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Adaptive Hierarchy of Distributed Fuzzy Control:Application to Behavior Control of RoversbyEdward W. Tunstel, Jr.B.S., Mechanical Engineering, Howard University, 1986M.E., Mechanical Engineering, Howard University, 1989Ph.D. Electrical Engineering, University of New Mexico, 1996
AbstractThis dissertation addresses the synthesis of knowledge-based controllers for complex au-tonomous systems that interact with the real world. A fuzzy logic rule-based architecture isdeveloped for intelligent control of dynamic systems possessing a signi�cant degree of auton-omy. It represents a novel approach to controller synthesis which incorporates fuzzy controltheory into the framework of behavior-based control. The controller intelligence is distributedamongst a number of individual fuzzy logic controllers and systems arranged in a hierarchicalstructure such that system behavior at any given level is a function of behavior at the level(s)below. This structure addresses the combinatorial problem associated with large rule-base car-dinality, as the totality of rules in the system are not processed during any control cycle. Amethod of computationally evolving fuzzy rule-bases is also introduced. It is based on the ge-netic programming paradigm of evolutionary computation and directly manipulates linguisticterminology of the system. This provides a systematic rule-base design method which is morevii



direct than current approaches that mandate numerical encoding/decoding of rule represen-tations. Finally, a mechanism for multi-rule-base coordination is devised by generalization offuzzy logic theoretic concepts. It is incorporated to endow the system with the capability todynamically adapt its control policy in response to goals, internal system state, and perceptionof the environment.The validity and practical utility of the approach is veri�ed by application to autonomousnavigation control of wheeled mobile robots, or rovers. Simulated and experimental navi-gation results produced by the adaptive hierarchy of distributed fuzzy control are reported.Results show that the proposed ideas can be useful for realization of autonomous rovers thatare meant to be deployed in dynamic and possibly unstructured environments. This classof computer-controlled, wheeled mobile vehicles includes industrial mobile robots, automatedguided vehicles, o�ce or hospital robots, and in some cases natural terrain vehicles such asplanetary rovers.The proposed intelligent control architecture is generally applicable to autonomous systemswhose overall behavior can be decomposed into a bottom-up hierarchy of increased behavioralcomplexity, or a decentralized structure of multiple rule-bases.
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Glossary
behavior-based control: distributed and decentralized control implemented using a collec-tion of special-purpose task-achieving modules that execute concurrently.behavior modulation: the autonomous act of regulating, adjusting or adapting the activa-tion level of a behavior to the proper degree in response to a context, situation, or stateperceived by an autonomous agent.complex: too di�cult or impractical for analysis using conventional quantitative techniques.Degree of Applicability: a linguistic measure of the instantaneous level of activation of abehavior, expressed as a scalar in the closed unit interval, which determines the amountof in
uence the behavior will have on the control action corresponding to the situationprevailing during the current control cycle.ethology: the scienti�c study of animal behavior patterns.hand-derived: obtained based on expert knowledge, intuition, trial-and-error, or other non-automatic method.soft computing: refers to intelligent systems methodologies which employ fuzzy logic, neuralnetworks, probabilistic reasoning, evolutionary algorithms, or synergistic combinations ofthese. xvii



Chapter 1
Introduction
Automatic control of complex dynamical systems is truly one of the greatest engineering chal-lenges of today. Indeed the impact of this statement can only be assessed relative to currentchallenges in systems and control, as well as the present state-of-the-art. That is, the statementwas perhaps also valid a half-century ago when \complex" control problems were among theclass of problems we now consider mundane. It was about that time when classical controltheory was formulated using frequency domain methods. From the 1930s to the 1960s, controlengineers witnessed the development of optimal control theory and state-space analysis. Asthe \complexity" of systems continued to increase, it became necessary to consider questions ofuncertainty which were responded to by developments in stochastic optimal control. This wasfollowed by progressions made in the late 1960s in robust and adaptive control theory. Andthis progressive sophistication in control engineering continues today, ever driven by increasingtechnological demands and accelerated developments in computer technology.Today, computer and electronics technology is pushing the envelope toward complex dy-namic systems of increased autonomy. The demand for autonomy brings with it a host ofrequirements and control speci�cations which are not adequately addressed by conventional



Chapter 1. Introduction 2control methods. To address the control needs of autonomous systems, yet another rise in thelevel of sophistication of control techniques is required. This brings us to the era of intelligentcontrol [1]. An aim of intelligent control research is to develop autonomous systems that candynamically interact with the real world. The notion of intelligence in systems dictates the needfor cognitive, or knowledge-based control. System autonomy implies that the systems of inter-est are to be self-contained. That is, they must be capable of sensing the real world, reasoningabout the real world, and physically in
uencing the real world. In this context, \real world"is meant to refer to physical environments that may be unstructured, unpredictable, dynamic,noisy, and/or unknown. As such, the real world presents an immense level of uncertainty whichcomplicates the endeavor of developing and controlling autonomous systems.In attempts to formulate approaches that can handle real-world uncertainty, researchers arefrequently faced with the necessity to consider tradeo�s between developing complex cognitivesystems that are di�cult to control, or adopting a host of assumptions that lead to simpli�edmodels which are not su�ciently representative of the system or the real world. The latter op-tion is a popular one which often enables the formulation of viable control laws. However, thesecontrol laws are typically valid only for systems that comply with the imposed assumptions,and furthermore, only in neighborhoods of some nominal state. Control laws can only be asaccurate as the models they are based on. The option that involves complex systems has beenless prevalent due to the lack of analytical methods that can adequately handle uncertainty andconcisely represent knowledge in practical control systems. Recent research and applicationsemploying non-analytical methods of soft computing such as fuzzy logic, evolutionary compu-tation, and neural networks have demonstrated the utility and potential of these paradigms forintelligent control of complex systems [2, 3, 4, 5, 6, 7]. In particular, fuzzy logic has proven tobe a convenient tool for handling real-world uncertainty and knowledge representation [8].Fuzzy logic control is one of the more active areas of application of fuzzy logic and the



Chapter 1. Introduction 3underlying fuzzy set theory introduced by Zadeh [9, 10]. A fuzzy logic controller (FLC) isan intelligent control system that smoothly interpolates between rules. In autonomous sys-tems, tasks are generally performed based on evaluation of sensor data according to a set ofrules/heuristics furnished by a human expert who has learned them from experience or training.More often than not, these rules are not crisp (based on binary logic), i.e. some common-sensereasoning or judgemental decision-making is necessary. The class of such problems can beaddressed by a set of fuzzy variables and rules which, if suitably formulated, can be used tomake expert decisions that approximate human reasoning. As pointed out by Lee [11], fuzzylogic controllers provide a means of transforming a linguistic control strategy that is based onexpert knowledge into an automatic control strategy. The approach is very useful for handlingproblems that are too complex for analysis using conventional quantitative (analytical) tech-niques or when the available sources of information provide only qualitative, approximate, oruncertain data.
1.1 Challenges for Complex Fuzzy System ControlMost of the fuzzy controllers applied to industrial products and reported in the research lit-erature utilize the monolithic rule-base structure, i.e. a single set of fuzzy rules. During anygiven control cycle all rules in the fuzzy rule-base are processed. Clearly the cardinality (totalnumber of rules) of the fuzzy rule-base has a direct in
uence on the real-time performance of afuzzy control system. This presents no problems for real-time control of systems requiring a rel-atively small number of rules (e.g. less than twenty). However, for more complex systems thatrequire a signi�cantly larger number of rules, this FLC architecture reveals a limitation in theform of degradations in real-time performance. This is a major concern for control of systemsfor which intelligence can be distributed throughout hierarchical or decentralized structures.



Chapter 1. Introduction 4Examples of such systems are autonomous robotic agents, corporate decision-making entities,social systems, electric power systems, and other large-scale systems [12] in general. Raju et al[13, 14] have shown that for the conventional FLC, the cardinality of the fuzzy rule-base whichincreases exponentially with the number of system variables (inputs) can increase linearly if therules are structured as a set of hierarchical expert levels. Jamshidi [12] has proposed a combinedhierarchical-sensory fusion scheme characterized by a piecewise linear constant propagation ofrules as a function of system variables. Thus, it is possible to overcome this source of com-putational complexity and facilitate practical implementations of complex FLCs by employingalternative hierarchical rule structures. One such hierarchical fuzzy approach is introduced inthis dissertation.Systematic design of FLCs in the absence of an expert, or su�cient knowledge of theproblem domain, is currently an open problem. Various successful approaches that use softcomputing methods have addressed this design problem. In many of the proposed approachesto automatically generating rule sets for FLCs, it is necessary to encode the linguistic rulesas a numerical representation and subsequently decode them into the appropriate linguisticterminology of the problem. A more direct approach is proposed here | genetic programming1of fuzzy systems. Genetic programming eliminates numerical encoding/decoding of rule sets;it directly manipulates the linguistic terminology of the fuzzy system.The monolithic rule-bases employed in many fuzzy control systems represent static non-linear mappings from input to control output. Additional 
exibility beyond the bounds of aparticular nonlinear mapping is necessary for systems of signi�cant autonomy. This issue hasbeen addressed in some monolithic adaptive fuzzy controllers by an adaptive law for adjustingstructural and linguistic parameters (membership functions and/or rules) of the system. Suchadjustments e�ectively alter the nonlinear mapping of the controller. In multiple-rule-based1For an overview of genetic programming, please see the Appendix.



Chapter 1. Introduction 5controllers, the adaptive law can become unwieldy due to the greater number of nonlinearitiesthat must be considered. A di�erent approach is taken here in which adaptation is achieved bycontrolling interactions between multiple rule-bases such that an appropriate dynamic nonlinearmapping from situations to actions is achieved.
1.2 Facing the ChallengeFuzzy logic is a powerful tool for use in control of dynamic systems. Proven advantages arerobustness in the presence of system and external perturbations, ease of design and implemen-tation, and e�ciency of knowledge represention for systems of continuous variables [15]. Theconventional FLC has been successfully used in a number of industrial plants and processes,and because of its advantages, it is sometimes the more favorable controller even when classicalcontrollers (e.g. PID and its variants) are applicable. However, there are some limitationsregarding the use of the FLC for more complex systems than those addressed to date. Toreiterate, the limitations are: the potentially negative e�ect of large rule-bases on real-timeperformance, the enigma regarding FLC design in the absence of su�cient domain knowledge,and the lack of adaptation.The purpose of this dissertation is to address these issues by advancing the state-of-the-artregarding synthesis of fuzzy controllers for complex distributed intelligent systems representedas hierarchical or decentralized structures. An intelligent fuzzy control architecture is developedand proposed in the chapters that follow. The controller intelligence is distributed amongsta number of individual fuzzy logic controllers and decision systems arranged in a hierarchicalstructure such that system behavior at any given level is a function of behavior at the level(s)below. Additional architectural structure is imposed by forming a hybrid between fuzzy logiccontrol and behavior-based control, which is a product of arti�cial intelligence research in mo-



Chapter 1. Introduction 6bile robotics. The practicality of the new approach is demonstrated by implementation ofthe proposed architecture on simulated and physical mobile robots and experiments with au-tonomous navigation in dynamic and non-engineered environments. An autonomous mobilerobot, or rover, is a su�ciently complex plant for testing the validity of the approach. Develop-ment of such systems is important for automating activities in a variety of operating domainsranging from industrial environments to outer space. Examples include o�ce settings, hos-pitals, factories, natural terrain, planetary surfaces, and environments deemed hazardous forhumans. The scope of application is broad. However, the exposition provided here is writtenwith applications to dynamical systems of the electro-mechanical, or mechatronic, variety inmind.1.2.1 ContributionsDuring the course of developing theoretical and practical aspects of research presented here,several contributions have been made which advance the state-of-the-art in fuzzy controllersynthesis. We list the contributions here.A hierarchical structure that accommodates multivariable systems by distributingintelligence among multiple rule-bases.A computational mechanism which provides adaptability to fuzzy control systemsvia multi-rule-base coordination.An automatic approach to fuzzy rule-base design.Based on these contributions, we will demonstrate how the current approach to fuzzy controlcan be extended to e�ectively deal with multivariable systems which require many rules. In



Chapter 1. Introduction 7addition, a constrained syntactic structure is introduced which enables genetic programming tobe used to evolve intelligent control rules for rover tracking and behavior coordination problems.The research results have particular relevance to autonomous rover navigation researchbeing conducted by NASA at the Jet Propulsion Laboratory in Pasadena, California. At JPL,behavior-based control schemes have been applied to planetary microrover navigation since1990 [16, 17, 18, 19, 20]. This dissertation provides a slightly di�erent approach that exploitsthe strengths of fuzzy logic for handling uncertainty in unstructured environments. This is anessential capability for planetary surface exploration by microrovers.1.2.2 RoadmapIn Chapter 2 the terminology of fuzzy system theory which will be used throughout this disser-tation is described. The relevant mathematics of fuzzy control systems, operational aspects offuzzy reasoning, and rule structures are also covered. Chapter 3 demonstrates an approach toautomatic discovery of fuzzy logic rule-bases based on arti�cial evolution. In particular, geneticprogramming is employed for systematic design of fuzzy controllers. These two early chapterslay the ideological foundation for the remainder of the research.The main contribution is presented in Chapter 4 where theoretical extensions to conven-tional fuzzy control are introduced. The essential ingredients of the adaptive hierarchy ofdistributed fuzzy control are covered. Behavioral concepts which are natural by-products ofincorporating fuzzy logic into the framework of behavior-based control are described. Finally,comments on stability analysis are given. Implications of applying the new approach to be-havior control synthesis are discussed in Chapter 5. A behavior hierarchy for autonomousnavigation is described, as well as the mechanisms responsible for adaptive behavior. Chap-ter 6 reports simulated and experimental results that verify the validity and practical utility



Chapter 1. Introduction 8of the new approach in this problem domain. In addition, genetic programming is revisitedthrough applications to evolution of high-level behaviors. The dissertation is concluded byChapter 7.



Chapter 2
Theory and Principles of FuzzyControl
Fuzzy control is one of the more active areas of application of fuzzy logic and the underlyingfuzzy set theory introduced by Zadeh [9]. Fuzzy logic controllers are intelligent control systemsthat smoothly interpolate between rules, i.e. rules �re to continuous degrees and the multipleresultant actions are combined into an interpolated result. The capability of providing e�cientcontrol while processing uncertain information is the basis for fuzzy logic control. As a means ofapproximating or capturing the essence of human thinking, fuzzy logic is more 
exible than tra-ditional logic which is based on classical set theory. Fuzzy control theory provides a mechanismfor incorporating human-like reasoning capabilities computationally in control systems. Thecandidate systems for fuzzy logic control can be characterized as systems that possess complexor unmodeled dynamics, high dimensionality, many interacting variables, system perturbations,or a combination of any of these.At the heart of a fuzzy logic controller is a rule-base consisting of if-then rules. These aresimilar in form to production system rules of expert systems, however antecedents (if -part)



Chapter 2. Theory and Principles of Fuzzy Control 10and consequents (then-part) of a fuzzy rule are fuzzy propositions expressed using fuzzy setsand linguistic variables. These and related terminology which will be used throughout thisdissertation are described in this chapter.
2.1 Mathematical ConceptsA fuzzy set may be characterized by a mathematical formulation known as the membershipfunction. This function assigns a numerical degree or grade of membership to a crisp (precise)number. More precisely, over a given universe of discourse X, the membership function of afuzzy set ~A, denoted by � ~A(x), maps elements x 2 X into a numerical value in the closed unitinterval, i.e. � ~A(x) : X ! [0; 1]: (2.1)Note that a membership function is a so-called possibility function and not a probability func-tion. A fundamental distinction between the two is that, unlike probabilities, possibilities arenot required to sum to one, nor does the integral of a possibility function have to equal one.Thorough expositions on the distinctions between possibility and probability can be found in[21]. In the context of control system applications, membership values are measures of causalityin an input-output mapping. Within this framework, a membership value of zero correspondsto an element which is de�nitely not a member of the fuzzy set, while a value of one correspondsto the case where an element is de�nitely a member of the set [5]. Partial fuzzy set membershipis indicated by intermediate membership values. Thus, a fuzzy set is a generalization of thenotion of a classical set which takes on only two possible membership (Boolean) values | f0,1g,fFALSE, TRUEg, etc. The fuzzy set, ~A, can be represented as a crisp set of ordered pairs ofx 2 X and � ~A(x), i.e. ~A = f(x; � ~A(x))jx 2 Xg: (2.2)



Chapter 2. Theory and Principles of Fuzzy Control 11Alternative and commonly used notations for fuzzy sets are~A = Xx2X � ~A(x)=x (2.3)if X is a discrete or countable universe of discourse, and~A = Zx2X � ~A(x)=x (2.4)if X is continuous or uncountable. In these equations, the function of each operator is di�erentfrom its usual meaning in mathematics. In particular, P indicates a countable enumerationrather than summation, R indicates an uncountable enumeration rather than integration, and= indicates an ordered pair rather than division. Throughout this dissertation notation (2.3) isused most since the subject is control systems which are invariably realized on digital computers.For all practical purposes, all fuzzy sets dealt with here are countable and discrete.Typical membership functions used to express uncertainty in the system variables of fuzzylogic control systems take on triangular and trapezoidal shapes (or variants thereof) given byEquations (2.5) and (2.6), respectively, where a, b, c, and d 2 <.
�tri(x) = 8>>>>>>>>>><>>>>>>>>>>:

0 ; x < a(x�a)(b�a) ; a � x � b(a�x)(b�a) ; b � x � c0 ; x > c: (2.5)
�trap(x) =

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
0 ; x < a(x�a)(b�a) ; a � x < b1 ; b � x � c(c�x)(d�c) ; c < x � d0 ; x > d: (2.6)

These are illustrated in Figure 2.1. Smoother nonlinear variants of these typical membership
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dFigure 2.1: Typical membership functions used in fuzzy control.function shapes have also been proposed. They are used primarily in fuzzy logic and �nd lesspractical utility in fuzzy control systems. This is due to the fact that minimal performancegains are achieved with the added expense of more complex mathematical operations thatmust be performed by a real-time fuzzy control algorithm. Piecewise linear functions such asEquations (2.5) and (2.6) are evaluated faster and more e�ciently by digital computers andmicrocontrollers used in embedded applications.A linguistic variable is a system variable whose de�nition can not be su�ciently speci�edusing crisp sets. It takes on values that are words or sentences in a natural or arti�cial languagewhich convey some ambiguous notion amenable to de�nition using fuzzy set theoretic concepts.Associated with a given linguistic variable (e.g. speed) are linguistic values, or fuzzy subsets (e.g.slow, fast, etc) expressed as membership functions which convey any uncertainty, vagueness, orimprecision of values of the linguistic variable.2.2 Operational Aspects of Fuzzy ReasoningThe basic structure of a canonical FLC system architecture is depicted in Figure 2.2. Thedistinction of this architecture from those of classical linear feedback control systems is that
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Figure 2.2: Canonical fuzzy control system con�guration.the controller block performs a nonlinear mapping from plant state or output information intoplant control action(s). This mapping is characterized by a transformation of information fromphysical space to an abstract (fuzzy) or normalized space where decisions are made, and fromthis abstract space back to physical space. The symbols, �N and �D, represent normaliza-tion and denormalization scale factors respectively. Such transformations are common in softcomputing techniques including neural networks and probabilistic reasoning systems based onBayesian inference. It is interesting to note a conceptual analog in the general areas of sig-nals and systems, where time domain data is transformed into the frequency domain, operatedupon, and transformed back to the time domain using Fourier, Laplace, or z-transforms. Justas in these conventional approaches, the information to be processed in fuzzy systems is easierto handle in the intermediate abstract space.Implementation of a fuzzy controller requires assigning membership functions for both in-puts and outputs by partitioning the respective universes of discourse using fuzzy subsets. Withknowledge of the membership functions in place, the FLC performs three primary operations:1) fuzzi�cation of input variables, 2) inference via a set of fuzzy rules that map fuzzy inputs



Chapter 2. Theory and Principles of Fuzzy Control 14to fuzzy outputs, and 3) defuzzi�cation of aggregated fuzzy outputs. The inference engine isresponsible for fuzzy reasoning and corresponds to the abstract space mentioned in the analogyjust given. Fuzzi�cation (defuzzi�cation) can be viewed as a transform (inverse transform)between crisp and fuzzy information. The introduction of some terminology at this point willbe useful in discussions that follow. Recall that fuzzy set theory is a generalization of classicalset theory. As such, it provides set operations which generalize classical set intersection andunion. These belong to a class of fuzzy set aggregation operators called triangular norms andtriangular co-norms1 (t-norms and t-conorms), respectively, and are used to express fuzzy log-ical statements or propositions. Note that intersection and union correspond respectively toconjunction and disjunction in fuzzy (and crisp) logical propositions. The t-norms most com-monly used in fuzzy control are the arithmetic minimum and algebraic product operations onmembership values of fuzzy sets. Common t-conorms are arithmetic maximum and bounded-sum. Therefore, the intersection of two fuzzy sets, ~A and ~B, with membership functions � ~Aand � ~B is a fuzzy set ~C = ~A \ ~B whose membership function can be computed using one ofthe following expressions � ~C = � ~A\ ~B(x) = min(� ~A; � ~B) (2.7)� ~C = � ~A\ ~B(x) = � ~A � � ~B (2.8)Similarly, the union ~C = ~A [ ~B can be computed using one of the following expressions� ~C = � ~A[ ~B(x) = max(� ~A; � ~B) (2.9)� ~C = � ~A[ ~B(x) = min(1; � ~A + � ~B) (2.10)The bounded-sum t-conorm, Equation (2.10), ensures that the result of a fuzzy set union is anormal (maximum height of 1) fuzzy set.1Also referred to as s-norms



Chapter 2. Theory and Principles of Fuzzy Control 152.2.1 Fuzzi�cationInputs to a fuzzy controller, x, are usually measured variables associated with the state of thecontrolled plant. Since the inference engine processes fuzzy quantities, the inputs must �rst beassigned membership values (fuzzi�ed), i.e. they must be transformed into a fuzzy domain toyield �(x). This is achieved by evaluating the membership functions of each linguistic inputvariable with the crisp value as an argument. In many instances, the crisp value is �rst scaledinto a normalized universe of discourse just prior to evaluation by membership functions.As mentioned earlier, the heart of the controller inference engine is a set of if-then ruleswhose antecedents and consequents are made up of linguistic variables and associated fuzzymembership functions. If X and U are input and output universes of discourse for a rule-baseof size N , the generic fuzzy if-then rule takes the following formIF x is ~Ai THEN u is ~Bi (2.11)where x and u represent FLC input and output fuzzy linguistic variables, respectively, and ~Aiand ~Bi (i = 1:::N) are fuzzy sets representing linguistic values of x and u. Such rules de�ne acausal relationship between the plant state and its control inputs [22]. That is, IF the currentvalue of state x is a member of ~Ai, THEN this is a cause for control input u to take on valuesin ~Bi. In general, the rule antecedent consisting of the proposition \x is ~Ai" could be replacedby a compound fuzzy proposition consisting of a conjunction (and/or disjunction) of similarpropositions. Similarly, the rule consequent \u is ~Bi" could include additional FLC outputpropositions. For each rule, state variables, xj , of the plant are matched against fuzzy sets,~Aij , in each proposition of the antecedent yielding � ~Aij (xj). A degree of match is computedas the rule strength, �i 2 [0; 1], by a conjunctive operation over all rule antecedents. For a rulewith n propositions in the antecedent, the rule �ring strength can be computed as�i = minj � ~Aij (xj) ; j = 1; 2; : : : ; n (2.12)



Chapter 2. Theory and Principles of Fuzzy Control 16where the min t-norm (Equation (2.7)) has been used, or as�i = nYj=1� ~Aij (xj) (2.13)using Equation (2.8).2.2.2 InferenceOnce the rule �ring strength is determined, fuzzy subsets in the rule consequent are modi�edby fuzzy implication resulting in a possibility distribution (a fuzzy set) for the output of therule. For a rule with m consequents the rule outputs are given by~ui(u) = min(�i; ~Bi) (2.14)or�~uik(uk) = min(�i; � ~Bik(uk)) ; k = 1; 2; : : : ;m: (2.15)In the fuzzy control literature Equation (2.14) is known as the Mamdani implication. Analternative implication, based on Larsen's product rule, can be used as well. It is given by~ui(u) = �i � ~Bi (2.16)or�~uik(uk) = �i � � ~Bik(uk) ; k = 1; 2; : : : ;m: (2.17)Many possible implication functions exist. From a practical point of view, Mamdani implicationand Larsen's implication have been found to be well suited for approximate reasoning in fuzzycontrol due to their computational simplicity [23].The inference engine computes an output fuzzy set, ~U 2 U , representing the aggregatedcontribution (according to (2.9)) of all rules in the rule-base. This rule-base output is expressed



Chapter 2. Theory and Principles of Fuzzy Control 17as ~U = N[i=1 ~ui(u): (2.18)When ~ui(u) is determined using Mamdani implication, Equation (2.18) is called max-min in-ference. If Larsen's implication is used, Equation (2.18) is called max-product inference. Inthe research reported in this dissertation, max-product inference is used to compute rule-baseoutputs, and the arithmetic sum is used to aggregate fuzzy outputs from multiple rule-bases.2.2.3 Defuzzi�cationThe output of a fuzzy controller serves as the control input to the plant. In practical controlsystems plant inputs must be crisp values. Therefore, the the aggregated fuzzy output set re-sulting from rule-based inference must be defuzzi�ed to yield a single real number output thatserves as the control input signal for the plant. The output fuzzy set can be viewed as a possibil-ity distribution over a range of crisp outputs. This range of outputs includes all control inputsrecommended as desirable by the rule-base given the current input. Defuzzi�cation determinesthe best value among the possibilities using a suitable functional expression. Two commonlyused defuzzi�cation formuli are the Center-of-Area and Center-of-Sums defuzzi�cation meth-ods. Each is a computation conceptually tailored after the centroid/center-of-gravity formulafor a distributed load in two dimensions | a fundamental concept of engineering mechanics.Let U = fu1; u2; : : : ; urg be a discrete universe for the FLC output (plant input), and let u�be the crisp control input. Then the general formula for defuzzi�cation of a rule-base outputfuzzy set, ~U , determines u� as u� = Prl=1 ul � � ~U (ul)Prl=1 � ~U(ul) (2.19)where, in our analogy, the numerator represents the resultant moment of the output fuzzy set(about the lower bound of U) and the denominator represents the area under the fuzzy set.



Chapter 2. Theory and Principles of Fuzzy Control 18For Center-of-Area defuzzi�cation the terms, � ~U (ul), are computed as� ~U (ul) = maxi �~ui(ul); (2.20)and for Center-of-Sums defuzzi�cation� ~U(ul) = NXi=1 �~ui(ul): (2.21)Given the size, and upper and lower bounds on any such U , the defuzzi�cation can be computede�ciently using the theorem introduced below; it holds independent of whether the discreteoutput fuzzy set is computed using Equation (2.20) or Equation (2.21).Theorem 2.1 Let UI be a �nite universe of discourse de�ned over the closed interval, I =[a; b]; a < b, and discretized with resolution, �r, over equally spaced units. A discrete outputfuzzy set, ~U , de�ned over UI which expresses membership grades of a sequence, ul 2 UI 3 ul =(a + l�r); l = 0; 1; : : : ; r � 1, can be defuzzi�ed to yield a crisp value, u�, using the followingshift defuzzi�cation formula:u� = a+ �rPr�1l=0 l � � ~U (ul)Pr�1l=0 � ~U(ul) ; where �r = b� ar � 1 :Proof: Let � ~U (ul) denote the membership grades (function) of the elements ul 2 UI . Thendiscrete defuzzi�cation yields the crisp output u� asu� = Pr�1l=0 ul � � ~U (ul)Pr�1l=0 � ~U(ul) :Substituting ul = (a+ l�r) and expanding leads tou� = Pr�1l=0 (a+ l�r)� ~U (ul)Pr�1l=0 � ~U (ul)= aPr�1l=0 � ~U (ul)Pr�1l=0 � ~U (ul) + �rPr�1l=0 l � � ~U(ul)Pr�1l=0 � ~U (ul)or �nally, u� = a+ �rPr�1l=0 l � � ~U(ul)Pr�1l=0 � ~U (ul) :



Chapter 2. Theory and Principles of Fuzzy Control 19Thus according to the theorem, a crisp fuzzy controller output, de�ned over a �nite universe,can be computed from its associated discrete fuzzy output by defuzzifying over the discretesupport (i.e. fu 2 U j� ~U (u) > 0g) of the fuzzy output, scaling by the resolution of the universe,and shifting by the lower bound of the universe. If input scaling or normalization is used bythe FLC, a corresponding denormalization must be applied to the result of defuzzi�cation todetermine a control input in its appropriate non-normalized universe.There is a practical and a philosophical issue to consider regarding the choice of defuzzi-�cation formuli. In practice, and in particular for real-time control applications, it is oftendesirable to minimize computation time. In what has been described thus far regarding com-putational aspects of FLCs, the defuzzi�cation process is by far the most intensive. Therefore,it is a popular item to begin with when attempting to optimize a system for real-time control.The Center-of-Sums method is the faster of the two and is frequently chosen for real-time fuzzycontrol. Now, during the inference process each rule suggests a fuzzy control action (~ui for thei-th rule). In the construction of ~U , the overall rule-base output, these individual fuzzy setsgenerally overlap one another. When Center-of-Area defuzzi�cation is employed, any overlap-ping regions of two or more rule outputs are counted only once due to the max operation inEquation (2.20). If a majority of the rules suggested outputs in a common overlapping region,the persistence of these suggestions is diminished by the Center-of-Area method. As the num-ber of rules in the rule-base increases, more information is lost. In the same situation, theCenter-of-Sums method would sum (Equation (2.21)) outputs in the overlapping region, thusre
ecting the persistence for outputs in that region. Philosophically, the latter method is closerin e�ect to the analogy of a distributed load. Moments from all loads in overlapping regionswould be included in the centroid calculation. If a rule-base is meant to perform weighted(in the physical sense of the word) decision-making then the Center-of-Sums defuzzi�cationseems more appropriate. The choice depends on the desired e�ect. As will be seen in later



Chapter 2. Theory and Principles of Fuzzy Control 20chapters, Center-of-Sums defuzzi�cation is employed for weighted decision-making amongstmultiple rule-bases.More detailed introductions to fuzzy control, fuzzy set operations, and the concepts offuzzi�cation, inference, aggregation, and defuzzi�cation can be found in [5, 11, 22, 23, 24].
2.3 Rule-bases and Fuzzy RulesControllers that are based on fuzzy rule-based systems can be con�gured in a number of ways.The alternatives are governed by issues such as the fuzzy set resolution selected for systemvariables and the complexity of decision-making, or reasoning, demanded by the task environ-ment. The fuzzy set resolution of the system variables (inputs) determines the total numberof rules (i.e. the rule-base cardinality) necessary to cover all possible combinations of fuzzycontroller inputs. Individual rule outputs for a given rule-base contribute to the shaping of acontrol/decision surface, the nonlinearity of which is a measure of the decision-making complex-ity. Thus, resolution of the state space and nonlinearity of the control surface are inter-relatedwith regard to the interpolation necessary to produce desired behavior via approximate rea-soning.A rule-base that considers contingencies throughout the entire state space (given the fuzzysets of the system variables) is said to be complete. The cardinality of a complete rule-base isgiven by the expression Rc = nYi=1Li (2.22)where n is the number of controller inputs and Li is the number of linguistic values (e.g. near,far, etc) de�ned for the i-th input, i.e. the size of the i-th term set. When all n inputs have an



Chapter 2. Theory and Principles of Fuzzy Control 21equal number of linguistic values, l, the cardinality grows exponentially, i.e.Li = l; 8i) Rc = lnIf Rc is relatively small (say, � 20) then it is feasible to realize the fuzzy controller as amonolithic, or single-rule-base controller. Otherwise, alternatives such as hierarchical rulestructures may be in order.2.3.1 Monolithic Rule StructuresMost of the fuzzy controllers applied to industrial products and reported in the research litera-ture use the monolithic rule-base structure. All of the precepts that govern the desired behaviorof the system are encapsulated as a single collection of if-then rules. In most instances, therule-base is designed to carry out a single control policy or behavioral goal. It is also possibleto implement additional control policies within a single rule-base due to the fusion of informa-tion and con
ict resolution achieved by aggregation and defuzzi�cation processes respectively.Nevertheless, it becomes more di�cult to design monolithic rule-bases that implement globalbehavior in pursuit of multiple interacting goals.In order for an autonomous system such as a rover, or mobile robot, to operate in dynamicenvironments, it must be capable of achieving multiple goals whose relative priorities maychange with time. Therefore, its controller should be designed such that a number of task-achieving behaviors can be realized and integrated to achieve di�erent control objectives. Thisrequires the formulation of a large and complex set of fuzzy rules. In this situation a potentiallimitation to the utility of the monolithic fuzzy controller becomes apparent. During any givencontrol cycle all rules are sequentially processed. Clearly, the cardinality of the rule-base hasa direct in
uence on real-time performance. As alluded to above, this presents no problem forreal-time control of systems governed by relatively small rule-bases. However, more elaborate



Chapter 2. Theory and Principles of Fuzzy Control 22controllers implemented as monolithic rule structures can potentially su�er from degraded real-time performance.
2.3.2 Hierarchical Rule Structures
We have seen that the cardinality of monolithic rule-bases increases exponentially with thenumber of system variables. An alternative rule structure was proposed by Raju et al [13, 14]that represents a rule-base as a hierarchy of rules for which the cardinality increases onlylinearly with the number of system variables. Koczy and Hirota [25] produced similar resultsby introducing hierarchically structured rules based on fuzzy partitions of the state space.A third approach is based on combining sensory fusion with the hierarchical rule structure[12, 26]. When it is possible to fuse some system variables (e.g. as a set of linear combinations[27]) such that a reduced set of inputs can be fed to the fuzzy controller, further reductionsin overall rule-base cardinality can be achieved by applying the hierarchical structure to thisreduced set. In fact, the cardinality increases in a piecewise-linear fashion and at a signi�cantlyslower rate than the linear increase reported in [13]. Hierarchical rule structures have also beenproposed for fuzzy control of dynamic systems with interacting goals [28]. Thus, it is possibleto overcome the aforementioned limitation of the monolithic rule structure and realize practicalimplementations of more complex behavior by employing hierarchical rule structures. We shallexplore this possibility further in Chapter 4 where an approach to hierarchical distributed fuzzycontrol of system behavior is introduced. First, however, let us use Section 2.4 introduce whatis meant here by system behavior and to relate it to fuzzy control.



Chapter 2. Theory and Principles of Fuzzy Control 232.4 Behavior-based Control and Fuzzy LogicThe behavior-based control paradigm emerged from an amalgamation of ideas in ethology,control theory, and arti�cial intelligence [29, 30, 31]. It has been described as a compromisebetween extremes of the agent control spectrum | traditional top-down deliberative strategiesand purely reactive, bottom-up strategies [32, 33]. The former relies on a centralized worldmodel to determine appropriate sequences of control actions. The latter is based on a collectionof simple condition-action rules that map sensor readings into control actions with minimal useof internal models and internal state.Behaviors, which are the fundamental unit of behavior-based control systems, have beende�ned in various ways by di�erent researchers. A few of the proposed de�nitions are:A behavior is a control law that satis�es a set of constraints to achiev e and maintaina particular goal [33].A behavior is a trajectory through state space [34].A behavior is a regularity in the interaction dynamics between the agent and theenvironment [35]Each of these de�nitions is valid; others have been proposed which are similar and sometimescontradictory. This re
ects the subjectivity and lack of formal structure that currently prevailsin the behavior-based control research community. For our purposes, it su�ces to say that thenotion of \behavior" in dynamical systems refers to a qualitative assessment of system activityin response to relevant stimuli in a particular problem domain or operating environment. Wewill refer to a behavior, or fuzzy-behavior, as any task/goal-oriented system response induced



Chapter 2. Theory and Principles of Fuzzy Control 24by a combination of system purpose and the perceived state of the environment. Throughoutthis dissertation the term, \behavior," will be used in this context and is considered synonymouswith rule-base, controller, etc.A behavior-based control system is distinguished by a distributed and decentralized collec-tion of (pseudo) parallel, concurrently active behaviors which achieve distinct tasks. Clevercoordination of individual behaviors results in the emergence of more intelligent behavior(s)suitable for dealing with complex situations. Note that behavior-based control as studied hereinis not to be confused with the \behavioral framework," a distinct research topic of analyticalcontrol theory concerned with modeling and system identi�cation. The behavioral framework isbased on Willems' theory of dynamical systems [36] and has not been in
uenced by ethologicalor arti�cial intelligence concepts.Fuzzy logic control systems and behavior-based control systems share common develop-mental advantages. Namely, they both require short development times and are intrinsically
exible in their control structure and design. Individual fuzzy rules (and behaviors) can beformulated independently, and additional rules (and behaviors) can easily be added to a controlsystem if necessary without altering or re-designing the existing system. We take advantage ofthese shared attributes to develop a natural hybrid approach to intelligent control of complexsystems. Fuzzy logic theory is incorporated into the framework of behavior-based control byrealizing behaviors as fuzzy controllers based on the mathematical and operational conceptsdescribed above. Increases in system complexity are handled by a novel approach to hierar-chical behavioral decomposition accompanied by a systematic methodology for design of fuzzyrule-based control systems.



Chapter 3
Genetic Programming of FuzzyRule-Based Systems
A current research thrust in the area of intelligent control focuses on the development of au-tonomous systems that can dynamically interact with the real world. Real world is meantto refer to physical environments that might be unstructured, unpredictable, dynamic, noisy,and/or unknown. As such, the real world presents an immense level of uncertainty that com-plicates the endeavor of developing and controlling autonomous systems that are meant tointeract with it. Recent research and applications employing non-analytical methods of softcomputing including fuzzy logic and evolutionary computation has demonstrated the utilityand potential of these paradigms for developing intelligent control systems [3, 5, 7]. Fuzzylogic control and evolutionary computation have proven to be convenient tools for handlingreal-world uncertainty and knowledge representation, and the design of intelligent control sys-tems, respectively [8, 37]. In this chapter, we present an approach that exploits the combinedattributes of these paradigms for the purpose of developing intelligent algorithms for controllingautonomous dynamic systems that interact with the real world. In particular, we apply the



Chapter 3. Genetic Programming of Fuzzy Rule-Based Systems 26genetic programming paradigm (GP) [7] to the problem of learning/discovering rules for use ina fuzzy rule-based control system.
3.1 Genetic ProgrammingThe genetic programming paradigm computationally simulates the Darwinian evolution pro-cess by applying �tness-based selection and genetic operators to a population of parse trees(individuals). Each parse tree represents a computer program of a given programming lan-guage, and is a candidate solution to a particular problem. The programs are structured ashierarchical compositions of functions and terminals (arguments to functions) of various sizesand shapes. These individuals participate in a probabilistic evolutionary process wherein thepopulation evolves over time in response to selective pressure induced by the relative �tnessesof the individuals in a particular problem environment. As applied here, each individual iscoded as a LISP symbolic expression (S-expression) that implements condition-action state-ments which collectively serve as a rule-base to be embedded in a fuzzy-logic controller. TheGP concept can be implemented in other programming languages as well, at both high and lowlevels [38, 39]. The approach developed in this chapter calls for the use of a constrained syntac-tic structure [7] for constructing each individual S-expression in the population. This, in turn,requires the de�nition of syntactic rules of construction and structure-preserving operators forbreeding the resulting individuals.The notion is accepted here that humans may not be the best designers of cognitive con-trol systems that involve interactions between constituent parts [40]. At the same time, theissue of just how much design should be imposed and how much should be allowed to evolveis unresolved at this time [41]. It has been observed that the arti�cial evolution of computerprograms may produce deterministic control strategies that have slightly di�erent features than



Chapter 3. Genetic Programming of Fuzzy Rule-Based Systems 27those produced by humans. The existence of similar building blocks in strategies discovered byarti�cial evolution and those devised by humans has also been observed [42]. Having consideredthese, the following questions come to mind. What innovations in control strategies, if any,can we expect from arti�cial evolution for a given control problem for which a human-derivedsolution exists? What is the potential of genetic programming for the evolution of fuzzy con-trollers? In this chapter, results of an attempt to answer the latter question are presented, asits answer is related to that of the former. A particular tracking control problem is used here asthe context in which to demonstrate the potential of GP. The problem is to determine a fuzzylinguistic rule-base for steering a rover onto a desired path. GP is used to evolve the rule-base,and its performance is compared to that of a fuzzy controller produced by the author via theusual trial-and-error design approach.Before describing the control problem in more detail, let us consider motivations for seekingautomatic design methods for fuzzy controllers, and why GP was considered as a possible meansto that end. In Section 3.3 related research performed to date is recognized. The remainder ofthe chapter covers details of the GP implementation, results of the steering control application,conclusions and possible improvements to the approach.
3.2 Systematic Design of Fuzzy ControllersSystematic design of fuzzy controllers in the absence of an expert, or su�cient knowledge ofthe problem domain, is currently an open problem. The approach often taken is an iterativeone of trial-and-error. It typically involves tweaking of membership functions used to expressthe uncertainty in inputs and outputs, as well as modi�cations of the fuzzy rule-base. Thisprocess, which leads to a fuzzy controller that performs well according to the designer's sub-jective evaluation, can turn out to be quite lengthy depending on the complexity of the control



Chapter 3. Genetic Programming of Fuzzy Rule-Based Systems 28problem. This serves to weaken the scalability of one of the strongest attributes of fuzzy logicapplications in control | fast development time. Various attempts have been made to addressthis design issue. These include the determination of fuzzy membership functions and rules bygenetic algorithms (GAs) [37, 43, 44], and by learning using neural networks [45, 46]. Whenusing these techniques to determine rule sets for fuzzy systems, it is often necessary to encodethe rules in a numerical form suitable for processing by the GA or the neural network, andsubsequently decode them into the appropriate linguistic terminology. For the GA, the chro-mosome representing a rule is typically a string of numerical genes. The alleles of these genesoften belong to binary or n-ary alphabets, and/or the set of real or natural numbers, ratherthan the collection of linguistic variables, fuzzy sets, and fuzzy logic connectives that actuallymake up the rule. An exception is the representation proposed by Kinzel et al [47] where achromosome is encoded as a matrix whose elements (alleles) are fuzzy sets. Booker [48] has alsosuggested ways around the \inadequacies of the binary encodings typically used with classi�ersystems" (a form of rule-based GA) that give learning classi�er systems the ability to representattributes as expressively as most symbolic systems. Furthermore, for approaches that use thesimple GA [49, 50], the �xed-length chromosome restricts each individual to have the samepre-speci�ed number of rules. The contention here is that the genetic programming paradigmo�ers a more direct approach to fuzzy controller design.It is worthwhile to stress that the use of GP, rather than GA, as a means to evolve fuzzyrule-bases is a preferential design decision on the part of the author. Shedding some lighton the subtle di�erence(s) between these approaches may provide some insight to the readerinterested in applying one approach or the other. GP departs from its predecessor, the simpleGA, primarily with regard to its genome1 representation scheme. Structures undergoing adap-tation in GP are executable hierarchical programs of dynamically varying size and structure,1The structure operated upon by genetic operators.



Chapter 3. Genetic Programming of Fuzzy Rule-Based Systems 29rather than linear numerical strings [7]. Note, however, that tree-structured representationsof computer programs are possible using GAs [51]. In the approach developed here for GPevolution of fuzzy rule-bases, the same fuzzy linguistic terms and operators that comprise thegenes and chromosome persist in the phenotype2. Thus, the use of GP eliminates the needfor encoding/decoding of the fuzzy linguistic rule set. Furthermore, the dynamic variability ofthe representation allows for rule-bases of various sizes and di�erent numbers of rules. Thisenhances population diversity which is important for the success of the GP system, and anyevolutionary algorithm for that matter. The dynamic variability also increases the potentialfor discovering rule-bases of smaller sizes than necessary for completeness, but su�cient forrealizing desired behavior. No claims are made here about the relative performance of GAsversus GP as tools for search, optimization, or learning. After all, \GP is a GA where criticalchoices have been made to suit its goal of program discovery" [52]. The introduction of GPto the evolutionary computation research community merely provided a new perspective bydemonstrating a 
exible alternative to the numeric string genome used most GA applications.The advocacy of GP for evolving fuzzy rule-bases is rooted in its convenience of representationas it pertains to fuzzy system design. In the author's view, GP seems to be more appropri-ate for design of fuzzy rule-bases since it can facilitate the manipulation of linguistic variablesdirectly associated with the problem.
3.3 Related ResearchThe arti�cial evolution of rules for systems control has been investigated by a number ofresearchers. Most have focussed on using models of Darwinian evolution. In recent yearsthe body of related literature has become quite extensive. It is not the intention in this2The target representation which the genome typically maps to.



Chapter 3. Genetic Programming of Fuzzy Rule-Based Systems 30chapter to provide an inclusive overview, but rather to acknowledge prior and ongoing researchthat most closely relates to the approach described herein. Interested readers may consult arecently compiled bibliography [53] for a broader overview. In [54], Goldberg demonstrated thee�ectiveness of classi�er systems at learning rules to control position of a simple inertial objectand to control a simulated natural gas pipeline. Classi�er systems [55] use GAs to learn simplecondition-action rules that are represented by �xed-length numerical strings. Like fuzzy rule-bases, classi�er systems use parallel rule activation which allows simultaneous coordination ofmultiple actions. The main distinctions between fuzzy rule-based systems and classi�er systemsare that the former uses linguistic variables and fuzzy sets in its condition-action rules anddoes not have the luxury of a learning component. In this dissertation, a learning componentis provided using GP which is better suited for manipulating symbolic rule representations.Grefenstette and Schultz have developed the SAMUEL system for learning control rules [56,57, 58]. The system has proved successful at robot control problems (simulated and actual)as well as simulated control of evasive maneuvers for tactical aircraft. They introduced arestricted high-level rule language (and associated genetic operators) that distinguishes theirGA approach from others that are based on the string representation of chromosomes. Theresulting approach has strong similarities to classi�er systems and the work described here.The fundamental di�erences lie in our use of GP instead of GA, fuzzy sets instead of crisp sets,and linguistic variables rather than numeric variables. Harvey et al [40, 59] have concentratedon evolving robot behavior using GAs in conjunction with neural networks. They suggest thatbuilding controllers by hand becomes prohibitively di�cult for increasingly complex behavior.This view is shared by Feldman [44] who has developed a technique that encodes fuzzy controlrules as a fuzzy network, a connectionist extension to fuzzy linguistic systems. That is, theGA is used to synthesize or modify the rules of the fuzzy network controller. Finally, Kinzelet al [47] deemed it necessary to modify the GA (using the matrix rule-base representation



Chapter 3. Genetic Programming of Fuzzy Rule-Based Systems 31mentioned earlier) by taking the properties of fuzzy controllers into account to facilitate fastconvergence.As a departure from the Darwinian approach Grefenstette [60] added Lamarckian mech-anisms to the SAMUEL [56] system that improve the quality and computational cost of rulelearning for control. The main Lamarckian feature is the incorporation of rule strengths thatare modi�ed as a direct result of the learning agent's experience. This is implemented using\generalization" and \specialization" operators triggered by speci�c conditions relating rulestrengths and the outcome of the task being learned.Koza [7] has applied genetic programming to a number of related control problems, namely,the truck backer-upper problem and the evolution of robot subsumption behaviors for wall-following and box-pushing. Shortly after the publication of Koza's text, applications of geneticprogramming to control problems of the type we focus on here have appeared in the literature.The most notable relation to this work is that of Reynolds [61] who has used GP to evolvecorridor following behaviors for a simulated robot in the presence of noise. Similar work hasbeen done by Fraser [62] in evolving multi-agent emergent behaviors, and Handley [63] in mobilerobot path planning.The di�erences between the current approach and that of SAMUEL [56] has already beenpointed out. With the exception of that system and the work on fuzzy controller evolution, allof these applications of evolutionary computation result in evolved controllers that are deter-ministic computer programs based on binary logic reasoning. Each of the GA implementationsthat use string representations for chromosomes employ the binary encoding scheme. Each ofthe GP implementations make use of numeric values as terminals. Thus, the work describedherein di�ers from the related work in either its focus on the evolution of fuzzy systems basedon approximate reasoning, its use of GP with linguistic terminals and fuzzy logic operators as



Chapter 3. Genetic Programming of Fuzzy Rule-Based Systems 32functions, or both.3.4 Genetic Programming for Rover Path TrackingIn the genetic programming paradigm, the program search space is contained in the set of allpossible S-expressions (LISP symbolic expressions) that can be composed recursively from aset of functions and a set of terminals. Each function in the function set, F , takes a speci�ednumber of arguments. In general, functions may include arithmetic operators, mathematicalfunctions (e.g. sine, cosine, absolute value), Boolean operators, conditionals, etc. Terminals inthe terminal set, T , are typically either variables or constant atoms. For the sake of brevity,let us introduce the control problem addressed here before describing the details of the GPimplementation. This will allow us to discuss the implementation issues within the context ofthe problem.3.4.1 Rover steering control problemThe problem is to �nd a fuzzy rule-base that will properly steer a rover for path followingin the plane. The problem is taken from Hemami [64, 65] where it is formulated for a classof low-speed (less than 2 m/s) tricycle-model vehicles. Hemami derived a state-space model,based on the robot kinematics, where the state vector consisted of measurable position ("d)and orientation ("�) errors associated with path following (see Figure 3.1). The steering angle(�) is the corrective control action that causes the error states to decay to zero, thus forcing therobot to follow the path. The position error is taken as the deviation from the nearest pointon the desired path. The orientation error is the angular deviation of the robot's heading fromthe tangent to the desired path. The rule-base we wish to evolve is for a two-input-one-outputfuzzy controller that will map the error states into a steering angle at each time step during
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Figure 3.1: Control and error variables associated with a desired rover path.the robot's attempt to follow a desired path. This is a fundamental motion capability that isoften an integral part of more complex behavioral repertoires for autonomous mobile robots[66]. Based on the geometry of the problem as formulated in [64] the position/orientation errorsfall into eight di�erent categories that are pair-wise symmetric. Four of these are illustrated inFigure 3.2 (a{d); the remaining categories are symmetric to the four shown.In this example the e�ort is focussed on evolving the rule-base and it is assumed that themembership functions are speci�ed a priori and are �xed. The membership functions used forthe inputs and output of the fuzzy controller are shown in Figure 3.3, along with a rule-basein the form of a fuzzy associative memory table. These are taken from an existing solutionhand-derived and re�ned through trial-and-error by the author. There are �ve fuzzy sets eachfor input and output linguistic values. Thus, our hand-derived rule-base of Rc = 25 rules iscomplete, i.e. there is a rule for all combinations of input fuzzy sets taken two at a time. Thelinguistic notation of Figure 3.3 is as follows: NB � \negative big", NS � \negative small",Z � \zero", PS � \positive small", PB � \positive big" with the lowercase pre�xes \p" and



Chapter 3. Genetic Programming of Fuzzy Rule-Based Systems 34
t a n g e n t  t o  p a t h

(a)   ε   =  0,  ε   <  0d θ

(c)   ε   <  0,  ε   <  0d θ

(b)   ε   <  0,  ε   =  0d θ

(d)   ε   >  0,  ε   <  0d θFigure 3.2: Rover kinematic error categories.
\o" designating fuzzy sets for position error and orientation error respectively. Fuzzy sets forthe steering angle are labeled without a pre�x.
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Chapter 3. Genetic Programming of Fuzzy Rule-Based Systems 353.4.2 GP Fuzzy Functions and TerminalsFor the purpose of evolving fuzzy rule-bases (which are essentially programs of fuzzy conditionalstatements) the following function set was chosen,F = fANT; CONSQ; f AND; IF� THEN; f ORg (3.1)with f OR (described below) taking a variable number of arguments (equal to the number ofrules) and the remaining functions each taking two arguments. The function ANT representsa fuzzy proposition in the antecedent of a fuzzy rule. Its arguments are an input linguisticvariable and an associated fuzzy membership function. For example, in the proposition, error isLARGE, error is a linguistic variable and LARGE designates a membership function expressingthe \meaning" of the current value of error. ANT returns a numerical value in the closed interval[0, 1] representing the membership value, or degree of truth, of the proposition. Note that ifa rule contains only one proposition in its antecedent the membership value represents therule strength. CONSQ is de�ned in a similar manner for output linguistic variables and fuzzysets except that it returns the output fuzzy set designated in the rule consequence. Thef AND function is simply the fuzzy intersection operator of fuzzy set theory. It performs theconjunction of two or more fuzzy propositions yielding a numerical value for the rule strength.The f AND function can be de�ned using any t-norm [5]; recall from Chapter 2 that min andproduct are most commonly used in fuzzy control. Here we limit it to the conjunction oftwo propositions with the idea that conjunctive forms of higher order can be constructed byrecursive calls to the function (the level of recursion is bound by a speci�ed maximum depthof the rule tree). In addition, the current implementation restricts f AND to occur only in ruleantecedents. Therefore, its two arguments can be return-values of either ANT or a recursive callto itself. The function representing a rule is IF-THEN. Its �rst argument is the rule strengthreturned by either ANT or f AND; its second argument is the fuzzy set returned by CONSQ.



Chapter 3. Genetic Programming of Fuzzy Rule-Based Systems 36Finally, the function f OR serves as a fuzzy aggregation operator. It occupies the root nodeof every tree in the population of rule-bases. Each rule that �res in a fuzzy rule-base returnsa fuzzy set as the result of the rule consequence. f OR operates on the output fuzzy sets bytaking their fuzzy union to produce a resultant fuzzy set representing the overall output of therule-base. This overall output fuzzy set is the return-value of an individual rule-base in thepopulation. Consequently, a wrapper (output interface) [7] for S-expressions is the Center-of-Area defuzzi�cation operator which defuzzi�es the fuzzy output to yield a real number for thecontrol signal.The terminal set is made up of the input and output linguistic variables and the corre-sponding fuzzy sets associated with the problem being solved. For the steering control problemthe terminal set is de�ned asT = f"d; "�; �; pNB; pNS; pZ; pPS; pPB; oNB; oNS; oZ; oPS; oPB;NB;NS;Z; PS; PBg (3.2)Observe that the elements which make up the function and terminal sets are taken from thelinguistic terminology of the problem at hand.
3.5 Syntactic Constraints and Structure-preserving OperatorsIn many genetic programming applications, unrestricted S-expressions are su�cient to solve aproblem given a function set and a terminal set that satis�es the closure property [7]. Thatis, each function in F should be well de�ned and closed for any combination of argumentsthat it may encounter (see Appendix for more details). As a result, individuals may have anycomposition of elements from the combined set, F [ T , occupy the nodes of the tree with theonly restriction being that the root must be a function and the leaves must be terminals. This
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r2: IF εθ is oPS and εd is pPB and εθ is oNS THEN δ is NBFigure 3.4: Rule-base tree satisfying syntactic constraints.is not the case here. Instead, strong constraints are imposed on the syntax of a rule-base thatare de�ned by special rules of construction.A rule-base that could potentially evolve from the designated function set and terminal setcan be expressed as a rooted, point-labeled tree with preordered branches. An example of asyntactically valid rule-base of two rules and a depth of �ve is depicted in Figure 3.4 alongwith its interpretation as a linguistic rule-base. From the �gure one can imagine how arbitraryplacement of functions and terminals in this tree could lead to severe syntactic violations. Validrule-bases must conform to the following syntactic rules of construction:- f OR must occupy the root of the tree and cannot occur at non-root points.- Only IF-THEN is allowed at the level immediately below the root.



Chapter 3. Genetic Programming of Fuzzy Rule-Based Systems 38- A left-child of IF-THEN can only be ANT or f AND.- A right-child of IF-THEN can only be CONSQ.- A child of f AND can be either ANT or f AND.- A child of ANT can only be input linguistic variables and input fuzzy sets.- A child of CONSQ can only be output linguistic variables and output fuzzy sets.
Additional rami�cations of these syntactic constraints are that full trees are not possible if thenumber of inputs and outputs is not equal, and extra care must be taken to ensure that linguisticvariables are paired with appropriate fuzzy sets as children of ANT and CONSQ nodes. Theminimum depth of a valid rule-tree is three; this corresponds to rules with a single antecedent.The maximum number of antecedents per rule is 2d�3, where d is the maximum permissibledepth of the rule tree speci�ed as a control parameter of the GP run. The imposed syntacticstructure, and the rules of construction, are similar to those of Koza's application to neuralnetwork design [67]; the constraints are stronger here.All rule-bases in the initial population are randomly created using these rules, but descen-dant populations are created by the reproduction, crossover, and mutation operators. Theo�spring of rule-bases modi�ed by crossover and mutation must also conform to the syntacticstructure. There are eight types of points (for crossover or mutation) in the rule-base structure| one for each of the 5 functions, points with input linguistic variables, points with outputlinguistic variables, and points with fuzzy sets. Structure-preserving crossover is achieved byrandomly selecting any non-root node as the crossover point in the �rst parent, and restrictingthe crossover point in the second parent to be a randomly-selected point of the same type. Oneexception is that ANT and f AND make a valid pair of crossover points provided that one of theresulting o�springs do not violate the preset maximum depth for rule-base trees. The crossover



Chapter 3. Genetic Programming of Fuzzy Rule-Based Systems 39is completed in the usual way [7] by swapping the subtrees at (and including) the crossoverpoints of the two parents. This crossover operator not only preserves the syntactic structureof the rule-base but it also preserves the context of subtrees, particularly when function nodesare selected as crossover points. This issue of context preservation in GP has been recentlyaddressed by D'haeseleer [68], where he introduces two new crossover operators that provide amore 
exible mechanism to decouple the evolution of di�erent branches of an individual tree.Here, context preservation is a necessary by-product of the syntactic constraints imposed by therule-base structure. Structure-preserving mutation is done by randomly selecting a non-rootpoint in a rule-base tree, discarding the selected point and the nodes below it, and replacing thediscarded portion with a randomly-generated (but syntactically valid) subtree at that point.Mutation points are chosen with uniform probability. The e�ect of mutation is controlled bya parameter that speci�es the maximum depth for the randomly-created subtree that replacesthe discarded portion. The root node is protected from both crossover and mutation. GPcycles through the current population performing �tness evaluation (as described below) andapplication of genetic operators to create a new population. The cycle repeats on a generationby generation basis until satisfaction of termination criteria (e.g. lack of improvement, max-imum generation reached, or perfect hit percentage). The GP result is the best-�t rule-basethat appeared in any generation.Amidst all of the constraints on syntax and structure of the fuzzy rule-bases, there is roomfor some 
exibility. In the creation of the initial population, the number of rules (numberof arguments to f OR) in each rule-base is assigned to be a random integer in the interval,[Rmin; Rmax], speci�ed before the run. The value for Rmin is chosen as a lower bound on thesize of a rule-base that the control engineer feels may be su�cient to control the system. Theupper bound can be chosen such that Rmax � Rc, the number of rules required for a completerule-base. In the current example [10, 30] is used. As mentioned earlier, this feature of the



Chapter 3. Genetic Programming of Fuzzy Rule-Based Systems 40implementation is important for ensuring diversity in the population as it allows for rule-basesof di�erent sizes. It also increases the potential for �nding a rule-base of smaller size thannecessary for completeness (although no selective pressure to evolve minimal rule-bases hasbeen applied here). It is well-known to practitioners of fuzzy control that a number of dynamicsystems exist that can be controlled using fewer rules than dictated by the value of Rc forthe fuzzy rule-base. An example is the classic inverted pendulum problem for which a fuzzycontroller with Rc = 25 performs optimally with ten or twelve rules [22]. Finally, it shouldbe noted that some unusual circumstances regarding allowable rules result from the imposedstructure. It is possible, for example, for an input linguistic variable to appear more thanonce in the antecedent of a rule (examine Figure 3.4). In fact, it is also possible for a givenfuzzy proposition to have multiple occurrences in a rule (in this case redundant occurrencesare deleted if they persist in the �nal solution). While one could argue that this unnecessarilyenlarges the search space, such unusual possibilities are allowed to prevent restricting GP fromdiscovering innovative control strategies that may be counter-intuitive to the human designer,and consequently overlooked.
3.6 Results and DiscussionIn this section initial results of GP evolution of fuzzy rule-bases are reported. The GP systemwas run using small population sizes of 10{20 rule-bases for a number of generations rangingfrom 9{46. In GP, genetic diversity remains high even for very small populations due to thetree structure of individuals [7]. Twelve GP runs were executed for the steering control problemdescribed above. Results from several representative runs in which the best-of-run rule-baseperformed well in comparison to the hand-derived rule-base are presented.The simulated rover is based on Hemami's kinematic model [64] and approximate dimen-



Chapter 3. Genetic Programming of Fuzzy Rule-Based Systems 41sions are taken from the Hero-1 mobile robot | a 0.3m wheelbase, and a rear-axle-to-front-wheel o�set of 0.2 m. In all of the simulations the robot travels at a constant speed of 1.5 m/s.Following Hemami's formulation, it is assumed that the error states are measurable. Thus,the robot has access to the error states (perhaps via odometry or other position sensing) at alltimes. It is also assumed here that the source of sensory information has practical uncertaintiesand imprecision associated with it. The simulations are conducted at 20 Hz (i.e. time stepsof 0.05 seconds) for a maximum of 5 seconds. Eight �tness cases are used corresponding toinitial conditions selected from each of the eight error categories mentioned in Section 3.4.1.The number of �tness cases used is problem dependent. In similar problems solved in [7] notmore than twenty �tness cases were used. Ideally, the number should be chosen such thatthe �tness cases represent the search space su�ciently to allow the evolved control strategyto generalize (i.e. handle unforeseen initial conditions). Given the pairwise-symmetric errorcategories for the steering control problem, eight is a convenient choice. Moreover, in mobilerobot problems involving time-consuming simulation of each �tness case per individual, smallnumbers of �tness cases and/or small population sizes are often necessary tradeo�s. Duringthe GP evolution process, each rule-base in the current population is evaluated to determineits �tness for steering the robot onto the desired path (i.e. the goal is to force the error statevector to zero). This evaluation is achieved by simulating the robot's motion from each of theeight initial conditions until either the goal state is reached or time expires. The raw �tnessof a rule-base is de�ned as the sum, over the �tness cases, of the Euclidian norms of the errorstate vector at the end of each �tness case, i.e.Rawfitness = 8Xi=1q("2d + "2�)i (3.3)Among the measures of �tness used in [7], standardized �tness (i.e. lowest numerical valuesimply best �t) is predominant particularly in problems for which the objective is to minimizecosts such as error. In this problem standardized �tness is equivalent to raw �tness. Thus, a



Chapter 3. Genetic Programming of Fuzzy Rule-Based Systems 42perfect score is zero and lower raw �tnesses are associated with better rule-bases. In addition toscoring the best �tness, we would like candidate rule-bases to cause the error states to decay to�nal values within speci�ed tolerances (j"dj < 0.15m and j"�j < 0.26 rad.) for each �tness case.Such an event is referred to as a hit. The conditions for a hit are imposed on the simulationsas metrics for a successful trial. In other words, a simulation run through a given �tness caseis considered successful if the error states decay to values within speci�ed tolerances before theallocated time expires.The GP control parameters set the maximum depth for rule-base trees in the initial pop-ulation to six, the maximum depth of mutation subtrees to four, and the maximum rule-basedepth after crossover to seven. At each generation, breeding of the population was performedusing probabilities of 0.1 for reproduction, 0.5 for crossover (at any valid point), and 0.4 formutation. The relatively high mutation rate (40%) was chosen as an attempt to compensatefor any limitations that might stem from small population size. Tournament selection wasused with a tournament size of two, i.e. the best �t of two randomly chosen rule-bases wasselected for reproduction. In the run which yielded the best observed result (according toEquation (3.3)), GP discovered the best rule-base after 7 generations. The rule-base had 21rules, a raw �tness of 1.58 and 8 hits. The hand-derived, complete rule-base had 25 rules andscored a raw �tness of 1.96 and 8 hits. The worst-case raw �tness for a given rule-base is 72.5.This was determined by evaluating Equation (3.3) with the largest possible error states thatcould accumulate over the duration of a �tness case while traveling at the speci�ed constantspeed. Based on this worst-case raw �tness these rule-bases correspond to 98% �tness and 97%�tness respectively.For performance comparison, Figure 3.5(a{c) graphically illustrates the position error, ori-entation error, and control e�ort for the GP-evolved fuzzy controller and the hand-derivedfuzzy controller. All results shown are for error category (d) of Figure 3.2 with "d = 0.8 m and
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(c) (d)Figure 3.5: Performance comparison of rover path tracking: GP-evolved FLC |, Hand-derivedFLC - -; (a) position error, (b) orientation error, (c) steering angle, (d) phase portrait of GP-evolved FLC."� = -0.9 rad as initial conditions. Among the eight error categories, category (d) was shown[64] to be the most general for studying path tracking for tricycle-type vehicles. It is mostgeneral in the sense that in the process of correcting vehicle steering from initial error statesin categories (a{c) (and corresponding symmetric cases), the vehicle error status ultimatelyreduces to category (d) or its counter-pair. Observing Figure 3.5a we note that the rise timeof the GP-evolved controller is fastest and results in an overshoot of the goal by about 0.3 m(� 1 ft.) before it hones in on the path about 2 seconds later. Its response time in reachingthe goal, however, is practically the same as for the hand-derived controller. The hand-derivedcontroller forces the errors to zero in a smoother manner and without overshoot. However, it



Chapter 3. Genetic Programming of Fuzzy Rule-Based Systems 44was explicitly designed to exhibit this type of behavior. Recall that the �tness measure used todrive the evolution of the GP-evolved rule-base favors rule-bases that result in small �nal errors.There was no selective pressure for rule-bases to exhibit smooth response without overshoot.That is, the �tness measure has no component which will penalize overshoot or other undesir-able response characteristics for that matter. Nonetheless, the results compare favorably withthose of the hand-derived fuzzy controller. Observing the control e�orts (Figure 3.5c), we seethat the steering angle for the GP-evolved controller spans a wider range of motion, and asa result, expends more energy in achieving the goal. Although the evolved controller learnedthe steering control rules using only 8 pre-selected �tness cases, it was able to generalize whenstarted from initial conditions throughout the error state space. This is shown in the phaseportrait of Figure 3.5d which reveals that the origin is a stable node of the system. In otherproblems this may not be the case. In such situations it may be necessary to use random initialconditions in each �tness case to avoid over�tting pre-selected initial conditions. It should benoted that in this particular run the evolved rule-base resulted from the anomalous presenceof a highly �t rule-base in the initial population whose genetic material persisted in the earlygenerations and was only slightly improved by GP in generation 7. More dramatic evolutionaryimprovements over the generations were shown in other GP runs.3.6.1 Improved tracking and mean GP performanceGP runs with di�erent random seeds, population sizes, and numbers of generations yieldedcomparable performance results. In one instance, the GP discovered a rule-base of 30 rulesthat exhibited results very similar to those shown in Figure 3.5. Less control e�ort was expendedand, consequently, the overshoot amplitudes were reduced. Other rule-bases of 21 rules werealso found that can be considered to have performed as well as the hand-derived controller if asteady-state position error of 0.2 m (� 8 inches) was acceptable according to the control system
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(c) (d)Figure 3.6: Rover path tracking with 21 rules: GP-evolved FLC |, Hand-derived FLC - -; (a)position error, (b) orientation error, (c) steering angle, (d) standardized �tness curves.speci�cations. Results from one of these 21-rule controllers are shown in Figure 3.6. Generally,slightly faster settling times were observed with rule-bases of 21 rules. Figure 3.6d depicts atypical progression of the evolution process as a plot of standardized �tness vs. generationsfor the population average ({o{) and best-of-generation ({*{) rule-base. The response curvesin Figures 3.6(a{c) are for the best-of-run rule-base which GP found in generation 10; it hada raw �tness of 2.8 and 7 hits. The result shown in the �gure is for the only failed �tness casein which the steady-state position error exceeds the speci�ed tolerance by about 0.05m (� 2inches).A consolidated idea of the performance of GP for the steering control problem can be ob-
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(a) (b)Figure 3.7: Mean performance of GP with state-error norm as �tness.
tained from Figure 3.7. The �gure shows the mean GP performance over six independent runs,each starting with distinct random number generator seeds. Mean performance is plotted as a�tness percentage (based on the worst-case raw �tness) for the best rule-base and populationaverage rule-base in each generation. Error bars are shown every �ve generations indicatingthe performance variance one standard deviation from the mean. On average, GP was capableof improving the current best rule-base in the population (Figure 3.7a) throughout the evo-lution; the average rule-base in the population itself (Figure 3.7b) also improves. The bestfuzzy rule-base in the initial population is 85% �t for path following in the plane. After 30generations the best fuzzy rule-base is 97% �t. The presence of at least one 85% �t solution inthe initial population suggests that �nding a set of fuzzy rules (given the membership functionsin Figure 3.3) for this problem is not very di�cult. As such, methods like hill-climbing or evenrandom search might do just as well. In any case, the problem reveals potential utility of GPfor fuzzy rule-base evolution.



Chapter 3. Genetic Programming of Fuzzy Rule-Based Systems 473.6.2 Results with modi�ed �tness measureThe smallest rule-base discovered by GP had 11 rules and a raw �tness of 1.99 according toEquation (3.3). However, the control signal was unacceptable due to fast oscillations of thesteering angle during the �rst second or so of control. Such oscillations could cause damageto the robot's steering mechanism. This controller scored a �tness close to that of our hand-derived rule-base due to the \blindness" of the �tness measure to events taking place before theend of each �tness case. This revealed a necessity to modify the �tness measure in subsequentruns to include control e�ort as a cost. Several runs were executed after modifying the �tnessmeasure to determine whether or not it would induce the desired e�ect of minimizing thecontrol e�ort. The following �tness function was used,Rawfitness = 8Xi=1q("2d + "2� + ��2)i (3.4)where ��i is the average corrective control e�ort expended for �tness case i. Since lower raw�tness is associated with better rule-bases, this �tness function favors rule-bases that expendthe least average control e�ort over the �tness cases. The best observed results after modifyingthe �tness measure are shown in Figure 3.8 along with the response curves for the completerule-base. The GP evolved a new rule-base that had 18 rules, a raw �tness (according toEquation (3.4)) of 1.37, and 8 hits. The fuzzy controller with the complete rule-base scored araw �tness of 2.43 using Equation (3.4). We see that there is indeed a reduction in the controle�ort (Figure 3.8c) due to the selective pressure induced by Equation (3.4). This reduction incontrol e�ort prevailed in all of the �tness cases. Thus, the new controller is the �ttest despitethe borderline, but acceptable, steady-state position error of 0.149m (� 6 inches) for this singlecase.The importance of the �tness function used in evolutionary algorithms is evident in theseexamples. It is important that the �tness function map observable parameters of the problem
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(c)Figure 3.8: Rover path tracking performance comparison using control e�ort as a cost: GP-evolved FLC |, Hand-derived FLC - -; (a) position error, (b) orientation error, (c) steeringangle.into a spectrum of values that di�erentiate the performance of individuals in the population.If the spectrum of �tness values is not su�ciently rich, the �tness function may not provideenough information to guide GP toward regions of the search space where improved solutionsmight be found. The most common types of �tness functions used in GP are error measures andproblem-speci�c payo�s. For problems involving simulation of controlled behavior, a varietyof performance attributes can be considered for inclusion in the �tness measure. Examplesinclude a maximum number of time steps, explicit error tolerances, terminating physical eventssuch as task success or failure, and penalties/rewards thereof. In general, selected performanceattributes can be weighted to emphasize their importance in the search for candidate solutions.



Chapter 3. Genetic Programming of Fuzzy Rule-Based Systems 49The �tness function is analogous to the performance measure of optimal control theory, ormore generally, the objective function of optimization theory.
3.7 Summary and ConclusionsIn summary, given suitable function and terminal sets, GP proceeds by randomly generatingan initial population of rule-bases. This is followed by evaluating each rule-base in the currentpopulation and applying genetic operators to rule-bases selected with probability based on�tness. Genetic operators are applied to produce the next generation such that proper syntaxis preserved. This process repeats until satisfaction of some termination criteria. The GP resultis the best-�t rule-base that appeared in any generation.The investigation reported in this chapter has revealed the potential of genetic program-ming as a tool for designing rule-bases for fuzzy logic controllers. For the purpose of evolvingrule-bases, the GP implementation has some advantages over the simple GA and neural net-works. Namely, it facilitates manipulation of the linguistic variables directly associated withthe problem, and it allows for populations of rule-bases of various sizes. An additional fea-ture of the syntactic structure is that it provides for context preservation as a by-product ofstructure-preserving crossover.GP was applied to the problem of evolving a fuzzy behavior for controlling a mobile robotto steer onto a desired path. Good results have been obtained using small populations of rule-bases and the constrained syntactic structure for S-expressions. A number of fuzzy rule-baseshave been evolved whose performances have been found to compare favorably with that of acomplete rule-base derived by the author. Several evolved rule-bases performed better thanthe human-derived solution according to respective �tness measures imposed on the simulated



Chapter 3. Genetic Programming of Fuzzy Rule-Based Systems 50evolution. GP evolution was able to produce fuzzy controllers that required fewer rules thannecessary for rule-base completeness. As with alternative evolutionary algorithms, the �tnessfunction can be tailored to emphasize desired performance attributes. It was found that the bestruns were those that used tournament selection as opposed to �tness-proportionate selection.Regions of the search space with favorable rule-bases were consistently found using GP.In many cases suboptimal solutions with respect to the objective �tness function were found,suggesting that GP performs well as a global adaptive search method. Possible improvementstoward optimal solutions can be made by synthesizing a hybrid between GP and a localizedsearch method such as hill-climbing [52]. From the vantage point of fuzzy rule-based systemsdesign, initial results suggest that seeding initial rule-bases with prior knowledge (e.g. rulesensuring stability), and perhaps, additional tuning of fuzzy membership functions may benecessary to improve the robustness of the GP solutions. Additional modi�cations that mayimprove on the results reported here are: adding di�erent inference and defuzzi�cation methodsas options to be selected by the evolutionary process, and using random initial conditions ineach �tness case to avoid over�tting pre-selected initial conditions.As an alternative to the generational process of GP, a \steady-state" evolution could beapplied as in the Steady-State Genetic Algorithm (SSGA) [69]. In this GA variant a fewo�spring of well �t parents, in a population of �xed size, replace the least �t individuals inthe population on each iteration. This has the desirable side e�ect that good individuals tendto rise to the top of the �tness ranks where they are protected from deletion. Conversely, thelesser �t individuals tend to sink to the bottom of the �tness ranks where they are more likelyto be deleted. This idea is easily applied to GP as well without a need to alter the constrainedsyntactic structure established above. Later in Chapter 6, we will apply GP and a steady-state GP to the evolution of fuzzy coordination rules in a more complex hierarchical fuzzycontrol system to be introduced in the next chapter. This upcoming application will challenge



Chapter 3. Genetic Programming of Fuzzy Rule-Based Systems 51genetic programming to scale up from evolving low-level regulatory and tracking types of fuzzycontrollers (such as the steering controller) to higher-level coordination behaviors.



Chapter 4
Adaptive Hierarchy of DistributedFuzzy Control
This chapter introduces a novel intelligent control architecture that employs a hierarchical rule-base structure enabling distribution of intelligence amongst a �nite number of task-achievingfuzzy-behaviors. The formulation of such hierarchies is facilitated by incorporation of etholog-ical ideology supporting an inherent hierarchical nature of behavior in animals. As such, it isa conceptual model of an intelligent system and its behavioral inter-relationships. It shouldbe noted that the reference to hierarchy here is not implied as in the classical computationalsense (i.e. bidirectional 
ow of information between levels). The network of distributed behav-iors is hierarchical in the sense that overall system behavior is decomposed into a bottom-uphierarchy of increasing behavioral complexity in which behavioral activity at a given level isa function of behavioral activities at the level(s) below. A collection of primitive behaviorsresides at the lowest level which is referred to as the primitive level. Primitive behaviors areencoded as fuzzy rule-bases with distinct control policies governed by fuzzy inference. Theyare typically simple and self-contained behaviors that serve a single purpose while operating
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steerbrakedecelerate

turn-corner

Figure 4.1: Possible hierarchy for turning behavior.
in a reactive (non-deliberative) or re
exive (memoryless) fashion. Primitive behaviors performnonlinear mappings from di�erent subsets of the available sensor suite to (typically, but notnecessarily) common actuators. Each exists in a state of solipsism, and alone, would be in-su�cient for performing complex tasks. Such primitive behaviors are building blocks for moreintelligent composite behaviors. That is, their capabilities can be combined through synergisticcoordination to produce composite behavior(s) suitable for goal-directed operations. In theautonomous systems research community this property is often referred to as emergent behav-ior. As an example, consider the driver-automobile system as an autonomous system operatingin a dynamic environment. Consider further the act of turning a corner at a moderate speed(say, 56 km/h [� 35 mph]) as a composite behavior, and the individual acts of decelerating,braking, and steering as primitive behaviors. Then one can interpret the turning behavior as asynergism of the behaviors in the primitive level, each operating at varying levels of activation| see Figure 4.1. The remainder of this chapter explains how such systems can be realized asfuzzy logic controllers. The theoretical basis of the approach is presented followed by issues ofanalysis.
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Figure 4.2: Hierarchical fuzzy behavior control architecture.4.1 Theoretical Extensions for Complex Intelligent SystemsThe hierarchical architecture can be represented by the control system block diagram shownin Figure 4.2. It di�ers from the canonical FLC described in Chapter 2 in that a multi-level structure of fuzzy rule-bases is employed and an adaptive mechanism is provided. Notethat this architecture permits the fuzzy control hierarchy to assume the role of an intelligentsupervisory controller over a conventional linear controller as depicted in Figure 4.3. In such asupervisory role, the hierarchy generates control set-points as input to the low-level controller(which is designed for regulation and/or tracking) in support of some higher level task-orientedcontrol mission. Hence, its purpose in this con�guration is to provide autonomy as opposed toparameter-tuning or gain scheduling operations for the conventional controller. Similar rolesfor fuzzy supervisory controllers have been reported in the recent literature [70, 71].Figure 4.4 is a more detailed conceptual view of the hierarchy of distributed FLCs consist-ing of a primitive level of individual system behaviors, �i, coordinated by higher-level systembehaviors, Bj, via a weight-adaptive scheme introduced below. Each behavior in the hierarchyis similar to the canonical FLC in that it performs a mapping from some input space to some
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Figure 4.4: Fuzzy behavior hierarchy.output space. The primitive behaviors map inputs to control outputs, while higher-level behav-iors act as fuzzy decision systems which map goal information and other input to dynamicallyadaptive weights associated with each primitive behavior. Aspects of the architecture thatdepart from, and/or augment, canonical FLC implementations are discussed below. These arerelated to an enhancement of the conventional rule structure, and methods of coordination andcon
ict resolution among competing fuzzy logic-based behaviors.Let X and U be input and output universes of discourse of a primitive behavior with arule-base of size N . In Chapter 2 we described the generic fuzzy if-then rule as followsIF x is ~Ai THEN u is ~Bi (4.1)



Chapter 4. Adaptive Hierarchy of Distributed Fuzzy Control 56where x and u represent input and output fuzzy linguistic variables, respectively, and ~Ai and~Bi (i = 1; 2; : : : ; N) are fuzzy subsets representing linguistic values of x and u. Typically, xrefers to sensory data or goal information and u to actuator control signals. Formally, the i-thfuzzy if-then rule of the behavior is represented by a fuzzy relation (implication), ~ui 2 X � U ,which is a fuzzy set itself. Moreover, an entire fuzzy rule-base can be characterized as a singlefuzzy relation, ~�, which is a union of fuzzy relations ~ui, i = 1; 2; : : : ; N .~� = N[i=1 ~ui (4.2)This equation is essentially the same as Equation (2.18). A fuzzy rule-base, then, can also berepresented as a fuzzy set. Thus, the mathematical operations of fuzzy inference in FLCs areclosed for fuzzy sets. This fact serves as the basis for extending fuzzy set and logic operationsused for monolithic fuzzy control to multi-rule-based fuzzy control.In conventional fuzzy control, the aggregated result given by Equation 4.2 undergoes de-fuzzi�cation to yield a crisp FLC output. As such, the defuzzi�cation process is a form ofcoordination and con
ict resolution among con
icting rule recommendations. In applicationsof the new architecture to complex autonomous systems, coordination and con
ict resolutionamong rule-bases that recommend di�erent control actions is a frequent concern. Discussionsin the next chapter validate this. For these multi-rule-based fuzzy systems, we address suchconcerns by extending the mechanism of rule con
ict resolution to rule-base con
ict resolutionvia generalization of fundamental fuzzy logic concepts. That is, in the same way that individualfuzzy rule outputs are aggregated to yield a resultant fuzzy output set, outputs from multipleprimitive behaviors are aggregated to yield a resultant fuzzy set. However, in the case of multi-ple behaviors this resultant fuzzy set represents the output of the overall behavior hierarchy. Inorder for this to work e�ectively, defuzzi�cation of primitive behavior outputs must be deferreduntil after the aggregation takes place. Therefore, in the hierarchy of distributed fuzzy controlthe output of each primitive behavior is a fuzzy set. This is illustrated in Figure 4.5.
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Figure 4.5: Fuzzy primitive behavior.4.1.1 Applicability-based Decision-makingRegarding the structure of the rules, the proposed architecture advocates a control philoso-phy based on weighted rule-base (FLC) decision-making and rule-base selection. Weighteddecision-making implies the incorporation of meta-rule-bases in which individual rules haveweighting consequents. Consider two fuzzy system behaviors, B1 and B2, o�ering di�erent orcon
icting fuzzy control recommendations given, as in Equation (4.2), by ~�1 and ~�2. One wayto coordinate, or resolve a con
ict between, these two recommendations is by aggregating themvia fuzzy union and defuzzifying the result to yield a crisp control action. However, in manycases this fusion of recommendations does not provide su�cient decision-making 
exibility forautonomous control. What is needed is a mechanism for controlling the amount of in
uencea particular behavior has on the control action in a context-dependent way. The architectureprovides this 
exibility by introducing a scheme embodied in a concept referred to here as thedegree of applicability which we will now de�ne.
De�nition 4.1 (Degree of Applicability (DOA)) The DOA is a linguistic measure of theinstantaneous level of activation of a behavior, B, expressed quantitatively as a scalar, �B 2[0; 1], which determines the amount of in
uence that B will have on the control action corre-sponding to the situation prevailing during the current control cycle.



Chapter 4. Adaptive Hierarchy of Distributed Fuzzy Control 58The degree of applicability can be thought of in ethological terms as a motivational tendencyof the behavior. Fuzzy rules of composite behaviors are formulated to include weighting conse-quents which govern the degree of applicability of primitive behaviors at a lower level. Thus,the canonical fuzzy controller rule structure is enhanced by the incorporation of meta-rulestructures which are referred to here as applicability rules. Let Bc be a composite behaviorcomprised of Np primitive behaviors. Then the degree of applicability, �p, of primitive behaviorp (p = 1; 2; : : : ; Np) is speci�ed in the consequent of applicability rules of the formIF x is ~Ai THEN �p is ~Di (4.3)where ~Ai is de�ned as in Equation (4.1). ~Di is a fuzzy set specifying the linguistic value (e.g.\high") of �p for the situation prevailing during the current control cycle. This feature allowscertain system behaviors to in
uence the overall behavior to a greater or lesser degree dependingon the current situation and system goal. It serves as a form of motivational adaptation since itcauses the control policy to change in response to goals, sensory input, and internal state. Thus,behavior coordination is accomplished using meta-rules that provide a form of the ethologicalconcepts of inhibition and dominance observed in animal behavior. Behaviors with partialapplicability (0 � � < 1) can be said to be inhibited by a dominant behavior with maximalapplicability, i.e. with DOA equal to �max such that � < �max � 1.As described here, the degrees of applicability are analogous to neuronal activation levelsassociated with arti�cial neural networks. E�ects similar to neuron threshold activation areimplemented with the use of �-cuts of fuzzy sets. An �-cut of a fuzzy set, ~C, de�ned over auniverse U , is a crisp set, ~C�, containing all the elements of U with membership grade in ~Cgreater than or equal to � [72]. Formally,~C� = fx 2 Xj� ~C(x) � �g (4.4)



Chapter 4. Adaptive Hierarchy of Distributed Fuzzy Control 59where � ~C(�) : X ! [0; 1] is a membership function of fuzzy set ~C. To utilize �-cuts forimplementing thresholding behavior activation, we consider the output fuzzy set resulting froman inference evaluation of a rule-base. If the �-cut of the inferred fuzzy set is null, then thesystem recommends that the level of activation for the associated behavior is zero. Thus if athreshold, � 2 [0; 1], is imposed on a particular behavior, that behavior will be activated onlywhen its DOA equals or exceeds its activation threshold, i.e. � � �.Behavior selection is a special case of this approach and occurs when the DOA of a primitivebehavior is non-zero and above its activation threshold while others are zero or below threshold.When this occurs, the total number of rules to be consulted on a given control cycle is reduced.The reduction in rule evaluations is not as dramatic or static as in the strict rule hierarchiesproposed in [13, 26] since we are dealing with behavior hierarchies that achieve interactinggoals. As such, the number of rules consulted during each control cycle varies dynamicallyas governed by the DOAs and thresholds of the behaviors involved. When the state of thesystem's operating environment satis�es the conditions for activation of a single behavior, orseveral, there is no need to process rules from behaviors that do not apply (as is done in theconventional FLC architecture). Processing rules from irrelevant behaviors would result inunnecessary consumption of computational resources and possible introduction of \noise" intothe decision-making process. In the proposed approach, there are no conceivable circumstancesunder which the totality of rules in the system will be consulted during a single control cycle.
4.1.2 Multiple Rule-base Coordination and Con
ict ResolutionThe coordination of fuzzy-behaviors is done in the framework of fuzzy logic theory via opera-tions on fuzzy sets. In order to describe the process we will concentrate on a single compositebehavior, Bc, which can be decomposed into primitive behaviors �1 and �2 (Np = 2). We do
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Figure 4.6: Fuzzy coordination of primitive behaviors.
this without loss of generality since the following description also applies when Np > 2, andacross additional composite behaviors. Consider a given control cycle during which Bc dictatesthat the applicabilities of �1 and �2 are say, �1 = 0:25 and �2 = 0:75 respectively. Fuzzyrules of each applicable primitive behavior are processed yielding output fuzzy sets, ~�1 and ~�2(see Figure 4.6). Recall that these output fuzzy sets are equivalent to the result produced byrule-base evaluation in conventional FLCs before applying the defuzzi�cation operator.Following the consultation of individual primitive behaviors, each fuzzy behavior output isweighted by the corresponding degree of applicability. Thus, �1 and �2 are activated to degrees�1 and �2. Here, the behavior activation is accomplished via scalar multiplication of the output



Chapter 4. Adaptive Hierarchy of Distributed Fuzzy Control 61fuzzy sets by the appropriate degree of applicability. This is equivalent to the conjunction of acrisp set of height �i (i 2 [1; Np]) with the output fuzzy set. The resulting fuzzy sets are thenaggregated using an appropriate t-conorm operator, and defuzzi�ed to yield a crisp output,u�, that is representative of the intended coordination of behavior. The illustration of thishypothetical example, shown in Figure 4.6, reveals that the output of Bc is in
uenced more byits dominant primitive behavior (in this case �2) as intended. This procedure is expressed in amore formal manner below.In the framework of fuzzy logic theory, con
ict resolution is handled implicitly in the me-chanics of the conventional fuzzy inference and defuzzi�cation processes. That is, con
ictingfuzzy outputs from individual rules are aggregated and defuzzi�ed (resolved) to yield non-fuzzycontrol actions. In a similar manner as for coordination, we use fuzzy set theory to general-ize this concept to resolve con
icts among con
icting rule-bases, i.e. behaviors. However,the manner in which this is done depends on whether there is partial or full con
ict amongcompeting behaviors. We will return to the con
ict resolution issue in Chapter 5 during ourdiscussion of applications to mobile robot behavior control.
4.2 Behavior Modulation TheoryThe coordination procedure described above is a generalization of the idea of rule weighting ina single rule base to rule-base weighting among multiple rule-bases. Control recommendationsfrom each applicable behavior are considered in the �nal decision. In the general case, the re-sultant control action can be thought of as a consensus of recommendations o�ered by multipleexperts. In some instances, it may be evident from current sensory data that only one partic-ular system behavior is fully applicable (� = 1). In such cases, coordination simply reducesto the aforementioned behavior selection as is done in conventional behavior-based systems



Chapter 4. Adaptive Hierarchy of Distributed Fuzzy Control 62and alternative approaches to fuzzy adaptive control [73, 74]. We refer to this as switchingcoordination since behaviors are alternately switched on and o�.Complex interactions in the form of behavioral cooperation or competition occur when morethan one primitive behavior is active. These forms of behavior are not perfectly distinct; theyare extremes along a continuum [75]. Instances of behavior throughout the continuum can berealized using behavior modulation which we de�ne as follows.De�nition 4.1 (Behavior Modulation) The autonomous act of regulating, adjusting oradapting the activation level of a behavior to the proper degree in response to a context, situa-tion, or state perceived by an autonomous agent.In a given implementation the \proper degree" is governed by the desired behavioral responseof the agent. Behavior modulation is achieved by dynamic adaptation of the DOAs of activeprimitive behaviors. Thus, the DOA concept and behavior modulation are intimately related.We have established Equation (4.2) as an expression for the output fuzzy set of a primitivebehavior. Let us denote the fuzzy output of primitive behavior p as ~�p, and its correspondingDOA as �p. Let P be the set of all primitive behaviors in a given adaptive hierarchy ofdistributed fuzzy control. Then the modulated fuzzy output of p is given by �p� ~�p. At this pointthe use of an appropriate t-conorm will take care of aggregating individual modulated fuzzyoutputs to produce a resultant output of the behavior hierarchy. The arithmetic sum t-conormhas been chosen for this purpose since it facilitates the enforcement of the weighted decision-making intended in the philosophy of the adaptive hierarchy of distributed fuzzy control. Thearithmetic sum will be denoted by the symbol, ]. Finally, if we denote the output fuzzy setof the behavior hierarchy as ~�H then its computation is performed using the following fuzzy



Chapter 4. Adaptive Hierarchy of Distributed Fuzzy Control 63behavior hierarchy equation ~�H = ]p2P �p � ~�p (4.5)or in the notation of membership functions,�~�H (u) = Xp2P �p � �~�p(u): (4.6)The crisp control output, u� 2 U = fu1; u2; : : : ; urg, which serves as the input to the plantfollows from the discrete Center-of-Sums defuzzi�cation of ~�H . That is,u� = Prm=1 um � �~�H (um)Prm=1 �~�H (um) (4.7)= Prm=1 umPp2P �p � �~�p(um)Prm=1Pp2P �p � �~�p(um) (4.8)Of course, the shift defuzzi�cation theorem holds as well. In this procedure, multiplication by�p expresses the relative applicability of a primitive behavior to the current situation, whilethe scalar �p itself represents the weight of the behavior in the aggregated control decision.Operators other than multiplication can be used to achieve a similar e�ect. Yager [76] refersto such operators as importance transformations and suggests a general class of them for botht-norm and t-conorm aggregations.Note that using the arithmetic sum as an aggregation operator will often lead to resultantfuzzy sets which are supernormal (of height greater than 1). This is due to the summation of anumber of membership values (in [0,1]) in regions where output fuzzy sets of several behaviorsoverlap. This presents no problems since the supernormal fuzzy set is defuzzi�ed in the usualway as a quotient of \moment" and \area" (recall the analog to computing the centroid ofa distributed load). Since both the moment and area of the set are equally e�ected by thesummation, the e�ect cancels out in the quotient. Many successful applications of fuzzy controlhave employed arithmetic sum as a t-conorm, includingKosko's Standard Additive Model [6, 77]and Mizumoto's product-sum-gravity method of reasoning [78, 79]. In contrasting this approach



Chapter 4. Adaptive Hierarchy of Distributed Fuzzy Control 64with the max t-conorm, Kosko [6] states that max \tends to produce a uniform distribution. . . as the number of combined fuzzy sets increases. A uniform distribution always has thesame mode and centroid. So, ironically, as the number of . . . rules increases, system sensitivitydecreases. The additive combination technique [on the other hand] tends to invoke the fuzzyversion of the central limit theorem. The added fuzzy waveforms pile up to approximate asymmetric unimodal, or bell-shaped, membership function." Thus is the desired e�ect soughtby the hierarchy when combining multiple fuzzy-behavior outputs.4.3 Issues of Stability AnalysisWhile the focus of this dissertation is primarily one of control system synthesis, control systemanalysis is important enough to warrant some dedicated space. In any dynamic system, thequestions of guaranteed stability and controllability arise. These are structural properties ofcontrol systems, the acceptable meanings of which are de�ned in the mathematical languageof analytic control theory. It is not clear whether the analytical tools of conventional controltheory are the most suitable for analyzing the structural properties of fuzzy controllers or othercontrol systems based on soft computing techniques. As such, many researchers are currentlyconcentrating on developing theoretical approaches to the problem as it relates to fuzzy systems.For example, Mamdani [15] argues that fuzzy control provides an alternative paradigm to theanalytic control theory that consists of non-analytic approaches to control and are based ondecision-making approaches from arti�cial intelligence.4.3.1 Supervisory controlThus far, the adaptive hierarchy has only been applied in a supervisory mode (see Figure 4.3).This is its intended mode of operation. That is, it is meant to be applied to systems as a



Chapter 4. Adaptive Hierarchy of Distributed Fuzzy Control 65high-level or task-level controller atop conventional controllers (e.g. PID or its variants). Assuch, stability issues are assessed using the well established analysis methods of linear systems.Outputs of the adaptive hierarchy serve as control set-points for the low-level controller(s). If itis the case that low-level controller speci�cations impose bounds on its input, say u 2 Uc, thencompliance of the hierarchy is easily ensured by imposing the same bounds on UH , the behavioroutput universe of discourse, such that UH � Uc. In this way, any defuzzi�cation operation onbehavior hierarchy outputs is guaranteed to yield a crisp control u� 2 Uc. Therefore, in thesupervisory mode of operation, a closed-loop system in
uenced by the adaptive hierarchy ofdistributed fuzzy behaviors is stable in the same sense as its underlying conventional controller.4.3.2 Direct controlIn the absence of a stable low-level conventional controller, the adaptive hierarchy can be usedfor direct control of the plant (see Figure 4.2). If this is the case, stability and controllabilityneed to be addressed in some convincing way. Robustness to system parameter perturbationsis typically had for free since this is a known characteristic of fuzzy control systems.One of the earliest approaches to stability analysis of fuzzy controllers was developed byBraae and Rutherford [80]. The approach is known as the fuzzy phase plane approach (or statespace approach) and is based on the relationship between the phase plane and the fuzzy rule-base. It is a graphical approach that is useful for predicting stability as well as other dynamicphenomena. Fuzzy phase plane analysis is limited to two-dimensional systems due to di�cultiesin the interpretation of higher-dimensional graphical representations of the phase plane [22].The fact that fuzzy behavior-based systems typically do not comply with the dimensionalityrestrictions of the approach precludes its use for these systems.To date, much of the research on stability analysis techniques has viewed fuzzy control



Chapter 4. Adaptive Hierarchy of Distributed Fuzzy Control 66systems as nonlinear dynamic systems. Analysis methods based on Lyapunov stability andinput-output (the small-gain theorem) stability can be applied if a dynamic model of theplant is known [22]. An alternative approach is to formulate behaviors as Takagi-Sugenofuzzy systems [81] which are characterized by functional expressions in the rule consequents.When these functional expressions are linear each rule consequent corresponds to a linearcontroller with constant coe�cients. These forms of the Takagi-Sugeno FLC are supported bya convincing stability theory based on Lyapunov's direct method [81, 12]. In applications tomobile vehicle control, a collision avoidance behavior is typically is most important and willtend to dominate other system behaviors at all times. In a system designed with this property,it should su�ce to show that the collision avoidance behavior is stable in some sense in order toclaim stability of the behavior hierarchy. The collision avoidance behavior (and other primitivebehaviors) used for direct control can be formulated as a Takagi-Sugeno behavior. This wouldenable stability analysis of the adaptive behavior hierarchy for the direct control case. Oneproblem with this approach, however, is that the condition for global stability [81] of a behaviorrequires the existence of a common positive-de�nite matrix that satis�es the Lyapunov Equationfor every linear rule consequent. In most instances this common matrix would be di�cult todetermine, particularly for a large set of rules. In addition, if new rules are added to thebehavior the search for a common matrix becomes more di�cult. More conservative stabilitycriteria are available for Takagi-Sugeno FLCs using the Interval Matrix Method [12]. These arebased on recent stability results for time-varying discrete interval matrices [82], and are not ascomputationally intense as the Lyapunov approach.Recent developments in stability analysis provide additional alternatives for fuzzy systemswithout requiring functional expressions in the rule consequents. Kosko [77] recently reportedseveral theorems related to global asymptotic stability of so-called additive fuzzy systems. Theresults are applicable to fuzzy systems designed according to his Standard Additive Model



Chapter 4. Adaptive Hierarchy of Distributed Fuzzy Control 67which di�ers only slightly from the model presented in this and the previous chapter. Themain di�erences are in the calculation of rule strengths and the aggregation of rule outputs.The Standard Additive Model uses product and sum, respectively. Kosko also provides acorollary to Tanaka's main result [81] which gives a su�cient condition for the choice of theidentity matrix as the common positive-de�nite matrix mentioned above. Tso and Fung [83]proposed a new technique for stability analysis of autonomous vehicles controlled by FLCs.Their \equivalent transformation" algorithm is based on the idea of analytical determinationof a control surface that is equivalent to an arbitrary desired control surface for an FLC.Conditions on this equivalent control surface that are obtained in accordance with Lyapunovand Hurwitz stability criteria leads to global asymptotic stability. Finally, Cao et al [84]proposed a Lyapunov-like approach to stability analysis that is applicable to both the Mamdaniand the Takagi-Sugeno types of FLCs. They develop their approach based on a theory ofgeneralized dynamic systems. As such, the method can be used for model-free and model-based fuzzy control design.
4.4 ConclusionThis chapter has covered the essential ingredients of the proposed approach to hierarchicalfuzzy control of complex autonomous systems. Overall system behavior is decomposed intoa bottom-up hierarchy of increasing behavioral complexity with primitive behaviors at thelowest level serving as fuzzy controllers, and composite behaviors at higher levels serving asfuzzy decision systems. Capabilities of primitive behaviors are combined to produce compositebehavior(s) suitable for goal-directed operations. That is, their fuzzy outputs are modi�ed bytheir respective DOAs and intelligent behavior emerges through behavior modulation. Theunderlying theory consists of relatively simple fuzzy set operations across multiple rules and



Chapter 4. Adaptive Hierarchy of Distributed Fuzzy Control 68multiple rule-bases which serve as a basis for extending the monolithic FLC approach to multi-rule-based control. In the next chapter we discuss the implications of this approach in thecontext of applications to navigation control of autonomous mobile vehicles.



Chapter 5
Fuzzy Behavior Control Systems
In order to implement the proposed ideas and to test their validity, a su�ciently complexplant and associated environment should be chosen. An ideal choice is the problem of con-trolling autonomous mobile vehicles or rovers that are to be deployed in dynamic and possiblyunstructured environments (e.g. o�ce settings, factories, natural terrain, planetary surfaces,etc). This is currently a very active and challenging area of research of concern to a multidisci-plinary community of engineers and scientists. Electrical and mechanical engineers, computerscientists, and more recently, biologists and cognitive scientists are all contributing to the areaof autonomous mobile robot research.Traditional methods which address mobile robot control issues have relied upon strongmathematical modeling and analysis. Various approaches proposed to date are suitable forcontrol of automated guided vehicles which operate in structured environments and performrelatively simple tasks that require only motion along �xed paths. For this class of mobilevehicles, classical control techniques for tracking or teleoperation can be applied without greatdi�culty. Motion control research in mobile robotics is now steering toward advances beyond�xed-path tracking and teleoperation and closer to true autonomy. As environmental structure



Chapter 5. Fuzzy Behavior Control Systems 70and task constraints are removed from the problem domain, the need for increased autonomymandates the development of higher-level intelligent controllers. Unfortunately, operations inunstructured environments require robots to perform complex tasks for which analytical modelsfor control can often not be determined. Furthermore, in cases where models are available, it isquestionable whether or not uncertainty and imprecision are su�ciently accounted for. Robustbehavior requires that uncertainty be accommodated in the robot controller, especially whereautonomy is desired. The very nature of autonomy dictates the need for some capacity ofadaptive behavior. Under such conditions fuzzy logic control is shown to be an attractivesolution that can be successfully implemented on real-time autonomous systems.The remainder of this dissertation describes how the application of fuzzy logic in the frame-work of behavior control can contribute to the realization of autonomous rovers. In this chapter,implications of applying the new approach to behavior control synthesis are discussed. Sim-ulated and experimental results that verify its validity and practical utility in this problemdomain are reported in the next chapter. First, let us discuss some issues of practical concernin mobile robotics.
5.1 Some Practical ConcernsTo say the least, a signi�cant amount of progress must be made to achieve the sophisticationnecessary for true autonomy. A current limitation is due to the processing capabilities of state-of-the-art microprocessors and other computational resources which must be carried on-boardthe vehicle. Mobile systems with modest computational resources are typically equipped withinexpensive range sensors such as infrared proximity detectors, sonar, and/or position sensorssuch as optical encoders. The problems encountered with these sensors are well known [85].The reliability of sensory data collected from infrared sensors is a�ected by the re
ective prop-



Chapter 5. Fuzzy Behavior Control Systems 71erties of obstacles in the environment. As a result, the quality of the range data operated onby an associated fuzzy controller is suspect. When using sonar ranging to reason about thestate of the world, we must be prepared to handle the inaccurate sensory information whichis inherent in sonar-based systems. Ideally, when sonar pulses are emitted against a surfacethey are re
ected from that surface to a receiver, thus allowing for range calculation based onthe speed of sound and time of 
ight of the pulse. In practice, however, it is quite commonfor the sonar pulse to be re
ected from the initial surface, to other surfaces and �nally backto the receiver, yielding incorrect range calculations. Such specular re
ections make obstaclesappear to be closer to, or farther away from, the robot. Specular re
ection is a predominantsource of error, particularly outdoors where surfaces are generally rough. The specular re
ec-tion problem inherent in sonar range �nders is similar to the problem humans face when insideof a house of mirrors. In such environments, the human vision system is quite susceptible tofalse positive readings despite its complexity and otherwise robust performance. As such, thepotential for false positive readings in the world directly impacts the algorithms used to nav-igate throughout. Dead reckoning, which is the procedure of calculating or measuring vehicleheading and distance travelled, and adding these to a known initial location, is another sourceof error and uncertainty. Systematic errors caused by unequal wheel diameters, uncertaintyabout the vehicle's wheelbase, or other mechanical imperfections are common [86]. In addition,non-systematic errors such as irregularities (bumps, cracks, etc) in the terrain contribute sig-ni�cantly to the problem. Since these errors e�ect both the heading and distance calculation,errors in position of the vehicle become increasingly large as it travels. Frequent updatingof position based on known references or landmarks in the environment is often necessary tomaintain accurate localization over long traverses. In the face of these formidable practicalconcerns, an approach to autonomous navigation must be both robust and adaptable.To endow mobile vehicles with adaptability su�cient for autonomous navigation, the ap-



Chapter 5. Fuzzy Behavior Control Systems 72proximate reasoning capability provided by fuzzy logic can be exploited as a resource for intel-ligence. The hierarchical fuzzy control architecture proposed in the previous chapter facilitatesthis by providing an e�cient framework for control of such complex distributed-intelligencebased systems. In general, fuzzy logic controllers provide robustness to perturbations, designsimplicity, and e�ciency in dealing with continuous variables [15]. The successful managementof uncertain, unreliable, and/or unmodeled data is a proven attribute of fuzzy logic based in-ference engines. In the context of mobile robot control, a fuzzy logic-based system has theadvantage that it allows the intuitive nature of sensor-based navigation to be easily modeledusing linguistic terminology. The computational loads of typical fuzzy inference systems are rel-atively light. As a result, reactive fuzzy control systems permit intelligent decisions to be madein real-time, thus allowing for smooth and uninterrupted motion. Reactive behavior-basedcontrol systems require less computation than traditional systems and still produce robustautonomous performance [19, 87, 88].At some point in the development of mobile robot control architectures, the software mustbe interfaced with the physical robot hardware for validation of simulation results or �naldeployment in the target environment. This constitutes the physical embodiment that instan-tiates the intelligent mobile robot. There are a number of realization options for physicallyembodied mobile robots given an assortment of computational resources, communications de-vices, sensors and actuators. The options can be generally classi�ed according to whether thecontrol mode is semi-autonomous or autonomous. By semi-autonomous we mean that the maininformation processing responsible for the robot's intelligence is resident on some remote pro-cessor(s) and not carried onboard the vehicle. In addition, the remote processor communicateswith the robot via either physical tether or radio frequency (RF) signals. Autonomous controlis meant to refer to situations in which all computational resources are carried onboard. Wewill focus on the latter hereafter.



Chapter 5. Fuzzy Behavior Control Systems 735.2 Behavior-based Mobile Robot ControlIn recent years we have witnessed a shift in ideology regarding problem decomposition formobile robot control. Traditional architectures are modularized according to a functional de-composition of tasks into an overall sense-plan-act cycle. The robot control system executesfunctional modules sequentially, and will malfunction if any module is missing. Due to thissequential processing computational bottlenecks are common, particularly in the planning mod-ules. Mobile robot research is now leaning towards control approaches that are modeled afternatural processes, and that advocate a behavioral decomposition of tasks with quasi-parallelexecution. In principal, behavior-based control can be applied in situations where classicalcontrol is not feasible, usually due to tremendous modeling di�culties. The behavior controlparadigm was initially proposed in the seminal paper by Brooks [30] where it was realized in thesubsumption architecture. In this architecture, a number of behaviors (implemented as �nitestate automata) execute in parallel in response to instantaneous sensory data. The behaviorscomprise a distributed system that controls a mobile robot through arbitrated competitionand collaboration. Since the introduction of this architecture a number of variants have beenproposed for behavior control. This chapter presents one of the most recent variants amongthose that employ approximate reasoning via fuzzy logic.5.2.1 Fuzzy-behaviorsSome of the earliest attempts at applying fuzzy logic to the control of mobile robot vehicleswere made by Uragami et al [89] and Sugeno and Murakami [90]. Uragami and colleagues[89] implemented a fuzzy program to control a simple inchworm robot to simulate a personwandering through a town. They concluded that robots could be used to explore spatialregions, with humans issuing commands in the form of fuzzy instructions. Later, Sugeno and



Chapter 5. Fuzzy Behavior Control Systems 74Murakami [90] conducted successful experiments in embedded fuzzy control of a model car forparking based on an operator's control actions. This early work was done before the initialreports on the subsumption architecture became available, and thus, was not in
uenced by thebehavioral decomposition proposed by Brooks [30].Following the introduction of the subsumption architecture and the emergence of the behav-ior control paradigm, a host of groups recognized the advantages to be gained by incorporatingfuzzy logic into the framework of behavior control for mobile robots. Maeda et al [91] proposeda modi�cation of Zadeh's fuzzy algorithm which includes adjustable thresholds which governrule �ring. Sa�otti et al [92, 93] have developed fuzzy-behaviors for complex navigation tasksdemonstrating the robustness of fuzzy control in blending reactive and goal-oriented behavior.Pin and Watanabe [94] developed qualitative reasoning schemes for autonomous navigationin unknown environments with emphasis placed on embedded control using VLSI fuzzy chips.Badreddin [95] proposed a unique alternative to fuzzy behavior fusion based on fuzzy analogi-cal gates. A heterogeneous network of fuzzy controllers for reactive behavior-based control wasimplemented by Goodridge and Luo [96]. In this network, control actions are generated byoutputs of independent fuzzy controllers that are linked together through a qualitative rule-base. Li [97] emphasizes weighting of reactive behaviors, achieved by implicit mechanisms offuzzy inference, as an improvement in e�ciency over priority-based arbitration. Tunstel andJamshidi [98, 99] have proposed strategies for fuzzy behavior-based mapping and fuzzy spatialmap representation for navigation. Research is also being pursued in the area of motion controlfor path execution [100]. These are but a few of the research activities in fuzzy-behavior controlof mobile robots. The approaches of each of these research activities are mutually similar andhave some things in common with the architecture described in the previous chapter. Theapproach proposed here di�ers from other approaches mainly in the hierarchical structure ofthe fuzzy rules, and the incorporation of a dynamic behavior arbitration mechanism as a source
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5.2.2 Synthesis
Advantages are gained in a fuzzy-behavior control hybrid with regard to representation andhandling of uncertain and imprecise knowledge about the robot's environment, and in behaviorcoordination and con
ict resolution. Non-fuzzy behavior controllers explicitly account for real-world uncertainty by augmenting crisp reasoning with heuristics in a manner akin to productionsystems of arti�cial intelligence. Fuzzy control, on the other hand, implicitly accounts foruncertainty by virtue of the approximate reasoning capability of fuzzy logic.In many of the non-fuzzy behavior control implementations, behaviors are synthesized as�nite state automata or augmented �nite state machines. In contrast to this, fuzzy-behaviorsare synthesized as fuzzy rule-bases. Each behavior is encoded as a fuzzy rule-base with adistinct mobile robot control policy governed by fuzzy inference. The procedure for fuzzy-behavior synthesis consists of �rst de�ning linguistic terminology for the behavior inputs andoutputs, partitioning the sensor space and actuator space using appropriate fuzzy sets, andformulating fuzzy rules that satisfactorily govern the desired response of the behavior in allpractical situations. This is the same procedure that is used for fuzzy controller synthesis.It is an iterative procedure of trial-and-error which, in practice, involves �ne tuning of theshapes of membership functions used to express uncertainty in inputs and outputs, as well asmodi�cations to the fuzzy rule-base.
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Primitive LevelFigure 5.1: Hierarchical decomposition of mobile robot behavior.5.3 Behaviors in the Adaptive HierarchyMobile robots operating in non-engineered domains must be capable of reliable navigation inthe presence of static and dynamic obstacles (e.g. humans and/or other moving robots). Itis preferred that such robots be designed to navigate autonomously, in an equally e�ectivemanner, in both sparsely populated environments (e.g. an overnight security robot patrollingan o�ce building) and in cluttered environments (e.g. a robot transporting material on a busyfactory 
oor). Several capabilities are necessary to achieve this, including collision avoidance,self and goal localization, and traversal through indoor features such as halls, doorways, anddensely cluttered spaces. A behavior hierarchy encompassing these capabilities is shown inFigure 5.1. It implies that goal-directed navigation can be decomposed as a behavioral func-tion of goal-seek (collision-free navigation to some location) and route-follow (assumingsome direction is given in the form of waypoints or a path plan). These behaviors can befurther decomposed into the primitive behaviors shown, with dependencies indicated by theadjoining lines. The circles represent weights and activation thresholds of associated primitivebehaviors. As described in the previous chapter, 
uctuations in these weights are at the rootof the intelligent coordination of primitive behaviors which leads to adaptive system behavior.
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Figure 5.2: Fuzzy decision and fuzzy control modules.The hierarchy facilitates decomposition of complex problems as well as run-time e�ciency byavoiding the need to evaluate rules from behaviors that do not apply. The composite behaviorsare fuzzy decision systems and the primitive behaviors are fuzzy controllers (see Figure 5.2).That is, the output(s) of composite behaviors are used in control decision-making, while theoutput(s) of primitive behaviors are applied as control inputs to the plant.5.3.1 Composite behaviorsThe goal-seek behavior is a composite behavior serving as a fuzzy decision system. Its inputsconsist of the range to the nearest obstacle (rmin), the distance from the goal (dgoal), and theangular heading to the goal (�goal). Its outputs are DOAs, �gt and �ac, which correspond tothe DOAs of go-to-xy and avoid-collision respectively. Its purpose is to coordinate theactivation of its underlying primitive behaviors through behavior modulation. This is achievedin the current implementation with 11 rules.1The route-follow behavior also serves as a fuzzy decision system. Its inputs are the sameas those of goal-seek except that it takes additional route information in the form of a list ofwaypoints leading to a goal/sub-goal. Outputs of route-follow consist of �gt, �ac, �wf and1Note that the number of rules may vary from system to system.



Chapter 5. Fuzzy Behavior Control Systems 78�dw. The latter two outputs correspond to DOAs of the wall-follow and doorway behaviorsrespectively. The purpose of route-follow is to coordinate the activation of its underlyingprimitive behaviors such that navigation via the speci�ed waypoints is achieved. In the currentimplementation this is done using 18 rules.
5.3.2 Primitive behaviorsThe avoid-collision behavior is perhaps the most important primitive behavior in an au-tonomous mobile system. Here, it is implemented as a fuzzy control behavior since it is com-prised of a set of fuzzy control rules, i.e. rules with control inputs as consequents. Its threeinputs convey information about the obstacle situation relative to the front and both sidesof the robot. These inputs are determined from a sensory fusion operation (see below) onavailable sensor range data. The outputs of the behavior, and all other primitive behaviors,are fuzzy control outputs from which crisp controller inputs are computed by defuzzi�cation ofthe behavior hierarchy equation (Equation 4.5). These are typically desired velocities of eachwheel (in the case of a di�erential-drive mechanism) or the desired linear velocity and headingof the robot. As its name implies, the purpose of avoid-collision is to steer a robot awayfrom obstacles. When there are no obstacles to avoid, the behavior exhibits a tendency to movethe robot in a forward direction. Left alone, this behavior displays a wandering activity. Thecurrent implementation uses 11 fuzzy control rules to avoid collisions.The go-to-xy primitive behavior takes the current Euclidean position error between therobot and the goal, and the corresponding heading error as its inputs. Therefore, it relieson information about its relative pose with respect to its current goal, as opposed to sensorrange data. Hence, this behavior is not cognizant of any concept associated with obstacles;its \knowledge" is purely Cartesian. The sole purpose of go-to-xy is to steer a robot in the



Chapter 5. Fuzzy Behavior Control Systems 79direction of its goal, force the robot to move to its goal, and stop the robot's motion when ithas arrived. In e�ect, it merely directs motion along a straight line trajectory to a particularlocation. A set of 18 rules are used.Like avoid-collision, the wall-follow behavior takes information about the obstaclesituation relative to the front and both sides of the robot. However, the information sampledby each of these behaviors are de�ned over universes of discourse that are speci�ed di�erently,and partitioned using di�erent sets of membership functions. The behavior's purpose is to followwalls by causing the robot to move parallel to walls at a speci�ed distance. It currently operatesusing 8 fuzzy control rules. Finally, the doorway behavior takes similar input information. Itspurpose is to guide a robot through narrow passageways in walls. It uses 8 rules.These brief descriptions reveal that behaviors at the primitive level (of the current imple-mentation) use a total of 11 inputs and 45 rules. Each input universe is partitioned usingat least 2 linguistic values, or fuzzy sets. More than 2 fuzzy sets actually span the universesof most of the inputs. However, if we make the very optimistic assumption that each inputuniverse is partitioned using only 2 fuzzy sets, then a complete rule-base for a monolithic FLCrealization would require 211 = 2048 rules! Distribution of the controller intelligence amongfour primitive behaviors in this case results in a dramatic reduction in the number of rules.Furthermore, if all four primitive behaviors are not concurrently active at a given instant, thenless than 45 rules will be consulted during the corresponding control cycle.It is important to point out the solipsist view that each of the primitive behaviors haveof the \world". Operating alone, each would be insu�cient for autonomous navigation. Thefunctionality of the system depends on a combined e�ect of the behavioral functionality of eachprimitive (and or course, the competence of the composite behaviors which coordinate them).



Chapter 5. Fuzzy Behavior Control Systems 805.3.3 Sensory fusionSensor suites used for autonomous navigation usually consist of a considerable number of indi-vidual sensors. The total number of relevant sensors varies from system to system. However,it is typically large enough to make feeding each measurement to an FLC infeasible due tothe combinatorial e�ect that many inputs have on rule-base cardinality. Before delivery tobehaviors, relevant sensor data are routed through a preprocessing stage which combines mea-surements into a reduced, but useful, amount of information. We refer to this idea as sensoryfusion. This is distinguished from the fairly common use of the term \sensor fusion," whichrefers to determining the most proper interpretation of inconsistent or con
icting data frommultiple sensor sources.Behaviors act on sensor data from di�erent subsets of the sensor suite. These data includeso-called virtual sensor data which are derived from actual sensor readings (e.g. dgoal, which iscomputed from position encoder data and knowledge of goal coordinates). If we let SI denotethe set of all available inputs to behaviors, and Sp denote the non-empty set of inputs consideredby behavior p, then Sp � SI for all p. Furthermore, if Ip is the set of inputs actually used bybehavior p then Ip = fuse(Sp) (5.1)
where fuse(�) is some operator or function appropriate for the desired combination of sensorinformation. The idea is expressed in Figure 5.3 where sensor measurements �i 2 Sp, �j 2 Ip,and n < m. Common fusion operations used for fuse(�) are min(�), as used here, and linearcombinations of inputs in Sp [26].
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fuse( )

n
m Figure 5.3: Sensory fusion operation.5.3.4 An alternative exampleAs an additional example of a behavior hierarchy, consider the outdoor navigation problemencountered by natural terrain vehicles such as planetary rovers. Autonomous rovers designedfor natural terrain must be capable of point-to-point navigation in the presence of varyingobstacle (rocks, boulders, dense vegetation, etc.) distributions, surface characteristics, andhazards. Often the task is facilitated by knowledge of a series of waypoints, furnished byhuman, operators which lead to designated goals. In some cases, such as exploration of thesurface of Mars [20, 101], this supervised autonomous control must be achieved without theluxury of continuous remote communication between the mission base station and the rover.2Considering these and other constraints associated with rover navigation, suitable behaviorhierarchies similar to the hypothetical one shown in Figure 5.4 could be constructed. In this�gure the behavioral functions of goal-seek, route-follow, and an additional compositebehavior, localize are decomposed into a slightly di�erent suite of primitive behaviors. Thedesign of behaviors at the primitive level would be tailored to the navigation task and anenvironment with characteristics of natural terrain.Note that decomposition of behavior for a given mobile robot system is not unique. Con-sequently, suitable behavior repertoires and associated hierarchical arrangements are arrivedat following a subjective analysis of the system and the task environment. The total number,2Time delays between Earth and Mars can be anywhere between 6 and 41 minutes.
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Figure 5.4: Hypothetical behavior hierarchy for planetary rover navigation.and individual purpose, of fuzzy-behaviors in a given behavior hierarchy is indicative of theproblem complexity and can be conveniently modi�ed as required.
5.4 Coordination by Behavior ModulationIn the last chapter, we described mechanisms for multiple-behavior coordination and con
ictresolution as generalizations of fuzzy set theoretic concepts, namely, rule weighting and rulecon
ict resolution (via aggregation and defuzzi�cation). In mobile robot navigation basedon multiple-behavior systems, behaviors compete for control of the robot by recommendingdi�erent, and possibly con
icting, control actions. This occurs frequently during any su�cientlycomplex navigation task. In the face of such competition, a decision must be made to determinethe resultant control action given the bids from individual behaviors. In the jargon of behavior-based control the decision-making process is referred to as behavior arbitration. While there area number of possible approaches to behavior arbitration, the most common approach employs aprioritization scheme wherein the control recommendation of only one behavior among severalcompeting behaviors is taken; recommendations from the remaining (lower priority) behaviorsare ignored [19, 30].



Chapter 5. Fuzzy Behavior Control Systems 83In contrast to this switching type of arbitration, we advocate controlling mobile robotsusing the more comprehensive arbitration scheme of behavior modulation proposed in theprevious chapter. This arbitration scheme permits more than one behavior to in
uence thecontrol action to the extent governed by respective degrees of applicability. The resultantcontrol action in this case is a consensus of controls recommended by applicable behaviors.This facilitates a more natural and smoother control performance which leads an observer todescribe the resulting emergent activity as behavior fusion [96, 102] or behavior blending [92].This strategy for multiple behavior coordination was developed to enable robust autonomousperformance. It represents an approach that is particularly suitable in the context of fuzzy-behavior hierarchies. We refer to it as behavior modulation due to its additional responsibilitiesof regulating, adjusting, and/or adapting individual robot behaviors to degrees conducive forrealizing the current navigation goal. Several instances of independent research have convergedto similar ways of approaching autonomous mobile robot navigation [93, 103, 104, 105].In mobile robot navigation we are often concerned with behavior con
icts. For example, wecan imagine the necessity to resolve con
icts between avoiding obstacles and following a wallwhen navigating in a cluttered corridor. Such a situation is illustrated in Figure 5.5a where thenavigation objective requires following the right-wall. Assuming the robot travels at a constantspeed, a representative partition of the universe of discourse for its steering control is as shownin Figure 5.5b. Based on this partition, plausible fuzzy steering output recommendations areshown in Figure 5.5c for wall-following and collision avoidance. The wall-follow behaviorrecommends proceeding in the current direction (recall that primitive behaviors serve their sin-gle purpose; they are not cognizant of the purpose of other behaviors). The avoid-collisionbehavior opts to turn left (or hard-left depending on the frontal proximity of the obstacle).Also shown is a region of overlap between these fuzzy outputs indicating a partial behavioralcon
ict. Due to such overlap, situations of partial con
ict are not signi�cantly distinguish-
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able from general cases requiring behavior coordination. Therefore, partial behavior con
ict ishandled as described in the previous chapter.Alternatively, consider the situation shown in Figure 5.6 in which go-to-goal and collisionavoidance behaviors are interacting. In this case, the objective is to navigate to a speci�ed goal(indicated by the 'X'). However, the robot's direct path is blocked and a decision must be madeto proceed by turning right or left. Based on the same steering control partition of Figure 5.5b,plausible fuzzy control outputs are indicated in Figure 5.6b. Here, the go-to-xy behavior urgesthe robot to proceed straight towards the goal. The avoid-collision behavior suggests goingleft or right. In this case there is no overlap and the behaviors are fully con
icting. If we
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aggregate and defuzzify these fuzzy recommendations using common defuzzi�cation methods(e.g. center-of-area) the result would be to proceed straight, thus leading to collision with theobstacle. This will occur even if a higher degree of applicability was assigned for obstacleavoidance. This is a limitation of defuzzi�cation methods commonly used in fuzzy controlwhen faced with full con
icts, but not necessarily a limitation of the proposed fuzzy controlapproach.The problem just described is important not only in navigation tasks but in most tasksrequiring reasoning among fully con
icting alternatives. A common solution is to select adesignated default alternative (such as \turn right"), or to randomly select one action from



Chapter 5. Fuzzy Behavior Control Systems 86the set of con
icting alternatives. A control action could also be selected based on somecriteria such as minimum required control e�ort. Currently, we deal with this problem byturning in the direction of most free space, or turning right if there is equal free space oneither side. Thus far, default reasoning has proven to be su�cient. More 
exible approachesbased on fuzzy logic defuzzi�cation methods have been proposed in the literature. Yager [106]introduced a method for defuzzi�cation that utilizes nonmonotonic conjunction of fuzzy setsrepresenting allowed control actions and control actions recommended by the rule-base. In theexample given here, the allowed control actions are left or right; the recommended action isstraight. The nonmonotonic conjunction is coupled with the random generation defuzzi�cationmethod [76] to achieve defuzzi�cation under constraints. P
uger et al [107] also proposed asolution based on their centroid-of-largest-area defuzzi�cation strategy. Such methods shouldbe adopted in situations where commonsense reasoning approaches like the right-turn policyprove to be insu�cient for achieving desired performance.
5.5 Ethological In
uences and RelationshipsInteresting parallels can be drawn between behavior modulation in the control of electrome-chanical systems, and ethological theories of action/behavior selection. These and other aspectsof behavioral control in natural systems have in
uenced the development of the hierarchy ofdistributed fuzzy logic control in one way or another. The idea of behavior hierarchies is sup-ported by a host of similar conceptual ethological models of motivational control of behaviorsuch as those proposed by Tinbergen [108], Baerends [109], and MacLean [110]. Neural cor-relates of behavior that possess similar attributes have also been proposed [111, 112]. In fact,ideas originally expressed via theories of animal behavior are �nding increasing application inapproaches to robot and arti�cial agent control [31, 96, 113, 114, 115, 116].



Chapter 5. Fuzzy Behavior Control Systems 87The DOA, de�ned in Chapter 4, can be thought of in ethological terms as a motivationaltendency of an associated behavior. It serves as a form of motivational adaptation since itcauses the control policy to dynamically change in response to goals, sensory input, and internalstate. As described in Chapter 4 the DOA, � 2 [0; 1], of a given primitive behavior governs therelative amount of in
uence the behavior has on the instantaneous behavior of the system. Asan economic interpretation, the DOAs of a set of primitive behaviors convey their respectiveutilities. The evaluation of these utilities performed by applicability rules endows the robotwith motivational autonomy [117]. Behavior activation levels (DOAs), behavior modulation,and threshold activation are all concepts related to characteristics of behavior in biologicalsystems. As implemented in the hierarchy, these mechanisms collectively allow robots to exhibitbehavioral responses throughout the continuum. As mentioned earlier, this is in contrast tonon-fuzzy behavior arbitration which typically employs �xed priorities that allow only oneactivity to in
uence the robot's behavior during a given control cycle. Regarding animalbehavior, Lorenz [118] notes that \only a few instances are known in which the activation ofone behavior system excludes absolutely the activation of any other."During the course of any su�ciently complex navigation task, the applicability of eachprimitive behavior undergoes continuous nonlinear variation re
ecting the level of activationrecommended by the behavior control system. We will get a glimpse of this in the next chapter,where we will see that behavioral interactions caused by these concurrent variations leads tothe emergence of intelligent navigation behavior via cooperation and competition. Observa-tion of the interaction dynamics among multiple behaviors reveals bouts of cooperation andcompetition expressed as rapid overlapping and non-overlapping oscillations in graphs of DOAversus time. In interpreting such \fast dynamics", Varela [119] writes, \...these oscillationsare the symptoms of|very rapid|reciprocal cooperation and competition between distinctagents that are activated by the current situation, vying with each other for di�ering modes of



Chapter 5. Fuzzy Behavior Control Systems 88interpretation for a coherent cognitive framework and readiness for action." He also points torecent brain studies [120] revealing evidence of similar phenomena. In describing animal be-havior, Staddon [75] refers to competition as \reciprocal inhibition", described as \the primaryprinciple of re
ex interaction . . . [which] holds for incompatible behavioral units at any level ofcomplexity." In the context of fuzzy-behaviors, the term soft reciprocal inhibition seems moreappropriate since competing fuzzy-behaviors are rarely fully inhibited or fully dominant.
5.6 ConclusionThe hierarchy of fuzzy-behaviors provides an e�cient approach to synthesis of adaptive behaviorcapabilities necessary for robust autonomous navigation by mobile robots. Its practical utilitylies in the decomposition of overall behavior into sub-behaviors that are activated only whenapplicable. When conditions for activation of a single behavior (or several) are satis�ed, thereis no need to process rules from behaviors that do not apply. This would result in unnecessaryconsumption of computational resources and possible introduction of \noise" into the decision-making process. The approach also allows �ltering of undesirable inter-behavioral in
uencesthrough the use of thresholds. The modularity and 
exibility of the approach, coupled withits mechanisms for weighted decision-making, makes it a suitable framework for modeling andcontrolling situated adaptation in autonomous robots.For many years, ethologists have developed theories and models to explain aspects of animalbehavior. They are addressing a more di�cult problem than the behavior synthesis problemaddressed herein, namely, a behavior analysis problem based on external observations of be-havior. Ideas and results of their work are quite useful as foundations for developing intelligentrobot behavior. While they continue to focus on analysis of behavior from the outside, we con-centrate on synthesis from the inside. Perhaps we will arrive at a midpoint with some uni�ed
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Chapter 6
Navigation Simulation andExperiment
Validation of the intelligent control architecture was done through a combination of simula-tion and experimentation on a real mobile robot. The emphasis is on embedded applicationssince most mobile robots must carry the bulk of their computational resources onboard. Thesimulated mobile robot is modeled after LOBOt, a custom-built robot driven by a 2-wheel dif-ferential con�guration with two passive casters for support. The independent drive motors onLOBOt are geared DC motors. As shown in Figure 6.1, it is octagonal in shape, stands about75 cm tall and measures about 60 cm in width. Range sensing is achieved using a layout of16 ultrasonic transducers (arranged primarily on the front, sides, and forward-facing obliques);optical encoders on each driven wheel provide position information used for dead-reckoning. Inthe simulations, ideal pose (position and orientation) information (x y �)T is assumed and iscomputed using a kinematic model of the di�erential-drive mechanism. Its maximum speed waslimited to 0.3m=s. The sensor model generated range readings with errors as large as � 100mmand lower angular resolution than the actual sonar. The output of the primitive behaviors are
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Figure 6.1: UNM LOBOt.
right and left wheel speeds; the inputs to the hierarchy are the goal location and subsets ofsensor readings. LOBOt is controlled using a 75MHz Pentium-based master processor (laptopPC) and Motorola MC68HC11 microprocessor slaves for sonar processing and low-level motorcontrol functions. The low-level motor control is of the conventional PI (proportional-integral)type.The structure of the behavior hierarchy was determined based on a subjective assessment ofthe motion capabilities necessary for goal-directed navigation. Goal-seeking and route-followingcapabilities are demonstrated for which underlying fuzzy-behaviors at the primitive level havebeen hand-derived. Behavior evolution has been applied to composite behaviors (Section 6.2) todiscover applicability rule-bases responsible for appropriately modulating primitive behaviors.
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 NAVIGATION

avoid-collisiongo-to-xy

Primitive LevelFigure 6.2: Hierarchical decomposition of mobile robot behavior.6.1 Simulated Navigation ResultsIn this section, we examine representative simulations of adaptive behavior controlled by thefuzzy-behavior hierarchy. The simulated \world" is a hypothetical indoor layout not unlikea warehouse or o�ce building. The robot is not provided with an explicit map, however, itis cognizant of the notion of a two-dimensional Cartesian coordinate system. Its path is notpre-planned; it is executed in response to instantaneous sensory feedback.6.1.1 Goal-seekingIn order to demonstrate the operational aspects of the controller in the simplest manner possiblewe concentrate on navigating to a speci�ed goal utilizing the composite behavior | goal-seek.It's place in the overall hierarchy is illustrated in the left portion of Figure 6.2 which shows thatits e�ect arises from synergistic interaction between go-to-xy and avoid-collision behaviors.These primitive behaviors (and others shown) have been independently developed and testedin simulation to predict their individual performances in indoor spaces with various obstaclearrangements. When more behaviors are involved the approach proceeds in a straightforwardmanner by appending additional DOAs and any necessary antecedents to applicability rules
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(c) (d)Figure 6.3: Simulation of goal-seeking behavior.
accordingly.The initial state of the simulation is shown in Figure 6.3a with LOBOt located at a dock-ing/charging station with pose (x y �)T = (11:7 12:3 �2 )T . Its task is sensor-based navigationto a goal located at, (1:5; 1) and marked by the X. The primitive behaviors are each shownacting alone in Figure 6.3 b and c. Recall that these behaviors are only capable of exhibitingtheir particular primitive roles, lacking awareness of the other behaviors in the system and thestimuli that drive them. Thus, avoid-collision merely displays cyclic collision-free behav-ior in the immediate vicinity of the robot's initial location, while go-to-xy displays a taxicreaction that propels the robot toward the goal irregardless of obstacles in its path. Success-



Chapter 6. Navigation Simulation and Experiment 94ful completion of the task, resulting from adaptive coordination of the primitive behaviors, isshown in Figure 6.3d. In the current implementation, applicability rules used by goal-seekto modulate the underlying primitive behaviors consider three instantaneous input states |the range to the nearest obstacle (rmin), the distance from the goal (dgoal), and the angularheading to the goal (�goal). Thus, the fuzzy rules which assign DOAs to primitive behaviorsare of the form of the following examples:IF rmin is DZONE and dgoal is NOTSMALLTHEN �ac is HIGH; �gt is ZEROIF rmin is FAR and dgoal is MEDTHEN �ac is LOW; �gt is HIGHIF rmin is NEAR and �goal is RIGHTTHEN �ac is HIGH; �gt is LOWwhere uppercase symbols are linguistic values represented by fuzzy sets de�ned over appropriateinput/output universes of discourse. The lingusitic label, DZONE, of the �rst example rulerefers to a \danger zone" within which obstacles are too close to the robot and the situationis perhaps unsafe. The consequent linguistic variables, �gt and �ac, correspond to the DOAsof go-to-xy and avoid-collision respectively. The linguistic values in the rule antecedentsadequately convey the uncertainty and imprecision that is characteristic of sensors used onmobile robots. Linguistic values in the consequents are fuzzy partitions de�ned over the universe[0, 1].In Figure 6.4, the behavioral modulation during the simulation is shown as the temporalevolution of the DOAs, or motivational tendencies, of each primitive behavior. The inter-action dynamics shows evidence of brief bouts of competition (overlapping oscillations) and
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Figure 6.4: Behavior modulation and interaction during goal-seeking.
cooperation with varying levels of dominance. These are characteristic of the \fast dynamics"mentioned in Section 5.5 and referred to by Varela [119]. Initially, avoid-collision has thedominant in
uence over the robot's motors due to the close proximity of walls in the dock-ing/charging station. It virtually maintains dominance throughout the task due to the relativeclutter in the environment. The �rst bout of competition corresponds to the robot's approachtowards the obstacle located at (5; 8); the second bout occurs as it enters the goal room. Else-where, the applicabilities vary continuously re
ecting the levels of activation recommended bythe behavior control system.



Chapter 6. Navigation Simulation and Experiment 966.1.2 E�ect of t-conorm on motion decisionsAn additional 
exible feature of the architecture lies in the choice of an appropriate operatorfor consolidating multiple control recommendations. We focus on the t-conorm, or generalizedfuzzy union operator of fuzzy set theory. Recall that primitive rule-base outputs are fuzzysets, and an aggregation across rule-bases must be performed to produce an overall controloutput. As the selection of the t-conorm used for rule-base aggregation dictates how anythingapproaching a consensus will be made, available options should be considered.We consider the following t-conorms: bounded sum, arithmetic maximum, probabilisticsum, and the Sugeno S� family (� � �1) which is one of a variety of parameterized families ofaggregation operators [72]. Their de�nitions follow respectively, where a 2 [0; 1], b 2 [0; 1] andU(a; b) denotes the t-conorm operator.U(a; b) = min(1; a + b) (6.1)U(a; b) = max(a; b) (6.2)U(a; b) = a + b � ab (6.3)U(a; b; �) = min(1; a + b+ �ab) (6.4)The selection of the above set of t-conorms was based on their computational simplicity(i.e. no division or exponent operations required). The simulated navigation was run usingeach of the operators de�ned above to examine the relative impact that each has on motiondecisions made during the run. That is, the fuzzy outputs of go-to-xy and avoid-collisionwere aggregated using Equations (6.1){(6.4). The resulting path taken by the robot using thebounded sum is shown in Figure 6.5a. This is the same path taken in the previous example| Figure 6.3d where the arithmetic sum, ], was used as the t-conorm. The robot simulta-neously achieves the goals of reaching the target location and avoiding collisions. The paths
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(b)Figure 6.5: Goal-seeking using di�erent t-conorms.resulting from using maximum and probabilistic sum were very similar to the bounded sumcase. However, the decisions made as a result of applying the S� family for � � 1 were clearlydi�erent as revealed by the alternative path shown in Figure 6.5b for � = 1. The ensembleof control decisions made over the course of this run led to a more direct path to the goal.The results were similar for � > 1. Thus, possible variations in system behavior can be deter-mined through examination of the e�ects of the chosen fuzzy union operator on multi-behaviordecision-making.6.1.3 Route-followingIn the hierarchy of Figure 6.2 route-follow employs capabilities of several primitive behaviors.We demonstrate its performance in a navigation task utilizing the same primitives with theaddition of wall-follow. For this example di�erent start and goal locations are used and adesignated route is speci�ed by three additional waypoints to the goal. The initial state is(x y �)T = (10m 5m � �2 rad)T ; the goal is located at (1:2m; 5:2m). Waypoints between these



Chapter 6. Navigation Simulation and Experiment 98

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

8

9

10

A
B

C
D

E
F

G

Figure 6.6: Route-following using waypoints.locations are (7:5; 2:5) ! (3:5; 6:5) ! (2:0; 8:5)The resulting route is shown in Figure 6.6 and the corresponding DOAs for each primitivebehavior are shown separately in Figure 6.7. Labels A{G in each �gure indicate a correlationbetween robot position along the route and the DOAs applied at that instant.At point A as the robot exits the start room all three primitive behaviors compete forcontrol. At B �ac takes over as the dominant behavior while approaching the �rst waypoint.After avoiding an obstacle, �gt becomes dominant at C on approaching the second waypoint.Dominance modulates between �ac and �gt through competition while traversing through Dand E where the robot adjusts its heading towards the goal room. Interactions among the
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Figure 6.7: Behavior modulation during route-following.three primitive behaviors resurfaces at F where �wf brie
y takes over. It becomes inactive atG giving way to �ac, and �nally to �gt on direct approach to the goal. During the majorityof the task each primitive behavior is active to varying degrees in
uencing the overall robotbehavior in response to goals, sensory input, and internal state.
6.2 Evolution of Intelligent Behavior ModulationAt this point is it clear that controlling goal-directed behavior in an autonomous vehicle ispossible using the adaptive hierarchy of distributed fuzzy control. Additional primitive andcomposite behaviors can be added to a system to increase its functionality as long as associ-



Chapter 6. Navigation Simulation and Experiment 100ated applicability rules can be formulated that relate the composite behaviors to behaviors inthe primitive level. In order to formulate suitable coordination rules for behavior modulation,one must �rst decide what the DOAs of low-level primitive behaviors should be in all practicalsituations perceived from sensory input. Formulation of such rules is not entirely intuitive,and expert knowledge about how to concurrently coordinate primitive behaviors is not readilyavailable. Humans often �nd it di�cult to design knowledge-based control systems with inter-acting rule-bases, particularly in the absence of experts or su�cient knowledge of the problem.Moreover, practical experience has revealed that fuzzy control alone is sometimes insu�cientfor addressing complex intelligent control problems of robotics. It is often necessary to adopthybrid solutions [121, 122].In this section, we address the problem of automatic discovery/learning of coordination, orapplicability, rules for use at the composite behavior level of the hierarchy. This problem hasbeen previously approached in the contexts of other coordination schemes by using reinforce-ment learning [123] and hybrids of reinforcement and neural networks [124, 125]. In Chapter 3the potential of the genetic programming paradigm was demonstrated for learning fuzzy rule-bases for low-level regulation and tracking types of problems. Building on that foundation, weapply the approach here to higher-level behavior modulation.Recall from Chapter 3 that in the process of learning fuzzy rules, GP manipulates thelinguistic variables directly associated with the fuzzy-behaviors. The function set consists ofcomponents of the generic fuzzy if-then rule and common fuzzy logic connectives, i.e. functionsfor antecedents, consequents, fuzzy intersection, rule inference, and fuzzy union. Each behavior(rule-base) is an executable program that evaluates to an output fuzzy set resulting from fuzzyinference. The terminal set is made up of the input and output linguistic variables and pre-speci�ed membership functions associated with the desired behavior.



Chapter 6. Navigation Simulation and Experiment 1016.2.1 Steady-State GPIn addition to the generational GP process, we also employ non-generational Steady-StateGenetic Programming (SSGP). SSGP has been successfully applied by Reynolds [61], as wellas Nordin and Banzhaf [126], to the robot behavior evolution problem. More recently, it hasbeen applied to the evolution of behavior coordination and action selection [127, 128].In the SSGP approach the concept of \generations" does not exist. Instead, on each iterationfollowing creation of the initial population only a few o�spring are produced. The o�springreplace the worst few individuals in the population, and the cycle repeats until terminationcriteria are satis�ed. This is the general idea. However, methods for selecting parents to breed,creating new o�spring, determining worst individuals, and replacing worst individuals tendto vary across applications. In the variant applied here, two parent behaviors are selected bytournament (of size 3) to produce two o�spring. The �tnesses of the two o�spring are evaluatedand they are added to the population. Behaviors to be removed are chosen randomly from theset of below-average behaviors in the current population. Syswerda [69] suggests that steady-state evolution provides automatic elitism, and allows for an aggressive learning rate withoutjeopardizing what is good in the population.6.2.2 Behavior �tness evaluationDuring evolution each behavior in the current population is evaluated via simulation in anumber of indoor �tness cases subject to an upper time limit of 200 seconds. In this work, nf =5 �tness cases are used; the simplest and most di�cult of these are illustrated in Figure 6.8(a)and 6.8(b) respectively. Goal locations in the �gure are indicated by an X, the robot isdepicted as an octagonal icon with a radial line designating its initial heading, and its rangesensor horizon is indicated by the shaded regions of Figure 6.8(a). In each case, the dimension
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(a) (b)Figure 6.8: Example �tness cases.of the indoor space is 10m � 10m. Each �tness case was chosen to represent situations likelyto be encountered in indoor environments.For a given behavior, the score of a trial run through �tness case i is given bySi = 8>><>>: 100 ; goal reached100
(1+10eN ) ; otherwise (6.5)where eN is the normalized residual distance to the goal in the case of a time-out or collision.The parameter 
 = 2 if a collision occurs; otherwise 
 = 1. That is, the score for an unsafetrial is half of that for a collision-free trial with all else being equal (see Figure 6.9). The overall�tness of the behavior is the average score over all nf �tness cases:F = 1nf nfXi=1 Si (6.6)Thus, the highest possible score, and hence �tness, is 100.
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Figure 6.9: Behavior �tness case scoring function.6.2.3 Evolved behavior modulationThe simulated world is considerably more general than any one of the �tness cases used duringthe evolution process and, thus, provides a suitable environment to test the generalizationcapability of the evolved behaviors. The GP system was run using population sizes of 10{20rule-bases for a number of generations ranging from 10{15. Recall that in GP, genetic diversityremains high even for very small populations due to the tree structure of individuals [7]. Steady-state GP was also applied using a population size of 20. Results of runs using both approachesare summarized graphically in Figure 6.10. The mean performance of GP over �ve runs isshown, in the left half of Figure 6.10, as the progression of the population average �tnessduring the �rst ten generations. The right half of Figure 6.10 shows the progression of theaverage �tness of the current population at each iteration. Twenty behaviors were processedin the initial population; thereafter, two new behaviors evolved at each iteration. A trendtowards higher �tness is evident for both GP and SSGP. Table 6.2.3 lists some quantitativedetails about the best behavior evolved by each approach. The run which produced the best



Chapter 6. Navigation Simulation and Experiment 104Population size #Evaluations #Rules Best �tness Success rateGP 10 150 11 86.5 70%SSGP 20 108 9 87.8 83%Table 6.1: Best evolved composite goal-seek behaviors.
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Figure 6.10: Mean performance of GP and SSGP evolution.GP-evolved behavior was terminated after 15 generations. Since SSGP is non-generational,a corresponding number of \generations" could not be listed for comparison. Instead, theamount of processing done by each approach is listed as the total number of �tness evaluationsperformed. The success rate was determined from navigation runs in three di�erent simulateddomains not included in the set of �tness cases. For this problem good regions of the searchspace were discovered with less processing by SSGP.Having pointed out some operational details of the behavior hierarchy, let us comparethe performance of the hand-derived goal-seek behavior to a behavior evolved for the samepurpose. We will consider an arbitrary point-to-point navigation task from initial state (1 11 ��2 )T to a goal located at (13:5 4:5). The successful path executed by the hand-derived behavioris shown in Figure 6.11 along with the corresponding behavior modulation history. We compare
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Figure 6.11: Hand-derived coordination and behavior modulation.this with the same task executed by the best SSGP-evolved behavior shown in Figure 6.12. Theevolved behavior coordination results in a more direct path to the goal due to higher motivationapplied to go-to-xy. The resulting path in this example is executed about 20% faster than
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Figure 6.12: SSGP-evolved coordination and behavior modulation.



Chapter 6. Navigation Simulation and Experiment 106the path taken via hand-derived coordination. We also note that the behavior modulationdemonstrated by the evolved behavior is more complex. Near uniform bouts of competitionand cooperation throughout the task are evident in the decision-making, thus leading to similaramounts of behavioral in
uence for each primitive behavior. As listed in Table 6.2.3, this wasachieved using less applicability rules than both the hand-derived behavior and the best GP-evolved behavior. For an identical navigation task, the relative levels of activation induced bythe SSGP-evolved goal-seek behavior more closely resembles a consensus.
6.3 Real World Experiments: Goal-seekingLOBOt was built by students who were not formally trained in machine design techniques.As a result, the rover was assembled without strict regard to proper mechanical tolerances orprecision. The rover is plagued with misalignments. Furthermore, the wheelbase (the distancebetween the points of contact of the two driven wheels and the 
oor) is not �xed as it shouldbe. This is due to a loose �t of the left wheel on its motor shaft which allows the wheel toslide outward along the shaft in an unpredictable manner. A change in the e�ective wheelbaseof about half an inch results. Given the host of mechanical imperfections built (inadvertently)into the vehicle, it represents a major challenge for fuzzy logic-based navigation control. Theresults of actual experiments on LOBOt demonstrate tolerance for imprecision and uncertaintyin the adaptive hierarchy of distributed fuzzy control.In the current implementation, the cycle time of the intelligent controller is 0.15 seconds (7Hz). This time includes the time spent acquiring and preprocessing sonar data, and command-ing the motors. Acquisition of sonar data is the major bottleneck of the control loop. Thesedata (16 range readings) are acquired serially from a microcontroller external to the masterprocessor at a transmission rate of 9600 baud. Motor commands are issued via the master



Chapter 6. Navigation Simulation and Experiment 107processor parallel port which consumes less than a millisecond. Wheel encoder readings arealso acquired via the master processor parallel port (it is bi-directional) within one millisec-ond. Without these control interface functions, the overall inference of the adaptive behaviorhierarchy takes about 0.05 seconds. That is, the hierarchy itself can run at a rate of 20Hz.As in the simulations, the robot is not provided with a map. However, it is cognizant of thenotion of a two-dimensional Cartesian coordinate system. Its paths are not pre-planned; theyare executed in response to instantaneous sensory feedback from the environment. Therefore,we are essentially dealing with a local navigation problem as opposed to a global navigationproblem which relies on a global map that is either provided a priori, or is acquired via explo-ration. Results presented here show that the fuzzy logic-based local navigation control is usefulin situations where maps are not available or are perhaps unreliable. Fuzzy control also lendsitself well to global navigation and map-based path planning [129].Two representative results of goal-seeking by LOBOt are presented here. The experimentswere conducted in an indoor environment consisting of corridors and doors.1 The rover's taskis to navigate from one location to another on the same 
oor of the building. Relatively shorttraverses are presented since the poor dead-reckoning of the vehicle prohibited long traverseswithout large accumulations of pose errors.The �rst experimental result is shown in Figure 6.13. LOBOt was commanded to navigatefrom one hallway to an adjacent hallway. The total path length is approximately 15 meters.The avoid-collision and go-to-xy behaviors were modulated as depicted in Figure 6.14where it is clear that avoid-collision dominates throughout the task. This is due to theever-present corridor walls which are in close proximity to the rover, thereby causing the DOAof avoid-collision to remain high. The actual start and goal locations are: (x y �)T =1The �rst 
oor of the Electrical and Computer Engineering building at the University of New Mexico.
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Figure 6.13: Experiment: Short goal-seeking task.
(21:5m 36m � �2 rad)T and (13m; 37:5m).The last experimental result is a longer traverse which is almost twice as long as thepath just discussed. The start and goal locations are: (x y �)T = (9:5m 22m 3:0rad)T and(21:5m; 37:5m). As shown in Figure 6.15, LOBOt successfully navigates to the goal. Note thatthis experiment required human intervention at three points along the path to assist in updat-ing the actual position of the vehicle. Dead-reckoning errors accumulated during the traversalwere too large for LOBOt to have successfully reached the goal alone. Figure 6.16 shows thebehavior modulation history during the navigation task. As expected, avoid-collision dom-inates throughout with only one bout of competition with go-to-xy as LOBOt approaches thegoal hallway.
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Figure 6.14: Experiment: Behavior modulation during short goal-seeking task.6.4 ConclusionSimulation and experimental results both show the utility of the adaptive hierarchy of dis-tributed fuzzy control for autonomous local navigation. The success of the representativereal-world results is noteworthy given the mechanical imperfections of the actual rover whichadd uncertainty and imprecision to an already di�cult problem.Observation of operational aspects of the approach reveals interesting properties that sup-port phenomena formerly observed in the behavior of natural systems. This approximatereasoning-based approach to behavior control appears to have potential as a conceptual modelof intelligent behavior and behavioral relationships. It is useful for autonomous sensor-basednavigation involving both goal-seeking and route-following.
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Figure 6.15: Experiment: Long goal-seeking task.Genetic programming proved useful for learning fuzzy-behaviors at the coordination levelof the hierarchy. In particular, rules of composite behaviors were evolved for coordinating low-level fuzzy-behaviors which reside at the primitive level. Conventional GP and steady-state GPwere applied, each yielding good results for small populations. Overall, SSGP yielded slightlybetter results for goal-seeking coordination. Using only �ve �xed �tness cases during behaviorevolution modest generalization capabilities were exhibited by the highest �t behaviors. AnSSGP-evolved behavior showed a better behavior modulation capability than both the hand-derived behavior and the best GP-evolved behavior. It is expected that additional improvementcan be achieved using a richer set of �tness cases.
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Figure 6.16: Experiment: Behavior modulation during long goal-seeking task.



Chapter 7
CONCLUSIONS
In the preceding chapters, the use of fuzzy logic has been advocated for developing intelli-gent autonomous control systems that interact with the real world. Several limitations of thecanonical FLC were discussed. Speci�cally, the combinatorial e�ect of large rule bases de-grades real-time performance; systematic approaches that have been recently proposed as FLCdesign methodologies are indirect; and the canonical FLC has no provision for adaptability. Inresponse to these limitations, this dissertation makes the following contributions:A hierarchical structure that accommodates multivariable systems by distributingintelligence among multiple rule-bases.A computational mechanism which provides adaptability to fuzzy control systemsvia multi-rule-base coordination.An automatic approach to fuzzy rule-base design.In order to exploit the power of fuzzy logic for controlling complex autonomous systems thatinteract with the real world, an intelligent control architecture was proposed. The proposed



Chapter 7. CONCLUSIONS 113architecture is a hierarchy of distributed FLCs that accommodates large rule-base cardinality;it employs a mechanism for controller adaptation, and the genetic programming paradigmfor direct rule-base design. The application domain was behavior control of rovers (mobilerobots). A theoretical framework has been described that forms a hybrid of fuzzy logic, geneticprogramming, and behavior control. As such, this dissertation research combines possibilisticand probabilistic approaches to the control of behavior in dynamic systems, and is based onconsiderations from approximate reasoning, evolutionary computation, and ethology. The goalis to enable the realization of truly autonomous systems.The preceding chapters have shown that the current approach to fuzzy control can beextended to, more e�ectively, deal with multivariable systems which require many rules. Inaddition, the research has demonstrated that genetic programming, supported by a suitableconstrained syntactic structure, is a 
exible method for automatic design of fuzzy rule-bases.Genetic programming is used o�-line to learn suitable coordination rules for modulating un-derlying primitive behaviors. When the rules are incorporated into the behavior hierarchy, theprimitive level adapts dynamically in real-time due to 
uctuations in the DOAs from cycleto cycle. This allows the system to compensate for local changes in the environment as per-ceived by instantaneous sensory feedback. The adaptive hierarchy of distributed fuzzy controlprovides an e�cient approach to synthesis of adaptive behavioral capabilities necessary forrobust autonomous control. Its practical utility lies in the decomposition of overall behaviorinto sub-behaviors that are activated only when applicable. This facilitates practical appli-cation to real-time control. When conditions for activation of a single behavior (or several)are satis�ed, there is no need to process rules from behaviors that do not apply. Processingrules from irrelevant behaviors would result in unnecessary consumption of computational re-sources and possible introduction of \noise" into the decision-making process. Furthermore,for multi-input systems, immediate bene�ts result from distributing intelligence among multi-



Chapter 7. CONCLUSIONS 114ple rule-bases. Namely, the resulting modularity facilitates the design of intelligent controllersfor such complex systems, and dramatic reductions in total number of rules in the system isrealized.The theoretical foundation of the approach was developed based on generalizing fuzzy settheoretic concepts of rule weighting and con
ict resolution to rule-base weighting and con
ictresolution. This was facilitated by the fact that mathematical operations of fuzzy inferencein FLCs are closed for fuzzy sets. This fact served as the basis for extending fuzzy set andlogic operations used for monolithic fuzzy control to multi-rule-based fuzzy control. The un-derlying theory enabled the introduction of the concepts of behavioral degree of applicabilityand behavior modulation. Results of autonomous rover navigation have veri�ed the theoreticalapproach in both simulation and the real world. Autonomous navigation in unstructured andnon-engineered environments is a complex control problem which involves achieving multiplegoals, con
ict resolution, and multiple interacting behaviors. The adaptive hierarchy provedto be an e�ective intelligent control solution to this problem. The navigation results presentedin this dissertation apply only to autonomous navigation in indoor environments. The archi-tecture can be applied for outdoor navigation as well. In future research, implementations foroutdoor and rugged terrain vehicles such as wheeled and legged planetary rovers should beconsidered.A signi�cant feature of the architecture which could be the focus of future extensions isbehavior threshold activation. Thresholds imposed on degrees of applicability would allow�ltering of undesirable inter-behavioral in
uences. Threshold activation of behaviors has notbeen fully exploited in the reseaarch reported here. The feature remains as an additional de-gree of freedom of the architecture which deserves further attention. In general, thresholds forbehavior activation are di�cult to choose. The problem is similar to that of specifying degreesof applicability for behavior modulation. This has been addressed here using genetic program-



Chapter 7. CONCLUSIONS 115ming. If activation thresholds for behaviors are meant to vary, they can also be determinedusing fuzzy rules evolved by genetic programming. On the other hand, if static thresholds areemployed, genetic algorithms or reinforcement learning could be used. In any case, the thresh-old activation feature coupled with the mechanism for weighted decision-making provided bythe degree of applicability leads to a strong framework for situated adaptation in autonomoussystems.Observation of operational aspects of the controller reveals interesting properties that sup-port phenomena formerly observed in the behavior of natural systems. That is, the rapidoverlapping oscillations in the degrees of applicability of active behaviors resembles measuredsignal activity in the cerebral cortex of animals during transitions from one activity to another[120, 130]. This is an interesting coincidence which suggests that the proposed approach tosystem behavior control has potential as a conceptual model of intelligent behavior and behav-ioral relationships. For many years, ethologists have developed theories and models to explainaspects of animal behavior. They are addressing a more di�cult problem than the behaviorsynthesis problem addressed herein, namely, a behavior analysis problem based on externalobservations of behavior. Ideas and results of their work are quite useful as foundations fordeveloping intelligent autonomous system behavior. While they continue to focus on analysisof behavior from the outside, we concentrate on synthesis from the inside. Perhaps we willarrive at a midpoint with some uni�ed understanding of intelligence.
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Appendix A
Genetic Programming
ProcedureThis appendix includes de�nitions and/or elaborated concepts of genetic programming as de-scribed in the de�nitive text by Koza [7]. There are �ve preparatory steps to applying geneticprogramming:(1) Determine a suitable function set, F .(2) Determine a terminal set, T .(3) De�ne a �tness function or measure.(4) Set control parameters for the run (e.g. population size, maximum number ofgenerations, genetic operator probabilities, etc).(5) Determine method of designating a result and termination criteria.Genetic programming breeds computer programs to solve problems according to the follow-ing steps:



Appendix A. Genetic Programming 132(1) Randomly generate an initial population of programs.(2) Execute each program in population and assign a �tness value according to aspeci�ed �tness function.(3) Create a new generation by applying reproduction, crossover, and mutation toprograms selected with some probability based on �tness.(4) If termination criteria is not met, go to step (2).(5) The best program from any generation is the result (which may be a solutionor an approximation).Genetic operatorsReproductionThe reproduction operation is a two-step process. First a single program is selected from thepopulation according to some selection method based on �tness.In �tness-proportionate selection, the probability that program Pi will be copiedinto the next generation as a result of one reproduction operation isf(Pi)PMj=1 f(Pj)where f(Pi) is the �tness of program Pi, and M is the size of the population.In Tournament selection a number of programs (often two) are chosen at randomfrom the population and the program with best �tness is selected.Second, the selected program is copied from the current population into the next, i.e. the newgeneration.
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CrossoverThe crossover operation starts with two parental programs and produces two o�spring pro-grams that are added to the new generation. The parental programs are chosen from thepopulation according to the same selection method used for reproduction. The operation be-gins by independently selecting one random point (using uniform probability distribution) fromeach parent as the respective crossover point. The subtrees subtended from crossover pointsare then swapped between the parents to produce the two o�spring. In the illustration, thecrossover points in each parent are indicated by the dark circles.



Appendix A. Genetic Programming 134Closure and Su�ciencyFunction and terminal sets (F and T ) chosen for a given genetic programming problem mustsatisfy the closure and su�ciency properties.Let SF be the set of all values and data types that may possibly be returned by any function� 2 F ; let Sarg be the set of all arguments acceptable by all � 2 F . Finally, let ST be the setof all values and data types that may be assumed by any terminal � 2 T . Then the closureproperty requires that 8� 2 F; SF � Sarg and ST � Sarg:In other words, each � 2 F should be well de�ned and closed for any combination of argumentsthat it may encounter. Koza points out that this property is required only for functions andterminals that may actually be encountered. However, if the structures undergoing adaptationare constrained syntactic structures (as is the case in this dissertation), then closure is onlyrequired over the values vF 2 SF and vT 2 ST that will actually be encountered.The su�ciency property requires that the collection of elements of the set F [T be capableof expressing a solution to the problem. Identi�cation of an adequate collection of functionsand terminals with su�cient explanatory power to solve a given problem may not be possiblein some domains. The de�nitive text provides numerous illustrative examples, of how to selectF and T , which may be used as guides.


