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Abstract - The objective in this paper is to develop 
and implement FGP-2 (Financial Genetic 
Programming) on intra daily tick data for stock 
index options and futures arbitrage in a manner that 
is suitable for online trading when windows of 
profitable arbitrage opportunities exist for short 
periods from one to ten minutes.  Our benchmark 
for FGP-2 is the textbook rule for detecting 
arbitrage profits. This rule has the drawback that it 
awaits a contemporaneous profitable signal to 
implement an arbitrage in the same direction. A 
novel methodology of randomised sampling is used 
to train  FGP-2 to pick up the fundamental 
arbitrage patterns. Care is taken to fine tune weights 
in the fitness function to enhance performance.  As 
arbitrage opportunities are few, missed 
opportunities can be as costly as wrong 
recommendations to trade. Unlike conventional 
genetic programs, FGP-2 has a constraint 
satisfaction feature supplementing the fitness 
function that  enables the user to train the FGP to 
specify a minimum and a maximum number of 
profitable arbitrage opportunities that are being 
sought. Historical sample data on arbitrage 
opportunities enables the user to set these minimum 
and maximum bounds.  Good FGP rules for 
arbitrage are found to make a 3-fold improvement 
in profitability over the textbook rule. This 
application demonstrates the success of FGP-2 in its 
interactive capacity that  allows experts to channel 
their knowledge into machine discovery. 
 
1 Introduction 
 
Genetic Programming (GP) (Koza 1992, 1994; Koza et 
al 1996) is a promising variant of genetic algorithms 
(Holland 1975, Goldberg 1989, Mitchell 1996) 
especially for financial applications as it uses decision 
tree representations instead of strings of chromosomes. 
The decision tree representations referred to as Genetic 
Decision Trees (GDTs) will be able to handle rule sets 
of variable size1 and these rules are easy to understand 
and evaluate by human users.  This makes this approach 
more attractive than neural networks, most of which are 
black boxes (Goonatilake and Treleaven, 1995).  
 

 Genetic algorithms have been studied in financial 
markets for a number of years. Bauer (1994) reported 

                                                           
1 Typically, in contrast genetic algorithms that operate 
with strings use strings of fixed lengths. 

on his GAs intelligent systems which aimed at finding 
tactical market timing strategies; Allen & Karjalainen 
(1995) applied Genetic Programming to find profitable 
technical trading rules for the S&P 500 index; Chen & 
Yeh (1996) attempted to formalize the notion of 
unpredictability in the efficient market hypothesis in 
terms of search intensity and chance of success in the 
search conducted by genetic programming; Mahfoud & 
Mani (1996) presented a new genetic-algorithm-based 
system and applied it to the task of predicting the future 
performances of individual stocks; Neely et al. (1997) 
and Oussaidene et al. (1997) applied genetic 
programming to foreign exchange forecasting and 
reported some success.  
 

In earlier work (Tsang et al. 1998, Li & Tsang 
1999a and Li & Tsang 1999b) reported some of 
preliminary but promising results obtained from using a 
tool called FGP-1 (which stands for Financial Genetic 
Programming). FGP-1 was used specifically to predict 
whether a price series will increase by r% or more 
within the next n periods. FGP was found to compare 
favourably with random rules, commonly used 
individual technical rules and C4.5 rule sets with 
respect to prediction accuracy and average annualised 
rate of return.    
 

The objective in this paper is to develop and 
implement FGP-2 on intra daily tick data for stock 
index options and futures arbitrage in a manner that is 
suitable for online trading when windows of profitable 
arbitrage opportunities exist for short periods from one 
to ten minutes.   Recent work by Markose and Er (2000) 
on the FTSE-100 stock index options clearly indicate 
that options that are far from maturity with even fewer 
than 40 days can present arbitrage opportunities.   As 
the arbitrageur maximizes return by exploiting as many 
profitable arbitrage opportunities and avoiding  as many 
positions that are loss making,  we will show how the 
fitness function of  FGP-2 will enable the arbitrageur to 
'tune' it to obtain the most favourable trade off.  In other  
words, in arbitrage activity avoiding positions that are 
loss making or minimizing rate of failure (RF) alone 
which was the focus of earlier work by Tsang et. al. is 
not sufficient.  However, before we give the details of 
this we will first outline in  Section 2 the methodology 
for processing the intra daily tick data in the format in 
which arbitrage opportunities can be 
contemporaneously detected  for the purposes of 
training and testing  the FGP-2 program.  In Section 3 , 
we give some details of the FGP and how the fitness 



 

function has to be fine tuned  to obtain the favourable 
trade off between  exploiting arbitrage opportunities 
and  loss making recommendations. Section 4 reports 
the empirical results of the application of FGP for stock 
index arbitrage trading.  In the first instance all the steps 
taken to pre-process the arbitrage price data in a manner 
in which FGP can perform effectively have been 
reported.   Our benchmark for FGP performance is the 
textbook rule for detecting arbitrage profits. This has 
the drawback that it awaits a contemporaneously 
profitable signal to implement an arbitrage in the same 
direction. Good FGP rules are found to make 3 fold 
improvement in profitability. 
   
2 Methodology of Put-Call-Futures Stock 
Index Arbitrage 
 
Arbitrage in stock index options is based on strategies 
that can bypass the cash leg of the spot stock index 
market which is prohibitively expensive.  As the FTSE-
100 spot index has a stock index futures and a European 
style index option traded on it, the most cost effective 
arbitrage is one that involves the two stock index 
derivatives with the same maturity date.  The arbitrage 
strategy resulting in a equilibrium relationship between 
the index futures and the index options is called the put-
call-futures parity (P-C-F, for short) relationship and 
was first discussed by Tucker (1991). As futures 
positions can be replicated by combinations of call and 
put options, the P-C-F no arbitrage equilibrium pricing 
relationship is based on the index futures price being 
close to the synthetic futures price.  

P-C-F Short Hedge Arbitrage 
 
A risk free arbitrage portfolio can be constructed by 
combining a short futures contract and a long synthetic 
futures position by buying a call, shorting a put and by 
borrowing  the present discounted value of the futures 
price and lending the same for the  exercise price.  
Panel  A in Table 1  shows how a zero net return is  
accomplished by this short hedge arbitrage strategy 
should  ST > E or ST < E.   The  upper bound of the 
FTSE-100 index futures bid price denoted by  Fbt  is 
given by 
   

Fbt
)Tt(rae −  < Cat - Pbt +  X )Tt(rbe −   + Γ.              (1) 

 
Here,  (T-t) is the remaining time to maturity;  Cat is 

the call premium at the ask, Pbt is the put premium at 
the bid  and Γ denotes the transactions costs (that will 
be specified) that exist in the futures and option 
markets.  Note the interest rate on the futures price is 
the offer/ask rate as this amount has to be borrowed by 
the arbitrageur and that on the exercise price is the bid 
interest rate as it has to lent.  If this condition is violated 
then the arbitrageur by definition will make a risk free 
profit equal to 
 

     [Fbt
)Tt(rae −  − ( Cat  - Pbt  + X )Tt(rbe −   + Γ )] (2) 

 
by shorting the futures and by creating the synthetic 
long futures given on the R.H.S of  (1).   
   

 
 

A: P-C-F Short Arbitrage   Cash Flows at Expiration (at T) 

TRANSACTIONS UNDERTAKEN Cash Flows Today (at t) ST > X ST < X 

      
Short a futures contract at Ft 0 Ft-ST Ft-ST 
Borrow Fte

r(t-T) +Fte
r(t-T)  -Ft

  -Ft
  

Long call -Ct   ST-Xt 0 
Short put +P  0 -(X-ST) 
Lend Xje

r(t-T)  -Xer(t-T)  +X +X 
  Fte

r(t-T)- (Ct – Pt + Xer(t-T)) 0 0 
B: P-C-F Long Arbitrage  Cash Flows at Expiration (at T) 
TRANSACTIONS UNDERTAKEN Cash Flows Today (at t) ST > X ST < X 
Long a futures contract at Ft 0 ST-Ft ST-Ft 
Lend Fte

r(t-T) -Fte
r(t-T)  +Ft

  +Ft
  

Short call +C   -(ST-X) 0 
Long put -Pt  0 X-ST 
Borrow Xer(t-T)  +Xer(t-T)  -X -X 

  (Ct – Pt + Xer(t-T)) -Fte
r(t-T) 0 0 

                                            Table :1 P-C-F   Arbitrage ( Riskfree  Zero  Net  Return)  
                                                                                                



 

3 LIFFE Intradaily Trade Data for Index 
Options and Futures Arbitrage 
 
We first take the intraday historical tick data on the 
FTSE-100 index futures and the European style index 
options traded on the LIFFE from January 1, 1991 to 
June 30, 1998.   
 

The risk free interest rate used for borrowing funds 
in the hedge portfolio is the London Interbank Offer 
Rate (LIBOR) maturing on the day closest to the 
expiration date of the option.  FTSE-100 index spot 
prices are obtained from Data Stream.  The bid or 
lending interest rate is conventionally taken to be 1/8 of 
the LIBOR rate. 
 
      To obtain tick data for arbitrage relating to the put-
call-futures parity, we follow a three way matching 
criteria for puts, calls and futures with the same nearby 
maturity. For trade data, calls and puts with the same 
exercise price and traded within the same minute are 
matched.  This pair is matched further with a futures 
contract traded  within a minute of the time stamp of the 
call-put pair.  We focus on short arbitrage conducted by 
broker/market maker who is estimated to have 
transactions costs of less than .1% value of the value 
FTSE100 index futures contract. This is approximately 
about £60 per P-C-F arbitrage. 
 

In the LIFFE tick data  from January 1991 to June 
1998, 1709 arbitrage trade price triplets were found in 
the trade data.  For traded price triplets of the calls, puts 
and futures  the null hypothesis for the absence of short 
arbitrage is  given by  
   

                 F
)Tt(re −  - [Ct -  Pt  +  X

)Tt(re −   ]  ≤ 0 .   (3) 
 
3.1 Ex Ante Analysis of Arbitrage Profits and 
Application of FGP 

The standard ex ante analysis of arbitrage addresses 
a number of issues. The naïve premise is that the 
arbitrageur waits for a contemporaneous profit signal  in 
the category of either short or long arbitrage (given in 
Table 1) above and then  continues with arbitrage trades 
in the same direction in say  a given time interval.  If 
there are time delays in execution of an arbitrage from 
an observed contemporaneous profit signal, it is 
sometimes too late to exploit the arbitrage opportunities 
in the next relevant time interval.  The question we ask 
of FGP is: at any point in time corresponding with the 
occurrence of a matched P-C-F price triplet, how 
many adjacent 10 minute intervals can it predict as 
being profitable for arbitrage in a given direction after 
a one minute execution delay.  Note the recommended 
arbitrage positions are judged profitable or not by the 
criteria given in equations relating to  Table 1.  
However, as indicated in the introduction, the FGP 
implements a trade off between missed profit 
opportunities and loss making recommendations.  

 
3.2 Background of FGP 
Like other standard GAs, FGP maintains a population 
(set) of candidate solutions, each of which is a decision 
tree for financial forecasting. Candidate solutions are 
selected randomly, biased by their fitness, for 
involvement in generating members of the next 
generation. General mechanisms (referred to as genetic 
operators, e.g. reproduction, crossover, mutation) are 
used to combine or change the selected candidate 
solutions to generate offspring, which will form the 
population in the next generation. For details of GA and 
GP, readers are referred to Holland (1975), Goldberg 
(1989) and Koza (1992).  
 

In FGP, a candidate solution is represented by a 
genetic decision tree (GDT). The basic elements of 
GDTs are rules and forecast values.  A single rule is 
consisted of one useful indicator for prediction, one 
relational operator such as  "greater than", or "less 
than", etc, and a threshold (real value). Such a single 
rule interacts with other rules in one GTD through logic 
operators such as "Or", "And", "Not", and "If-Then-
Else". Forecast values in this example are either a 
positive position (i.e. positive return within specified 
time interval can be achievable) or negative position 
(i.e. negative return within a specified time interval will 
be achievable).  
 
3.3 The FGP Fitness Criterion    
Since GDTs are used to predict whether a profitable 
arbitrage can exist from any point in time and within the 
next 10 minutes, the prediction actually can be 
categorised as a two-class classification problem.  Each 
time point can be classified into either a positive 
position or a negative position. For each GDT, we 
define RC (Rate of Correctness), RMC (Rate of Missed 
Opportunities), and RF (Rate of Failure) as its 
prediction performance criteria. Formula for each 
criterion is given through a contingency table (Table 2) 
as follows: 
 
Predicted 
negative 
positions (N-) 

 Predicted 
positive 
positions (N+)   

 

# of True 
Negative (TN) 

# of False 
Positive (FP) 

Actual negative 
positions (O-) 

# of False 
Negative (FN) 

# of True 
Positive (TP)  

Actual positive 
positions (O+) 

Table 2  Contingency Table for Two-Way Classification 
Prediction Problem 
 

RC = 
TP TN
O O

+
++ −

=
TP TN
N N

+
++ −

;   

RMC = 
FN
O+

;  RF  = 
FP
N +

; 

Where O+ = FN+TP ; O-_ =TN+FP;  N-_ = TN+FN;  
N+=FP+TP. 



 

A: Linear Fitness Function   
 
In earlier work by Tsang et. al., the fitness function 
mainly used in FGP was RC (Rate of Correctness). By 
using the following fitness function, the user may 
satisfy individual objectives by adjusting the weights 
w_rc, w_rmc and w_rf:   

          f(1) = w_rc * RC - w_rmc* RMC - w_rf * RF  (5)    
 (1) 

It involves three performance values, i.e. RC, RMC 
and RF, each of which is assigned a different weight. 
Obviously, the performance of a GDT is no longer 
assessed by RC only, but by a synthetic value, which is 
the weighted sum of its three performance rates. By 
proper adjustment of the three weights, one is able to 
place  emphasis on one performance rate than on the 
others.  In order to achieve a low RF, one may assign a 
higher value to w_rc and w_rf  and a smaller or zero 
value to w_rmc.  
 

To a certain extent, the fitness function f(1) does 
allow us to reduce RF.  However, it has  two 
drawbacks: 1) FGP’s performance is very sensitive to 
the three weights; 2) results are unstable. For example, 
in one of our series of preliminary experiments  we used 
the following three weights: 
              w_rc=1;   w_rmc=0   and   w_rf= α       
 where  0 < α ≤ 1 .               
We found that a slightly bigger α  almost always 
resulted in a GDT that did achieve a lower RF (even 
zero over training period) by making no positive 
recommendations over the test period. This was 
probably due to over-fitting. In contrast, a slightly 
smaller α usually resulted in generating GDT that it did 
not show any improvement on RF. We refer to this as 
the no-effect problem. Even though a plausible α was 
found (e.g. α = 0.62), it does not generate effective 
GDTs reliably.  For example, among 10 runs, only two 
runs generated a GDT that predicted a few correct 
positive positions on the test period. The remaining 8 
runs showed either the over-fitting or no-effect 
problem.  

 B:Putting constraints into FGP 
 
We can further improve the linear fitness function f(1) by 
introducing constraints into it. We introduce a new 
parameter to FPG, ℜ = [Pmin, Pmax], which defines the 
minimum and maximum percentage of 
recommendations that we instruct FGP to make in the 
training data (with the assumption that the test data 
exhibits similar characteristics, as most machine 
learning methods do).  We call the new fitness function 
f(2). 

Choosing appropriate values for ℜ and the weights 
for f(2) remains a non-trivial task, which we approached 
by trial and error. When appropriate parameters were 
chosen, FGP managed to reduce RF and avoid the over-

fitting and no-effect problems.   The results here are 
discussed in the next section. 
 
4  Experimentation-Results 
 
4.1  Pre-processing of the Arbitrage Data 
 
The objective of these tests is to compare the 
effectiveness of GDT generated by FGP-2 against a 
naïve arbitrage rule which signals an arbitrage trade 
whenever there is a contemporaneous profit.  The short 
arbitrage trade data that was first fed into FGP included  
the strike price, the call premium, the put premium, the 
underlying index value, futures price, time to maturity 
of the contract, profit after transactions costs.  The total  
number of observations is  8073.  FGP did not give any 
recommendations on this set.  
      The data was then altered to be more informative in 
terms of economic theory.  The strike price, was 
converted into the ‘moneyness’ variable, viz. as the 
ratio of the undelying to the strike price.  This variable 
is introduced as ‘ in’, ‘at’ and ‘out’ of the money for 
call and put options has an impact on the arbitrage 
profits. The second variable added was basis, the 
formula for basis is as follows: 
 
basis=(futures-underlying)/futures 
 

This variable controls for the mispricing in the 
futures leg of the arbitrage.  Call minus Put price (C-P) 
is also added to the model.  Finally, the following 
variables, the underlying, C-P and profit after 
transaction costs were input as a percentage of the 
futures price.   
 
The results of  a preliminary run on this data set are 
summarized below in Table 3. 
 
In Table 3, we see that as the RF(Rate of Failure)  was 
so high and the prediction accuracy of the 
recommendations made by FGP was so low, therefore 
we decided to further process the data.  Indeed, we 
recommend the following methodology for training 
good FGP rules due to some typical problems 
associated with arbitrage opportunities and the time 
execution delay. number of the rows reduced to 1641. 
 
4.2 Methodology for Training FGP With Historical 
Tick Arbitrage Data 
 
1. The distribution of contemporaneous P-C-F 

arbitrage signals is given in Table 4 (in the 
Appendix) in terms of contracts and profitability 
evaluated after transactions costs.  In the LIFFE 
FTSE-100 PCF arbitrage triplets, it is clear that 
arbitrage  

            
 
 



 

Training 4178 Rows From 3 To 4180  FGP Naïve 
 29 Jan 91 To  20 Dec 96 Contingency Table for Selected Data Sum 122727 147257.2 
RC RMC RF 0 1    Count 2949 1848 
94.18% 64.66% 80.38% 3894 168 0 4062 AvePro 41.62 79.68 
    75 41 1 116    
      3969 209 5.00% 4178 2.78%   
          
Testing 3895 Rows From 4181 To 8075    
 2 Jan 97 To  18 Jun 98 Contingency Table for Selected Data  R.C:Rate  Correct  
RC RMC RF 0 1     R.F:Rate Failure  
27.55% 27.72% 93.01% 867 2743 0 3610 RMC:Rate Missed Chances 
    79 206 1 285    
      946 2949 75.71% 3895 7.32%   

  Table  3 Preliminary FGP Run 
 

opportunities were sparse in the early years from 
1991-1994 with December contracts being the most 
voluminous.  As trading volume in the index 
options increased, we have a three fold increase  of 
P-C-F arbitrage opportunities by 1994 and by the 
end of 1998, there is over a tenfold increase since 
the inception of electronic index options trading in 
LIFFE.  On average the numbers of profitable P-C-
F arbitrage opportunities are far outnumbered by 
loss making P-C-F opportunities in all years.   
However, in the years after 1995, the average total 
profitability of  P-C-F positions become positive 
with the loss making arbitrages generating smaller 
losses than the gainful ones.  In other words, the 
returns to P-C-F  arbitrage are significant if the 
arbitrageur can successfully ‘pick’ the cherry. 

 
2. The naïve rule recommends that any profitable P-

C-F signal is followed by an arbitrage in the same 
direction in a 9 minute window after a one minute 
execution delay.  In the early years, the sparseness 
of P-C-F arbitrage price triplets meant that the few 
contemporaneous profitable signals that existed do 
not have follow ups in the given 10 minute 
window.  Many of those that did have loss making 
follow ups.  In fact only 20% of the total sample of  
P-C-F triplets have any follow ups at all.  It is only 
after 1996 that there are profitable follow ups from 
any P-C-F time stamp. 

 
3. The above problem indicates that the FGP be 

trained in the 20% of the total sample of short 
arbitrage P-C-F price triplets that have follow ups 
in the given window of opportunity. Thus, the 
sample size is reduced to 1641.  Unlike the naïve 
arbitrage strategy,  FGP has to predict profitable 
follow up trades in the prescribed time window 
from any given time stamp of  a P-C-F price triplet.  

 
4. The follow up based sample of 1641 lines is 

divided into test and training areas using a 
randomized procedure rather than that is time based 
on a time series.  Each P-C-F triplet is assigned a 

random number between 0 to 1. If the random 
number for the triplet is less than 0.63 then that 
triplet is included in the training part of the sample. 
All of the remaining triplets, i.e. the triplets with a 
random number greater than 0.63, were included in 
the test part. This sampling procedure ensured that 
we have enough observations in the training part 
for FGP to function properly ( the recommended 
minimum for training FGP is 1000 observations).  
This sampling has also resulted in an equal 
distribution of arbitrage opportunities in training 
and test areas to counter the problems raised in 
point  1. 

 
4.3  FGP Rules and Profit Performance 
 
The  FGP runs trained on this randomized data set  
provided good results. The results are summarized in 
Table 5 which has results from four settings of the 
maximum and minimum constraints specified in the 
fitness function  f2  ( ℜℜℜℜ = [Pmin, Pmax] ). 

As we move from a more conservative setting 
to a more ambitious one, RF(Rate of Failure) increases 
and RMC(Rate of Missed Chances) decreases.  In every 
setting, the decision rules generated by FGP beat naïve 
strategy which provides 196 arbitrage signals,  
£ 66,266.17 total profit, and £338.10 average profit in 
the test area. The average profit generated by GDTs are 
highest when the most conservative setting is applied 
for the tests.  However, the total profit increases with 
the ambitiousness level (Pmax is increased).  For instance 
as the number of missed opportunities are minimized 
with the ambitiousness parameters rising to 20-25, 
(Table 5 D in Appendix) with the exception of three 
cases, all GDTs produce total profits in excess of 
£66,266.17 which is obtained from the naïve rule.  
Indeed, the best rule (GDT 4) produces 154 arb. signals 
and £112683.86 in total profits, and £731.71in average  
profit in the test area.  
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                 Appendix  
    

Date All Count Average 

Total 
Positive 
Profit  Count Average 

Total 
Negative 
Profit  Count Average 

Total 
Zero 
Profit  

Mar-91 -887.713 30 -29.5904 60.17361 4 15.0434 -947.887 26 -36.4572 0 
Jun-91 525.0118 10 52.50118 594.809 8 74.35113 -69.7972 2 -34.8986 0 
Sep-91 -2357.48 71 -33.2039 163.5158 5 32.70316 -2520.99 66 -38.1968 0 
Dec-91 -3267.67 108 -30.2562 487.4149 13 37.49345 -3755.08 95 -39.5272 0 
Mar-92 -1689.68 76 -22.2327 576.8741 14 41.20529 -2266.56 62 -36.5574 0 
Jun-92 -1938.43 68 -28.5063 0 0 0 -1938.43 68 -28.5063 0 
Sep-92 331.8885 144 2.304781 3414.901 45 75.88669 -3083.01 99 -31.1415 0 
Dec-92 -346.456 40 -8.6614 1118.904 9 124.3227 -1465.36 31 -47.2697 0 
Mar-93 -2212.62 77 -28.7354 393.1021 14 28.07872 -2605.73 63 -41.3608 0 
Jun-93 -3346.3 106 -31.5688 205.1266 5 41.02531 -3551.42 101 -35.1626 0 
Sep-93 -6097.95 138 -44.188 0 0 0 -6097.95 138 -44.188 0 
Dec-93 -3558.71 79 -45.0469 0 0 0 -3558.71 79 -45.0469 0 
Mar-94 -2849.51 71 -40.1339 19.84893 1 19.84893 -2869.36 70 -40.9908 0 
Jun-94 -1826.17 149 -12.2562 1913.429 46 41.59628 -3739.6 103 -36.3068 0 
Sep-94 -10955.1 305 -35.9184 240.5704 20 12.02852 -11195.7 285 -39.2831 0 
Dec-94 -6611.33 236 -28.0141 876.9749 17 51.58676 -7488.3 219 -34.1931 0 
Mar-95 -8672.75 268 -32.361 941.3809 38 24.77318 -9614.12 230 -41.8005 0 
Jun-95 9639.835 209 46.12361 16376.27 35 467.8936 -6736.43 174 -38.7151 0 
Sep-95 -4449.78 111 -40.0881 0 0 0 -4449.78 111 -40.0881 0 
Dec-95 2573.716 135 19.06456 6722.296 27 248.9739 -4148.58 108 -38.4128 0 
Mar-96 1629.487 228 7.146875 10461.15 8 1307.644 -8831.67 220 -40.1439 0 
Jun-96 -1012.07 159 -6.36524 4328.274 6 721.3791 -5340.34 153 -34.9042 0 
Sep-96 -3383.22 527 -6.41978 15530.46 74 209.8711 -18913.7 453 -41.7521 0 
Dec-96 11038.08 833 13.251 40913.9 108 378.8324 -29875.8 725 -41.208 0 
Mar-97 -21460.2 772 -27.7982 4006.288 109 36.75494 -25466.5 663 -38.411 0 
Jun-97 74697.27 855 87.36523 95803.59 241 397.5253 -21106.3 614 -34.375 0 
Sep-97 7688.196 435 17.67401 19901.87 101 197.0482 -12213.7 334 -36.5679 0 
Dec-97 36055.49 494 72.98682 42875.33 282 152.0402 -6819.86 212 -32.1691 0 
Mar-98 534927.6 483 1107.51 536097.6 409 1310.752 -1170.13 73 -16.0291 1 
Jun-98 394354.8 856 460.6948 398458.8 706 564.3893 -4103.79 148 -27.7283 2 

   Table 4 PROFIT DISTRIBUTION FOR SHORT P-C-F ARBITRAGE (1991- 1997) 

 
Table 5 A 
ℜℜℜℜ = [Pmin,  Pmax] : (5-10)         

RF RMC RC Number of 
Recommendations 

AVERAGE  
PROFIT 

TOTAL  
PROFIT RULES 

TRAINING TEST TRAINING TEST TRAINING TEST TRAINING TEST TEST TEST 
GDT1 0.0000 0.0000 0.6240 0.6226 0.8499 0.8441 91 60 1046.49 62789.57 
GDT2 0.0000 0.0000 0.5868 0.5660 0.8588 0.8583 100 69 929.54 64138.22 
GDT3 0.0000 0.0000 0.5992 0.5849 0.8559 0.8535 97 66 968.46 63918.51 
GDT4 0.0000 0.0000 0.5992 0.5849 0.8559 0.8535 97 66 968.46 63918.51 
GDT5 0.0000 0.0000 0.6157 0.6226 0.8519 0.8441 93 60 1009.24 60554.29 
GDT6 0.0000 0.0000 0.5868 0.5849 0.8588 0.8535 100 66 968.46 63918.51 
GDT7 0.0000 0.0000 0.5992 0.5472 0.8559 0.8630 97 72 904.25 65105.89 
GDT8 0.0000 0.0000 0.5868 0.5535 0.8588 0.8614 100 71 904.39 64211.48 
GDT9 0.0000 0.0000 0.5909 0.5472 0.8579 0.8630 99 72 903.54 65055.18 

GDT10 0.0000 0.0000 0.5868 0.5849 0.8588 0.8535 100 66 968.46 63918.51 
MEAN 0.0000 0.0000 0.5975 0.5799 0.8563 0.8548 97.4 66.8 957.1 63752.9 

SD 0.0000 0.0000 0.0131 0.0275 0.0032 0.0069 3.1693 4.3665 47.64 1297.61 



 

Table 5 B 
ℜℜℜℜ = [Pmin,  Pmax] : (10-15)         

RF RMC RC Number of 
Recommendations 

AVERAGE  
PROFIT 

TOTAL  
PROFIT RULES 

TRAINING TEST TRAINING TEST TRAINING TEST TRAINING TEST TEST TEST 
GDT1 0.0000 0.0000 0.4752 0.4591 0.8857 0.8850 127 86 771.68 66364.11 
GDT2 0.0338 0.0100 0.4091 0.3774 0.8966 0.9039 148 100 668.46 66846.35 
GDT3 0.0000 0.0000 0.4380 0.4465 0.8946 0.8882 136 88 753.78 66332.20 
GDT4 0.0726 0.0500 0.5248 0.5220 0.8648 0.8630 124 80 842.08 67366.07 
GDT5 0.0000 0.0000 0.4959 0.4780 0.8807 0.8803 122 83 796.08 66074.30 
GDT6 0.0000 0.0000 0.5165 0.4843 0.8757 0.8787 117 82 804.37 65958.05 
GDT7 0.0152 0.0112 0.4628 0.4465 0.8867 0.8866 132 89 744.31 66243.73 
GDT8 0.0877 0.0286 0.5702 0.5723 0.8529 0.8535 114 70 892.51 62475.56 
GDT9 0.0000 0.0000 0.5207 0.4969 0.8748 0.8756 116 80 826.75 66140.26 

GDT10 0.0000 0.0000 0.4669 0.4591 0.8877 0.8850 129 86 770.43 66256.81 
MEAN 0.0209 0.0100 0.4880 0.4742 0.8800 0.8800 126.5 84.4 787.0 66005.7 

SD 0.0333 0.0168 0.0472 0.0515 0.0135 0.0139 10.3950 7.7201 61.12 1308.05 
Table 5 C 
ℜℜℜℜ = [Pmin,  Pmax] : (15-20)         

RF RMC RC Number of 
Recommendations 

AVERAGE  
PROFIT 

TOTAL  
PROFIT RULES 

TRAINING TEST TRAINING TEST TRAINING TEST TRAINING TEST TEST TEST 
GDT1 0.3415 0.3077 0.4421 0.4340 0.8241 0.8283 205 130 420.91 54718.71 
GDT2 0.2199 0.2031 0.3843 0.3585 0.8658 0.8693 191 128 521.28 66723.61 
GDT3 0.2135 0.2214 0.3760 0.3585 0.8688 0.8646 192 131 508.36 66595.46 
GDT4 0.2414 0.2241 0.4545 0.4340 0.8489 0.8504 174 116 388.43 45057.48 
GDT5 0.2513 0.3023 0.3967 0.4340 0.8559 0.8299 195 129 515.24 66465.95 
GDT6 0.1623 0.1500 0.3388 0.3585 0.8877 0.8819 191 120 560.20 67223.75 
GDT7 0.2246 0.2593 0.4008 0.3711 0.8618 0.8520 187 135 491.91 66408.02 
GDT8 0.2328 0.2188 0.4008 0.3711 0.8598 0.8630 189 128 519.97 66555.53 
GDT9 0.2083 0.2406 0.3719 0.3648 0.8708 0.8583 192 133 499.77 66469.69 

GDT10 0.1961 0.2391 0.3223 0.3396 0.8827 0.8630 204 138 488.41 67401.27 
MEAN 0.2292 0.2366 0.3888 0.3824 0.8626 0.8561 192.0 128.8 491.4 63361.9 

SD 0.0467 0.0462 0.0407 0.0366 0.0179 0.0167 8.7050 6.5794 50.50 7464.85 
 
Table 5 D 
ℜℜℜℜ = [Pmin,  Pmax] : (20-25)         

RF RMC RC Number of 
Recommendations 

AVERAGE  
PROFIT 

TOTAL  
PROFIT RULES 

TRAINING TEST TRAINING TEST TRAINING TEST TRAINING TEST TEST TEST 
GDT1 0.4492 0.4346 0.3058 0.3208 0.7903 0.7890 305 191 415.20 79303.87 
GDT2 0.4023 0.3734 0.3554 0.3774 0.8101 0.8126 261 158 495.89 78351.04 
GDT3 0.4580 0.4302 0.3595 0.3585 0.7833 0.7890 286 179 442.11 79137.55 
GDT4 0.2520 0.1753 0.2397 0.2013 0.8807 0.9071 246 154 731.71 112683.86 
GDT5 0.3730 0.3554 0.3471 0.3270 0.8231 0.8252 252 166 397.27 65947.63 
GDT6 0.3373 0.3092 0.3182 0.3396 0.8400 0.8409 249 152 439.22 66760.98 
GDT7 0.4633 0.4462 0.3058 0.3208 0.7823 0.7827 313 195 406.01 79171.06 
GDT8 0.4498 0.4353 0.3884 0.3962 0.7863 0.7843 269 170 459.08 78043.79 
GDT9 0.3485 0.3770 0.2893 0.2830 0.8390 0.8205 264 183 430.58 78796.89 

GDT10 0.4327 0.4167 0.3554 0.3396 0.7962 0.7969 275 180 436.09 78497.09 
MEAN 0.3966 0.3753 0.3264 0.3264 0.8131 0.8148 272.0 172.8 465.3 79669.4 

SD 0.0687 0.0827 0.0433 0.0542 0.0324 0.0380 23.0314 15.1936 97.68 12701.92 

   Table 5 A-D Constraint FGP Runs for Different ℜℜℜℜ= [ Pmin, Pmax] 


