n

Number of Individuals Created

 Push dec_aux

 Pop inc_aux

Push & Pop inc & dec
Push arg1

Makenull 1

Figure 17: Evolution of number of primitives in the population for critical primitives.
Successful stack 1 run.

22

only one item in aux. In such programs write Aux, inc aux and dec aux may destroy the

contents of aux and are likely to be detrimental (i.e. reduced fitness). As the number of

such partial solutions increases write Aux, inc aux and dec aux become more of a liability

in the current population and are progressively removed from it. Thus trapping the

population at the partial solution. This highlights the importance of the fitness function

throughout the whole of the GP run. I.e. it must guide the evolution of the population

toward the solution in the initial population, as well as later, when recognisable partial

solutions have evolved.

[Langdon, 1996b] described a similar loss of primitives in the list problem and discussed

potential solutions such as mutation, demes and fitness niches to allow multiple diverse

partial solutions within the population and potentially slow down the impact of fitness

selection on the population. Other approaches include: improving the fitness function (so

it is no longer deceptive) e.g. by better design or using a dynamic fitness function which

changes as the population evolves. A dynamic fitness function would aim to continually

stretch the population, keeping a carrot dangling in front of it. (This is also known as

the “Red Queen” [Carroll, 1871] approach where the population must continually improve

itself). A dynamic fitness function could be pre-defined but dynamic GP fitness functions

are often produced by co-evolution [Hillis, 1992; Angeline and Pollack, 1993; Angeline,

1993; Angeline and Pollack, 1994; Koza, 1991; Jannink, 1994; Reynolds, 1994; Ryan,

1995]. Where it is felt certain characters will be required in the problem’s solution the

initial population and crossover can be controlled in order to ensure individuals within the

population have these properties ([Langdon, 1995] and [Langdon, 1996b] have described

ways in which this can be implemented).

An alternative approach is to avoid specialist high level primitives (particularly where

they interlock, so one requires another) and use only a small number of general purpose

primitives. Any partial solutions are likely to require all of them and so none will become

extinct. This is contrary to established GP wisdom [Kinnear, Jr., 1994, page 12], however

recently (at the fall 1995 AAAI GP symposium) Koza advocated the use of small function

sets containing only five functions (+,−,×,÷ and a conditional branch).

5 Lost of Variety

We define variety as the number of unique individuals within the population. For example

if a population contains three individuals A, B and C but A and B are identical (but

different from C) then the variety of the population is 2 (A and B counting as one unique

23

individual). ([Koza, 1992, page 93] defines variety as a ratio of the number of unique

individuals to population size). These definitions have the advantage of simplicity but

ignore several important issues:

• Individuals which are not identical may still be similar.

• Individuals which are not identical may be total different, but variety makes no

distinction between this and the first case.

• The differences between individuals may occur in “introns”. That is in parts of the

program tree which have no effect upon the program’s behaviour, either because

that part of the tree is never executed or because its effects are always overridden

by other code in the program. For example, the value of a particular subtree may

always be multiplied by zero which yields a result that is always zero no matter

what value the subtree had calculated. Two such different programs have identical

behaviour and fitness (but their offspring may not be the same, even on average).

• Behaviour of different program trees may be identical, either in general or in the

specific test cases used to assign fitness. That is genetically diverse individuals may

behave similarly, or even identically.

As [Rocsa, 1996] points out, in the absence of side effects, diverse programs with

identical behaviour can be readily constructed if the function set contains functions

that are associative or commutative by simple reordering of function arguments.

• Even if programs behave differently, in general or when evaluating the given test

cases, the fitness function may assign them the same fitness value. E.g. the fitness

function may be based upon the number of correct answers a program returns so

two programs which pass different tests but the same number of tests will have the

same fitness.

Faced with the above complexity we argue that variety has the advantage of simplicity

and forms a useful upper bound to the diversity of the population. That is if the variety

is low then any other measures of genetic, phenotypic or fitness diversity must also be

low. The opposite does not hold when it is high. (Other definitions include fitness based

population entropy [Rosca and Ballard, 1996, Section 9.5] and using the ratio of sum of

the sizes of every program in the population to the number of distinct subtrees within the

population [Keijzer, 1996]).

24

In this section we consider the variety of GP populations using the 60 runs on the stack

problem as examples. Firstly (Section 5.1) we show how the number of unique individuals

evolves. Simple but general models of the evolution of variety were devised. While these

gave some explanation but they failed to predict some important features. Instead detailed

measurements of the stack population are presented in Section 5.2. These are used to give

better, but more problem specific, explanations of the populations’ behaviour. The low

variety of stack populations is shown to be primarily due to the high number of “clones”

(i.e. offspring which are identical to their parents) produced by crossover, which is itself

a reflection of the low variety. Thus low variety reinforces itself. In one run (23) variety

collapses to near zero but in most cases it eventually hovers near 60% of the population

size. This is low compared to reports of 80% to 95% in [Koza, 1992, pages 159, 609 and

614] and [Keijzer, 1996].

5.1 Lost of Variety in Stack Populations

Measurements show variety starts in the initial population at its maximum value with

every member of the population being different. This is despite the fact there is no

uniqueness check to guarantee this. Once evolution of the population starts variety falls

rapidly, but in most cases rises later to oscillate chaotically near a mean value of about

60% (see Figures 18 to 21). However in one run (23) variety does not increase and the

population eventually converges to a single genotype and four of its offspring (i.e. of the

1000 individuals in the population there are only five different chromosomes, with about

970 copies of the fittest of these five).

The number of duplicate individuals created by reproduction rises rapidly initially but

then hovers in the region of 8.5% of the population size (see Figure 22). This means initially

most duplicate individuals are created by reproduction but this fraction falls rapidly as

more duplicates are produced by crossover so after the seventh generation only about a

quarter of duplicate individuals in the population were created by reproduction and the

remaining three quarters are created by crossover (see Figure 18). In stack populations,

crossover produces more duplicates shortly after each new improved solution is found (see

Figure 23).

5.2 Measurements of GP Crossover’s Effect on Variety

This section examines in detail the role of crossover in reducing variety in the stack pop-

ulations. We discover there are two main causes; crossover which just involves swapping

terminals and crossover which entails replacing whole trees. Where variety is low both

25

0

200

400

600

800

1000

0 20000 40000 60000 80000 100000

N
o
.

d
i
f
f
e
r
e
n
t

i
n
d
i
v
i
d
u
a
l
s

i
n

p
o
p
u
l
a
t
i
o
n

Number of Individuals Created

 stack 2

 stack 3

 stack 1

 stack 4

 Mean of 60 runs

 Run 23 (5)

 Mean % xover * 10

 Typical (51) run

 Run 40
mean

solutions
typical runs

run 23
Mean % xover * 10

Figure 18: Number of different individuals in stack populations and proportion of subse-
quent duplicates produced by crossover in stack selected runs.

0

200

400

600

800

1000

0 2000 4000 6000 8000 10000 12000 14000

N
o
.

d
i
f
f
e
r
e
n
t

i
n
d
i
v
i
d
u
a
l
s

i
n

p
o
p
u
l
a
t
i
o
n

Number of Individuals Created

 stack 2

 stack 3

 stack 1

 stack 4

 Mean of 60 runs

 Run 23 (9)

 Mean % xover * 10

 Typical (51) run

 Exp(-0.1 G)

Figure 19: Detail of above

26

-400

-350

-300

-250

-200

-150

-100

-50

0

50

100

0 20000 40000 60000 80000 100000

C
h
a
n
g
e

i
n

N
o
.

d
i
f
f
e
r
e
n
t

i
n
d
i
v
i
d
u
a
l
s

i
n

p
o
p
u
l
a
t
i
o
n

Number of Individuals Created

Run 40

mean
solutions

typical runs
run 23

Figure 20: Change in number of different individuals in stack populations.

-400

-350

-300

-250

-200

-150

-100

-50

0

50

100

0 2000 4000 6000 8000 10000 12000 14000

C
h
a
n
g
e

i
n

N
o
.

d
i
f
f
e
r
e
n
t

i
n
d
i
v
i
d
u
a
l
s

i
n

p
o
p
u
l
a
t
i
o
n

Number of Individuals Created

mean
solutions

typical runs
run 23

Figure 21: Detail of above

27

0

20

40

60

80

100

120

140

160

180

200

0 20000 40000 60000 80000 100000N
o
.

d
u
p
l
i
c
a
t
e
s

i
n

p
o
p
u
l
a
t
i
o
n

p
r
o
d
u
c
e
d

b
y

r
e
p
r
o
d
u
c
t
i
o
n

Number of Individuals Created

 stack 2

 stack 3

 stack 1

 stack 4

mean
solutions

typical runs
run 23
pr N

Figure 22: Number of duplicate individuals in stack populations that were produced by
reproduction in selected runs.

0

200

400

600

800

1000

0 20000 40000 60000 80000 100000

V
a
r
i
e
t
y
,

C
h
a
n
g
e

i
n

M
a
x

F
i
t
n
e
s
s

Number of Individuals Created

Variety
Increase in Max fitness * 100

Figure 23: Number of different individuals in stack populations and change in maximum
fitness in a typical stack run (51).

28

lead to further production of clones of the first parent. Quantitative models of these two

effects are in close agreement with measurements.

Figure 24 shows the proportion of cases where the offspring produced by crossover are

identical to one or other of its parents. (In a typical stack run all offspring which are

duplicates of other members of the population are identical to one or other parent). In

a typical run of the stack problem about one third of crossovers produce offspring which

are identical to their first parent. Table 5 gives the total number of offspring produced by

crossover during the run that are clones for various size of crossover fragments.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 20000 40000 60000 80000 100000

P
r
o
p
o
r
t
i
o
n

o
f

t
o
t
a
l

c
r
o
s
s
o
v
e
r
s

Number of Individuals Created

Offspring = mum
Offspring = dad

mum = dad

Figure 24: Proportion of crossovers that yield offspring identical to one or other parents,
typical stack (51) run (Also shows proportion where the two parents are identical).

For crossover to produce a clone of the first parent the fragment of code that is lost

much be identical to that copied from the second parent. As crossover fragments which

are taller are generally larger we would expect the chance of this happening to reduce

rapidly with fragment height. Whilst Table 5 shows this is generally true, it is definitely

not the case for fragment height 2.

In stack run 51 18,644 individuals are produced by crossover which are identical to their

first parent and where the inserted subtree had a height of 2, i.e. fragments consisting of

one function and its arguments which are all terminals. Of these 18,644, there were 16,536

individuals where the tree in which crossover occurred contained only one function and

so crossover entailed replacing the whole tree with another from the other parent, which

turned out to be identical to the first. In this regard the stack problem is atypical, normally

29

Table 5: Number of crossovers of each height of subtree inserted in a typical stack run
(51) and number of these crossovers which produced a non-unique offspring.

Fragment height Identical to
Total % mum dad both either %

1 28,783 32 9,513 38 128 9,679 32
2 28,277 31 18,644 60 305 19,009 62
3 15,360 17 1,060 79 28 1,167 4
4 3,884 4 303 42 6 351 1

5+ 13,784 15 202 33 10 245 .8

Totals 90,088 100 29,722 252 477 30,451 100

Percent 33 .3 .5 34

trees or ADFs will have multiple functions and we would expect few clones to be produced

by crossover of trees with a of height 2. In this run of the stack problem most of the

clones are produced by crossover in trees which are short (height of 2) and identical in

both parents. Thus we see clones (which reduce variety) being caused by lack of diversity

in the population.

5.2.1 Production of Clones by Crossover in Full Binary Trees

In a full binary tree of height h there are 2h − 1 nodes of which 2h−1 are terminals and

2h−1 − 1 are internal nodes. Consider crossover between two identical trees where each

node is distinct. For crossover to produce an individual which is identical to its parents the

crossover points selected in both parents must be the same. The chance of this happening

would simply be (2h − 1)−1 if nodes were chosen at random. However the parameter

pUnRestrictWt (cf. Section 2.4) means only 70% of crossover points are chosen totally at

random. In the remaining 30% of cases the chosen point must be an internal tree node.

From Equation 6 we see for large trees pUnRestrictWt’s effect is to increase the chance of

producing a clone by 9%. The probabilities for smaller trees are tabulated in Table 6.

p(clone) = p(Tree1 internal)× p(Tree2 same internal) +

p(Tree1 external)× p(Tree2 same external)

=

(
(1− pany) + pany

2h − 1− 2h−1

2h − 1

)
× p(Tree2 same internal) +

pany
2h−1

2h − 1
× p(Tree2 same external)

30

=

(
(1− pany) + pany

2h−1 − 1
2h − 1

)
× p(Tree2 same internal) +

pany
2h−1

2h − 1
× p(Tree2 same external)

=

(
(1− pany) + pany

2h−1 − 1
2h − 1

)
×
(

(1− pany) + pany
2h−1 − 1
2h − 1

)
/(2h−1 − 1) +

pany
2h−1

2h − 1
× pany

2h−1

2h − 1
/2h−1

=

(
(1− pany) + pany

2h−1−1
2h−1

)2

(2h−1 − 1)
+

(
pany

2h−1

2h−1

)2

2h−1
(5)

As h increases

p(clone) ≈ (1− pany/2)2

(2h−1 − 1)
+

p2
any/4
2h−1

≈ (1− pany/2)2

2h−1
+

p2
any/4
2h−1

=
(1− pany/2)2 + p2

any/4
2h−1

=
1− pany + p2

any/4 + p2
any/4

2h−1

=
1− pany + p2

any/2
2h−1

Since pany = 0.7 for large h

= 1.09 2−h

p(clone) ≈ 1.09 (2h − 1)−1 (6)

Table 6: Chance of offspring being identical to parents when crossing two identical full
binary trees

Tree height Chance of clone pany = 1

1 1 1.000 1.000

2
(
(1− pany) + pany

1
3

)2
+ (pany

2
3)

2

2 0.393 .333

3 ((1−pany)+pany
3
7)

2

3 + (pany
4
7)

2

4 .160 .143

4 ((1−pany)+pany
7
15)

2

7 + (pany
8
15)

2

8 .074 .067

5 ((1−pany)+pany
15
31)

2

15 + (pany
16
31)

2

16 .035 .032

The chance of producing a clone from two identical trees in a real GP population may

not be exactly as given by Equation 5. This is because: the trees may not be full binary

trees, i.e. they will be smaller if there are terminals closer to the root than the maximum

31

0

50

100

150

200

250

0 20000 40000 60000 80000 100000

P
r
o
g
r
a
m

S
i
z
e

Number of Individuals Created

Max
Min

Mean
Solutions

Figure 25: Evolution of program size, means of 60 stack runs. The lengths of the four
solutions to the stack problem are also shown.

height of the tree, or if functions have one argument rather than two. Conversely trees can

be also be larger if functions have three or more arguments. Also the chance of producing

a clone is increased if actual trees contain repeated subtrees.

In the case of two identical trees of height two and crossover fragments of height two

the chance of producing a clone is equal to the chance of selecting the root in the first tree

which depends upon the number of arguments the tree has. For n arguments, the chance

of producing a clone is (1− pany) + pany/(n + 1) = 1− n pany/(n + 1) which is 65%, 53%,

48% and 44% for n = 1, 2, 3 and 4. In other words given a population where the best

solution found has a height of two and the inserted crossover fragment is also of height

two and there is a high chance of selecting (copies of) the individual to be both parents we

expect the offspring to be a clone between 53% and 65% of the time, which is consistent

with the figure of 16,536 such clones produced in a typical stack run (cf. page 29).

Thus one of the major causes of the fall in variety in the stack populations can be

traced to finding partial solutions early in the evolution of the population with relatively

high fitness where trees within it are short. As the whole individual is composed of five

trees, its total size need not be very small. Figure 25 provides additional evidence for this

as it shows on average stack individuals shrink early in the run to 23.3 at generation six.

I.e. on average each tree contains 4.7 primitives and as there must be many trees shorter

than this, many trees must have a height of two or less.

32

Table 7: Chance of selecting a terminal as a crossover fragment in a full binary tree

Height Both parents

1 100 % 100 %
2 47 % 22 %
3 40 % 16 %
4 37 % 14 %
∞ 35 % 12.25 %

5.2.2 Production of Clones by Crossover Swapping Terminals

The other major reason for crossover to produce clones in the stack runs is crossover

fragments which contain a single terminal (cf. Table 5). The proportion of clones these

crossovers produce can be readily related to lack of diversity. The proportion of crossover

fragments which are a single terminal depends upon the depth and bushiness of the trees

within the population, which in turn depends upon the number of arguments required

by each function in the function set and how the distribution of functions evolves. The

proportion of crossover fragments which are a single terminal is clearly problem dependent

and changes with run and generation within the run, however as a first approximation in

the stack problem it can be treated as a constant for each type of tree (cf. Figure 27).

For a full binary tree of height h the chance of selecting a terminal as a crossover

fragment is pany2h−1/(2h − 1) and the chance of crossover swapping two terminals is(
pany2h−1/(2h − 1)

)2
. Table 7 gives the numerical values for trees of different heights.

Note the chance of selecting a terminal converges rapidly to 35% for large trees.

If parents were chosen at random the chance of selecting the same terminal in two

trees would be simply the sum of the squares of their proportions in the population. Thus

if the terminals are equally likely (as would be expected in the initial population) the

chance of selecting two the same is just the reciprocal of the number of terminals and this

rises as variety falls eventually reaching unity if all but one terminal are removed from

the population. Figure 26 shows how this measure evolves for each tree in a sample of

stack runs. Note in run (23) all five trees quickly converge on a single terminal. In many

of the other runs the population concentrates on one or two terminals, so the chance of

an offspring produced by changing a single terminal being a clone of one of its parents is

much increased.

Typically 15.8% of crossovers replace one terminal with another terminal (cf. Table 8).

This is near the proportion expected for full binary trees with a height of three or more.

33

0

0.2

0.4

0.6

0.8

1

0 20000 40000 60000 80000 100000

C
o
n
v
e
r
g
e
n
c
e

o
f

T
e
r
m
i
n
a
l
s

Number of Individuals Created

1/7

run 00

run 20

run 30
40

run 10 51

run 23

overall
makenull

top
pop

push
empty

Figure 26: Evolution of (Terminal Concentration)2 in each operation tree, for six typical
stack runs and run (23).

Table 8 shows reasonable agreement between the predicted number of clones produced by

crossover inserting a single terminal and the actual number averaged over a typical run of

the stack problem.

The second major source of crossover produced reduction in variety (cf. Table 5) is

thus explained by the fall in terminal diversity, itself a product of the fall in variety. So

again we see low variety being reinforced by crossover, i.e. the reversal of its expected role

of creating new individuals.

Table 8: Number of clones produced by changing a terminal in run (51) of the stack
problem

Tree No. Crossovers Terminal Only
∑

(term conc)2 Predicted Actual

makenull 18,020 3,326 .924424 3,074.6 3,075
top 17,914 3,022 .798273 2,412.4 2,684
pop 18,013 4,895 .565901 2,770.1 2,819
push 18,021 2,306 .318201 733.8 740
empty 18,120 668 .511968 342.0 339

Totals 90,088 14,217 9,334.9 9,657

34

0

0.2

0.4

0.6

0.8

1

0 20000 40000 60000 80000 100000

P
r
o
p
o
r
t
i
o
n

o
f

t
o
t
a
l

c
r
o
s
s
o
v
e
r
s

Number of Individuals Created

 h=1

 h=2

 h=3
 h=4

Typical runs
Run 23

47%
40%
37%
35%

Figure 27: Proportion of crossovers where a terminal is inserted for six typical stack runs
and run (23) (averaged across all five trees within each individual).

6 Measurements of GP Crossover’s Effects

In this section we analyse how successful crossover is at finding new solutions with higher

fitness and conclude in the case of the stack problem, crossover quickly tires and the rate

of finding improvements slows rapidly so after generation eight very few are found and

typically no improvements are found after generation 16. Note this includes all crossovers

not just those that produce offspring that are better than anyone else in the population.

Table 9 gives the number of crossovers which produced an offspring fitter than both

its parents, for run (23), six typical runs and the four successful runs. The successful

runs produce about 50% more successful runs than typical runs. The parents of successful

crossovers and their offspring are plotted in Figures 28 and 29 for a typical and a successful

run respectively. However the number of successful crossovers is more than the number

of different fitness values, that is there are fitness values which have been “discovered”

by multiple successful crossovers. Clusters of particularly popular fitness values that were

“rediscovered” many times can be seen in Figures 28 and 29. E.g. fitness value 128 is

discovered 22 times in run (51) (22 is 13% of all the successful crossovers).

The proportion of successful crossovers in six selected stack runs is shown in Figure 30.

Note the number of crossovers that produce improved offspring is small and quickly falls

so after generation 16 there are almost no crossovers that improve on both parents (or

35

Table 9: No. of Successful Crossovers, in Typical and Successful Stack Runs

Run Crossover point in Tree Total Best Fitness
Makenull Top Pop Push Empty

23 33 32 54 18 46 183 130

00 22 34 57 43 20 176 108
10 27 34 85 29 24 199 108
20 36 41 31 13 59 180 128
30 22 25 44 21 44 156 131
51 38 31 48 16 30 163 139
40 63 75 50 26 90 304 150

27 72 67 47 18 53 257 160
32 69 56 42 25 77 269 160
09 42 63 54 22 75 256 160
53 33 55 44 38 25 195 160

indeed improve on either).

Figure 31 shows the fitness of individuals selected to be crossover parents. This shows

the convergence of the population with almost all parents having the maximum fitness

value. (The asymmetry of the fitness function makes the mean fitness of the population

lower than the fitness of the median individual).

7 Discussion

Natural evolution of species requires variation within a population of individuals as well as

selection for survival and reproduction. In the previous sections we have seen how, even on

the most basic measure, variety in the stack populations falls to low levels primarily due

to crossover producing copies of the first parent at high rates. Initially this is caused by

the discovery of relatively high fitness partial solutions containing very small trees which

dominate the population, reducing variety which causes feedback via crossover produced

clones so keeping variety low, in one case causing it to collapse entirely. As we argued in

Section (4) in most stack runs lack of variety with corresponding extinctions of primitives

prevents solutions like those found from evolving.

In any genetic search a balance between searching the whole search space for an opti-

mum and concentrating the search in particular regions is required. Some convergence of

the population is expected as the GA concentrates on particularly fruitful areas. In most

stack runs partial solutions are found which act similarly to a stack of one item and so

36

80

90

100

110

120

130

140

150

160

0 2000 4000 6000 8000 10000 12000 14000 16000

F
i
t
n
e
s
s

Number of Individuals Created

Improve on both
Mean fitness

Figure 28: All crossovers that produced offspring fitter than both parents, typical stack
run (51).

80

90

100

110

120

130

140

150

160

0 2000 4000 6000 8000 10000 12000 14000 16000

F
i
t
n
e
s
s

Number of Individuals Created

Improve on both
Mean fitness

Figure 29: All crossovers that produced offspring fitter than both parents, successful run
(09).

37

0.001

0.01

0.1

1

0 20000 40000 60000 80000 100000

P
r
o
p
o
r
t
i
o
n

o
f

t
o
t
a
l

c
r
o
s
s
o
v
e
r
s

Number of Individuals Created

Run 40

 Run 51

 Run 51

Improve on both parents
Worse than either

Within range of parents’ fitness

Figure 30: Proportion of crossovers that produced offspring fitter than both parents,
worse than both or neither. Six typical stack runs.

0

20

40

60

80

100

120

140

160

0 20000 40000 60000 80000 100000

F
i
t
n
e
s
s

Number of Individuals Created

First parent in Crossover
Mean fitness

Figure 31: Fitness of parents selected for crossover in typical stack (51) run. (Extrema
and 1% of data for first parent only are plotted).

38

receive a high relative fitness and the population begins to converge to them. This would

be fine apart from two problems: firstly the solutions contain short trees which causes

rapid production of clones but more seriously there is no straightforward path from their

implementation of a stack of one item to a general stack of many items. These two prob-

lems are to some extent specific to the stack problem, the five tree architecture and the

terminal/function set used. A smaller terminal/function set without special primitives to

manipulate “aux”, having only general primitives and indexed memory, might avoid the

trapping by “deceptive solutions” but partial solutions of any sort might then not evolve

in a reasonable time. In the stack problem each terminal and function can appear in each

of the five trees but crossover acts only between like trees so each tree is genetically iso-

lated from each other. (This is known as branch typing and is commonly used with ADFs

[Koza, 1994, page 86]. An alternative point typing allows crossover to move genetic mate-

rial between trees). Branch typing means there are effectively 5 × 12 = 60 primitives in

the stack problem. [Andre, 1996] also reports GP runs with similar numbers of primitives

where one or more functions either evolved out of the population (i.e. became extinct) or

became rare and suggests it was a factor in the decision to use mutation (albeit at a low

rate). However he cautions that further experiments are required for confirmation.

The impact of deceptive partial solutions within the population might be reduced by

partitioning the population into “demes” [Stender, 1993; Collins, 1992; Tackett, 1994;

Koza and Andre, 1995; Juille and Pollack, 1995], using fitness niches to ensure diverse

solutions are retained [Goldberg, 1989]or perhaps using co-evolution to reward solutions

to parts of the test case which most of the population is unable to solve.

Mutation could also be used to increase population diversity but a high mutation

rate might be required to escape from a deceptive local optimum. This would increase

the degree of randomness in the search but might introduce a beneficial element of “hill

climbing”, see [O’Reilly and Oppacher, 1996] and [Iba et al., 1994b]).

While other GPs may not suffer from lack of variety, convergence of some sort is re-

quired if the GP is not to be random search. For example [Keijzer, 1996] shows convergence

in terms of subtrees with GP populations reusing subtrees in many individuals. (GP may

take advantage of this by reducing the space taken to store the population in memory

[Keijzer, 1996] and on disk (by using file compression) Where side-effects are controlled,

retaining information on the evaluation of common subtrees within the population can

also considerably reduce program execution time, c.f. [Handley, 1994]).

Existing GP systems could be modified to:

39

1. Increase variety by disabling the production of clones by the reproduction operator,

e.g. by setting pr to zero.

2. Detect when an offspring is identical to one of its parents. This information can be

readily gathered and can be used either to:

(a) reduce GP run time or

(b) Increase variety.

In many problems (a) can be readily achieved by avoiding the fitness evaluation

of the offspring and instead just copying the fitness value of its (identical) parent.

Variety can be kept high (b) by preventing the duplicate offspring from entering the

population. Typically this would prevent all duplicates produced by crossover. (It

would also be feasible to guarantee every member of the population is unique by

forbidding duplicates from entering the population. Using hashing techniques this

can be done efficiently).

Given current GP populations sizes it would appear to be sensible to ensure variety

remains high so the compromise between converging on good search location and exploring

untried areas retains a high degree of exploration. Thus both changes 1. and 2.b) should

be tried.

The use of pr = 0.1 stems from the decision to use parameters as similar to [Koza,

1992] as possible. It is also the supplied default value with GP-QUICK [Singleton, 1994].

However the use of reproduction is not universal, for example the CGPS [Nordin, 1994;

Nordin and Banzhaf, 1995; Francone et al., 1996] does not implement it. As far as is known,

GP systems do not currently detect that crossover has produced a child which is identical

to one of its parents for the purposes of either reducing run time (2.a) or increasing variety

(2.b). [Koza, 1992, page 93] ensures every member of the initial population is unique but

allows duplicates in subsequent generations. While hashing allows detection of duplicates

in the whole population to be done quickly, in these experiments most duplicates were

directly related to each other and so could be readily detected without comparison with

the whole population.

It appears to be common practice for GP to “run out of steam” so after 20–30 gen-

erations no further improvement in the best fitness value in the population occurs or

improvement occurs at a very low rate. Accordingly few GP runs are continued beyond

generation 50. ([Iba et al., 1994a]’s STROGANOFF system provides a counter example

with runs of 400 generations). It is suggested that failure of crossover to improve on the

40

best individual in the population may, as we saw in Section 6, be accompanied by a general

failure of crossover to make any improvement. This “death of crossover” means further

evolution of the population is due to unequal production of individuals with the same (or

worse) fitness as their parents, in fitness terms (and possible also phenotypically) at best

they are copies of their parents. Typically this serves only to increase the convergence of

the population.

An number of attempts to “scale up” GP have been made based upon imposing func-

tional abstraction on individuals in the population [Koza, 1994; Angeline, 1993; Rosca,

1995]. These have had a degree of success. Another approach is to accept that complex

problems will require many generations to solve and look to the various mechanisms de-

scribed above and new techniques to allow long periods of GP evolution with controlled

convergence of the GP population and means to retain and reuse (partial) solutions.

8 Summary

Earlier we discussed Price’s selection and covariance theorem and showed it can be applied

to genetic algorithms and applied it to genetic programming, where we used it to explain

the evolution of the frequency of various critical primitives in stack populations including

their rapid extinction in many cases. These extinctions are seen as the main reason why

many runs of the stack problem (described in [Langdon, 1995]) failed. In Section 5 it

was shown that the loss of these primitives was accompanied by a general loss in variety.

While general models have been developed to try and explain this they were only partially

successful and quantitatively successful models based upon full binary trees of particular

heights were developed. Section 6 concludes by looking at just the successful crossovers in

the stack runs and concludes they are small in number, in many cases they “rediscover”

solutions that have already been found and convergence of the population is accompanied

by absence of crossovers that produce offspring fitter than their parents as well as none

that are fitter than the best existing individuals in the population.

To some extent these problems are fundamental. Viewing GP as a search process there

is necessarily a trade-off between concentrating the search in promising parts of the search

space which increases the chance of finding local optima versus a wider ranging search

which may therefore be unsuccessful but may also find a more remote but better global

optimum. In GA terms a local search corresponds to a more converged population. The

stack experiments indicate, after the fact, that the search was too focused too early and

so the global optima were missed in many runs. There are many techniques that can be

41

used to ensure population diversity remains high (and so the search is defocused) such as

splitting the population into demes, fitness niches and mutation, some of which were used

in [Langdon, 1995; Langdon, 1996b; Langdon, 1996a]. Techniques based on biased mate

selection to preserve diversity are discussed in [Ryan, 1994].

Defocusing the search means the search is more random and will take longer, if indeed it

succeeds. Other approaches to avoid getting trapped at local optima (“premature conver-

gence”) change the search space, for example by changing the representation by changing

the primitives from which solutions are composed or changing the fitness function.

Changing the primitives can easily be done by hand. It would be interesting to dis-

cover to what extend the problems are due to provision of the auxiliary register (scalar

variable, cf. Section 1.3) primitives which allow the evolution of stacks but also allow ready

formation of deceptive partial solutions. If these were not used, would stacks still evolve?

Alternatively perhaps cleverer genetic operations could avoid the trap by changing pro-

grams from using one type of memory to another in a consistent manner so new programs

continue to work as before. While strongly typed GP can reduce the size of the search

space [Montana, 1995], it may also transform it so that it is easier to search.

There are a number of techniques which automatically change the representation. The

following three techniques co-evolve the representation as the population itself evolves;

The Genetic Library Builder (GLiB) [Angeline, 1994], Automatically Defined Functions

(ADFs) [Koza, 1994] and Adaptive Representations [Rosca, 1995]. [Koza, 1994, page 619]

argues ADFs and other representations provide a different lens with which to view the

solution space and that ADFs may help solve a problem by providing a better lens.

The fitness function may be readily changed by hand. For example provision of an

additional test case may “plug a gap” which GP populations are exploiting to achieve high

fitness on the test case but at the expense of not generalising to the problem as a whole.

Co-evolution can provide an automatic means of dynamically changing the fitness function

[Siegel, 1994]. There is increasing interest in using co-evolution [Sen, 1996; Reynolds, 1994;

Ryan, 1995] and improved performance has been claimed [Hillis, 1992]. However a more

dynamic framework makes analysis of population behaviour harder.

In GP runs the concentration of primitives and variety within the population should

be monitored (both can be done with little overhead). Should a primitive fall to low con-

centration (such as close to the background level provided by mutation) or total extinction

this should be taken as an indication of possible problems and so worthy of further inves-

tigation. Similarly if the number of unique individuals in the population falls below 90%

42

this should also be investigated. [Keijzer, 1996] provides a means to measure the concen-

tration of groups of primitives (sub trees) but the implementation is not straightforward

for most existing GP systems and the interpretation of the results is more complex.

Acknowledgments

W. B. Langdon is funded by the EPSRC and The National Grid Company plc.

I would like to thank my supervisors M. Levene and P. C. Treleaven, for their critisims

and ideas, Lee Altenberg for helpful comments on this work and Andy Singleton for GP-

QUICK.

References

[Altenberg, 1994] Lee Altenberg. The evolution of evolvability in genetic programming.

In Kenneth E. Kinnear, Jr., editor, Advances in Genetic Programming, pages 47–74.

MIT Press, 1994.

[Altenberg, 1995] Lee Altenberg. The Schema Theorem and Price’s Theorem. In L. Darrell

Whitley and Michael D. Vose, editors, Foundations of Genetic Algorithms 3, pages 23–

49, Estes Park, Colorado, USA, 31 July–2 August 1994 1995. Morgan Kaufmann.

[Andre, 1996] David Andre. Personal communication, 15 Jul 1996.

[Angeline and Pollack, 1993] Peter J. Angeline and Jordan B. Pollack. Competitive en-

vironments evolve better solutions for complex tasks. In Proceedings of the 5th In-

ternational Conference on Genetic Algorithms, ICGA-93, pages 264–270, University of

Illinois at Urbana-Champaign, 17-21 July 1993. Morgan Kaufmann.

[Angeline and Pollack, 1994] P. J. Angeline and J. B. Pollack. Coevolving high-level rep-

resentations. In C. G. Langton, editor, Artificial Life III, volume XVII of SFI Studies

in the Sciences of Complexity, pages 55–71. Addison-Wesley, 1994.

[Angeline, 1993] Peter John Angeline. Evolutionary Algorithms and Emergent Intelli-

gence. PhD thesis, Ohio State University, 1993.

[Angeline, 1994] Peter John Angeline. Genetic programming and emergent intelligence.

In Kenneth E. Kinnear, Jr., editor, Advances in Genetic Programming, chapter 4, pages

75–98. MIT Press, 1994.

43

http://dynamics.org/~altenber/PAPERS/EEGP/
http://dynamics.org/~altenber/PAPERS/STPT/
http://www.demo.cs.brandeis.edu/papers/icga5.pdf

[Angeline, 1996] Peter J. Angeline. An investigation into the sensitivity of genetic pro-

gramming to the frequency of leaf selection during subtree crossover. In John R. Koza,

David E. Goldberg, David B. Fogel, and Rick L. Riolo, editors, Genetic Programming

1996: Proceedings of the First Annual Conference, pages 21–29, Stanford University,

CA, USA, 28–31 July 1996. MIT Press.

[Carroll, 1871] Lewis Carroll. Through the Looking-Glass, and What Alice Found There.

Macmillan, 1871.

[Collins, 1992] Robert J. Collins. Studies in Artificial Evolution. PhD thesis, UCLA,

Artificial Life Laboratory, Department of Computer Science, University of California,

Los Angeles, LA CA 90024, USA, 1992.

[Ewens, 1989] W. J. Ewens. An interpretation and proof of the fundamental theorem of

natural selection. Theoretical Population Biology, 36(2):167–180, 1989.

[Ewens, 1992a] W. J. Ewens. Addendum to “The fundamental theorem of natural selection

in Ewens’ sense (case of many loci)” by Catilloux and Lessard. Theoretical Population

Biology, 48(3):316–317, 1992.

[Ewens, 1992b] W. J. Ewens. An optimizing principle of natural selection in evolutionary

population genetics. Theoretical Population Biology, 42(3):333–346, 1992.

[Fisher, 1958] Ronald A. Fisher. The Genetical Theory of Natural Selection. Dover, 1958.

Revision of first edition published 1930, OUP.

[Francone et al., 1996] Frank D. Francone, Peter Nordin, and Wolfgang Banzhaf. Bench-

marking the generalization capabilities of A compiling genetic programming system

using sparse data sets. In John R. Koza, David E. Goldberg, David B. Fogel, and

Rick L. Riolo, editors, Genetic Programming 1996: Proceedings of the First Annual

Conference, pages 72–80, Stanford University, CA, USA, 28–31 July 1996. MIT Press.

[Frank, 1995] S. A. Frank. George Price’s contributions to evolutionary genetics. Journal

of Theoretical Biology, 175:373–388, 1995.

[Goldberg, 1989] David E. Goldberg. Genetic Algorithms in Search Optimization and

Machine Learning. Addison-Wesley, 1989.

[Handley, 1994] S. Handley. On the use of a directed acyclic graph to represent a pop-

ulation of computer programs. In Proceedings of the 1994 IEEE World Congress on

44

http://www.natural-selection.com/Library/1996/gp96.zip
http://dx.doi.org/10.1109/ICEC.1994.350024

Computational Intelligence, pages 154–159, Orlando, Florida, USA, 27-29 June 1994.

IEEE Press.

[Hillis, 1992] W. Daniel Hillis. Co-evolving parasites improve simulated evolution as an

optimization procedure. In Christopher G. Langton, Charles Taylor, J. Doyne Farmer,

and Steen Rasmussen, editors, Artificial Life II, volume X of Sante Fe Institute Studies

in the Sciences of Complexity. Addison-Wesley, 1992.

[Holland, 1973] John H. Holland. Genetic algorithms and the optimal allocation of trials.

SIAM Journal on Computation, 2:88–105, 1973.

[Holland, 1992] John H. Holland. Adaptation in Natural and Artificial Systems: An Intro-

ductory Analysis with Applications to Biology, Control and Artificial Intelligence. MIT

Press, 1992. First Published by University of Michigan Press 1975.

[Iba et al., 1994a] H. Iba, T. Sato, and H. de Garis. System identification approach to

genetic programming. In Proceedings of the 1994 IEEE World Congress on Computa-

tional Intelligence, volume 1, pages 401–406, Orlando, Florida, USA, 27-29 June 1994.

IEEE Press.

[Iba et al., 1994b] Hitoshi Iba, Hugo de Garis, and Taisuke Sato. Genetic programming

with local hill-climbing. In Yuval Davidor, Hans-Paul Schwefel, and Reinhard Männer,

editors, Parallel Problem Solving from Nature III, pages 334–343, Jerusalem, 9-14 Oc-

tober 1994. Springer-Verlag.

[Jannink, 1994] Jan Jannink. Cracking and co-evolving randomizers. In Kenneth E. Kin-

near, Jr., editor, Advances in Genetic Programming, chapter 20, pages 425–443. MIT

Press, 1994.

[Juille and Pollack, 1995] Hugues Juille and Jordan B. Pollack. Parallel genetic program-

ming and fine-grained SIMD architecture. In E. S. Siegel and J. R. Koza, editors,

Working Notes for the AAAI Symposium on Genetic Programming, pages 31–37, MIT,

Cambridge, MA, USA, 10–12 November 1995. AAAI.

[Keijzer, 1996] Maarten Keijzer. Efficiently representing populations in genetic program-

ming. In Peter J. Angeline and K. E. Kinnear, Jr., editors, Advances in Genetic Pro-

gramming 2, chapter 13, pages 259–278. MIT Press, Cambridge, MA, USA, 1996.

45

http://www.cs.brandeis.edu/~hugues/papers/AAAI_GP_95.ps.gz

[Kinnear, Jr., 1994] Kenneth E. Kinnear, Jr. A perspective on the work in this book. In

Kenneth E. Kinnear, Jr., editor, Advances in Genetic Programming, chapter 1, pages

3–19. MIT Press, 1994.

[Koza and Andre, 1995] John R. Koza and David Andre. Parallel genetic programming

on a network of transputers. Technical Report CS-TR-95-1542, Stanford University,

Department of Computer Science, January 1995.

[Koza, 1991] John R. Koza. Genetic evolution and co-evolution of computer programs. In

Christopher Taylor Charles Langton, J. Doyne Farmer, and Steen Rasmussen, editors,

Artificial Life II, volume X of SFI Studies in the Sciences of Complexity, pages 603–629.

Addison-Wesley, Redwood City, CA, USA, 1991.

[Koza, 1992] John R. Koza. Genetic Programming: On the Programming of Computers

by Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

[Koza, 1994] John R. Koza. Genetic Programming II: Automatic Discovery of Reusable

Programs. MIT Press, Cambridge Massachusetts, May 1994.

[Langdon, 1995] W. B. Langdon. Evolving data structures using genetic programming.

In L. Eshelman, editor, Genetic Algorithms: Proceedings of the Sixth International

Conference (ICGA95), pages 295–302, Pittsburgh, PA, USA, 15-19 July 1995. Morgan

Kaufmann.

[Langdon, 1996a] W. B. Langdon. Scheduling maintenance of electrical power transmis-

sion networks using genetic programming. In John Koza, editor, Late Breaking Papers

at the GP-96 Conference, pages 107–116, Stanford, CA, USA, 28–31 July 1996. Stanford

Bookstore.

[Langdon, 1996b] William B. Langdon. Data structures and genetic programming. In

Peter J. Angeline and K. E. Kinnear, Jr., editors, Advances in Genetic Programming 2,

chapter 20, pages 395–414. MIT Press, Cambridge, MA, USA, 1996.

[Montana, 1995] David J. Montana. Strongly typed genetic programming. Evolutionary

Computation, 3(2):199–230, 1995.

[Nordin and Banzhaf, 1995] Peter Nordin and Wolfgang Banzhaf. Evolving turing-

complete programs for a register machine with self-modifying code. In L. Eshelman, ed-

itor, Genetic Algorithms: Proceedings of the Sixth International Conference (ICGA95),

pages 318–325, Pittsburgh, PA, USA, 15-19 July 1995. Morgan Kaufmann.

46

ftp://reports.stanford.edu/pub/cstr/reports/cs/tr/95/1542/CS-TR-95-1542.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/GPdata_icga-95.ps
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/WBL.gpgrid_gp96.ps
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/WBL.aigp2.ch20.ps
ftp://lumpi.informatik.uni-dortmund.de/pub/biocomp/papers/icga95-2.ps.gz

[Nordin, 1994] Peter Nordin. A compiling genetic programming system that directly ma-

nipulates the machine code. In Kenneth E. Kinnear, Jr., editor, Advances in Genetic

Programming, chapter 14, pages 311–331. MIT Press, 1994.

[O’Reilly and Oppacher, 1996] Una-May O’Reilly and Franz Oppacher. A comparative

analysis of GP. In Peter J. Angeline and K. E. Kinnear, Jr., editors, Advances in

Genetic Programming 2, chapter 2, pages 23–44. MIT Press, Cambridge, MA, USA,

1996.

[Park and Miller, 1988] Stephen K. Park and Keith W. Miller. Random number genera-

tors: Good ones are hard to find. Communications of the ACM, 32(10):1192–1201, Oct

1988.

[Price, 1970] George R. Price. Selection and covariance. Nature, 227, August 1:520–521,

1970.

[Price, 1972] George R. Price. Fisher’s ‘fundamental theorem’ made clear. Annals of

Human Genetics, 36:129–140, 1972.

[Reynolds, 1994] Craig W. Reynolds. Competition, coevolution and the game of tag. In

Rodney A. Brooks and Pattie Maes, editors, Proceedings of the Fourth International

Workshop on the Synthesis and Simulation of Living Systems, pages 59–69, MIT, Cam-

bridge, MA, USA, 6-8 July 1994. MIT Press.

[Rocsa, 1996] Justinain Rocsa. GP population variety. GP electronic mailing list, 21 Jun

1996.

[Rosca and Ballard, 1996] Justinian P. Rosca and Dana H. Ballard. Discovery of subrou-

tines in genetic programming. In Peter J. Angeline and K. E. Kinnear, Jr., editors,

Advances in Genetic Programming 2, chapter 9, pages 177–202. MIT Press, Cambridge,

MA, USA, 1996.

[Rosca, 1995] Justinian P. Rosca. Genetic programming exploratory power and the dis-

covery of functions. In John Robert McDonnell, Robert G. Reynolds, and David B.

Fogel, editors, Evolutionary Programming IV Proceedings of the Fourth Annual Confer-

ence on Evolutionary Programming, pages 719–736, San Diego, CA, USA, 1-3 March

1995. MIT Press.

[Ryan, 1994] Conor Ryan. Pygmies and civil servants. In Kenneth E. Kinnear, Jr., editor,

Advances in Genetic Programming, chapter 11, pages 243–263. MIT Press, 1994.

47

http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/ftp.io.com/papers/cwrALifeIV.ps.Z
ftp://ftp.cs.rochester.edu/pub/u/rosca/gp/96.aigp2.dsgp.ps.gz
ftp://ftp.cs.rochester.edu/pub/u/rosca/gp/95.ep.exploratory.ps.gz

[Ryan, 1995] Conor Ryan. GPRobots and GPTeams - competition, co-evolution and co-

operation in genetic programming. In E. S. Siegel and J. R. Koza, editors, Working Notes

for the AAAI Symposium on Genetic Programming, pages 86–93, MIT, Cambridge, MA,

USA, 10–12 November 1995. AAAI.

[Sen, 1996] Sandip Sen. Adaptation, coevolution and learning in multiagent systems.

Technical Report SS-96-01, AAAI Press, Stanford, CA, March 1996.

[Siegel, 1994] Eric V. Siegel. Competitively evolving decision trees against fixed training

cases for natural language processing. In Kenneth E. Kinnear, Jr., editor, Advances in

Genetic Programming, chapter 19, pages 409–423. MIT Press, 1994.

[Singleton, 1994] Andy Singleton. Genetic programming with C++. BYTE, pages 171–

176, February 1994.

[Stender, 1993] Joachim Stender, editor. Parallel Genetic Algorithms: Theory and Appli-

cations. IOS press, 1993.

[Syswerda, 1989] Gilbert Syswerda. Uniform crossover in genetic algorithms. In J. David

Schaffer, editor, Proceedings of the third international confernece on Genetic Algorithms,

pages 2–9, 10 Moulton Street, Cambridge, MA 02238, USA, Jun 1989. Morgan Kauf-

mann, San Mateo, California.

[Syswerda, 1991] Gilbert Syswerda. A study of reproduction in generational and steady

state genetic algorithms. In Gregory J. E. Rawlings, editor, Foundations of genetic

algorithms, pages 94–101. Morgan Kaufmann, San Mateo, 1991.

[Tackett, 1994] Walter Alden Tackett. Recombination, Selection, and the Genetic Con-

struction of Computer Programs. PhD thesis, University of Southern California, De-

partment of Electrical Engineering Systems, 1994.

[Tackett, 1995] Walter Alden Tackett. Greedy recombination and genetic search on the

space of computer programs. In L. Darrell Whitley and Michael D. Vose, editors,

Foundations of Genetic Algorithms 3, pages 271–297, Estes Park, Colorado, USA, 31

July–2 August 1994 1995. Morgan Kaufmann.

[Teller, 1994] Astro Teller. The evolution of mental models. In Kenneth E. Kinnear, Jr.,

editor, Advances in Genetic Programming, chapter 9, pages 199–219. MIT Press, 1994.

48

http://www.byte.com/art/9402/sec10/art1.htm
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/ftp.io.com/papers/watphd.tar.Z
http://www.cs.cmu.edu/afs/cs/usr/astro/public/papers/MentalModels.ps

	Architecture of Stack Individuals
	Stack Primitives
	Indexed Memory
	Register

	Price's Selection and Covariance Theorem
	Proof of Price's Theorem
	Proof of Price's Theorem with Asexual Reproduction
	Price's Theorem for Genetic Algorithms
	Applicability of Price's Theorem to GAs and GPs
	Application of Price's Theorem to the GP Stack Problem

	Fisher's Fundamental Theorem of Natural Selection
	Evolution of Stack Problem Populations
	Discussion

	Lost of Variety
	Lost of Variety in Stack Populations
	Measurements of GP Crossover's Effect on Variety
	Production of Clones by Crossover in Full Binary Trees
	Production of Clones by Crossover Swapping Terminals

	Measurements of GP Crossover's Effects
	Discussion
	Summary

