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Abstract

Genetic Improvement (GI) of software is a recent field that has drawn much atten-

tion from Software Engineering researchers. It aims to use search techniques to

automatically modify and improve existing software. The drawback in previous GI

approaches is scalability of these approaches, due to the large search space formed

by the code base in real-world systems. To overcome the scalability challenge,

more recent studies have confined the granularity of code modification at the state-

ment level and applied a prior sensitivity analysis to further reduce the search space.

However, some software improvements may require code changes at a finer level of

granularity.

This thesis demonstrates that, by combining with Mutation Testing techniques,

GI can operate at this finer granularity while preserving scalability. The thesis ap-

plies Mutation Operators to automatically modify the source code of the target soft-

ware. After a prior sensitivity analysis on First Order Mutants, “deep” (previously

unavailable) parameters are exposed from the most sensitive locations, followed by

a bi-objective optimisation process to fine tune them together with existing (“shal-

low”) parameters. The objective is to improve both time and memory resources

required by the computation.

Since this approach relies on the selection of Mutation Operators and tradi-

tional Mutation Operators are not concerned with memory performance, the the-

sis proposes and evaluates Memory Mutation Operators in the Mutation Testing

context. Using both traditional and Memory Mutation Operators, the thesis fur-
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ther seeks to improve the target software by searching for Higher Order Mutants

(HOMs). The thesis presents the result of a code analysis study, which reveals that,

among all the code modifications that contribute to the improvement, more than

half of them require a finer control of the code, which our approach is better at than

previous GI approaches.
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Chapter 1

Introduction

Optimising software for better performance (such as speed and memory consump-

tion) can be demanding, especially when the resources in the running environment

are limited. Manually optimising such non-functional properties while keeping or

even improving the functional behaviour of software is challenging. This becomes

an even harder task if the properties considered are competing with each other [11].

Search-Based Software Engineering (SBSE) [12] has demonstrated many potential

solutions, for example, to speed up software systems [13, 14], or to reduce memory

consumption [1] and energy usage [15].

Previous studies have applied different search-based techniques to automate

the optimisation process [16–19]. However, scalability of these approaches remains

a challenge. To scale up and optimise real-world programs, recent studies use a so-

called ‘plastic surgery’ [20] Genetic Programming (GP) approach. To reduce the

search space, it represents solutions as a list of edits to the subject program instead

of the program itself [15, 21]. Each sequence of edits consists of inserting, deleting

or swapping pieces of code. To ensure scalability, this approach usually modifies

programs at the ‘line’ level of granularity (the smallest atomic unit is a line of code).

As a result, it is not possible for ‘plastic surgery’ to optimise subject programs at a

finer granularity.

On the other hand, many software systems can reap significant performance

benefits from workload- or runtime-specific configurations or optimisations. Soft-

ware developers often expose a set of parameters for users to re-configure such
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software systems adaptively. However, manual parameter tuning is a demanding

challenge because users are usually required not only to have extensive knowledge

about the system and the workload, but also to balance many competing objectives

(such as memory consumption and execution time, which are the primary concerns

of this thesis).

Many studies have reported on the challenges of automated parameter tun-

ing [16, 19, 22–26]. Early work focused on finding optimal values with mathemat-

ical approaches [22, 24–26], while Search-Based Software Engineering [27] has

been used in more recent research [16, 19, 23] on this problem. Although these ap-

proaches can automatically re-configure a system, their improvements are limited

to changes to existing, explicit parameters.

Listing 1.1: Code snippet for managing dynamic arrays in C language

1 if (dynamic_arr == NULL && length < THRESHOLD){

2 dynamic_arr = calloc(THRESHOLD, sizeof(T));

3 }

4 else{

5 dynamic_arr = calloc(10 * THRESHOLD, sizeof(T));

6 }

In this thesis, our goal is to propose and evaluate novel approaches that can

improve software’s non-functional properties at a fine granularity, and to imple-

ment and demonstrate it for C language programs. We focus on two non-functional

properties in this thesis, memory consumption and execution time, because they are

important objectives for many applications, especially for those running on a plat-

form with limited computation resources. Also memory consumption and execution

time are often naturally conflicting with each other, thereby yielding an interesting

and rewarding multi-objective solution space. We aim to apply Mutation Operators,

originally used in Mutation Testing, to modify the target program at a finer level,

and adopt equivalent mutants to keep the functionalities. As a motivating example,

Listing 1.1 shows a code snippet of dynamic array management in C Language. In
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this example, dynamic arr is a dynamic array of a self-defined structure T, the

size of which can dynamically grow as needed. To avoid repeatedly re-allocating

memory when the array grows (which is a time-consuming operation), it allocates

more memory than needed when initialised, so that it only needs to re-allocate when

the size exceeds this initial size. However, if the initial size of the array turns out

to be excessively large, it will waste some memory because only a small part of the

array is used. In our example, the initial size of the array is determined according to

the user-request size length: if the user requests less than a pre-defined threshold

and the array haven’t been allocated before, the initial size is set as the same as the

threshold, otherwise set the initial size to 10 times of the threshold. The param-

eter THRESHOLD is a developer-defined parameter (‘shallow’ parameter) for the

program so that users can tune according to their needs before running the program.

Though users can tune the THRESHOLD parameter, the ratio of the initial

sizes for small and large arrays is fixed at 10. Therefore users may be forced

to compromise and set sub-optimal initial sizes for small and large arrays. We

propose a novel approach (described in Chapter 3) that can automatically dis-

cover such situations using Mutation Operators and expose additional ‘deep’ pa-

rameters for further tuning. For example, by applying our approach, Line 5

in Listing 1.1 may become dynamic arr = calloc(10 * THRESHOLD +

DEEP PARAMETER, sizeof(T)), and DEEP PARAMETER is a ‘deep’ param-

eter that is exposed for user to finer tune the program.

Moreover, in Line 1 of the example, only when both of the sub-conditions are

met can the array be set a smaller initial size. However, this constraint may be

loosened so that the smaller initial size is set more often, in order to save memory.

This can be done by applying Mutation Operators to change the logical operator &&

(and) to || (or). There may be multiple places in the program that only need sim-

ple but effective mutations to improve the performance with respect to a particular

non-functional property. In Chapter 5, we propose a Higher Order Mutation based

approach to search for the optimal combinations of this kind of mutations, in order

to improve the non-functional properties of the program.
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Since our approaches use Mutation Operators to modify the subject programs,

the selection of Mutation Operators can have a big impact on the effectiveness of our

approaches. Existing Mutation Operators have limited influence on memory man-

agement functions, so that the efficiency of the memory management calls in the

program can be hardly improved by applying existing Mutation Operators. For ex-

ample, in Line 2 of the same example, it uses calloc() to allocate memory, which

also initialise the memory to 0s. However, this may not be necessary. Therefore,

changing calloc() to malloc(), which does not initialise allocated memory,

can improve the time performance of the program. However, this operation cannot

be done by existing Mutation Operators. To address this limitation, we propose

Memory Mutation Operators in Chapter 4 that mutate memory management calls

to potentially gain additional improvement on the target program. Not only chang-

ing calloc() to malloc() can improve time performance, but also it raises an

interesting question of whether a test suite is able to detect such difference if this

mutation introduces memory vulnerabilities. Therefore in Chapter 4, we also eval-

uate whether these Memory Mutation Operators can be used to reveal weaknesses

in test suites for detecting memory vulnerabilities.

Mutation testing is an effective fault-based testing technique that aims to iden-

tify whether a codebase is vulnerable to specific classes of faults [28]. In mutation

testing, faults are deliberately seeded into the original program, by simple syntactic

changes, to create a set of faulty programs called mutants, each containing a dif-

ferent syntactic change. By carefully choosing the location within the program and

the types of faults, it is possible to detect vulnerabilities that are missed by tradi-

tional testing techniques [29, 30], to simulate any test adequacy criteria [31] whilst

providing improved fault detection [32, 33]. A survey [29] has also shown that this

mutation methodology is gaining traction and is being used in a growing number of

large-scale commercial and experimental projects.

Memory errors are one of the oldest classes of software vulnerabilities that can

be maliciously exploited [34]. Despite more than two decades of research on mem-

ory safety, memory vulnerabilities have still been ranked in the top 3 of the CWE
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SANS top 25 most dangerous programming errors [35]. Recent work on memory

vulnerability detection [36–38] in C applications has shown the existence, in pub-

lished code, of a wide range of vulnerabilities such as uninitialised memory access,

buffer overruns, invalid pointer access, beyond stack access, free memory access

and memory leaks. Moreover, these vulnerabilities are highly prone to exploita-

tion. For example, vulnerabilities such as buffer overflows when using malloc()

facilitate exploits that overwrite heap meta-data, gain access to unavailable func-

tion/data pointers, overwrite arbitrary memory locations, and create “fake” chunks

of memory that may contain modified pointers.

Traditional mutation operators only simulate simple syntactic errors, based on

the Competent Programmer Hypothesis [39]. Mutants generated using these oper-

ators may drive testers to generate test suites that primarily target simple syntactic

errors. Semantic mutation operators, on the other hand, seek to mutate the seman-

tics of the language [40]. Semantic mutants can capture possible misunderstandings

of the description language and thus capture the class of semantic faults. However,

both traditional and semantic mutation operators are not designed to find test cases

revealing memory faults, thereby creating a weakness in traditional Mutation Test-

ing.

To mitigate this limitation, there has been an attempt to design mutation op-

erators for a specific type of memory vulnerabilities, Buffer Overflow vulnerabili-

ties [41]. This work proposed 12 mutation operators that seek to simulate Buffer

Overflow by making changes to the related vulnerable library functions and pro-

gram statements. However, the proposed operators do not consider other general

memory vulnerabilities, such as uninitialised memory access, NULL pointer deref-

erencing nor memory leaks caused by faulty heap management.

To address this problem we design 9 Memory Mutation Operators, including

the one we illustrated in the motivating example above, simulating three classes of

common memory faults. We also introduce two additional weak killing criteria, i.e.

Memory Fault Detection and Control Flow Deviation for memory mutants. Because

memory faults do not necessarily propagate to the output, making the strong killing
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criterion, which is widely adopted in traditional Mutation Testing, inadequate to

detect such faults. An easy-to-use Mutation Testing tool was developed using both

of the traditional and Memory Mutation Operators with the traditional strong killing

criterion and the proposed weak killing criteria also incorporated.

The content of this thesis is organised as follows: Chapter 2 summarises the re-

cent development and related work on Genetic Improvement, Mutation Testing and

Memory Management, Chapter 3 describes a novel mutation-based approach to ex-

pose and optimise “deep” parameter to improve software, Chapter 4 introduces new

Memory Mutation Operators that can support mutation-based GI approaches on im-

proving memory performance, and evaluates these operators in the sense of tradi-

tional Mutation Operator, Chapter 5 introduces a Higher-Order-Mutation-based GI

approach that uses both Selective Mutation Operators and Memory Mutation Oper-

ators, and compare the results with Deep Parameter Optimisation; finally, general

conclusions are drawn in Chapter 6.



Chapter 2

Literature Survey

In this chapter, recent works that are related to this thesis are reviewed and sum-

marised. Search-Based Software Engineering is a general technique that we use in

this thesis. Its development and applications are introduced in Section 2.1. Genetic

Improvement is a more recent topic that uses SBSE to improve software. We review

and summarise the recent techniques in Section 2.2. Software Testing is important

to make sure the correctness of software, therefore is reviewed in Section 2.3. Some

Mutation Testing works that are related to this thesis are reviewed in Section 2.4,

whilst memory management strategies and memory-related testing are reviewed in

Section 2.5 for us to better understand and work on memory performance of soft-

ware.

2.1 Search-Based Software Engineering
In Software Engineering, many problems can be seen as optimisation problems

with respect to one or more evaluating functions that measure how good a solu-

tion is. Therefore, Search-Based Software Engineering (SBSE) [12] seeks using

search algorithms such as Hill-Climbing or Genetic Algorithm to solve Software

Engineering problems. In recent years, it can be seen that SBSE has been applied

to problems throughout the software life cycle, from requirements and architecture

design to testing and maintenance [42].

In requirement optimisation problems, a subset of requirements needs to be

selected to minimise the cost under the budget and maximise the revenue. The
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selection of requirements can be seen as a search problem, thus SBSE can be applied

to solve this problem. By using SBSE, not only more robust solutions that are

stable to small changes in requirements can be obtained, but also the trade-offs

between cost and revenue can be revealed to help decision-makers design the next

release [43]. In the design phase of Software Engineering, SBSE has also been

applied for architecture design, software clustering and software refactoring [44],

with different objectives and formulations.

When a set of related software products share some core functionalities, but

differ in some specific features, it is possible to describe and extract the feature

models from them and use the models to construct similar software products. This

is also referred to as Software Product Line (SPL). Haman et al. [45] surveyed

recent work that applied SBSE to Software Product Line problems, such as feature

model selection and SPL testing, as well listed some potential SPL problems that

SBSE can be applied on.

SBSE has also been commonly applied in the testing and maintenance phase

of Software Engineering [46–48]. For example, test case generation can be difficult

due to a large pool of possible software inputs and some certain coverage criteria to

be met. SBSE is good at finding near-optimal solutions in a very large search space,

thus can be applied to test case generation problems. Though sometimes the test

cases are given, it may not be possible to execute all of them. In this case SBSE can

help prioritise some test cases such that the cost of testing is minimised while the

loss in coverage criteria is minimised. In order to improve the readability, adaptabil-

ity and extensibility of software, refactoring of the software may be required. SBSE

can as well be applied to automatically search for optimal refactoring solutions to

improve the quality metrics of the software.

J. T. de Souza [49] et al. investigated human competitiveness of SBSE works.

They reviewed multiple SBSE works on Next Release Problem, workgroup forma-

tion problem and test case selection problem with a variety of sizes. They compared

the results with the solutions given by both professional programmers and senior

students to study the quality of machine-generated solutions. Their results showed
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that the quality of the solutions given by SBSE approaches is similar to, sometimes

even better than human-provided solutions, and machine-generated solutions are

generally more consistent when compared with human-provided solutions.

2.2 Genetic Improvement of Software

Automatically improving software with respect to one or more of its properties

has been one of the most interesting topics of Software Engineering. Genetic Im-

provement (GI) is a recently emerging area that studies this topic. It regards the

software improvement problems as search problems and uses Genetic/Evolutionary

algorithms to solve them.

Harman et al. highlighted this area by posing the so-called GISMOE chal-

lenge [11]. They argued that optimising non-functional properties in a multi-

objective formulation was demanded and it is feasible to use Search-Based Soft-

ware Engineering (SBSE) [12] techniques to achieve this goal with automation or

semi-automation. They also outlined some open challenges such as “human in the

loop” optimisation and visualisation of high dimensional Pareto surfaces. In an-

other paper, Harman et al. proposed a framework [5] that separates the optimisation

process into two phases: online phase and offline phase. In the online phase, the

framework collects usage data such as test cases and non-functional properties to be

improved. In the offline phase, the framework uses the collected data as a guidance

in the optimisation process. They also propose an approach that exposes implicit

parameters from the software and tunes them by SBSE approaches to achieve better

performances in the offline phase. In addition, they illustrated a use case of this

framework called Dreaming Devices, which automatically collect usage data in the

days and optimise the performance at nighttime (dreaming).

Genetic Improvement can be applied to improve not only software’s non-

functional properties such as execution time, memory consumption and energy con-

sumption, but also it’s functionalities or “correctness”. There are many works that

used SBSE approaches to automatically fix software bugs, therefore enhancing the

functionality and reliability of the software. Arcuri proposed to use Genetic Pro-
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gramming (GP) to automatically evolve a piece of code guided by test cases to fix

bugs [50]. Additionally, in order to improve the quality of the code and test cases,

a co-evolution formulation was proposed to improve both the source code and the

test cases in a prey-predator like relation. More related work regarding this topic

can be found later in this section.

Genetic Improvement has been applied in many different kinds of applications,

but according to the approaches used in those works, they can be categorised into

three classes: improving software by parameter tuning and Genetic Programming

are described in Section 2.2.1 and Section 2.2.2 respectively, patch-based Genetic

Improvement is described in Section 2.2.3.

2.2.1 Search-Based Parameter Tuning

There are usually some parameters exposed by the developers that can be tuned

to improve software’s performance. Therefore, one straightforward approach to

improving the software is to search for the optimal values for these parameters. In

addition, as can be seen soon in this section, some researcher also discovered more

implicit parameters to control the behaviour of the software and then later optimised

them.

Tantithamthavorn et al. [51] discovered that the parameter settings of classifiers

can be crucial to the performance of defect prediction models, which are Machine

Learning models trained to identify defects in software modules. They used auto-

mated parameter optimisation technique to adjust the parameter settings of previous

defect prediction models and discovered that the performance of these models can

be improved by up to 40 percent.

Compilers usually apply different optimisations to improve the non-functional

properties of a program. However, users suffer from a large amount of choices when

they use compilers. Boussaa et al. proposed a framework called NOTICE [52],

which automatically tunes the compiler optimisation options to achieve the optimal

performance on user-specified properties. The framework also works on multi-

objective optimisations, in which case it provides insights to the optimal trade-offs

between several competing non-functional properties.
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Manotas et al. [53] focused on the energy efficiency of Java collection APIs

and proposed SEEDS, a framework that automatically chooses the most energy

efficient Java collection API in different use cases. Though it does not directly

tune the parameters of a program, it creates a parameter for each collection API

usage to represent which interchangeable collection should be used, and later tunes

the parameter with respect to energy efficiency. Using this approach, Manotas et al.

found up to 17% energy usage improvement across 7 real-world application.

When tuning the existing parameters does not meet the performance require-

ments or those parameters are not available for tuning, researchers discovered ways

to expose implicit parameters from the programs to be improved. In previous works,

the Software Tuning panel for Autonomic Control (STAC) [18] automated the ex-

posure of a limited form of the “deep” parameters considered in this thesis. STAC

first generates a design graph for a subject program under optimisation. The de-

sign graph represents data reference transition flows in the subject. It then uses

the reference patterns of existing (“shallow”) parameters to discover deep parame-

ters, whose reference pattern is the same as one of the shallow parameter reference

patterns. Although STAC can discover some deep parameters effectively, it suf-

fers from two limitations: firstly, STAC requires initial human effort to characterise

shallow parameters, and secondly, STAC can only find a subset of deep parameters,

those that have similar data transition patterns to the known shallow parameters.

Hutter et al. [54] tuned the parameters of a SAT solver, SPEAR, by adjust-

ing not only the explicit parameters but also many implicit parameters. They ex-

posed almost all possibly tunable variables, including some redundant or unnec-

essary ones. Therefore, a very large search space is formed and searched in the

optimisation process, which makes the approach vulnerable to scalability issues.

Hoffmann et al. [23] proposed PowerDial, a system which dynamically ad-

justs an application’s behaviour to make it adaptable to fluctuating workloads. It

first transforms some configuration parameters to non-constant variables residing in

the application’s memory, so that the behaviour of the application can be changed

by controlling these variables at runtime. It then pre-runs the application with each
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possible configuration to discover how these parameters influence the application

and memorizes the Pareto-best candidates in terms of application’s non-functional

properties and the quality of the output. Whenever PowerDial detects a resource

shortage, it sacrifices output quality by changing the values of these variables, al-

lowing the application to “survive the crisis”. However, the approach uses exhaus-

tive search on the configuration variables, thus the number of variables and the

search space formed are limited, by the scalability of exhaustive search.

2.2.2 Improvement by Genetic Programming

Many GI works target the source code of the software itself, and use Genetic Pro-

gramming to modify the source code as an Abstract Syntax Tree (AST) or an array

of statements. The advantage of GP is that it can evolve any arbitrary code that

meets the requirement. However, without any heuristics or constraints, it usually

suffers a very large search space.

Langdon et al. [55] applied Genetic Programming to several real-world pro-

grams ranging from image compression to machine learning benchmark problems,

to improve the quality of the programs while minimising the size of them. In their

research, they showed that seeding the initial population with existing programs can

focus the search, thereby improve the efficiency of the approach. To further reduce

the cost of the approach, they also showed that sometimes using a very small set of

the test cases is sufficient to generate the optimal solutions.

Since energy efficiency is crucial to many embedded systems, Schulte et

al. [56] focused on the optimisation of energy consumption of eight embedded

benchmark applications, and applied Genetic Programming to automatically im-

provement the performance while maintaining the functionality. According to their

experimental results, their approach achieved 20% energy reduction on average and

maintained the functionality on 7 out of 8 benchmarks.

Gao et al. [57] showed that Genetic Programming can be used to fix specific

types of bugs in software. In this work, they targeted memory leak defects in the

programs and applied Genetic Programming to automatically discover and fix the

defects. Since they only targeted the memory behaviour of the programs, their
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approach used a Control Flow Graph to represent the memory allocation and usage

of a program, so that the problem is simplified by this specific type of bugs. Across

15 benchmarks with 89 detected memory leak defects, their approach successfully

fixed 28% of them.

Goues et al. [17] introduced a generic method for automatic bug fixing, named

GenProg. Instead of using the Control Flow Graph of the subject programs, it

makes no simplification of the programs but regards the programs as an array of

statements, then use GP to evolve them, guided by their test cases. A hill-climbing

clean-up process is conducted to remove redundant changes to the programs once

a fix is found by GP. Across 16 benchmark programs, GenProg successfully fixed

77% of the bugs. In a follow-up study [58], Goues et al. showed that this approach

can scale up to very large real-world applications, and by using cloud-computing

resources, they estimated $7.32 cost on average for fixing a bug.

White et al. [59] applied GP optimisation in a bi-objective formulation on

pseudo-random number generators. They targeted the quality of the pseudo-random

number generators and the power consumption of them. In this work, they also

showed that using only one fourth of the test cases is sufficient to form the Pareto-

optimal solutions.

Arcuri and White et al. [13, 60] demonstrated how to use GP with other tech-

niques to optimise the functional and non-functional properties of subject program-

s/functions in a multi-objective formulation. In addition to seeding the population

to focus the search, they also used a set of co-evolved test cases to encourage the

preservation of the programs’ semantics. They applied their approach with different

settings to eight benchmarks to show that they were able to find non-trivial optimi-

sations that the compilers could not.

Co-evolution is also used by Arcuri et al. to automatically fix software

bugs [61]. They used Genetic Programming to evolve an existing buggy program,

while co-evolving a set of test cases. They claimed that their approach only needs

the source code of a buggy program and a formal specification of it, and has no

restrictions on the type of bugs.



2.2. Genetic Improvement of Software 29

2.2.3 Patch-Based Genetic Improvement

Genetic Programming sometimes is not a very efficient approach for software im-

provement, and most of the time the changes needed to improve the software are

just a few statements. Similarly to human-created patches, GI approaches can sim-

ply evolve patches affecting a few statements instead of evolving a whole program

as in Genetic Programming. Moreover, some researchers argue that many of these

patches can be automatically generated from existing code bases [20].

Ackling et al. [62] used Genetic Algorithm (GA) to evolve a list of modifica-

tions to the target buggy programs. The generated patches are applied to the AST

representation of the program, then the patched program is run against a set of pre-

defined test cases. The possible modifications are limited to a modification table

that is defined prior to the evolutionary process. Their results showed that their GA

approach is able to find a fix much faster than random search and the fix is composed

of 1 to 8 modifications on average.

Langdon et al. [63] used Evolutionary Computation to automatically improve

the execution time of a highly complex system involving 50000 lines of code. In-

stead of evolving pre-defined modifications to the AST representation, they treat the

target program as an array of statements and evolved more straight forward modifi-

cation sequences such as inserting, deleting a statement or swapping two statements.

After evolving the editing sequences, they also used a simple hill climbing process

to clean up unnecessary modifications. The optimised version of the program is

70 times faster than the original, and surprisingly also achieves a small semantic

improvement.

Petke et al. [64] used a similar approach to specialise a SAT solver to a class

of problems, using other versions of SAT solvers as code donors, meaning the code

from other SAT solvers were used to replace the code in the target solver. The result

showed that automatic improving a program can be even faster than the best one

written by human developers, and increasing the code base contributed to the final

improved version of the SAT solver.

Bruce et al. [15] also used a similar framework to evolve patches that improve
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the execution time and energy consumption of the target programs as a bi-objective

optimisation problem. Their results showed that the execution time and the energy

consumption of a program has a strong positive correlation, and on three medium

size programs, their approach found up to 25% improvement on the energy con-

sumption.

2.3 Software Testing

Software testing is an important part of the software life cycle. The goal of soft-

ware testing is to provide information about the quality of the system under test

(SUT) and how well it meets the specifications. Software testing methods can be

generally classified as static testing methods and dynamic testing methods. Static

testing methods usually involve static analysis of the source code without execut-

ing it, whilst dynamic testing methods execute the software with different inputs

(test cases) and verify the outputs. However, there are some techniques that are

considered a combination of both. For example, Symbolic Execution that can be

found in many recent works [65] uses symbolic values to represent program inputs

and propagate them throughout the execution paths of the program by those expres-

sions involving them. The output of the program can then be expressed by symbolic

values and be verified against the program specifications.

At different stages of software life cycle, different levels of testing may be

involved, such as Unit Testing, Integration Testing, System Testing and Accep-

tance Testing. Due to the requirements of different levels of testing, a variety

of techniques have been applied to the generation, execution and verification of

tests [66–68], including SBSE techniques [69] introduced above.

In this thesis, we use Regression Testing to verify the correctness of the pro-

gram under optimisation after we make changes to the program. Regression Testing

is a testing activity when changes are made to the software to provide confidence

that the existing behaviour of the software is not broken by the changes. Regres-

sion tests are usually comprehensive tests with high coverage, therefore they are

sometimes costly to execute and techniques have been applied to minimise or pri-
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oritise the tests [70]. Since Regression Testing has been demonstrated effectiveness

in many software testing practices [71], by adopting Regression Testing, the threat

to the correctness of a program after mutation is minimised.

2.4 Mutation Testing
Mutation Testing [28] is a white box testing technique that measures the quality/ad-

equacy of tests by examining whether the test set (test input data) used in testing

can reveal certain types of faults. A mutation system defines a set of rules (mutation

operators) that generate simple syntactic alterations (mutants) of the program under

test (PUT), representing errors that a “competent programmer” would make, known

as the Competent Programmer Hypothesis (CPH) [39]. It states that programmers

are competent and tend to develop programs close to the correct version. As a con-

sequence, although there may be faults in the program developed by a competent

programmer, it is assumed that these faults are simple faults which can be corrected

by a few small syntactical changes. Table 2.1 shows an example of a mutation. In

the example, a relational operator ‘>=’ is mutated to ‘<’ in the mutant, while all

the other statements remain the same. According to different Mutation Operators,

an operator, a variable or constant, a predicate or a statement can be mutated in

different ways.

Table 2.1: Example of a Mutation

Original Program
(P)

int i=0;
if(i+8>=0){...}

Mutated Program
(P′)

int i=0;
if(i+8<0){...}

To assess the quality of a given test suite, the set of generated mutants are ex-

ecuted against the input test suite to determine whether the injected faults can be

detected. If a test suite can identify a mutant from the PUT (i.e. produce different

execution results), the mutant is said to be killed. Otherwise, the mutant is said to

have survived (or live). A mutant may remain live because either it is equivalent

to the original program (i.e. it is functionally identical to the original program al-

though syntactically different) or the test suite is inadequate to kill the mutant. The
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Mutation Score (MS) is used to quantify how adequate a test suite is in detecting

the artificial faults. It is calculated as the following formula:

MS(P,T ) =
Killed

All

P is the program under test and T is the set of tests. Killed and All represents

the number of killed mutants and the total number of all generated mutants respec-

tively. This metric is traditionally used as an estimation of test suite effectiveness.

2.4.1 Challenges and Related Studies in Mutation Testing

Among those generated mutants, there are some mutants that are semantically

equivalent to the original program despite syntactic changes, they are called equiv-

alent mutants. Since they are semantically equivalent to the original program, they

cannot be killed, and in fact, they should be excluded from the formula of Mutation

Score since they do not contribute in revealing the effectiveness of a test suite.

The equivalent mutant problem is a major impediment to large-scale wide

spread use and whether a mutant is equivalent has been proven to be undecid-

able [72, 73]. Although it has been shown that the problem of detecting equivalent

mutants cannot be completely automated, approaches to partially solve this prob-

lem have been introduced. They consist of applying compiler optimization tech-

niques [73,74] and detecting infeasible paths using static analysis [75]. Other work

combines mutants to generate HOMs (Higher Order Mutants) followed by using the

number of unit tests that killed FOMs (First Order Mutants) that make up a HOM

to identify equivalent mutants [76].

Co-evolution has also been proposed to achieve tailored selective mutation to

partially evaluate mutants [77]. Due to the undecidable nature of this problem and

the requirement of a human in order to solve it, it can be considered as a Human

Intelligence Task (HIT) [78] such that the cost of the human oracle associated in-

creases with the scale of the program under test. Madeyski et al. [79] conducted a

Systematic Literature Review on recent techniques for the equivalent mutant prob-

lem.



2.4. Mutation Testing 33

Another problem associated with mutation testing is that the increase of com-

putational cost is also positively correlated with the scale of the program under

test [29]. Empirical studies have shown that even for small programs a very large

number of mutants can be generated, this makes the process of evaluating all the

generated mutants against a set of test cases very computationally expensive as the

application has to be recompiled and executed each time. Techniques such as Mu-

tant Sampling [39,80], Mutant Clustering and Selective Mutation have been used in

recent studies in order to reduce the number of mutants that are generated without

inflicting a significant loss in their effectiveness [81].

The Mutant Clustering approach reduces mutant count by applying clustering

algorithms based on the killable test cases. As mutants in a given cluster are guar-

anteed to be killed by the same test cases, a representative proportion of mutants are

selected from each cluster and the rest are discarded. As an instance, Devroey et

al. [82] used Featured Mutant Model inspired by the software product line paradigm

to reduce the generation and execution of mutants.

This approach is similar to the approach used by Jia et al. [76] to generate

Higher Order Mutants. In their work, those first order mutants that are killed by

at least one test but at the same time not killed by all test cases are deemed “non-

trivial” and are selected as candidates to generate HOMs.

The Selective Mutation approach [83] achieves reduction in the number of

mutants generated by reducing the mutation operators that are applied. As each

mutation operator generated a different number of mutants, this data along with the

performance of the mutants generated can be generalised and lead to convincing

evidence to omit certain mutation operators.

Moreover, some may argue that the artificial faults introduced by Mutation Op-

erators are not good representatives of real faults. Just et al. [33] investigated this

problem by studying whether a test suite’s ability to detect artificial faults is corre-

lated with its ability to detect real faults. On 5 open source applications, their study

found a strong correlation between artificial fault detection and real fault detection,

therefore concluded that mutants are reasonable substitutes for real faults.
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In Jia and Harman’s survey on Mutation Testing [29], a comprehensive study

on Mutation Testing approaches, tools and empirical results was conducted. From

the survey, the authors concluded that Mutation Testing is reaching its maturity,

with increasing number of publications and large scale applications.

2.4.2 Mutation Operators

For Mutation Testing systems, how effective the Mutation Operators are in repre-

senting real faults usually determines how the system performs. Though there are

works committed to select a subset of the Mutation Operators to reduce the cost

of Mutation Testing, there are also works that introduced more Mutation Operators

that satisfy specific scenarios.

Some traditional Mutation Operators [84] are not very effective in revealing

real faults, or some operators may generate overlapping mutants. Offutt et al. [83]

investigated this problem for traditional Mutation Operators. Their research con-

firmed that with only a subset of Mutation Operators, the Mutation Testing system

would only loss negligible effectiveness but reduce a large number of generated

mutants, thereby reducing the computational cost. Therefore, the authors proposed

Selective Mutation Operators, a subset of the traditional Mutation Operators, that

can provide the same effectiveness in revealing real faults in Mutation Testing sys-

tems. In recent work, Selective Mutation Operators have been widely adopted as

the standard operators for Mutation Testing.

Selective Mutation Operators are statement level or primitive level operators,

meaning they are applied to a single statement or a primitive. Ma et al. [85] pro-

posed class level and inter-class level Mutation Operators for Object-Oriented lan-

guage Java. From their experimental results, they showed that these specially de-

signed operators were able to test new features introduced by Object-Oriented lan-

guages, such as inheritance and polymorphism.

There are also many other Mutation Operators proposed to deal with other

situations. One closely related work is that, Shahriar [41] proposed 12 mutation

operators that primarily focused on Buffer Overflow vulnerabilities, vulnerable li-

brary functions and program statements. The tool they developed uses Mutation
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Testing to generate test cases that expose vulnerabilities in the program under test.

Their results suggested that the proposed mutation operators are designed mainly

for identifying faults due to programmers’ lack of fundamental knowledge about

the programming language instead of identifying trivial syntactic faults.

2.4.3 Higher Order Mutation

Mutants that are generated from applying a Mutation Operator once to the original

program are called First Order Mutants (FOM). Applying Mutation Operators to

FOMs will generate so-called Higher Order Mutants (HOM). According to Compe-

tent Programmer Hypothesis (CPH) [39], test cases that kill First Order Mutants are

likely to kill the Higher Order Mutants that contain the same changes. Therefore it

is not necessary to include Higher Order Mutants in Mutation Testing studies. In

addition, the number of HOMs is much larger than the number of FOMs, including

HOMs in Mutation Testing were considered impractical.

Harman et al. [86] argued that by carefully selecting Higher Order Mutants,

the number of mutants can be reduced since one Higher Order Mutant may be suf-

ficient to represent several First Order Mutants, therefore these FOMs can be ex-

cluded from the mutant pool. In their study, they found examples of such Higher

Order Mutants on ten benchmarks, and proposed both single-objective approach

and multi-objective approach to finding those HOMs. In a follow-up study [87],

Langdon et al. adopted a multi-objective approach and Genetic Programming to

search for Higher Order Mutants. Their study also revealed that by combining First

Order Mutants, the artificial faults may interact with each other. This makes the

mutants harder to kill and corresponds to more complex real-world faults.

Harman et al. [88] used Higher Order Mutation to guide test data generation.

On 17 benchmark programs, their approach found that using HOMs in test data

generation, the test suite was able to kill 8% to 38% of the FOMs survived from the

test suite generated from using FOMs only.
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2.4.4 Mutation Analysis in Other Areas

Though Mutation Operators and mutants were originally used in Mutation Testing

to represent real faults and evaluate the quality of test suites, they are also widely

used in many other areas and applications for different purposes.

Similar to Harman’s work [88] introduced in Section 2.4.3, Fraser et al. [89]

used mutants as guidance to automatically generate unit-test suites for Java pro-

grams. In their approach, the test suites are optimised to kill more mutants (assumed

good representatives of real faults), so that they have a high chance to detect real

faults. They also compared machine-generated test suites with manually written test

suites and found that machine-generated suites killed more mutants and reached a

higher Mutation Score than manually written test suites. Haga et al. [90] conducted

a similar study for C programs. Instead of comparing with manually written tests,

they validated the machine-generated tests by their branch coverage, and evaluated

that it cost only 130 ms on average to generate a test suite.

Andrews et al. [32] used mutation-based analysis to assess and compare four

common testing coverage criteria: Block, Decision, C-Use and P-Use. For a test

suite, they calculated corresponding coverage criteria and used Mutation Testing to

calculate it’s Mutation Score. Since Mutation Score to some degree represents the

quality of the test suite (confirmed by their results as well), the coverage criteria can

then be evaluated by their correlation with Mutation Scores. In addition, their study

also included the computational cost for calculating each coverage criterion.

Staats et al. [91] used mutation analysis to provide support for automatic oracle

creation. Their approach searches for a set of monitored variables such that using

these variables as killing criteria, the number of killed mutants or the Mutation

Score is maximised. After ranking these variables by how much they contributed

to identifying non-equivalent mutants, it can provide insights to which variables are

more important in oracle data selection.

Svajlenko et al. [92] used mutants to evaluate clone detectors. Since mutants

are inherently similar to each other and to the original programs, they themselves

can be the subjects of clone detectors. Therefore, they proposed a framework to
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generate benchmark mutants and to compare the quality of different clone detectors.

Additionally, mutation analysis has been applied for compiler testing [93], software

specification extraction [94] and searching for program invariants [95].

Though equivalent mutants are considered a challenge in Mutation Testing,

there are works that took advantage of equivalent mutants being semantically equiv-

alent to the original program.

Schulte et al. [96] studied software’s robustness to mutational changes by as-

sessing what proportion of the mutants are equivalent to the original program with

respect to a given test suite. Across 22 benchmark programs, their study found 30%

of random mutations did not affect the output of the programs. Arcaini et al. [97]

defined static anomalies as the non-behavioural properties of a program that can

be improved by mutation, such as redundancy of the code or runtime performance.

They proposed to apply Mutation Operators to the target programs and search for

equivalent mutants that are improved with respect to a certain static anomaly.

2.5 Memory Management
In this thesis, we focused on the improvement of the memory performance of soft-

ware. Therefore it is necessary to review the memory management strategies (Sec-

tion 2.5.1), as well as some recent related work (Section 2.5.2).

2.5.1 Memory Allocation Strategies

When an application asks for some memory from the operating system, the simplest

way is to give exact size of memory it requests, and to return that memory back to

the system when the application frees it. However, getting memory from the system

and returning it to the system require invoking some system calls, which are much

slower than other operations. Due to the fact that memory allocation and deallo-

cation are very common and are used frequently in many applications, frequently

allocating memory directly from the system is impractical. Memory allocators have

risen to solve this problem using different allocation strategies. They act as a cache

for memory management in different languages. They request memory from the

system when necessary, hold some extra available memory and manage them to
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serve later memory requests from the application as efficiently as possible. The

freed memory is not returned to the system directly, but held by memory allocators

in case of any similar memory requests in the near future. Extra memory are only

returned back to the system when certain criteria are met according to the allocators.

Different ways of memory management significantly influence the performance of

an application and researchers have proposed and studied the performance of them.

In terms of allocation strategies, many researchers have proposed many differ-

ent strategies for memory allocation and deallocation, which have been well studied

and have their own strengths and disadvantages [98]. The data structure that most

of the allocation strategies use is a linked list of free chunks of memory, which costs

a small overhead to store some basic information such as the size of the chunk and

whether it is in use, whilst using the memory of the free chunks to store the linking

pointers.

The linked list is also called free list since it only links the unoccupied chunks.

Whenever the application sends a memory request, the allocator searches the free

list to find a free chunk that meets the request and removes it from the list, this

chunk is then given to the application to fulfil the request. When a chunk is freed

by the application, it will not be returned to the operating system immediately but

instead inserted to the free list, in case the application may soon request a chunk in

the same size. A simple example of a free list is depicted in Figure 2.1, in which

the shaded regions represent occupied memory chunks.

Figure 2.1: Linked List

Sequential fit is a category of allocation strategy, including first fit, next fit

and best fit. They all use no more than a double linked list to manage the free

chunks. When a memory request is received, first fit starts searching the list from

the beginning and stops at the first time it finds a free chunk that fulfils the request.

It splits the free chunk into two pieces, one of which is in the requested size and
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is returned to the application whilst the remainder is inserted back to the list. One

major disadvantage of first fit is poor locality, which increases the possibility of

cache miss, thus increases the reference time as well as the total running time. Next

fit also searches the free list one by one, but starting from where it found the free

chunk for the previous request. The first and next fit both continuously split large

free chunks to smaller ones, which cannot be used for large request later, therefore

they both suffer from severe fragmentation. The best fit, on the other hand, goes

through the whole free list before it makes a decision. Therefore, it guarantees to

return the smallest free chunk in the list that meets the request, sometimes even the

exact fit, therefore it reduces fragmentation when compared with first fit and next

fit [99]. However, because it goes through the whole list for every request, it costs

more time then first fit and next fit, especially when the free list is very long.

Figure 2.2: Segregated free lists

Segregated fit keeps multiple free lists at the same time (Figure 2.2) instead of

managing one free list as in sequential fit. Each of the free lists kept by segregated

fit policy contains free chunks in the exact same size which are always a multiple of

8 bytes or a size in power of 2. Whenever there is a request of size n, it only needs

to fetch a free chunk from one of the free lists that corresponds to size n. In this case

it saves the allocation time by diminishing the searching time for a best fit whilst

keeping a low fragmentation. However, it slightly increases the deallocation time

since it has to find the exact free list in the deallocated size before the freed chunk

can be inserted. What’s more, it is possible that there is no available free chunk

in the free list that corresponds to the request size, in which case the allocator will

retrieve a larger chunk from the next non-empty free list and split the chunk to

meet the request. A variant of segregated fit differs only in returning a free chunk
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without splitting it even if the chunk is much bigger than the request size. In this

allocation strategy, the memory consumption is much higher because each chunk is

in a fixed size and may be serving a much smaller request so that the extra size in

that chunk can not be reused by other requests. This has also been known as the

internal fragmentation (see below). On the other hand, the simplified segregated

fit strategy is much faster since it never spends time on splitting memory chunks.

This also shows that there is clearly a trade-off between allocation time and memory

consumption.

Coalescing is a strategy which can be combined with or applied to the above

allocation strategies, as well as the following ones. In order to save memory, most

of the policies above choose to split a chunk before returning it to the application.

This leads to more and more small chunks that cannot be used for big requests.

But some of these small chunks could be contiguous in the address space so that

they can be concatenated to serve large requests, so that the memory is used more

efficiently.

Coalescing policies try to concatenate contiguous free chunks into a bigger

one, but when to apply coalescing remains adjustable in different allocators. This

is because if an application requests a chunk with a size of n right after it frees

a chunk in the same size, the allocator may have coalesced the freed chunk and

may need to split it out from the concatenated chunk to serve the same-size-request,

which is a waste of computation. Therefore, instead of coalescing each time the

application frees a chunk, some allocators apply coalescing in a fixed frequency or

once there is no big enough chunk that meets the request. In summary, whether the

coalescing policy improves or diminishes the performance of an allocator usually

depends on the allocation strategy used by the allocator and the allocation pattern

of the application.

Searching strategy refers to how an allocator manages and searches the free

list(s). Some allocators keep the free list(s) in ascending or descending order by

the physical address or size. It is quick for searching but may cause poor locality.

Good locality refers to allocating chunks that may be accessed subsequently in the
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application on the same physical page, in order to minimise the cache misses in

the operating system as a means of saving execution time. Searching strategy is

quite influential to locality since it determines where subsequent requests should be

located. On the other hand, when a chunk is freed and returned to the allocator, there

are several ways to place it back in the free list(s), two of which are first-in-first-out

(FIFO) and last-in-first-out (LIFO). FIFO strategy gives the most recently released

chunk the least priority and places it at the end of the searching queue, whilst LIFO

gives the most recently released chunk the highest priority so that it is more likely

to be reused in a short time. Which searching strategy is better usually depends on

the allocation strategies and the application itself.

Bitmap is another combinable strategy that uses boolean flags to keep the sta-

tus of chunks or free lists. When it is used for the status of chunks, one bit is used

to represent whether a chunk is in use, and when it is used for the status of free lists,

it usually means whether a free list is empty. The bitmap is designed to help the

allocator to find an available chunk more efficiently. It narrows the range down by

searching the bitmap before searching a free chunk that meets the request.

Buddy system is a well-known algorithm which involves a special splitting

mechanism. It always allocates memory in several fixed sizes and whenever it needs

to split a chunk into two, it splits it in a fixed ratio repeatedly until it meets the

smallest chunk that bigger than the request size. In this special splitting mechanism

coalescing is fast because finding a chunk’s “buddy” only requires a few simple

mathematical computations, according to the ratio defined for this buddy system.

Even though the splitting ratio is adjustable, buddy systems still suffer from internal

fragmentation because they almost always serve a larger chunk than requested.

Internal fragmentation: Most of the memory allocators keep all the chunks in

the size of a multiple of 8 bytes due to the operating system requirements. In these

cases, all the memory requests from applications are rounded up to an alignment

of 8 bytes before they are allocated. Therefore, the returned chunk is always equal

to or slightly bigger than the request size without the applications being aware of

it. Then the little extra padding memory is neglected and cannot be used by the
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applications. This is referred to as internal fragmentation.

External fragmentation: On the other hand, at any point of a running ap-

plication, the memory allocator always hold some free chunks instead of returning

them to the operating system directly, so that it can quickly respond to some mem-

ory request from the application using these free chunks. And some of these free

chunks may be too small to serve bigger request and for some reason they cannot

be coalesced neither (e.g., not next to any other free chunks). The number of these

small chunks may increase when the application proceeds, which causes the appli-

cation occupying more memory than it really needs. This is also known as external

fragmentation.

Allocators always introduce fragmentation, in different degrees. Despite many

attempts to minimise memory fragmentation in efficient ways, there is clearly a

trade-off between running time and memory fragmentation. For instance, allocators

with coalescing policies reuse small free chunks by concatenating them, but they

introduce extra computation time for coalescing. On the other hand, both segregated

fit and buddy systems suffer from high fragmentation, but they are usually faster in

responding time than other strategies.

From the allocation strategies introduced above, many researchers have com-

bined some of these strategies and developed complex dynamic memory allocators

for different purposes. Dlmalloc is a general purpose memory allocator that has

been widely adopted for C programs. It almost takes the advantages of most of

the strategies introduced above, aiming at catering the needs of all programs fairly

efficiently. Berger et al. [100] showed that most of the custom memory allocators

perform no much better than dlmalloc, some are even worse. Therefore, we use

dlmalloc as a concrete example in our studies in this thesis.

2.5.2 Memory Testing

Work done by Vilela [101] was an inspiration behind the mutation operators

that mutate the parameters of malloc(), calloc() and other memory alloca-

tion/deallocation library functions as well. Static memory allocations (MSMA) and

Dynamic memory allocations (MDMA) are proposed in this paper, each of which



2.5. Memory Management 43

mutates the buffer size in order to identify buffer overflow and buffer underflow

vulnerabilities. Although their proposed mutation operators mutate memory related

operations, they do not expose vulnerabilities that are caused due to uninitialised

memory faults, as well as buffer vulnerabilities that can be caused due to an in-

correct argument to the sizeof() function, which is generally used in memory

allocation calls.

Although Zhivich [102] used a mutation approach to identify memory based

faults as well as integrate dynamic memory analysis tools in their work, they pri-

marily focus on buffer overflow vulnerabilities and do not consider the other classes

of vulnerabilities. Also, their work is mainly concerned with using mutation to mu-

tate test data and use code instrumentation along with dynamic memory analysers

to identify vulnerabilities. Moreover, due to the fact they do not perform any source

code transformation and much of their work is based on dynamic analysis of the

program under test, their work can be classified as taking a more black-box testing

approach in comparison to the white-box testing approach.

Kosmatov [103] developed a runtime memory monitoring library for runtime

assertion checking in Frama-C [104], which is a platform for analysis of C code.

Their work aims to detect dynamic memory related faults such as invalid pointers,

out-of-bounds memory accesses, uninitialised variables and memory leaks. Val-

grind is used in this work, though only as a benchmark to compare results. This

study does not use specialised mutation operators to inject such vulnerabilities.

Instead, mutation operators that mutate numerical arithmetic operators, pointer-

arithmetic operators and comparison operators are used to generate faults that may

or may not introduce memory based vulnerabilities to be picked up by the runtime

memory analyser. Their work also acknowledges the fact that memory related faults

are more likely to occur in C programs due to the lack of infrastructure available to

detect them.

Interesting research such as a detailed evaluation of seven modern dynamic

buffer overflow detection tools was carried out by Zhivich [102]. They ended up

using CRED (C Range Error Detector) in order to analyse buffer overflow faults
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over Valgrind’s Memcheck, which is the tool we use in our study, mainly because

Memcheck uses sampled bound checking to detect buffer overflow errors instead of

more precise bound checking techniques in CRED. Zhivich also found that Valgrind

runs 25-50 times slower than gcc because it simulates program execution on a vir-

tual x86 processor. Despite the speed issue with Valgrind, Valgrind’s Memcheck is

used as the primary memory analysis tool in many ways due to its ability to analyse

a wide range of other memory faults including uninitialised memory faults, when

compared with other alternative tools.



Chapter 3

Mutation-Based Deep Parameter

Optimisation

Many software systems contain undocumented internal variables or expressions that

also affect the performance of the systems [105]. Thus, these elements could also be

good candidates for automated parameter tuning. However, many of these elements

are ‘private’, undocumented, or otherwise unexposed. Moreover, some internal

values may not even be stored in variables, private or otherwise, but may merely

exist as fleeting sub-expression evaluation outcomes. Identifying these variables

and expressions is very difficult for general users, as it requires a deep understanding

of the source code of the system.

In this chapter, we propose an automatic technique to discover internal vari-

ables and expressions that normally cannot be accessed directly, but impact non-

functional properties of interest. Our goal is to expose new parameters that can

directly influence the values of these internal variables and expressions. To dis-

tinguish from parameters exposed by software designers (which we call ‘shallow

parameters’), we call these exposed parameters ‘deep parameters’ [5]. Modifying

shallow parameter values does not necessarily change the internal code elements

represented by deep parameters. Therefore, deep parameters provide additional op-

portunities for subsequent automated parameter tuning.

We illustrate the approach by re-configuring a general purpose memory alloca-

tor, dlmalloc. We choose memory allocators because they are critical to the memory
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consumption of many programs and can account for up to 60% of the total execution

time in some scenarios [106]. As a result, memory optimisation is a widely-studied

topic [107, 108]. We evaluate our approach using four specimen systems drawn

from benchmarks for dlmalloc and real world applications. Our approach neither

touches the source code of the application itself nor requires any knowledge about

the application under optimisation, instead only tuning the parameters for dlmalloc

library, making it applicable to other C applications with little effort.

This chapter presents evidence that deep parameter optimisation targeting dl-

malloc is an effective approach for improving program’s non-functional proper-

ties. The experimental results suggest that deep parameter optimisation competes

favourably with both shallow optimisation and default configurations. For four sub-

jects, deep parameter optimisation reduces memory consumption by 21% or execu-

tion time by 12% in the best cases. The contributions of this work are summarised

as follows:

1. We introduce an automated approach to discover and expose deep parameters.

The discovery of these parameters enhances search-based parameter tuning.

2. We report the results of an empirical study comparing the traditional shallow

parameter tuning approach with our approach. On four applications totalling

over 70,000 lines of code and guarded by over 700 tests, the results show that

our approach can reduce memory usage by 21% and execution time by 12%,

whereas shallow tuning alone achieves only a 16% and 10% corresponding

reduction.

3. Furthermore, we evaluate the offline optimisation-time cost of our approach.

For example, in our experiments, deep parameter tuning can improve memory

savings by 14%, at the cost of 13% longer offline optimisation time. When

deep parameter tuning is not helpful, this extra optimisation-time cost reduces

to a mere 0.7%, compared to shallow parameter tuning.
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3.1 Motivating Example
We illustrate the idea of deep parameters with an example found by our approach

for dlmalloc (version 2.8.6) [109].

1 static void* sys_alloc(mstate m,size_t nb) {
2 ...
3 if (ss == 0){ //check if first time through
4 char* base = (char*)CALL_MORECORE(0);
5 ...
6 }

Figure 3.1: sys alloc function in dlmalloc

Figure 3.1 shows a part of the sys alloc function in dlmalloc. We explain its

internal operation here to give the reader a feeling for the opportunities for opti-

misation. Of course, our parameter exposing and search-based tuning are general

purpose techniques that have no knowledge of how dlmalloc operates. Dlmalloc

maintains an internal structure to organise the heap for memory reuse. Only when

dlmalloc cannot find a suitable chunk of memory for a memory request does it call

sys alloc() to extend the current heap.

Our approach begins with a form of mutation analysis that evaluates subex-

pressions in the program to determine their utility as candidate deep parameters.

A subexpression is evaluated by mutating it, running the resulting program vari-

ant against a test suite, and evaluating the results in terms of functional and non-

functional properties. A subexpression that can be profitably mutated to optimise a

non-functional property while retaining functional correctness can serve as a deep

parameter.

In this example, the mutation analysis finds that mutants generated from mu-

tating Line ?? have a notable effect on the memory consumption and the execution

time of dlmalloc. We take a close took at Line ??. It calls the CALL MORECORE()

function, which takes an integer as input. CALL MORECORE() is a macro

wrapping the system call that extends or shrinks the current heap and returns

the beginning address of the newly allocated region of the heap. Specifically,

CALL MORECORE(0) neither extends nor shrinks the heap but simply returns the
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current address of the heap, which is the original purpose of Line ?? mentioned

above.

Changing the input value for CALL MORECORE() in Line ?? allows us to

control the amount of memory pre-allocated. However, although dlmalloc pro-

vides several tuneable parameters to programmers, allowing them to adjust be-

haviours (see Section 5 for details), none of these shallow parameters can affect

the CALL MORECORE() function directly. Our algorithm exposes this as a new

deep parameter by transforming Line ?? into the code below, where D is the deep

parameter exposed that controls the pre-allocated heap.

char * base = (char*)CALL_MORECORE(0 + D);

The optimal size of pre-allocated memory depends on the specific program us-

ing this tunable memory allocator. Too much pre-allocation may result in waste. On

the other hand, too little means that later requests must call CALL MORECORE()

again to extend the heap, increasing runtime. By tuning the deep parameter D, an

SBSE approach can balance time and space consumption. This is just one example

of a potential deep parameter. In our mutation analysis experiments, our tool ‘dis-

covers’ that by changing the value of this deep parameter, it can achieve a modest

(2.5%) time reduction without increasing heap space in one of our subjects.

3.2 Deep Parameter Optimisation

Figure 3.2 shows the work flow of our deep parameter optimisation. The approach

takes the source code of the program, a set of test data and a set of non-functional

properties of interest. It first applies mutation analysis and a non-dominated rank

algorithm to discover potential locations for deep parameters, as explained in Sec-

tion 3.2.1. It then exposes deep parameters based on the type of expressions found

at the locations (Section 3.2.2). Finally, to tune the program, a multi-objective

search algorithm is used to search for optimised values for both shallow and deep

parameters (Section 3.2.3).
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Figure 3.2: Deep parameter optimisation workflow. Given a program, test suite and non-
functional properties, our approach applies mutation analysis, exposes deep
parameters, and optimises them.

3.2.1 Discovering Locations for Deep Parameters

The first step is to identify potential locations at which we could expose deep pa-

rameters. In our approach, we represent the input program as an Abstract Syntax

Tree (AST) and a potential location L is an expression node of the AST. We want

to find a set of locations LD such that, when we tune the value of the expression

at LD, some non-functional properties of the program could be improved while the

program retains identical functional behaviour. We use a suite of regression test

data to validate the correctness from the optimisation, following other established

Genetic Improvement approaches [14, 110, 111]. We assume the presence of a test

suite with each target application.

We use mutation analysis to automate the process of searching for locations LD.

Mutation analysis deliberately makes simple syntactic changes to the input program,

to create a set of various versions of a program called mutants, each containing a

different syntactic change [112]. A transformation rule that generates a mutant from

the input program is known as a mutation operator. By carefully choosing mutation

operators, we can use mutants to simulate the effect of making changes at those

locations Ls from which a potential deep parameter may be exposed. We currently

use a Mutation Testing tool to automatically mutate all potential locations, this may

be improved by static or dynamic code analysis, such as using expression patterns

to identify more impacting expressions or only mutating locations that are covered
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Table 3.1: Selected mutation operators

Mutation Operators Changes Between
CRCR – Constant replacement constants, 0, 1, −1
OAAN – Arithmetic operator +, -, *, /, %
OAAA – Arithmetic assignment +=, -=, *=, /=, %=
OCNG – Logical context negation expr, !expr
OIDO – Increment/decrement ++x, --x, x++, x--
OLLN – Logical operator &&, ||
OLNG – Logical negation x op y, x op !y,

!x op y, !(x op y)
ORRN – Relational operator >, >=, <, <=, ==
OBBA – Bitwise assignment &=, |=
OBBN – Bitwise operator &, |

by test cases. Table 3.1 lists the operators we used to generate mutants, covering

locations of constants, relational, logical and arithmetic expressions. These so-

called ‘selective’ mutation operators have been widely used in mutation analysis

experiments [112].

To assess the quality of a mutant, we test each mutant against the input test

set and record the values of the non-functional properties. If the functional result

of running a mutant is different from the result of running the original program for

any test data in the input test set, then the mutant is said to be ‘killed’, otherwise

it is said to have ‘survived’. After all mutants are executed, we first filter out the

killed mutants which fail to retain the functional behaviour. A mutant is called

pseudo equivalent with respect to a given test suite T iff. it passes the regression

test of T . Thus we only select pseudo-equivalent mutants which preserve the func-

tional behaviour of the original program while potentially changing non-functional

behaviour.

In practice, there is a large number of pseudo-equivalent mutants [96,113,114]

generated. We desire a subset of them that represents the locations that could have

the greatest impact on the non-functional properties of interest while also maintain-

ing a diversity of choices. We achieve this by ranking the mutants based on their

non-functional properties using the non-dominated sorting approach of the NSGA-

II algorithm [115]. Each mutant is assigned a Pareto Level value and a Crowd
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Distance value, where Pareto Level n means a mutant will be on the Pareto Front

after all the mutants with Pareto Level less than n are removed, while Crowd Dis-

tance indicates how close a mutant is to its neighbours on the same Pareto Level.

For example, a mutant with Pareto Level 1 is on the Pareto Front among all the

mutants and has the priority to be considered first. A mutant is better than another

in terms of non-dominated sorting if its Pareto Level is smaller or if their Pareto

Levels are the same but the former is less crowded (larger Crowd Distance) than

the latter. After sorting all the mutants in terms of their non-functional properties,

we apply a greedy algorithm to pick the first k locations that could best influence

the non-functional properties of the original, where k is the desired number of deep

parameters one wants to expose.

3.2.2 Exposing Deep Parameters

The second step is to expose deep parameters that allow users to modify the value of

the expression at selected locations. Based on the type of mutation, we first classify

the selected mutants into two sets. Set 1 contains mutants generated from CRCR,

OAAN, OAAA and OIDO operators, which simulate locations with non-logical

expressions. Set 2 contains mutants generated from the OCNG, OLLN, OLNG and

ORRN operators, which simulate locations with logical expressions (Table 3.1).

Given a location L, EL is the expression at the location L, we use the following

transformation rules to rewrite EL with a new parameter vL.

EL→

 (EL + vL) if L ∈ Set 1

(EL) xor vL if L ∈ Set 2
(3.1)

We use addition to affect the value of non-logical expression and exclusive

or to affect the logical ones. Finally, we expose vL as a ‘public’ parameter so that

users can assign a value to vL through parameter passing or APIs.

3.2.3 Search-based Parameter Tuning

Although the exposed deep parameters can provide additional ‘knobs’ [23] to tune

the program, a set of k deep parameters need not necessarily subsume the existing
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shallow parameters of the program. Thus, in this work, we propose to use both

shallow parameters and deep parameters and tune them together using SBSE [27].

Because we are interested in multiple conflicting properties, we consider this as

a multi-objective optimisation problem, thus a multi-objective Genetic Algorithm,

NSGA-II [115], is applied to search for optimal values for both shallow and deep

parameters.

We use an integer vector to represent the tuning parameters. Each integer

stores a solution value for one parameter. At each generation, our NSGA-II im-

plementation first applies tournament selection, followed by a uniform crossover

and a uniform mutation operation. In our experiments, our fitness functions are de-

signed to capture two non-functional properties: execution time and memory con-

sumption, while preserving the functionality by assigning the worst value to both

non-functional properties. To measure execution time, Glibc’s wait4 system call is

used to calculate the CPU time (mean of 10 evaluations). For memory consumption,

we instrumented the program to record the high-water mark of the virtual memory

consumption. We chose this instrumentation approach because the physical mem-

ory reported by the OS is not always deterministic but depends on the workload

and the OS, and because the virtual memory requirement is an upper bound of the

physical memory actually needed. For a subject program with configuration c, we

measure the execution time ti(c) and the high-water-mark of memory consumption

mi(c) of each test case i. Then the fitness functions for the configuration c regarding

execution time and memory consumption can be formulated as:

ft(c) = ∑
i

ti(c) fm(c) = ∑
i

mi(c).

After fitness evaluation, a standard NSGA-II non-dominated selection creates the

next generation. Finally, all non-dominating solutions in the final population are

returned.
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3.3 Experiments
To assess the improvement of our Deep Parameter Tuning approach, we compared

it with Shallow Parameter Tuning:

RQ1 How much performance improvement, with respect to the unmodified pro-

gram, can be obtained by Shallow Parameter Turning using random search or

NSGA-II?

We consider RQ1 to provide a baseline result against which we compare the

results from Deep Parameter Tuning. We used NSGA-II algorithm (described in

Section 3.2.3) and Random algorithm to search for better values for the shallow

parameters in dlmalloc, then compare the performance with dlmalloc’s default con-

figuration.

RQ2 How much additional improvement can be achieved by our Deep Parameter

Tuning algorithm compared with Shallow Parameter Tuning alone?

We ask RQ2 to evaluate how useful our approach is at finding better config-

urations for the given non-functional properties. In these experiments, our Deep

Parameter Tuning approach uses a custom mutation analysis to identify the most

sensitive parts of the program, followed by an application of NSGA-II to optimise

both explicit and implicit parameters for dlmalloc.

RQ3 What are the optimisation-time costs for these approaches to find their solu-

tions?

Since our Deep Parameter Tuning approach exposes additional parameters

which are then optimised in conjunction with the baseline shallow parameters, it

may require extra resources at optimisation time. We thus measure the baseline

cost of Shallow Parameter Tuning, as well as the extra computation required by our

Deep Parameter Tuning. The user may use this gain/cost ratio to decide whether to

employ Shallow or Deep Parameter Tuning.
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3.3.1 Experiment Target

Many memory allocation strategies and managers have been proposed and studied

by many researchers to efficiently manage dynamic memory. Among them, Doug

Lea’s malloc (dlmalloc) is “among the fastest, most space-conserving, tunable, and

portable general purpose allocators” [109]. A study of Berger et al. [116] shows

that many other custom memory allocators do not perform significantly better than

dlmalloc, and are sometimes worse. We focus on dlmalloc as an indicative starting

point and optimise its configuration to each of the subject applications.

Dlmalloc is a general memory allocator for C programs. Some statistics about

the library are given in Table 3.2. Although it provides a number of configuration

parameters, it is usually used with its default values. We call these configurable pa-

rameters provided by the original author shallow parameters. In these experiments,

we consider the nine shallow parameters that are more relevant to the tradeoff be-

tween runtime and memory high-water-mark. Table 3.3 briefly describes these shal-

low parameters.

Table 3.2: dlmalloc statistics

dlmalloc
LoC 3649
# functions 45
# system calls 21
# mutatable locations 3056

3.3.2 Experiment Setup

For our evaluation, we selected four applications: espresso, gawk, flex and sed.

Espresso is a fast application for simplifying complex digital electronic gate cir-

cuits. We use the espresso benchmark source code and test cases from the DieHard

project [117]. Gawk is the GNU awk implementation for string processing. We col-

lect Version 4.1.0 of this application, as well as its test suite, from the GNU archives.

flex is a tool for generating scanners, programs which recognise lexical patterns in

text, and sed is an editor that automatically modifies files given a set of rules. We

obtain these last two programs and corresponding test suites from the SIR reposi-
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Table 3.3: dlmalloc selective shallow parameters made available by the developers and used
in our experiments

Name Default Range
MALLOC ALIGNMENT 2∗ sizeof (void∗) (1 – 16)∗sizeof (void∗)
FOOTERS false true or false
INSECURE false true or false
NO SEGMENT TRAVERSAL false true or false
MORECORE CONTIGUOUS true true or false
DEFAULT GRANULARITY 0 4 KB – 512 KB or 0
DEFAULT TRIM THRESHOLD 2048 KB 64 KB – 16 MB
DEFAULT MMAP THRESHOLD 256 KB 16 KB – 2 MB
MAX RELEASE CHECK RATE 4095 1000 – 10000
Name Type Description
MALLOC ALIGNMENT 2n ∗ sizeof (void∗) Alignment unit
FOOTERS boolean Additional information of each chunk
INSECURE boolean Secure check
NO SEGMENT TRAVERSAL boolean Traversal of chunks before coalescing
MORECORE CONTIGUOUS boolean Contiguous heap extension support
DEFAULT GRANULARITY 2n KB or 0 Unit of heap extension
DEFAULT TRIM THRESHOLD 2n KB Threshold of trimming
DEFAULT MMAP THRESHOLD integer Threshold of direct memory mapping
MAX RELEASE CHECK RATE integer Frequency of coalescing

tory [118]. Summary data for these subject programs is listed in Table 3.4. We used

gcc optimisation option -O3 to optimise off the trivial changes made by mutation,

where the changes are considered equivalent to the original by the compiler and do

not affect the non-functional behavior of the program.

Table 3.4: Subject applications

Name Loc # Tests Description
espresso 13256 19 Digital circuit simplification

gawk 45241 334 String processing
flex 9597 62 Fast lexical analyzer generator
sed 5720 362 Special file editor

3.3.3 Experiment Procedures

We first used the shallow parameters only and applied the NSGA-II algorithm with a

population of 50 for 300 generations, using 5000 randomly generated chromosomes

as seeds. These standard values were chosen after a few trial experiments to have

the best performance and ensure a convergent result for the algorithms. A random

search was also applied with the same computation budget in optimising the shallow

parameters.
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We used the open source C mutation testing tool MILU [88, 119] to automat-

ically generate mutants from the selective operators shown in Table 3.1. This mu-

tation based pre-analysis finds the equivalent mutants that are sensitive to the non-

functional properties under optimisation. These equivalent mutants are transformed

and exposed into 9 deep parameters (the same number as the provided shallow pa-

rameters for a fairer comparison) for each subject program separately, as described

in Section 3.2. Combining shallow and deep parameters, we again applied NSGA-II

and random search with other identical experimental settings. All experiments were

repeated for 20 runs to admit statistical analyses.

All experiments were carried out on desktop machines with a quad-core CPU

and 7.7 GB memory running 64-bit Ubuntu 14.04. We used dlmalloc version 2.8.6,

which was compiled with gcc 4.8.1 with -O3 option. To capture the execution

time and memory consumption precisely, we developed our own performance tool

to measure the CPU time and the high-water-mark virtual memory consumption

(see Section 3.2.3). The tool is publicly available at https://github.com/

FanWuUCL/memory.

3.4 Results
We formalise the metrics we use to compare multi-objective optimisation ap-

proaches in this section. The results are presented in Section 3.4.2, and are used

to answer the RQs.

3.4.1 Metrics

To investigate RQ1 and RQ2, we collect the non-dominated set of solutions from

each algorithm for 20 runs, and report it in an attainment surface as introduced

by Fonseca [120]. To quantitatively compare the quality of each algorithm, we

calculate Hypervolume and Contribution indicators to assess the multi-objective

Pareto Front.

Hypervolume: The Hypervolume indicator [121] measures the space domi-

nated by the solutions. It is defined as the hypervolume of the union of hypercubes

dominated by each solution on the Front. The bigger the Hypervolume is, the larger

https://github.com/FanWuUCL/memory
https://github.com/FanWuUCL/memory
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the area dominated by the Pareto Front in the objective space is, and thus the better

the performance is.

Contribution: Since there is no way to know the true Pareto Front, we use the

non-dominated set of joint solutions from all experiments to approximate the true

Pareto Front, forming a ‘reference’ front. The Contribution indicator represents the

ratio of solutions on the reference front that are found by a given algorithm. A

higher ratio indicates a more successful search.

To allow comparison across subject programs, objectives are normalised to the

original performance of each subject.

3.4.2 Answers to RQs

For brevity we use Sha to refer to shallow parameters and All to refer to all parame-

ters including shallow and deep parameters, followed by Rand or NSGA to indicate

the search method used (random search or NSGA-II). For example, ShaNSGA refers

to using NSGA-II to search for better values for shallow parameters.
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Figure 3.3: Combined best solutions from the results of ShaRand, ShaNSGA, AllRand,
AllNSGA over 20 runs for espresso. Lower and lefthand solutions dominate
high and righthand solutions. ‘Wasted’ memory is memory that is used but not
needed.

To answer RQ1 and RQ2, we first report the 0%-attainment surfaces (the ‘ref-

erence front’ that combines best solutions over all runs) of the results of ShaRand,

ShaNSGA, AllRand and AllNSGA on all subjects in Figure 3.3-3.6. The solutions
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Figure 3.4: Combined best solutions from the results of ShaRand, ShaNSGA, AllRand,
AllNSGA over 20 runs for gawk. Lower and lefthand solutions dominate high
and righthand solutions. ‘Wasted’ memory is memory that is used but not
needed.
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Figure 3.5: Combined best solutions from the results of ShaRand, ShaNSGA, AllRand,
AllNSGA over 20 runs for flex. Lower and lefthand solutions dominate high and
righthand solutions. ‘Wasted’ memory is memory that is used but not needed.

are plotted according to their execution time and memory usage (at the ‘high-water-

mark’) compared to the original performance. Specially, the original always lies at

(1, 1) and is pinpointed by light grey dashed lines. The high-water-mark is our pri-

mary target since the remaining non-wasted memory is needed and thus cannot be

reduced. The figure shows that all algorithms can reduce time or memory consump-

tion without reducing the other objective, implying that the default configuration of
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Figure 3.6: Combined best solutions from the results of ShaRand, ShaNSGA, AllRand,
AllNSGA over 20 runs for sed. Lower and lefthand solutions dominate high and
righthand solutions. ‘Wasted’ memory is memory that is used but not needed.

dlmalloc is not optimal for any application considered. This finding motivates the

use of SBSE for tuning memory allocators. In three subjects (espresso, gawk and

sed), AllNSGA outperforms the other three on memory objective. In terms of time,

no algorithm is strictly better and each has its own strengths on different subjects.

We calculated the Hypervolume and Contribution indicator of each algorithm

on every subject, and report them in Figure 3.7 and 3.8 respectively for all 20 runs.

In Figure 3.7, all the values are normalised to the hypervolume of the 0% attainment

reference front, and the closer the value to 1 is, the better the result is. It is clear

that AllNSGA outperforms the others on subject espresso and sed while it performs

poorly on subject flex, and on subject gawk the best value reached by AllNSGA is

better than that of the others. In terms of Contribution, the performance of all al-

gorithms is similar to that of Hypervolume. In general AllNSGA is no worse than

other algorithms on all subjects but flex, where ShaNSGA has the highest Contribu-

tion value.

Since AllNSGA is good at finding better performance on memory consumption,

we report the most memory-saving performance found by each algorithm of each

of 20 runs in Figure 3.9. On subject espresso and sed, AllNSGA finds more memory

reduction than the other approaches. On gawk, it does not perform as consistently,
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(a) espresso (b) gawk

(c) flex (d) sed

Figure 3.7: Hypervolume indicator of ShaRand, ShaNSGA, AllRand, AllNSGA on all sub-
jects. Larger values are better.

but can also find more memory reduction than other approaches in the best case.

Inferential statistical tests were applied to the Hypervolume, Contribution and

Best-Memory-Reduction results over all subjects. We used the Mann-Whitney-

Wilcoxon U-test since we make no assumptions about results distributions and

apply a Bonferroni Correction (catering for 16 total statistical tests) to draw con-

servative conclusions with no risk of Type 1 error. For those p-values less than

0.05/16 = 0.003125, we apply the Vargha-Delaney (Â12) effect size measure (see

Table 3.5). The effect sizes are all large (either above 0.79 or below 0.21).

In all experiments involving All* we generated and evaluated invalid configura-

tions (i.e., those that cause the program to crash). However, this issue is not specific

to our deep-parameter approach: surprisingly, even by just tuning the programmer-

specified shallow parameters (ShaRand and ShaNSGA optimisations) we also en-
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(a) espresso (b) gawk

(c) flex (d) sed

Figure 3.8: Contribution indicator of ShaRand, ShaNSGA, AllRand, AllNSGA on all sub-
jects. Larger values are better.

counter (and discard) some configurations that crash the program. This suggests

that SBSE memory allocator tuning can be used as a search based testing tech-

nique [122]. Without any guidance, AllRand finds valid configurations less often

than ShaRand, and thus requires more optimisation time than ShaRand. Holding

the searches to the same budget means that AllNSGA, which must explore a higher

search space, will exhibit a higher variance. Despite this more challenging search

space, exposing and optimising deep parameters still allows AllNSGA to find better

configurations than ShaNSGA.

To enable a more quantitative look at maximal time and memory savings, we

examine the extreme performance observed in our experiments. We report those

that have the best performance on one objective, even at the cost of reducing per-

formance on the other objective, found by each algorithm on each subject and sum-
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(a) espresso (b) gawk

(c) flex (d) sed

Figure 3.9: The least memory consumption found by each algorithm. Smaller numbers are
better.

marise them in Table 3.6. Some of these results are significant departures from the

original and are thus not plotted in Figure 3.3-3.6.

To answer RQ3, we provide the average optimisation computation time for

each of the approaches in Table 3.7. Recall that AllRand generates and evaluates

numerous invalid configurations. However, since crashing or incorrect mutants can

be discarded immediately, the computation time of AllRand is the lowest among

all approaches (given a fixed budget in terms of mutants considered). Similarly,

AllNSGA generates invalid configurations more often than ShaNSGA, so it costs

less computation time than ShaNSGA. Taking the deep parameter discovery time

into account, AllNSGA requires slightly more time than ShaNSGA does, and the

percentage of the extra computation time is reported in the last column of Table 3.7.

Ultimately, AllNSGA requires at most 18% more computation time than ShaNSGA
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Table 3.5: Vargha-Delaney effect sizes of Hypervolume, Contribution and Best Memory
Reduction for any two of the approaches on all subjects. Only the effect sizes of
tests with p-value less than 5%/16 = 0.3125% are reported.

Comparing Approaches
Hypervolume

espresso gawk flex sed

AllNSGA
AllRand 1.000 – – 0.975
ShaNSGA 0.935 – 0.105 0.808
ShaRand 0.900 – 0.035 0.785

AllRand
ShaNSGA 0.000 0.053 0.038 0.045
ShaRand 0.000 0.070 0.000 0.040

ShaNSGA ShaRand 0.198 – – –

Comparing Approaches
Contribution

espresso gawk flex sed

AllNSGA
AllRand 0.859 – – 0.835
ShaNSGA 0.868 – 0.191 0.868
ShaRand 0.814 – – 0.875

AllRand
ShaNSGA – – 0.144 –
ShaRand – – – –

ShaNSGA ShaRand – – – –

Comparing Approaches
Best Memory Reduction

espresso gawk flex sed

AllNSGA
AllRand 0.000 – – 0.000
ShaNSGA 0.063 – 0.950 0.050
ShaRand 0.100 – 0.979 0.050

AllRand
ShaNSGA 1.000 0.940 1.000 1.000
ShaRand 1.000 0.928 1.000 1.000

ShaNSGA ShaRand 0.800 – – –

(on espresso), but requires only 0.7% more computation time on flex, on which

AllNSGA does not perform as good as ShaNSGA. Overall, since this optimisation

step is a compile-time rather than run-time cost and can be done before deployment,

we view the benefits of deep parameter optimisation as significantly outweighing

their slight additional optimisation time cost.

3.4.3 What are the Deep Parameters

To have a better understanding of what are those Deep Parameters and how they

contributed in the improvement, we manually inspect the Deep Parameters ex-

posed from each subject program and analyse why these parameters could affect the

time/memory performance of a program. For 36 Deep Parameters exposed from all
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Table 3.6: Best reduction of time or memory (separately) found by each algorithm

Subject
Time

Original (s)
Time Reduction (%)

ShaRand ShaNSGA AllRand AllNSGA
espresso 7.24 1.4 1.4 1.5 1.5

gawk 3.43 3.2 6.7 4.4 4.4
flex 0.13 7.9 10.0 6.2 11.6
sed 0.25 9.4 7.0 7.0 5.4

Subject
Memory Original
(Peak/Wasted KB)

Wasted Memory Reduction (%)
ShaRand ShaNSGA AllRand AllNSGA

espresso 3500/521 6.1 6.1 0 19.2
gawk 29680/3552 15.6 15.6 16.2 20.9
flex 10816/525 13.0 13.0 0 12.2
sed 7048/948 3.8 3.8 2.1 17.9

Table 3.7: Computation Cost in Time

Subject
Optimisation Time (h) Exposing

Time (h)
Extra Time Needed

for *NSGA (%)ShaRand ShaNSGA AllRand AllNSGA
espresso 39.7 46.4 9.0 39.3 12.5 18.5

gawk 22.7 18.4 13.9 16.4 5.4 11.7
flex 7.7 6.3 5.3 5.0 1.3 0.7
sed 9.4 7.6 5.9 6.6 1.9 12.6

four subjects (9 parameters each), they have overlaps, meaning the same parameter

could be discovered and exposed for multiple subjects. This is because different

subject may have very different memory usage profiles, and the performance usu-

ally depends on the test scenarios as well. In the end, there are in total 23 distinct

Deep Parameters. Among them, five parameters are exposed for strictly two dif-

ferent subjects, one parameter is exposed for three subjects and two parameters are

exposed for all four subjects. It is worth mentioning that we observed that, usually

the top 4 or 5 locations in each subject are considerably more sensitive than the rest.

Therefore, by picking the top 9 most sensitive locations to expose Deep Parameters,

we can make sure that the exposed Deep Parameters can have a great impact on the

performance.

We manually go through all 23 Deep Parameters and try to explain why they

could affect the execution time and/or memory consumption, based on our knowl-

edge to dlmalloc. Our observation is as follows: for 12 out of all 23 distinct param-

eters, we are able to explain why they could affect the performance, and for those 8
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parameters that are exposed for more than one subject, 7 of them can be explained.

Listing 3.1: Deep Parameter Examples

1 static void* sys_alloc(mstate m,size_t nb)

2 {

3 ...

4 /* Subtract out existing available top

5 space from MORECORE request. */

6 ssize = granularity_align(nb - m->topsize

7 + SYS_ALLOC_PADDING + EXPOSE_4334);

8 ...

9 if (is_global(m))

10 init_top(m, (mchunkptr)tbase, tsize

11 - TOP_FOOT_SIZE + EXPOSE_4425);

12 ...

13 }

To give a better illustration on this, we explain why the two parameters ex-

posed for all subjects can affect the performance in the rest of this section. The

examples are given in Listing 3.1. Both of these two Deep Parameters are exposed

from the function sys alloc(), which manages most of the allocation from the

system. The fist expression containing EXPOSE 4334 is executed when the size

of the top chunk on the heap is smaller than a pre-defined threshold, and is about

to be extended in system’s dynamic memory. The value of this expression decides

how much memory should be applied for from the system this time. Smaller val-

ues tend to save memory, but may cause the program to extend the top chunk more

frequently, which is a waste of time. Larger values tends to save time by allocating

a big chunk of memory at once, but may waste memory if it turns out to be not

necessary. How much memory should be applied for at this point may vary from

applications to applications, therefore we expose a Deep Parameter from here so

that we can control the size to be extended accordingly. The second example con-
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cerns when the memory manager initialises the heap. The value of the expression

containing EXPOSE 4425 is for determining how much memory should be pre-

allocated at the first time. For similar reasons, bigger values tend to waste memory

but save time, and smaller values the other way around. Both of these parameters

can be any integer in our approach, so that the optimal values for them are precise

at integer’s granularity.

3.5 Threats to Validity

We summarise some potential internal and external threats to validity in this section.

Internal Validity When exposing deep parameters, we used a mutation-based

sensitivity analysis because of its advantages in terms of efficiency and automation.

Whether it is the best way to expose deep parameters remains to be proven. In

addition, we have not formally investigated the relative merits of the Mutation Op-

erators used. Intuitively, our Mutation Operators change a constant or an operator

in an expression, and thus are likely to change the values of expressions to differ-

ent degrees, allowing us to capture the sensitivity of that program’s non-functional

behaviour to the value of that expression. Any lack of efficacy of these Mutation

Operators at capturing sensitivity information introduces a threat to the effective-

ness of our approach. A formal evaluation of mutation operators for deep parameter

tuning remains as future work.

Another threat to the internal validity is that the execution time measured may

depend on the workload of the machine. We mitigate this threat by averaging the

execution time of 10 trials on an otherwise-unloaded machine.

External Validity Our choice of benchmark programs and their associated test

suites influences the generality of our results. Even a good test suite that achieves

high branch coverage, for example, could still differ from real world inputs, in

which case the optimised configuration over this test suite may neither achieve the

best performance nor retain required functionality. We attempt to mitigate this threat

by including two subjects (flex and sed) from the SIR repository [118]. These sub-

jects come with sets of high-quality test suites, which achieve multiple adequacy
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testing criteria.

Another aspect of generality is whether these results hold on other applications.

We attempt to mitigate this threat by selecting subject applications from different

fields, but our results may not generalise beyond these benchmarks.

3.6 Conclusions
In this chapter, we propose a mutation-based method for discovering and optimis-

ing deep parameters to tune a C-language library, dlmalloc, to adapt to different

programs and test cases, with respect to its memory and time performance. Our

approach combines mutation analysis to discover sensitive deep parameters as well

as an SBSE approach which subsequently optimises these parameters, while retain-

ing the functionality expressed in a test suite. In a series of experiments involving

over 70,000 lines of code and 700 test cases we found that our deep parameter

approach outperformed baseline optimisations (which use only the programmer-

provided shallow parameters), ultimately improving execution time by 12% and

memory consumption by 21% in the best cases. In addition, despite the larger

search space considered, the additional optimisation time cost of our approach is

acceptably low. Overall, we feel that deep parameter tuning approaches show much

promise for the automated improvement of software with respect to non-functional

properties.



Chapter 4

Memory Mutation Testing

Though by using traditional Mutation Operators, Deep Parameter Optimisation ap-

proach can find promising improvement, but these Mutation Operators were not

designed to target software’s memory performance. In order to directly affect the

memory performance by mutation, we proposed new operators that directly target

on memory management statement. In this chapter, our objectives are to propose

a comprehensive set of Memory Mutation Operators targeting dynamic memory

operations, to assess their effectiveness in revealing memory vulnerability, and to

compare them with traditional Mutation Operators in terms of the quality of gen-

erated mutants and the number of equivalent mutants. These Memory Mutation

Operators can be used in future Mutation Testing studies or applications, especially

for memory intensive or memory critical programs. Additionally, we shall see their

application on optimising memory performance of programs in the next chapter.

we design 9 Memory Mutation Operators, simulating three classes of com-

mon memory faults. We also introduce two additional weakly killing criteria, i.e.

Memory Fault Detection and Control Flow Deviation for memory mutants. Because

memory faults do not necessarily propagate to the output, making the strong killing

criterion, which is widely adopted in traditional Mutation Testing, inadequate to

detect such faults. A single Mutation Testing tool was developed using both of

the traditional and Memory Mutation Operators with the traditional strong killing

criterion and the proposed weakly killing criteria also incorporated.

We compare the effectiveness of Memory Mutation Operators against tradi-
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tional mutation operators using 18 subject programs with a variety of sizes. Our

results show that our memory mutants introduced memory faults that cannot be

simulated by traditional mutation operators. We also study the difference between

traditional strongly killing criterion with the proposed weakly killing criteria. The

results show that, among 1536 generated memory mutants (with 90 TCE-equivalent

or duplicate mutants excluded), traditional strong killing criterion killed only 43%

of the mutants, leaving 869 mutants unkilled. We also find the two new mem-

ory killing criteria introduced are more effective at distinguishing memory mutants,

killing up to 80% of those survived mutants across all subject programs.

The primary contributions of this chapter are as follows:

1. The design of 9 Memory Mutation Operators to mimic several categories of

memory faults. The mutants generated from these operators can be used to

select tests that mitigate memory vulnerabilities.

2. A comprehensive empirical study exploring the characteristics of memory

mutation operators and a further empirical study to compare them with the

traditional operators. On 16 subject programs, Memory Mutation Operators

successfully insert memory faults and generate 368 mutants, 94% of them

cannot be simulated by traditional mutation operators. A case study using 2

large programs demonstrates that Memory Mutation Operators are feasible to

scale to large programs.

3. The introduction of Memory Fault Detection (using Valgrind for precise as-

sessment of memory faults) and Control Flow Deviation as additional killing

criteria. This is the first weak killing criteria proposed for memory mutation

and the results show that up to 80% of surviving mutants are killed by these

additional criteria.

4. An open source C mutation testing tool 1 that features both traditional and

Memory Mutation Operators. The tool also supports traditional strong killing

1https://github.com/jaysnanavati/Mutate
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criteria as well as the Memory Fault Detection and Control Flow Deviation

killing criteria.

4.1 Background
Mutation Testing [28] is a white box testing technique that measures the quality/ad-

equacy of tests by examining whether the test set (test input data) used in testing

can reveal certain types of faults. A mutation system defines a set of rules (mutation

operators) that generate simple syntactic alterations (mutants) of the Program Un-

der Test (PUT), representing errors that a “competent programmer” would make,

known as the Competent Programmer Hypothesis (CPH) [39].

To assess the quality of a given test suite, the set of generated mutants are

executed against the input test suite to determine whether the injected faults can be

detected. If a test suite can identify a mutant from the PUT (i.e. produce different

execution results), the mutant is said to be killed. Otherwise, the mutant is said

to have survived (or to be live). A mutant may remain live because either it is

equivalent to the original program (i.e. it is functionally identical to the original

program although syntactically different) or the test suite is inadequate to kill the

mutant. The Mutation Score (MS) is used to quantify how adequate a test suite is in

detecting the artificial faults. It is calculated as the following formula:

MS(P,T ) =
number of mutants killed

total number of non-equivalent mutants generated
.

P is the program under test and T is the set of tests. However, it is very hard and

generally undecidable to determine the exact number of non-equivalent mutants,

therefore, the total number of generated mutants is used as an approximation for the

number of non-equivalent mutants in practice.

The equivalent mutant problem is a major impediment to large-scale wide-

spread use. Whether a mutant is equivalent has been proven to be undecid-

able [72, 73]. Although it has been shown that the problem of detecting equivalent

mutants cannot be completely automated, approaches to partially solve this prob-
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lem have been introduced. They consist of applying compiler optimisation tech-

niques [73] and detecting infeasible paths using static analysis [75]. Other work

combines mutants to generate HOMs (Higher Order Mutants) followed by using

the number of unit tests that killed FOMs (First Order Mutants) that make up a

HOM to identify equivalent mutants [76]. Co-evolution has also been proposed to

achieve tailored selective mutation to partially evaluate mutants [77].

To reduce the potential effect of equivalent mutants, we use the Trivial Com-

piler Equivalence (TCE) technique to automatically detect equivalent mutants in

our experiments [74]. TCE is a new approach that finds equivalent mutants by sim-

ply compiling each mutant and comparing its machine code with that of the orig-

inal program. The idea underpinning TCE is that there are several transformation

phases when compiling a program into machine code. Many syntactic changes that

do not affect the semantics of the program will be ignored by the compiler during

these optimisation phases. Though TCE was applied mainly on traditional mutants,

the fundamental idea behind TCE does not concern the type of the mutants. The

changes to memory operations that do not change the semantics of the program

will also be ignored during the compiler optimisation phases, like any other types

of changes. Therefore, TCE should be as effective for memory mutants as for tra-

ditional mutants. TCE-equivalent mutants are those mutants that have the same

machine code as the original after compiled, while TCE-duplicate mutants have the

same machine code as other mutants. We use TCE to detect both equivalent mutants

and duplicated mutants in our experiments.

4.1.1 Memory Mutation

Though there are many Mutation Testing engines [123–132] for different program-

ming languages, they do not address the issue of evaluating test suite effectiveness

with regards to memory-based faults adequately. Using this as a basis for our inves-

tigation, we propose a set of mutation operators that aim to model such faults and

developed a Mutation Testing tool for C programs that integrates these Memory

Mutation Operators.

In traditional Mutation Testing, only the mutant’s output is compared against
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the original program’s output to kill the mutant, while much more information is

generated during testing, such as implicit memory faults and control flow graphs.

The problem of equivalent mutants may be alleviated by using a richer source of

other information to eliminate some seem-to-be equivalent mutants. This is essen-

tially a process of oracle enrichment [133]. In this paper, we propose two more

killing criteria for memory-related mutation testing, Memory Fault Detection and

Control Flow Deviation. These two techniques enrich the sensitivity of the ora-

cle we can use to distinguish the behaviour of memory faults. The number of

detected memory faults in a mutant is used to suggest whether the mutant is po-

tentially equivalent to the original program, while Control Flow Deviation is used

to determine whether a mutant executes a different path to the original. More details

about Memory Fault Detection and Control Flow Deviation criteria can be found in

Section 4.2.2 and Section 4.2.3 respectively.

4.2 Methodology
In this section, we first present 9 Memory Mutation Operators we designed to simu-

late memory faults, as well as Memory Fault Detection and Control Flow Deviation

killing criteria. Then we list the research questions that we aim to answer in this

chapter.

4.2.1 Memory Mutation Operators

A set of 9 Memory Mutation Operators (MeMOs) are proposed in this project.

Each mutation operator mutates calls to memory related function calls (e.g.

malloc(), calloc(), or free()), their arguments, or assignments of NULL.

We divide these mutation operators into three categories based on the types of faults

they inject into the code base: uninitialized memory access, faulty memory alloca-

tion and faulty heap management. (Faulty memory accesses and faulty static mem-

ory management can be mostly simulated by traditional Mutation Operators, thus

not included in these proposed operators.)

Table 4.1 lists the proposed operators together with brief descriptions. All

of the mutation categories evaluate the inherent vulnerabilities of memory related
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Table 4.1: Memory Mutation Operators

Type of faults Operator Brief Description
Uninitialized
Memory Access

REC2M Replace calloc() with malloc()
RMNA Remove NULL character assignment statement

Faulty Memory
Allocation

REDAWN Replace dynamic memory allocation calls malloc(), calloc(), alloca()
and realloc() with NULL

REDAWZ Replace size of the requested block with 0 for dynamic memory allocation
functions

RESOTPE Replace the arguments of the sizeof() unary operator with the pointer
type equivalent if a non-pointer type is specified

REMSOTP Replace the arguments of the sizeof() unary operator with the non-
pointer type equivalent if a pointer type is specified

Faulty Heap
Management

RMFS Remove free() statement
REM2A Replace malloc() with alloca()
REC2A Replace calloc() with alloca()

functions in C programs which concerned previous works [104, 117, 134].

Each MeMO is detailed in one of the three categories below as well as a ratio-

nale behind its choice.

4.2.1.1 Uninitialized Memory Access

The proposed operators in this category generate mutants that can cause uninitial-

ized memory to be accessed in the program. As defined in the C specification,

memory allocated by malloc() is not guaranteed to be initialized in comparison

to calloc(), which initialises the memory to 0. REC2M replaces instances of

calloc() with malloc() in order to inject uninitialized memory usage faults

into the program (Table 4.2).

Table 4.2: Example of REC2M

Original Program
(P)

int *array;
array = calloc(n, sizeof(int));

Mutated Program
(P′)

int *array;
array = malloc(n * sizeof(int));

If such a fault were to be left in a program, it may cause the program to exhibit

arbitrary behaviour. For example, the code snippet in Listing 4.1 contains such a

fault. Specifically, when flag is evaluated as false, the value of *array is not

initialised and can be any arbitrary number. Therefore, the subsequent conditional

statement may take either branch depending on the arbitrary value of *array.

Listing 4.1: Example of the fault represented by REC2M
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int *array = malloc(sizeof(int));

if(flag){ *array = 1; }

if(*array > 0){ ... }

else { ... }

RMNA removes NULL assignment statements. Depending on the usage of

the mutated pointer, faults such as dangling pointers or dereferencing uninitialized

pointer are injected. Table 4.3 shows an example application of the RMNA opera-

tor, where the mutated program P′ is an example of how this mutation operator can

inject a dangling pointer fault and introduce undefined behaviour into the applica-

tion.

Table 4.3: Example of RMNA

Original Program
(P)

char *str = calloc(n, sizeof(char));
...
free(str);
str = NULL;

Mutated Program
(P′)

char *str = calloc(n, sizeof(char));
...
free(str);
str;

As an example, in Listing 4.2, because the pointer array was not assigned

with NULL after free(), when the flag is evaluated as false, array still points

to a piece of freed memory which may be allocated to another pointer in the pro-

gram. In this case, the value pointed by array can be any number, causing the

subsequent conditional statement to take an arbitrary branch. Operator RMNA can

simulate such a fault by removing the NULL-assignment after a free() call.

Listing 4.2: Example of the fault represented by RMNA

free(array);

...

if(flag){

array = calloc(n, sizeof(int));

array[0] = 0;
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}

if(array != NULL && array[0] == 0){ ... }

else { ... }

4.2.1.2 Faulty Memory Allocation

The proposed operators in this category generate mutants that mutate the way mem-

ory is allocated in order to measure the effectiveness of test suites at detecting faults

such as buffer overflow, underflow and undefined behaviour. Variable length arrays

(VLAs) are a class of C arrays that can be declared with a size that is not a constant

integer expression, where the size expression is evaluated at runtime. According to

the C specification, if size arguments of VLAs are not in a valid range, this could

result in undefined behaviour. Moreover, a violation of this constraint does not stop

code from being compiled and no compiler warning will be generated.

Table 4.4: Example of REDAWN

Original Program
(P)

char *str = malloc(n*sizeof(char));
strcpy(str, "hello");

Mutated Program
(P′)

char *str = NULL;
strcpy(str, "hello");

REDAWN replaces instances of memory allocation calls (malloc(),

calloc()) with NULL in order to generate mutants which measure the effec-

tiveness of test suites in identifying faults that occur due to unchecked return value

of memory allocation functions. Table 4.4 shows an application of this mutation

operator. In the program P in the table, malloc() may return NULL depending

upon the requested size. The subsequent uses of str (without checking for any

NULL-pointer) may cause the program to crash. REDAWN can reveal such a bug

by forcing the allocation to fail (always return NULL).

REDAWZ replaces the request size passed to memory allocation calls with 0

in order to inject zero allocation faults. The C specification states that for

any of the memory allocating functions, if a memory block of size 0 is requested,

the behaviour is implementation-defined, i.e. the value can be a NULL pointer or a
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unique pointer. One of the problems this can cause is that, for those implementa-

tions where allocation functions return a unique pointer, NULL checks, which are

considered adequate when receiving pointers through dynamic allocation, will pass.

This assumption can also lead to tests not detecting such faults. Subsequent uses

of such a pointer may cause buffer-overflow problems and contaminate other mem-

ory, thus lead the program to undefined behaviours. Table 4.5 shows an application

of REDAWZ where in P′ although allocation failed to return the request size, the

program will still trust the allocated pointer and return true, unless the programmer

wrote special checks to account for such behaviour.

Table 4.5: Example of REDAWZ

Original Program
(P)

int num = malloc(n*sizeof(int));
return num != NULL;

Mutated Program
(P′)

int num = malloc(0);
return num != NULL;

RESOTPE and REMSOTP mutate the data type of the sizeof() operator

that is typically used by programmers when dynamically allocating memory. This

mutation aims to generate faults that model the incorrect use of the sizeof()

operator on pointer data types. On some architectures it may be possible that for

a given data type T , sizeof(T) is equal to sizeof(T*). This may lead pro-

grammers that lack understanding of the C programming language to believe that

this is indeed the case. However, the effect of this is: sizeof(T) returns the size

of the data type T itself, while sizeof(T*) returns the size of a pointer (to T ).

Moreover, the C standard allows pointers to different types to have different sizes,

e.g. sizeof(char*) is not necessarily the same as sizeof(int*) which im-

plies that sizeof(T*) is not guaranteed to always be the same regardless of the

type of T . Faults of this nature can cause incorrect memory allocations and lead

to buffer-overflows. Table 4.6 shows applications of these mutation operators. For

instance, sizeof(char) returns 1 and sizeof(char*) returns 4 on a 32-bit

Linux system. In the mutated program P′ of REMSOTP in Table 4.6, the allocated

memory is less than desired. As a result, the subsequent uses of this memory may

cause buffer-overflows.
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Table 4.6: Examples of RESOTPE and REMSOTP

RESOTPE
Original Program

(P)
char *str;
str = malloc(n*sizeof(char));

Mutated Program
(P′)

char *str;
str = malloc(n*sizeof(char*));

REMSOTP
Original Program

(P)
char **str;
str = malloc(n*sizeof(char*));

Mutated Program
(P′)

char **str;
str = malloc(n*sizeof(char));

4.2.1.3 Faulty Heap Management

The proposed operators in this category generate mutants that model faults that can

occur due to improper memory management and also to test the effectiveness of test

suites in handling events where allocation functions may fail due to a lack of free

memory.

RMFS mutates instances of the free() standard C library function by re-

moving instances of free() in order to inject memory leaks into the program

(Table 4.7). As an example, the free() statement is removed in the mutated pro-

gram in Table 4.7. Because the free() statement and the memory allocation for

the same pointer are nested in a loop, removing the free() statement will cause

the memory pointed by data be lost, thereby leading to memory leaks.

Table 4.7: Examples of RMFS

Original Program
(P)

T *data;
for (int i = 0; i < m; i++){

data = malloc(n*sizeof(T));
...
free(data);

}

Mutated Program
(P′)

T *data;
for (int i = 0; i < m; i++){

data = malloc(n*sizeof(T));
...

}

REM2A and REC2A replaces instances of malloc() and calloc() with

alloca() (Table 4.8). Mutants generated by these operators dynamically allocate
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Table 4.8: Examples of REC2A and REM2A

REC2A
Original Program

(P)
int *nums;
nums = malloc(8*sizeof(int));

Mutated Program
(P′)

int *nums;
nums = alloca(8*sizeof(int));

REM2A
Original Program

(P)
int *nums;
nums = calloc(8, sizeof(int));

Mutated Program
(P′)

int *nums;
nums = alloca(8*sizeof(int));

memory on the stack instead of the heap. If a pointer to that memory is dereferenced

after the function containing the allocating call finished, the pointer is dangling

and the memory may have meanwhile been overwritten. Another problem with

using alloca() is the fact it is not guaranteed to return NULL if it fails to find

enough space on the stack and, depending on the implementation, it may cause

some parts of the stack to be overwritten. On the other hand, as memory allocated

using alloca() is automatically freed once the function that called it returns to

its caller, it is possible that this mutation may introduce double-free fault in the

program. For instance, the program snippet shown in Listing 4.3 uses alloca()

to allocate a piece of memory. However, this piece of memory is automatically

freed at the end of func and the memory pointed by data may be overwritten.

Therefore, the subsequent conditional statement may depend on an arbitrary value.

Furthermore, the following free() statement will fail and may cause the program

to crash.

Listing 4.3: Example of the fault represented by REC2A/REM2A

void func(T *data){

data = alloca(sizeof(T));

}

void test(){

T *data;

func(data);

...
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if(*data){ ... }

free(data);

}

4.2.2 Memory Fault Detection

Traditional Mutation Testing only uses the test output of the mutants and the test

output of the original to (strongly) kill the mutants. However, executing the mutants

against a test suite generates much richer information that is neglected in traditional

Mutation Testing. Memory Fault Detection (MFD) is a weakly killing criterion we

propose that uses one kind of such additional information: memory faults. If a

memory fault is detected in a mutant but is not detected in the original, one can

be sure that the memory fault must have been introduced into the mutant by the

mutation operator, thus the mutant can not be equivalent to the original in every

sense of “equivalent”. Memory Fault Detection can reveal presence of memory

faults that do not always propagate to the output, so some of the memory faults may

not reveal themselves in the test outcome, yet we still have other ways to detect

them during the execution.

Listing 4.4: Example of memory fault propagation

1 int foo(int* array, int size){

2 if(size == 0){

3 free(array);

4 array = NULL; // RMNA will remove this line

5 }

6 if(array == NULL || array[0] == 0){

7 return 0;

8 }

9 return 1;

10 }
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Listing 4.4 gives an example of a memory fault introduced by RMNA. After

operator RMNA is applied, the NULL assignment will be removed, which will in-

troduce a dangling pointer and a use-after-free defect. Depends on the values of

the arguments, the bug may or may not propagate to the output. Specifically, when

size is not 0, the defected block is not reached. If size is 0 and array is a

NULL-pointer, the defected block is reached but the value of array is not infected,

therefore the defect will not propagate to the output. On the other hand, if size is

0 and array is not a NULL-pointer, the second conditional statement may rely on

the value of a freed space and the return value can be arbitrary, therefore the defect

can propagate to the output and subsequently be detected by tests. When we apply

Valgrind to this mutant, a memory fault will be detected and reported, therefore we

can weakly kill this mutant even if the defect is not propagated to the output.

In this chapter, we propose using Valgrind [104] to detect memory faults as an

additional weak mutation killing criterion. This criterion requires the memory fault

detection tool to have consistently deterministic results, independent of the work-

load and running Environment of the platform. Valgrind uses a simulated environ-

ment to execute the subjects, independent of the environment of the host machine,

therefore it always provides consistent results. Despite other tools that can also de-

tect memory faults, we choose Valgrind because it is a stable tool and widely used

for memory fault detection. Valgrind can easily be changed to other memory fault

detection means.

For each mutant and each test, we evaluate the number of memory faults oc-

curred during execution using Valgrind, written MFD : P×T 7→N. We say a mutant

Mi is killed by Memory Fault Detection criterion if MFD(Mi, t) 6= MFD(PUT, t) for

some test case(s) t, where MFD(P, t) is the number of memory faults found when

executing program P against test case t. Notice that the original program may also

contain some memory faults, we only care whether a mutant contains ‘different’

memory faults from that in the original. However, it is very hard to precisely iden-

tify and distinguish newly introduced memory faults from the old ones. We sim-

plify this by only looking at whether the number of memory faults from the mutant
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is different from that from the original, based on the assumption that if new mem-

ory faults are introduced by an operator, the mutant will have a different number of

memory faults compared with the original.

Since MeMOs are designed to simulate real memory faults, we expect to see

a large number of mutants generated from MeMOs that can not be killed by the

traditional criterion but are killed by MFD criterion.

4.2.3 Control Flow Deviation

A program can be considered to be a network of nodes which represent branches in

the program and each test as a possible entry point into the network. If we consider

the execution of each mutated program as a path from a starting node (the point in

the program execution at which the mutant is executed) to a sink node (the point

at which the program terminates), then the set of mutants which generate a path

that is different in comparison to the path generated by the PUT can be classified as

weakly non-equivalent mutants.

Similar to the representation of control flow graphs [135], in Figure 4.1, test

cases are represented by circles labelled t1, . . . , t7, the mutation execution point is

labelled as M, the set of program branching states that make up the control flow for

a given program are labelled s1, . . . ,s7 and the sink state (program termination) is la-

belled s8. Figure 4.1 also shows an example execution of test case t4 (two graphs to

the left) where the control flow of the mutated program M 〈t4,s1,s3,s7,s8〉 is able to

deviate from the control flow of the original program P 〈t4,s1,s3,s5,s6,s8〉, whereas

in the execution of test case t7 (the graph to the right), the execution paths are the

same 〈t7,s1,s2,s3,s7,s8〉. We consider this kind of deviation as a distinguishing fac-

tor that can help reduce the set of survived mutants. We also consider this deviation

as a sign of test suite weakness, since the deviation shows that a mutant was able to

execute undesired code and pass all the test cases regardlessly.

Let CFG(P) be the control flow graph of program P and let E(G, t) be the edge

set of graph G for the execution of test case t. We say a mutant M is killed by the
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Control Flow Deviation (CFD) criterion, iff

∃t ∈ T : (EO = E(CFG(PUT), t))

∧ (EM = E(CFG(M), t))

∧ ((EO∪EM)− (EO∩EM) 6= /0)

On the other hand, if E(CFG(M), t) is the same as E(CFG(PUT), t), the mutant

survives. For example, in Figure 4.1 the original program is mutated at state s3,

and test case t4 drives the execution path to different states from s3 in the mutated

program (graph in the middle) and the original program (graph to the left). In such

case, (EO∪EM)− (EO∩EM) 6= /0 hence the mutant is killed regardless of other test

cases.

M
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Figure 4.1: Control Flow Deviation. Test t4 generates different control flow before and
after the mutation at state s3 (the two graphs to the left). Test t7 generates the
same control flow (the graph to the right).

In our experiments, we use GCov at the branch level to determine the execution

path of each test case. Therefore, we require the subjects to be single-threaded and

deterministic, otherwise GCov may fail to provide accurate information on some

executions. We use CFD criterion to further reduce the number of survived memory

mutants. However, CFD criterion is not specially designed to detect memory faults,

thus can be adopted by any Mutation Testing framework.
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4.2.4 Research Questions

This section presents the research questions concerning memory mutation operators

and the memory weak killing criteria, for which Section 4.4 provides the answers.

RQ1 What is the prevalence of memory and traditional mutants overall and per

program studied?

RQ2 What is the contribution of each memory mutation operator to the proportion

of memory mutants and TCE equivalent mutants found?

Our memory mutation operators are the first set of mutation operators designed

to simulate a wide range of memory faults. Therefore, the natural first research

question we consider concerns whether they can effectively inject artificial memory

faults. We answer this question by comparing the prevalence of the memory mutants

and mutants generated by traditional mutation operators. In RQ2, we take a close

look at each individual Memory Mutation Operator and analyse the contribution

of each memory mutant operator to the proportion of memory mutants and TCE

equivalent mutants. Since it is not trivial to determine whether a mutant is equivalent

to the original program, we adopt the TCE technique [74] to estimate a lower bound

of the number of equivalent mutants.

RQ3 What is the quality of memory mutations compared with traditional mutants?

What proportion of memory mutants are TCE-duplicates of the mutants gen-

erated by traditional operators?

RQ3 studies the quality of the memory mutants generated. We use mutation

score to approximate the quality of mutants. Given a test suite and two sets of

mutants, we say the set of mutants yielding a lower mutation score has a higher

quality, because the faults simulated by the mutants are more difficult to detect. To

answer this question we run both memory mutants and traditional mutants against

a set of good quality unit tests and compare their mutation score. In RQ3, we also

investigate how many memory mutants can be emulated by traditional mutation

operators. Memory mutants will be redundant if many of them are duplications
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of the mutants generated by the traditional operators. Again, we adopt the TCE

technique to assess whether a mutant is a duplicate of another. Because memory

faults are different from other kinds of faults, we expect to see a low percentage of

memory mutants that are TCE-duplicate to traditional mutants.

RQ4 How effective are the memory weakly killing criteria? What is the reduction

rate of survived memory mutants?

RQ5 What is the contribution and unique contribution of strongly killing, MFD

and CFD criteria?

RQ4 investigates the effectiveness of the memory weakly killing criteria.

When only the traditional strongly killing criterion is applied, some of these mem-

ory mutants may be not equivalent, yet still survive. This is due to the fact that

some memory faults do not propagate to the output. After weakly killing criteria

are applied, we expect to see that most of these mutants are identified and killed.

To answer RQ4 we compare the Mutation Scores before and after weakly killing

criteria are applied, and what is more important, how much we can reduce the sur-

vived mutants such that we can leave less survived mutants for further investigation

of their equivalence.

From another perspective of view, we are interested in how much each of the

strongly killing criterion, MFD and CFD criteria contributes in killing those non-

equivalent mutants. Specially, if we find all of the mutants that are killed by one

criterion, can be killed by another criterion, then the first criterion is totally sub-

sumed by the second one, thus can be abandoned without affecting the results. More

formally, the relation between the mutants killed by each criterion can be easily un-

derstood by a Venn Diagram in Figure 4.2. Sets T , M and C contain the mutants

killed by a test suite when the traditional (T ), Memory Fault Detection (M) or Con-

trol Flow Deviation criterion (C) is applied respectively. The Mutation Score with

respect to a specific criterion can be calculated as (S ∈ {T,M,C}):

MS =
|S|

|AllMutants|
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In the final research question, we are interested in the sizes of the sets T , M

and C in the proportion of the region K = T ∪M∪C. They correspond to how much

each criterion contributes to the identification of those non-equivalent mutants (K).

For example, the bigger the proportion of set T in K is, the greater will be the con-

tribution that the traditional criterion makes in identifying non-equivalent mutants.

Therefore, the more thoroughly we can kill non-equivalent mutants by applying the

traditional criterion alone. Furthermore, we would like to know the unique contribu-

tion of each criterion, i.e., the area covered by one criterion but not covered by any

other criterion. The unique contribution corresponds to how many non-equivalent

mutants can only be identified by the corresponding criterion. If a criterion has

zero-unique-contribution, or, in another words, all non-equivalent mutants that are

identified by this criterion can also be identified by other criterion/criteria, then we

can completely drop this criterion without losing Mutation Score accuracy. For-

mally, we define the contribution c and unique contribution u metrics as follows.

cS =
|S|
|K|

,uS =

|S− ∪
I∈{T,M,C},I 6=S

I|

|K|
, for S = T,M,C

For example, cT is calculated as the size of T divided by the size of K, or the

union of T , M and C, uM is calculated as the size of the area covered by M but

not covered by T or C, divided by the size of K. Specially, if there is a criterion S

having uS = 0, then the criterion is subsumed by other criteria, thus there is no need

to apply this criterion when other criteria are applied.

All Mutants

T

   M

   C

Figure 4.2: Venn Diagram of the relation between mutants killed by each criterion. Sizes
of the circles do not correspond to the real data.
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4.3 Experiments
We built a Mutation Testing tool targeting C programs which supports Memory

Fault Detection and Control Flow Deviation killing criteria. Some key components

of the framework are introduced in Section 4.3.1 and the experiment setup is de-

scribed later in Section 4.3.2.

4.3.1 Mutation Testing Framework

The overall framework of our Mutation Testing tool is illustrated in Figure 4.3.

It takes a program under test (PUT) and associated test suite as input, as well as

a configuration file containing paths to the source files to be mutated and other

parameters. After generating mutants and testing them against the test suite, the

mutation report for each mutant is generated, which contains the mutated point with

the Mutation Operator applied, whether the mutant has survived or been killed, and

a list or criteria that kill it if it is killed.

  

Mutation Report
Mutated Point, Mutation Operator, Survived (Killed by)

Mutation Report
Mutated Point, Mutation Operator, Survived (Killed by)

Mutation Report
Mutated Point, Mutation Operator, Survived (Killed by)
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Figure 4.3: Mutation Testing Tool work flow. It takes a program under test, a test suite
and a configure file as input, and outputs the mutation report for each mutants
generated.

The mutation engine in our tool was developed using TXL source transforma-

tion language [136]. TXL is a functional language, which provides a rule-based
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way of traversing and mutating the generated abstract syntax tree of a source file.

It has been used by many of previous works for Mutation Testing [123–128]. One

big advantage of using TXL is that the mutations are guaranteed to be safe, due to

the fact that the transformational rules are confined by a grammar which guaran-

tees the transformations will always be compilable and abide by the grammar of the

language.

After the mutants are generated, some basic mutation information including

the mutation point and the Mutation Operator applied are stored as part of the mu-

tation report for each mutant. The test driver then instruments the mutants and

compiles them. After the compilation, all the mutants are executed against the test

suite, which generates three independent results: the test result indicating whether

a mutant passes the regression test, the memory log including potential memory

faults and the coverage information.

To detect memory faults, the mutants are executed by Valgrind’s memcheck

tool [104] which generates the memory fault report for each mutant. The control

flow information is gathered using Gcov [137] to generate the control flow graph

for each mutant. All of this information is summarised in a single mutation report

for each mutant as the output of our tool.

4.3.2 Experimental Setup

With the framework introduced in Section 4.3.1, we applied MeMOs to 18 “real

world” C programs that implement unit tests using CuTest C testing frame-

work [138] (Table 4.9). We separate them into two groups: the first 16, relatively

small, PUTs are fully studied to answer the Research Questions, and 2 large PUTs

are analysed as a case study to verify the results of smaller subjects and to demon-

strate the scalability of our overall approach.

Libksi, the largest subject used, is an API library for Keyless Signature In-

frastructure (KSI) developed by the security company Guardtime. The other large

subject, libdssl, is a toolkit for network capture and SSL decryption. PeerWire-

Protocol is a C-based implementation of the BitTorrent peer wire protocol. This

program facilitates the exchange of file blocks between peers over the wire in a
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Table 4.9: Subject Programs under Test

PUT
NO. Program LoC # of Tests

Statement
Coverage(%)

# of Memory Management
Calls (malloc(),

calloc(), free())
1 PeerWireProtocol 1547 54 82.57 27
2 Craft 731 71 85.96 12
3 CfixedArraylist 497 1 26.19 12
4 ChashMapViaLinkedList 488 21 94.58 8
5 CAVLTree 405 9 56.94 4
6 CpseudoLRU 384 16 98.68 5
7 CHashMapViaQuadraticProbing 391 21 98.27 5
8 CtextureAtlas 301 7 97.65 4
9 Csplaytree 319 14 99.20 5
10 CstreamingBencodeReader 371 30 91.11 4
11 CSparseCounter 328 30 91.67 10
12 Cheap 207 16 98.13 2
13 CcircularBuffer 118 12 77.05 2
14 ClinkedListQueue 200 7 72.63 7
15 CbipBuffer 118 12 86.00 2
16 Cbitfield 87 4 75.81 6
L1 libdssl 6600 48 86.05 69
L2 libksi 19445 130 62.02 201

P2P BitTorrent system. CRaft is a C-based implementation of the Raft Consen-

sus protocol which implements the Raft Consensus Algorithm in order to manage

multiple fault-tolerant distributed systems. CpseudoLRU implements the Least Re-

cently Used (LRU) caching algorithm and CstreamingBencodeReader is a library

for reading and manipulating encoded data, which is the encoding used by the peer-

to-peer file sharing system BitTorrent for storing and transmitting loosely structured

data. The rest of the programs are implementations of common memory intensive

data structures whereas.

The main reason for choosing these programs is the fact that they are non-

trivial real-world programs ranging from 87 to 19445 lines of code, making them of

manageable size for our simple proof-of-concept research tool. Moreover, they were

used in previous studies as memory intensive benchmark subjects, and were known

to make extensive use of memory-based operations. Additionally, these programs

come with real-world test suites and half of them achieve over 90% of statement

coverage. In many cases, the regression test suite is well designed for testing a pro-

gram’s functional behavior, therefore it may not necessarily be good at exploiting

and revealing memory vulnerabilities of the program under test. For instance, spe-

cial memory tests should be designed to reach a certain potential memory defect and
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the input value should be adjusted to trigger the defect. Though in this study, we

did not use a specially designed memory test suite for testing, the default regression

tests of these subjects can be used for memory testing, because they are memory-

intensive benchmarks that are well tested for their memory behaviors. Additionally,

memory defects may not propagate to the output of the program, in which case the

traditional oracle, validating the output, may fail. Therefore, in this study, we intro-

duced Memory Fault Detection and Control Flow Deviation along with traditional

oracle for memory testing. The number of tests, statement coverage and the number

of memory management calls for each subject are also reported in Table 4.9. All of

the subject programs can be found in GitHub repositories.

After we generated mutants from these subject programs, we use traditional

strongly killing criterion and both strongly and weakly killing criteria (MFD/CFD)

to kill the mutants. For each mutant, we collect the information of whether it is

killed and under which criterion if it is killed, and summarise this information to

answer research questions. In order to compare memory mutants with traditional

mutants, we adopted traditional selective mutation operators to generate traditional

mutants. These mutation operators are list in Table 4.10. We use gcc to compile all

the traditional and memory mutants, then use diff to check their TCE-equivalence

to each other and the original.

Table 4.10: Traditional Selective Mutation Operators

Operator Description
ABS replaces expressions expr with abs(expr) or -abs(expr)
AOR replaces +, -, *, /, % with each other
LCR replaces && and || with each other
ROR replaces >, >=, <, <=, == and != with each other
UOI replaces variable v with v++, ++v, v-- or --v

All experiments are run in a Ubuntu 14.04.3 system with 8GB RAM. TXL

version 10.6a is used to transform programs, gcc version is 4.8.4 and -O3 is used to

optimise programs.
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4.4 Results
In this section, we answer the Research Questions, one by one, using the exper-

imental results of the first 16 subjects, then compare and discuss the results of 2

large subjects in Section 4.4.6.

4.4.1 RQ1. Prevalence of Memory and Traditional Mutants

To understand the prevalence of memory mutants and traditional mutants, answer-

ing RQ1, we report the number of each type of mutants generated per program, as

shown in Table 4.11 (2nd and 6th column). Overall, the results indicate that Mem-

ory Mutation Operators generate much fewer mutants than traditional mutants. In

total there are 368 memory mutants generated, only accounting for 2.8% of the mu-

tants generated by traditional operators. This suggests that using memory mutation

is practical as it only introduces a very small number of additional mutants.

We can see that all programs, no matter how small, do possess memory mu-

tants, ranging between 5 and 68 mutants. The table also shows almost a quarter

of the memory mutants come from the program PeerWireProtocol and Craft, while

two buffer data structures circularBuffer and bipBuffer contribute the least memory

mutants. To determine the relationship between the prevalence of the memory mu-

tants and the traditional mutants, we computed the Spearman rank correlation. The

result suggests there is a strong positive correlation between the two (ρ = 0.725, p

= 0.001), and the correlation is statistically significant.

We also present the numbers of TCE-equivalent and duplicate mutants in the

table. The numbers of TCE-equivalent mutants are presented in Column TCE-

equivalent, and TCE-duplicate columns give the numbers of mutants that are du-

plicates of other mutants in the same type (memory or traditional), after ruling out

TCE-equivalent mutants. Note that for each duplicate-group (within which the mu-

tants are TCE-equivalent of each other), one and only one mutant need to be pre-

served as a representative of the group, while the others can be discarded. We report

the number of TCE-duplicate mutants that can be discarded in the table. Among 368

generated memory mutants, there are 19 or 5.2% TCE-equivalent or duplicate mu-

tants, while the ratio is 17.4% for traditional mutants. This shows MeMOs may



4.4. Results 91

Table 4.11: Number of mutants and Mutation Scores for memory and traditional mutants
by subject. The numbers of mutants that are TCE-equivalent of the originals are
given in “TCE-equivalent”. The column “TCE-duplicate” shows the number of
mutants that can be discarded due to duplication of other mutants. (The mutant
that is preserved from each duplicate-group is not included in the numbers)

PUT
No.

Memory Mutants Traditional Mutants

Generated
TCE-

equivalent
TCE-

duplicate
Mutation

Score Generated
TCE-

equivalent
TCE-

duplicate
Mutation

Score
1 68 1 0 0.433 1598 229 61 0.659
2 49 3 0 0.457 1579 240 0 0.795
3 39 11 1 0.111 570 384 13 0.295
4 23 0 0 0.652 820 93 35 0.767
5 22 0 0 0.364 1542 268 56 0.550
6 14 0 0 0.714 927 81 14 0.731
7 20 0 0 0.800 927 110 66 0.772
8 20 0 0 0.600 573 73 8 0.679
9 14 0 0 0.786 802 91 33 0.656

10 20 0 0 0.700 944 119 28 0.764
11 31 2 0 0.310 1173 53 24 0.796
12 9 0 0 0.667 572 70 35 0.846
13 5 0 0 0.400 409 36 7 0.773
14 18 1 0 0.353 367 35 3 0.623
15 5 0 0 0.400 293 10 0 0.703
16 11 0 0 0.182 237 26 16 0.733

Total 368 18 1 0.476 13333 1918 399 0.712

introduce much less equivalent or duplicate mutants than traditional operators.

4.4.2 RQ2. Contribution of Memory Mutation Operators

To take a close look at each Memory Mutation Operator, we report the number of

mutants generated from each MeMO, as well as the percentage of their contribution

to all memory mutants (RQ2). Moreover, we report the numbers that are TCE-

equivalent to the original as an estimated lower bound on the number of equivalent

mutants. The results can be found in Table 4.12.

The numbers of generated mutants from all Memory Mutation Operators are

comparable (except REMSOTP), contributing 7.9% to 17.7% of all generated mu-

tants (1.4% for REMSOTP). Recall that REMSOTP only applies to the unary

operator sizeof() where the argument is a data type pointer, which is not a com-

mon case. Therefore it is anticipated that REMSOTP generates fewer mutants

than other operators. Among all 368 memory mutants, 18 (or 4.9%) of them are

TCE-equivalent to their original programs. The number of TCE-equivalent mutants

varies from 0 to 7, or 0.0% to 20% of generated mutants across all MeMOs. None
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Table 4.12: Number of mutants and TCE-equivalent mutants by operator.

Category
Mutation
Operator

Generated Mutants
(% of all mutants)

TCE-equivalent
Mutants

TCE-equivalence
Rate (%)

Uninitialized
Memory Access

REC2M 30 (8.1%) 0 0.0
RMNA 39 (10.6%) 7 17.9

Faulty Memory
Allocation

REDAWN 65 (17.7%) 2 3.1
REDAWZ 63 (17.1%) 2 3.2
RESOTPE 53 (14.4%) 5 9.4
REMSOTP 5 (1.4%) 1 20.0

Faulty Heap
Management

RMFS 54 (14.7%) 0 0.0
REM2A 29 (7.9%) 1 3.4
REC2A 30 (8.2%) 0 0.0

All 368 (100%) 18 4.9

of the mutants generated from REC2M, RMFS or REC2A are TCE-equivalent to

their originals, implying they may generate less equivalent mutants as well.

On the other hand, about 20% of the mutants generated from RMNA or REM-

SOTP are TCE-equivalent to their originals. Recall that RMNA only removes

NULL assignment, this makes it more likely to generate TCE-equivalent mutants

if the variable being assigned NULL is never used later. REMSOTP replaces the

argument of sizeof() from type * to type, which can also easily generate

TCE-equivalent mutants if they are of the same size and can be determined at com-

pilation. The answer to RQ2 is that, all MeMOs contribute equally to all generated

memory mutants, while REMSOTP contributes slightly less, and only 4.9% of all

mutants are TCE-equivalent, while the ratio varies from 0.0% to 20.0% across all

MeMOs.

4.4.3 RQ3. Quality of MeMO

We use Mutation Score as a quantitative estimation of the quality of memory and

traditional mutants. Column 5 and Column 9 in Table 4.11 summarise the Muta-

tion Scores of memory mutants and traditional mutants per program. All Mutation

Scores are calculated after filtering out all TCE-equivalent mutants and preserving

only one mutant from each TCE-duplicate group, to achieve a more precise estima-

tion of Mutation Scores. Overall, the Mutation Score of memory mutants (0.476) is

smaller than the Mutation Score of traditional mutants (0.712), indicating memory

mutants are much more difficult to kill than traditional mutants. We can see that
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for 14 out of 16 programs, the Mutation Score of memory mutants is lower than

that of traditional mutants. For programs, SparseCounter (11th), circularBuffer

(13th) and bitfield (16th), we observe a considerable difference between Mutation

Scores of memory mutants and traditional mutants. It is also noticeable that tra-

ditional mutants yield a slightly lower Mutation Scores than memory mutants for

2 programs. In addition, we calculated the Spearman correlation coefficient ρ for

Mutation Scores of memory mutants and Mutation Scores of traditional mutants,

to see whether there is a correlation between them. Our result indicates that there

is little evidence for any correlation between these two types of Mutation Scores

(ρ = 0.273, p = 0.304).

Furthermore, we investigate the number of memory mutants that are TCE-

duplicate of traditional mutants, as another assessment of the quality of Memory

Mutation Operators. Memory mutants will be redundant if many of them are dupli-

cates of the mutants generated from traditional operators. As before, we adopt TCE

technique to assess whether a mutant is a duplicate of another. If the TCE technique

shows the machine code of a memory mutant and a traditional mutant are identical,

we say the memory mutant is a TCE-duplicate of the traditional mutant. The result

of TCE-duplicates can be found in Table 4.13.

Table 4.13: Number of memory mutants that are TCE-duplicates of traditional mutants.

Category
Mutation
Operator

TCE-duplicate
Mutants

TCE-duplicate
Rate (%)

Uninitialized
Memory Access

REC2M 0 0.0
RMNA 9 23.1

Faulty Memory
Allocation

REDAWN 2 3.1
REDAWZ 3 4.8
RESOTPE 5 9.4
REMSOTP 1 20.0

Faulty Heap
Management

RMFS 0 0.0
REM2A 1 3.4
REC2A 0 0.0

All 21 5.7

According to the table, only 5.7% of memory mutants are TCE-duplicates, and

for some of the MeMOs none of the mutants is TCE-duplicates. If a memory mu-

tant is TCE-equivalent to the original, then it will be a TCE-duplicate because any

traditional mutant that is TCE-equivalent to the original will be TCE-equivalent to
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this memory mutant, making it a TCE-duplicate. After we filter out all the TCE-

equivalent mutants, there remain only 3 TCE-duplicates, 2 from operator RMNA,

and 1 from operator REDAWZ. In another words, only less than 1% of (over 300)

TCE-inequivalent memory mutants can be generated from traditional operators.

This suggests MeMOs will inject almost totally different kinds of artificial faults

and make the test suite more comprehensive if Mutation-based test case generation

techniques are applied. The answer to RQ3 is memory mutants are much harder

to kill than traditional mutants according to their Mutation Scores, demonstrating

Memory Mutation Operators generate high quality mutants. Among all memory

mutants, less than 1% are TCE-duplicates to traditional mutants, indicating Mem-

ory Mutation Operators are good complements to traditional operators, introducing

very few duplicated mutants.

4.4.4 RQ4. Effectiveness of Weakly Killing Criteria

Since applying only strongly killing criterion results in low Mutation Score, we in-

troduce Memory Fault Detection and Control Flow Deviation weakly killing criteria

to further identify faulty memory mutants. In RQ4, we study the effectiveness of

MFD and CFD weakly killing criteria by looking at the Mutation Scores of memory

mutants, when strongly and weakly killing criteria are applied. More importantly,

we want to know how many mutants that survived strongly killing criterion are

killed by weakly killing criteria, thereby reducing mutants survived. The results are

reported in Table 4.14 and Figure 4.4. In the table, Column 3 to Column 5 report

the Mutation Scores for each operator when strongly killing, CFD or MFD crite-

rion alone is applied, and the last column shows the Mutation Scores when all three

criteria are applied together. These are the results after filtering out TCE-equivalent

mutants and TCE-duplicate mutants. We only filter out TCE-duplicate mutants that

are duplicates of the mutants generated from the same operator, because if there are

duplicates from different operators, it would be unfair to favour one operator and

discard all the other TCE-duplicate mutants from other operators.

From Table 4.14 we can see that, for 7 out of 9 operators the Mutation Scores

with respect to strongly killing criterion are below 0.6. The highest Mutation Score
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Table 4.14: Mutation Scores by operator while strongly killing, CFD or/and MFD criteria
are applied

Category
Mutation
Operator

Mutation Score
(Strongly killed)

Mutation Score
(CFD)

Mutation Score
(MFD)

Mutation Score
(Weakly killed)

Uninitialized
Memory Access

REC2M 0.167 0.233 0.667 0.700
RMNA 0.563 0.625 0.500 0.656

Faulty Memory
Allocation

REDAWN 0.841 0.889 0.841 0.889
REDAWZ 0.459 0.459 0.820 0.820
RESOTPE 0.479 0.521 0.896 0.896
REMSOTP 0.000 0.000 0.200 0.200

Faulty Heap
Management

RMFS 0.019 0.151 0.019 0.151
REM2A 0.464 0.429 0.607 0.643
REC2A 0.833 0.800 0.900 0.900

All 0.476 0.516 0.653 0.702
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Figure 4.4: Reduction of equivalent mutants after introducing Memory Fault Detection and
Control Flow Deviation killing criteria. The percentage of the darker bars is
calculated as “number of mutants survived from strongly killing criterion but
killed by MFD and/or CFD” divided by “number of mutants survived from
strongly killing criterion”.

is 0.833, while the lowest is 0. This means that none of the mutants generated by

the operator (REMSOTP) was killed under strongly killing criterion. When both

strongly and weakly killing criteria are applied, the Mutation Score for every mu-

tation operator increases, with the biggest increase from 0.167 to 0.700 (REC2M).

Overall, the Mutation Score increases from 0.476 to 0.702, indicating that there

is a considerable amount of memory mutants can be weakly killed but cannot be

strongly killed. Another interesting finding is that for some operators, applying
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MFD (CFD) alone is sufficient to reach the same Mutation Scores as that achieved

by applying all criteria. In these cases, applying other criteria does not kill any addi-

tional mutants, therefore the other criteria are completely subsumed by MFD(CFD).

From another perspective, the weakly killing criteria can help with reducing

survived mutants, thus reducing the number of potential equivalent mutants that

may require further investigation. We report the reduction rate of survived mutants

in Figure 4.4. In the figure, each 100% bar represents all the survived mutants for

each Memory Mutation Operator with respect to the strongly killing criterion, or T

referring to the Venn Diagram in Figure 4.2. The darker part of each bar represents

the ratio of these mutants killed by weakly killing criteria, or R = T ∩ (M ∪C)

referring to Figure 4.2, then the percentage number on the dark bars is calculated as

|R|/|T |×100%. With 43% on average, the reduction rate varies from 13% to 80%.

This result shows that about two-fifths of the survived mutants are not equiv-

alent and can be weakly killed. By weakly killing these mutants, we can save test

effort when survived mutants need further investigation of their equivalence. The

answer to RQ4 is, Memory Fault Detection and Control Flow Deviation criteria are

effective in reducing the number of survived mutants with the highest reduction rate

of 80% (RESOTPE), while the average reduction rate is 43%.

4.4.5 RQ5. Contribution of Killing Criteria

To further understand the relationship between the strongly and proposed weakly

killing criteria, we calculate the contribution, c, and unique contribution, u, metrics

as defined in Section 4.2.4 for each criterion. The result, by subject, is given in

Table 4.15, where the maximum contribution or unique contribution is highlighted

for each subject. According to the table, there appears to be no obvious pattern in

the contribution or unique contribution of a criterion across all subjects, meaning

each criterion may have different contribution to killing non-equivalent mutants for

different subjects. Also, on average, there is no criterion with 0 unique contribution.

Therefore, each criterion is required in killing all these non-equivalent mutants.

The answer to RQ5 is, different criteria perform differently across all subjects,

furthermore, each criterion has a non-zero unique contribution, meaning that aban-
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Table 4.15: Contribution and Unique Contribution of strongly and weakly killing criteria

PUT
No.

Contribution Unique Contribution
T M C T M C

1 0.690 0.833 0.881 0.000 0.119 0.167
2 0.618 0.971 0.706 0.029 0.265 0.000
3 0.375 1.000 0.250 0.000 0.625 0.000
4 0.882 0.941 0.941 0.000 0.059 0.059
5 0.615 0.769 0.615 0.000 0.385 0.000
6 0.909 0.909 1.000 0.000 0.000 0.091
7 0.941 1.000 1.000 0.000 0.000 0.000
8 0.600 1.000 0.600 0.000 0.400 0.000
9 0.917 0.917 1.000 0.000 0.000 0.083

10 0.778 1.000 0.667 0.000 0.222 0.000
11 0.409 1.000 0.409 0.000 0.591 0.000
12 1.000 1.000 1.000 0.000 0.000 0.000
13 0.500 1.000 0.250 0.000 0.500 0.000
14 0.500 0.833 0.667 0.000 0.333 0.167
15 0.500 1.000 0.500 0.000 0.500 0.000
16 0.400 0.800 0.600 0.000 0.400 0.200

All 0.678 0.931 0.735 0.004 0.245 0.053

doning any criterion may result in inadequate testing.

4.4.6 A Case Study

The conclusions, so far, are drawn from relatively small subjects (87 – 1547 LoC).

To investigate whether the conclusions can be generalised to larger subjects, we con-

ducted the same experiments on two large subjects, libdssl (6600 LoC) and libksi

(19445 LoC), respectively.

The number of generated mutants, TCE-equivalent mutants and TCE-duplicate

mutants for both subjects are summarised in Table 4.16. Being consistent with the

previous result, the number of memory mutants remains a small portion (1% – 3%)

of the number of traditional mutants. Moreover, the proportion of TCE-equivalent

or TCE-duplicate memory mutants remains at low (5.6%), while the number is

10.3% for traditional mutants. These numbers are 5.2% and 17.4% respectively

for the first 16 smaller PUTs.

For understanding the prevalence of memory mutants by Memory Mutation

Operators, we analyse the number of generated mutants and TCE-equivalent mu-
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Table 4.16: Number of mutants and Mutation Scores of memory and traditional mutants for
large subjects. The numbers of mutants that are TCE-equivalent of the origi-
nals are given in “TCE-equivalent”. The column “TCE-duplicate” shows the
number of mutants that can be discarded due to duplication of other mutants.
(The mutant that is preserved from each duplicate-group is not included in the
numbers)

PUT
No.

Memory Mutants Traditional Mutants

Generated
TCE-

equivalent
TCE-

duplicate
Mutation

Score Generated
TCE-

equivalent
TCE-

duplicate
Mutation

Score
L1 288 69 0 0.183 20743 2573 821 0.709
L2 970 2 0 0.475 47375 1712 1910 0.817

1–16 Total 368 18 1 0.476 13333 1918 399 0.712
Total 1626 89 1 0.434 81451 6203 3130 0.775

tants for each MeMO, using the memory mutants from the two large subjects. This

result can be found in Table 4.17. It is notable that, RMNA alone generated 70%

of all the memory mutants. This is because both of the large subjects are security

libraries, which usually contain a large number of NULL-assignments for security

reasons. Despite a large number of RMNA mutants, the ratio of TCE-equivalent

mutants regarding RMNA remains at a relatively high level (8.3%) as it is for

smaller subjects, implying that RMNA is more likely to generate equivalent mu-

tants than other MeMOs. For the rest of the mutation operators, the numbers of

generated mutants are comparable, as they are for smaller subjects. Furthermore,

the overall TCE-equivalence ratio (6.0%) is comparable with the previous result

(4.9%).

Table 4.17: Number and proportion of TCE-equivalent mutants and mutants that are TCE-
duplicate to traditional mutants, case study on two large subjects.

Mutation
Operator

Generated Mutants
(% of all mutants)

TCE-equivalent
Mutants

TCE-equivalence
Rate (%)

TCE-duplicate
Mutants

TCE-duplicate
Rate (%)

REC2M 19 (1.6%) 0 0.0 0 0.0
RMNA 833 (70.2%) 69 8.3 1 0.1

REDAWN 74 (6.2%) 0 0.0 3 4.1
REDAWZ 68 (5.7%) 0 0.0 4 5.9
RESOTPE 76 (6.4%) 2 2.6 0 0.0
REMSOTP 4 (0.3%) 0 0.0 0 0.0

RMFS 122 (10.3%) 0 0.0 0 0.0
REM2A 43 (3.6%) 0 0.0 0 0.0
REC2A 19 (1.6%) 0 0.0 0 0.0

All 1187 (100%) 71 6.0 8 0.7

Table 4.17 also reports the number of TCE-duplicate mutants that are TCE-

duplicates of traditional mutants. As an indicator of the quality of the Memory
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Mutants, the overall ratio of TCE-duplicate mutants remains at low (0.7%), indicat-

ing that most memory mutants cannot be simulated by traditional operators. The

same ratio for smaller subjects is 5.7%. The fifth and the last column of Table 4.16

report the strongly killing Mutation Scores for memory mutants and traditional mu-

tants respectively. For these two large subjects (and most of the smaller subjects),

the Mutation Scores of memory mutants are consistently lower than the Mutation

Scores of traditional mutants, implying that memory mutants are harder to kill using

the same test suites.

Table 4.18 reports the Mutation Scores for each MeMO when strongly killing,

CFD or MFD is applied alone (Columns 2–4) and when all criteria are applied (Col-

umn 5). More importantly, we are interested in how many non-equivalent mutants

that survive the strongly killing criterion, but are captured by our weakly killing cri-

teria. These numbers are reported in the last column, represented as the proportion

of weakly killed mutants in all survived mutants (from strongly killing criterion).

According to the table, by applying weakly killing criteria, we can reduce by up to

71%, the numbers of survived mutants (80% for the 16 smaller subjects), with an

average of 25% reduction rate (43% for smaller subjects). These results are compa-

rable with the previous results on smaller subjects.

Table 4.18: Mutation Scores by operator while strongly killing, CFD or/and MFD criteria
are applied, and the reduction rate of survived mutants, case study on two large
subjects.

Mutation
Operator

Mutation Score
(Strongly killed)

Mutation Score
(CFD)

Mutation Score
(MFD)

Mutation Score
(Weakly killed)

Reduction Rate of
Survived Mutants (%)

REC2M 0.105 0.105 0.105 0.105 0
RMNA 0.444 0.529 0.476 0.546 18

REDAWN 0.676 0.838 0.176 0.865 58
REDAWZ 0.456 0.662 0.471 0.765 57
RESOTPE 0.703 0.811 0.676 0.811 36
REMSOTP 0.250 0.750 0.250 0.750 67

RMFS 0.025 0.213 0.025 0.213 19
REM2A 0.279 0.512 0.651 0.791 71
REC2A 0.526 0.526 0.842 0.842 67

All 0.421 0.534 0.429 0.568 25

Lastly, we report the contribution and unique contribution of all three criteria

for the large subjects in Table 4.19. Similarly, all criteria have non-zero unique

contribution, indicating that abandoning any criterion will mistakenly label some
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non-equivalent mutants as equivalent and, therefore, lead to less accurate Mutation

Scores.

Table 4.19: Contribution and Unique Contribution of strongly and weakly killing criteria,
case study on two large subjects.

PUT
No.

Contribution Unique Contribution
T M C T M C

L1 0.245 0.209 0.945 0.006 0.049 0.650
L2 0.900 0.930 0.940 0.002 0.057 0.014
All 0.742 0.755 0.941 0.003 0.055 0.168

4.4.7 Overall Findings

Overall, memory mutants injected by Memory Mutation Operators are more dif-

ficult to kill than the traditional mutants, as suggested by their Mutation Scores.

Moreover, MeMOs inject faults that are almost completely different from the kind

of faults injected by traditional operators; only less than 1% of memory mutants are

found to be TCE-duplicate of traditional mutants. Our results also show that the

number of memory mutants accounts for only 2.0% of traditional mutants. Intro-

ducing MeMOs will therefore cost only a small portion of the overall testing effort.

A low Mutation Score of memory mutants also suggests that the traditional

strongly killing criterion is inadequate for distinguishing memory faults. After the

MFD and the CFD weakly killing criteria are applied, the Mutation Scores for

memory mutants increase drastically, indicating that these newly introduced cri-

teria effectively distinguish memory faults, giving more accurate Mutation Scores.

Furthermore, we found up to 80% of the mutants survived from strongly killing

criteria were determined to be non-equivalent by these weakly killing criteria, re-

ducing the number of survived mutants that may require further investigation for

their equivalence. By taking a closer look at which mutants are killed by each crite-

rion, we found both strongly killing criterion and weakly killing criteria are required

for killing non-equivalent mutants, while each criterion performs differently across

subjects.

We used TCE technique to identify TCE-equivalent and TCE-duplicate mu-

tants and filtered them out accordingly in our experiments. This is the first work
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that we are aware of to handle duplicate mutants. The use of the TCE technique re-

sulted in different values compared to a previous study that included them [2]. This

confirms that the lack of handling equivalent and duplicate mutants may lead to

inaccurate results in other studies. In extreme cases, it might even affect their con-

clusions, and so our findings also suggest that TCE should be considered in other

Mutation Testing studies.

4.5 Threats to Validity
In this section, we summarise some potential threats to validity.

4.5.1 Internal Validity

We cannot inspect how many memory mutants are guaranteed to be equivalent to

the original since the equivalence of mutants is undecidable [72, 73]. This could

introduce bias to the Mutation Scores calculated. We sought to minimise the influ-

ence of equivalent mutants by adopting the TCE technique and estimating the lower

bound of the number of equivalent mutants.

We use Mutation Score to indicate the quality of the mutants. However, low

Mutation Scores do not necessarily indicate high-quality of the mutants, as it also

may be caused by a low-quality test suite. To minimise this threat, we report the

number of tests and their statement coverage for each subject. In fact, half of the

subjects have a coverage level above 90%, indicating the quality of the test suites

is reasonably adequate. In addition, we focus on the relative differences between

Mutation Scores of traditional mutants and memory mutants, instead of the absolute

value of Mutation Scores. Therefore, the quality of the tests has little impact on the

overall conclusion.

In this work, we use Valgrind and Gcov to instrument the PUTs in order to

gather memory fault and control flow coverage information during the execution.

Whether these two instrumentations affect each other remains untested. This could

be an internal threat to the validity of the reduction rate of survived mutants. We

mitigate this threat by using branch coverage instead of statement coverage, so that

Valgrind’s instrumentation would not likely to affect the coverage outcome. Also,
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we only focus on the number of memory faults in Valgrind’s report after executing

a program. Since it is very unlikely that Gcov would introduce additional and dif-

ferent memory faults in the original and a mutant, so we have confidence that Gcov

does not affect the output of Valgrind.

Another threat to validity comes from the execution environment. The pro-

grams and the mutants are run in Valgrind’s virtual environment, which may differ

from a real environment. This could bias the number of survived mutants with re-

spect to each killing criterion. Since Valgrind uses a simulated processor, which

well mimics the environment of a real processor, to execute the programs, it can

hardly affect the execution path or the output of a program. Even though sometimes

Valgrind prevents a program from crashing due to memory faults but continue exe-

cuting it, it will record the memory faults so that we can still kill this mutant with

Memory Fault Detection criterion, so that this threat is alleviated.

4.5.2 External Validity

All of the conclusions are drawn from the PUTs ranging from small sizes to fairly

large sizes. However, they are not guaranteed to hold for very large programs. To

mitigate the threat to validity, we conducted our research on 16 subject programs

with a variety of sizes and different kinds of functionalities, then verified the results

on 2 large real-world programs. The results show that the conclusions are consistent

when the sizes of the programs scale. So we expect to see similar results from even

larger subjects in the future.

Recall that most of the MeMOs apply only on malloc/free routines, the

number of mutants generated must relate to how frequently a program uses the

routines. This could lead to a threat to the validity of the conclusion that MeMOs

effectively insert memory faults to the subject programs in terms of the number of

generated mutants. From another perspective, if a program uses dynamic memory

allocation less frequently, the program is less likely to have memory faults and needs

memory related Mutation Testing less, thus the severity of this threat is reduced.

Memory Fault Detection and Control Flow Deviation killing criteria are orig-

inally designed for killing memory mutants, because they are hard to be killed by
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comparing the outputs. So we only reported the contribution and unique contribu-

tion of criteria on memory mutants, but there is no preventing these weakly killing

criteria from being applied on traditional mutants. However, their contribution on

traditional mutants is likely to be different since there are much fewer memory faults

in traditional mutants.

4.6 Conclusion
Mutation Testing has been proved to be an effective way to test programs. However,

traditional Mutation Operators only mimic general faults while memory faults may

be missed by these operators. In this chapter, we have proposed 9 Memory Mutation

Operators (MeMOs) simulating general memory faults. By applying MeMOs to

18 real world programs, we found that these operators are not only effective in

inserting memory faults but also produce memory mutants that are harder to kill

than traditional mutants. We also found that memory mutants are very different

from the traditional mutants, and only less than 1.9% of them can be generated

using traditional operators directly.

In order to effectively detect these artificial memory faults and identify more

non-equivalent mutants, we proposed Memory Fault Detection and Control Flow

Deviation weakly killing criteria to aid traditional Mutation Testing. We collected

the memory faults and the control flow graph coverage of mutants and of the original

program and used this information to reduce the number of survived mutants. The

experimental results showed that introducing these two killing criteria could further

reduce the survived mutants by up to 80%. Finally, we investigated the contribution

and unique contribution of strongly and weakly killing criteria. The results suggest

that all criteria have a non-zero unique contribution, while there is no guarantee of

which criterion alone performs the best in killing non-equivalent memory mutants.



Chapter 5

Higher Order Mutation for Software

Improvement

In this chapter, we introduce the HOMI approach to improve non-functional prop-

erties of software while preserving the functionality, using both Selective Muta-

tion Operators and Memory Mutation Operators introduced in the previous chapter.

HOMI utilises search-based higher order mutation testing [139] to effectively ex-

plore the search space of varying versions of a program. Like other previous GI

work [14, 15, 21], HOMI relies on high-quality regression tests to check the func-

tionality of the program. Given a program p and its regression tests T . HOMI

generates two types of mutants that can be used for performance improvement. A

GI-FOM is constructed by making a single syntactic change to p, which improves

some non-functional properties of p while passing all the regression tests T . Having

the same characteristics as GI-FOMs, a GI-HOM is constructed from the combina-

tion of GI-FOMs.

By combining with Mutation Testing techniques, we specifically utilise equiv-

alent mutants which are expressly avoided by mutation testers where possible [74].

We implemented a prototype tool to realise the HOMI approach. The tool is de-

signed to focus on two aspects of software runtime performance: execution time and

memory consumption. Time and space are important qualities for most software,

especially on portable devices or embedded systems where the runtime resources

are limited. Moreover, these two qualities are usually competing with each other,
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yielding an interesting multi-objective solution space. Our tool produces a set of

non-dominated GI-HOMs (thus forming a Pareto front). We evaluate our tool using

four open source benchmarks. Since the tool requires no prior knowledge about the

subjects, it can be easily applied to other programs.

The chapter presents evidence that using Higher Order Mutation is an effective,

easy to adopt way to improve existing programs. The experimental results suggest

that equivalent First Order Mutants (FOMs) can improve the subject programs by

14.7% on execution time or 19.7% on memory consumption. Further results show

that by searching for GI-HOMs, we can achieve up to 18.2% time reduction on

extreme cases. Our static analysis suggests that 88% of the changes in GI-HOMs

cannot be achieved by ‘plastic surgery’ based approaches. The contributions of this

work are as follows:

1. We introduce an automatic approach to improve programs via Higher Order

Mutation, which explores program search space at a fine granularity while

maintaining good scalability.

2. We evaluate our approach on four open source programs with different sizes.

We report the results and demonstrate that our approach is able to reduce the

execution time by up to 18.2% or to save the memory consumption by up to

19.7%.

3. The results of a manual analysis are reported to show that our approach works

on a smaller granularity, such that 88% of the changes found by our approach

cannot be achieved by line based ‘plastic surgery’ approaches.

4. We also show evidence that it is possible to combine the HOMI approach with

Deep-Parameter-optimisation approach to further improve the performance.

5.1 The HOMI approach
We propose the HOMI approach, a higher order mutation based solution to GI.

Figure 5.1 shows the overall architecture of the HOMI approach. Given a subject

program with a set of regression tests, and some optimisation goals, HOMI applies
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SBSE to evolve a set of GI-HOMs that improve the properties of interest while

passing all the regression tests. To explore the search space efficiently, we follow

the current practice of GI in separating our approach into two stages [63]. In the first

stage, we apply first order mutation to find locations in the program at which making

changes will lead to significant impact on the optimisation goals. In the second

stage, we apply a multi-objective search algorithm at these program locations to

construct a Pareto front of GI-HOMs.

Multi-
Objective 

Search
Subject

FOMs HOMs
HOMs

HOMs
FOMs

FOMs
FOMs
GI-FOMs

Stage I Stage II

HOMs
GI-HOMs

Sensitivity
Analysis

Regression
Tests

Properties 
under 

optimisation

Inputs Output

Fitness
Evaluation 
Harness

Figure 5.1: The overall architecture of the HOMI approach.

5.1.1 Stage I: Sensitivity Analysis

Sensitivity analysis has been shown to be an effective way to reduce the search

space in previous GI work [15,17,63]. Given a subject program under optimisation,

some code pieces may have a greater impact on the properties of interest than oth-

ers. Sensitivity analysis seeks to find small portions of code that have the greatest

impact on the properties of interest. Thus, the subsequent optimisation can focus

on a manageable amount of code, effectively reducing the search space. We use

the same first order mutation based sensitivity analysis approach as introduced in

Chapter 3, to gather sensitivity information. We use this form of sensitivity anal-

ysis because it provides finer granularity than traditional statement or line-based

sensitivity analysis.

As shown in Figure 5.1, HOMI first generates a set of FOMs of the subject

program and then evaluates them using a fitness evaluation harness. The evaluation
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harness is composed of regression tests and the measurement components for opti-

misation goals. It runs each FOM on all the tests and outputs the measurements of

the optimisation goals as fitness values. After the fitness evaluation, HOMI removes

FOMs that fail any regression tests and keeps only the survived ones. We do this

because any mutants that pass all the regression tests are more likely to preserve the

correctness of the subject. Finally, HOMI applies a non-dominated sorting [115] to

rank all the survived FOMs by their fitness values.

The sensitivity analysis stage outputs a set of GI-FOMs. These FOMs are “po-

tentially equivalent mutants” with respect to the regression test suites and have a

positive impact on the properties of interest. We measure the sensitivity of code

based on the FOMs’ fitness values. A piece of code A is said to be more sensitive

than another piece B, if a FOM generated from A dominates the FOMs generated

from B on the Pareto front. The range of a code piece can be measured at different

granularity levels by aggregating the results of FOMs, such as at the syntactic sym-

bol, the statement level, or the nesting code block level. The GI-FOMs generated

and their sensitive information are passed to the next search stage as inputs.

5.1.2 Stage II: Searching for GI-HOMs

In the second stage, HOMI applies a multi-objective algorithm to search for a set

of improved versions of the original program in the form of HOMs. We use an

integer vector to represent HOMs, which is a commonly used data representation in

search-based Higher Order Mutation Testing [140]. Each integer value in the vector

encodes whether a mutable symbol is mutated and how it is mutated. For example,

given a mutant generated from the arithmetic operator ‘+’, a negative integer value

means it is not mutated while the integer 0, 1, 2, 3 indicate that the code is mutated

to ‘-’, ‘*’, ‘/’, ‘%’ respectively. In this way, each FOM is represented as a vector

with only one non-negative number and HOMs can be easily constructed by the

standard crossover and mutation search operators.

The algorithm takes the GI-FOMs as input and repeatedly evolves HOMs that

inherit the strengths of the GI-FOMs from which they are constructed and yield

better performance than any GI-FOMs alone. The fitness function that guides the
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search is defined as the sum of the measurement of each optimisation property over

a given test suite. Given a set of N optimisation goals, for each mutant M, the fitness

function fn(M) for the nth optimisation goal is formulated as follow:

Minimisation fn(M) =

∑Ci(M) if M passes all test cases

CMAX if M fails any test case

The fitness function is a minimisation function where Ci(M) is the measure-

ment of the optimisation goal n when executing the test i. If the mutant M fails

any regression tests, we consider it as a bad candidate and assign it with the worst

fitness values CMAX. The algorithm produces a Pareto front of GI-HOMs. Each

HOM on the front represents a modified version of the original program that passes

all the regression tests while no property of interest can be further improved without

compromising at least one other optimising goal.

5.1.3 Implementation

We implemented a prototype tool to realise the HOMI approach. The HOMI tool

is designed to optimise two non-functional properties (running time and memory

consumption) for C programs. In the fitness evaluation harness, we use Glibc’s wait

system calls to gather the CPU time, and we instrument the memory management

library to measure the ‘high-water’ mark of the memory consumption. We choose

to measure virtual instead of physical memory consumption because the physical

memory consumption is non-deterministic. This means it depends on the workload

of the machine. By contrast, the virtual memory used is always an upper bound of

the physical memory actually used.

HOMI uses the open source C mutation testing tool, Milu [119] to generate

mutants. Though we implemented our own Mutation Testing engine for the experi-

ments in Chapter 4, it only supports First Order Mutation. On the other hand, Milu

supports both First Order and Higher Order Mutation, and it provides an easy-to-

use interface to customise mutant generation and restoration. Therefore, we choose
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to use Milu as the Mutation engine in this chapter. By default, Milu supports only

the traditional C mutation operators [141]. As memory consumption is one of the

optimisation goals, we extended the original version of Milu to support Memory

Mutation Operators proposed in Chapter 4. Table 5.1 lists the Mutation Operators

used in HOMI and their brief descriptions. During the search stage, HOMI trans-

forms the internal integer vector representation of the candidate HOM to the data

format recognisable by Milu, then invokes Milu to generate the HOM.

Table 5.1: Mutation Operators used by HOMI

Category Name Description

Selective
Mutation
Operators

ABS Change an expression expr to ABS(expr) or -ABS(expr)
OAAN Change between +, -, *, /, %
OLLN Change between &&, ||
ORRN Change between >, >=, <, <=, ==
OIDO Change between ++x, --x, x++, x--
CRCR Change a constant c to 0, 1, -1, c+1, c-1, c*2, c/2

Memory
Mutation
Operators

REC2M Replace malloc() with calloc()
RMNA Remove NULL assignment
REDAWN Replace memory allocation calls to NULL
REDAWZ Replace allocation size with 0
RESOTPE Replace sizeof(T) with sizeof(*T)
REMSOTP Replace sizeof(*T) with sizeof(T)
REM2A Replace malloc() with alloca()
REC2A Replace calloc() with alloca()
RMFS Remove free() statement

The HOMI tool employs a customised NSGA-II [115] to evolve GI-HOMs.

During the search process, HOMI maintains a population of candidate HOMs.

For each generation, the uniform crossover and mutation are performed to parent

HOMs, generating offspring HOMs that are later evaluated using the fitness func-

tions mentioned. A tournament selection is then performed to form the next gener-

ation. This process is repeated until a given budget of evaluation times is reached.

Finally, HOMI will generate a set of non-dominating GI-HOMs that perform better

than the original program on time and/or memory consumption.

5.2 Empirical Study
This section first discusses the research questions we address in our empirical eval-

uation of the HOMI tool, followed by an explanation of the chosen subjects, tests
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and experiment settings.

5.2.1 Research Questions

Since the HOMI approach generates GI-HOMs from the combination of FOMs,

a natural first question to ask is ‘whether existing FOMs can be used to improve

software’. This motivates our first research question.

RQ1: Can GI-FOMs improve program performance while passing all of its

regression tests?

To answer this question, we run HOMI for sensitivity analysis only and report

how much running time and memory can be saved by GI-FOMs. Of course, the

answer also depends on the quality of the regression tests. All the tests used in

our evaluation are regression tests generated by developers for real world systems.

However, they may still not be sufficient to reveal the faults introduced by mutation.

To make our experiment more rigorous, we carried out a pre-analysis in our evalu-

ation. We analyse the function coverage of each subject using the GNU application

Gcov and HOMI is set only to mutate the functions that are covered by regression

tests.

RQ2: How much improvement can be achieved by GI-HOM in comparison

with GI-FOMs?

If GI-FOMs alone can improve performance, we expect that GI-HOMs will

inherit some strengths from the GI-FOMs and improve the performance further. To

answer this question, we use HOMI to generate a GI-HOM Pareto front and investi-

gate whether the GI-FOM solutions generated are on the Pareto front. Furthermore,

it is interesting to see whether the new memory mutation operators help to improve

the performance. This motivates our sub-question which studies the effect on mu-

tation operators used.

RQ 2.1 How does the improvement achieved by applying the traditional mu-

tation operators only compare to applying both of the traditional and memory

mutation operators?
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We answer this question by comparing the HyperVolume quality indicator of

the Pareto fronts generated from HOMI using both sets of mutation operators. Given

a Pareto front A and a reference Pareto front R, HyperVolume is the volume of

objective space dominated by solutions in A. To take into account the stochastic

nature of the search algorithms, we repeat both experiments 30 times. We use the

non-parametric Mann-Whitney-Wilcoxon-signed rank tests to assess the statistical

significance of the HyperVolume and untransformed [142] Vargha-Delaney effect

size to further assess the magnitude of the differences [143].

RQ3: Can ‘plastic surgery’ GP based GI approach find edit sequences to con-

struct the GI-HOMs found by HOMI?

We ask this question because we want to understand whether the granularity

of mutation changes can be produced by the ‘plastic surgery’ GP approach. The

‘plastic surgery’ GP approach is a popular GI approach which searches for a list of

edits from the existing source code. Typical changes generated by the GP approach

are movements or replacements of different lines of code [63, 111]. To answer

this question, we carried out a sanity-check experiment manually using all the GI-

HOMs found. For each GI-HOM, we search the entire program to see if the mutated

statement exists in the program. If it does, the GI-HOM can be constructed by

the patches generated from the GP approach easily. Otherwise, we consider the

line/statement based ‘plastic surgery’ GP might not able to generate the GI-HOM

directly.

RQ4 Can HOMI be combined with Deep Parameter Optimisation to achieve

further improvement?

Finally, we want to investigate whether the HOMI approach can be combined

with other types of GI techniques. Deep Parameter Optimisation approach proposed

in Chapter 3 is one of the parameter-tuning-based GI techniques. It seeks to opti-

mise library code used instead of the source code of the subjects. We have obtained

a set of memory allocation libraries that were optimised for the time and memory

performance in Chapter 3. We answer this research question by evaluating the GI-
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HOMs after linking them to Deep-Parameter-optimised libraries, then comparing

them with their performance before the linking, and with the performance of the

original program after linking to Deep-Parameter-optimised libraries.

5.2.2 Subject programs and tests

We optimise four subjects in our evaluation. Table 5.2 lists the subjects and their

brief description. All tests used are regression tests, deemed to be useful and prac-

tical by their developers. Espresso is a fast application for simplifying complex

digital electronic gate circuits. Gawk is the GNU awk implementation for string

processing. Flex is a tool for generating scanners, programs which recognise lex-

ical patterns in text, and sed is an editor that automatically modifies files given a

set of rules. We use the espresso version as well as its test cases from DieHard

project [117]. Version 4.1.0 of gawk is used in this work. The source code and the

test cases can be found in the GNU archives. We obtain the last two programs and

corresponding test suites from the SIR repository [118].

Table 5.2: Subject programs

Name LoC # of Tests Description
espresso 13,256 19 Digital circuit simplification

gawk 45,241 334 String processing
flex 9,597 62 Fast lexical analyzer generator
sed 5,720 362 Special file editor

5.2.3 Search Settings

In the sensitivity analysis stage, we pick the top 10% most sensitive locations of the

GI-FOMs and only search for GI-HOMs from these locations. We use a relative

ratio instead of an absolute number because the search space can be adapted to the

size of the subject. The choice of 10% is based on our observation that the locations

in the first 10% are usually much more sensitive than the remaining locations since

sensitivity seems to follow a power law, according to our informal observation.

However, the ratio can be easily adapted as a parameter to our approach accordingly.

We repeat all HOMI experiments 30 times to cope with the non-deterministic

nature of NSGAII and to facilitate inferential statistical analysis. The NSGAII per-
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forms a tournament selection of size 2 and uniform crossover with a probability

of 0.8. There are 50 HOMs in each generation and the algorithm stops at 100th

generation. These numbers were chosen after initial calibration experimentation to

determine suitable parameters for our search process. All of the experiments are

carried out on a desktop machine with a quad-core CPU and 7.7 GB RAM running

64-bit Ubuntu version 14.04.

5.3 Results and Discussion

5.3.1 Improvement by GI-FOMs

We begin by looking at the time and memory performance of the GI-FOMs gen-

erated from the sensitivity analysis stage to answer the RQ1. We calculated the

improvement of GI-FOMs relative to the original program, and reported them in

Columns 2 and 5 in Table 5.3. These values are averaged from 10 repeated eval-

uations. By applying selective and memory mutation operators to generate FOMs,

we found the improved versions of all four subjects, both on time and memory per-

formance. More specifically, the improvement ranges from 0.9% to 14.7% on time

and from 0.5% to 19.7% on memory performance. However, there might be a large

gap between the memory and time improvement for some subject, for example, the

GI-FOM of sed can run up to 14.7% faster but can only save 0.5% memory. We

conclude that even with the simplest changes introduced by first order mutation, the

HOMI approach is able to improve the execution time and memory consumption.

5.3.2 Improvement by GI-HOMs

We now turn to the improvement found by GI-HOMs. Since improvement was

found on GI-FOMs, it is interesting to investigate whether we can improve the

performance further by combining them to form GI-HOMs. We applied NSGA-

II [115] to search for better performance in HOMs using Selective Mutation Op-

erators (GI-HOMs-Sel) and using both Selective and Memory Mutation Operators

(GI-HOMs-All) respectively. Each experiment was repeated for 30 times and the

best time/memory performance found for each subject is reported in Table 5.3.

The results of GI-HOMs-Sel are reported in Columns 3 and 6, and those of
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Table 5.3: Improvement on time and memory by GI-FOMs and GI-HOMs. GI-HOMs-Sel
are found using only Selective Mutation Operators while GI-HOMs-All and GI-
FOMs are found using both Selective and Memory Mutation Operators

Time (%)
Subject GI-FOMs GI-HOMs-Sel GI-HOMs-All
espresso 5.2 6.5 6.9
gawk 2.3 6.7 9.8
flex 0.9 2.3 2.3
sed 14.7 18.2 18.2

Memory (%)
Subject GI-FOMs GI-HOMs-Sel GI-HOMs-All
espresso 1.6 1.7 1.7
gawk 2.5 1.9 4.3
flex 19.7 19.7 19.7
sed 0.5 0.5 0.5

GI-HOMs-All are reported in Columns 4 and 7. We immediately observe that GI-

HOMs achieve greater improvement than GI-FOMs on execution time for all sub-

jects, also on memory consumption for two out of four subjects. The greatest time

improvement found by GI-HOMs can be promoted to 18.2%, while the improve-

ment can be up to four times better (on gawk) than the improvement yielded from

GI-FOMs. We also observe one case gawk), on which the GI-HOMs-Sel achieve

less memory improvement compared with GI-FOMs, because they are lack of some

memory-related changes that can only be achieved by Memory Mutation Operators.

We combine the results of 30 runs for each experiment and plot the Pareto

fronts of GI-HOMs using all Mutation Operators, GI-HOMs using Selective Mu-

tation Operators and GI-FOMs in Figure 5.2-5.5. In the figure, time (x-axis) and

memory (y-axis) are both normalised to the original performance. On all four sub-

jects, we can see there is always an improvement from GI-FOMs to GI-HOMs,

while the differences between GI-HOMs-Sel and GI-HOMs-All are less clear. To

statistically demonstrate the difference, we calculated the HyperVolume [121] of the

Pareto fronts of GI-HOMs-All and GI-HOMs-Sel over 30 runs, and applied Mann-

Whitney-Wilcoxon U-test on the HyperVolume metric for these Pareto fronts. For

subject espresso and gawk, the difference between HOMs (all) and HOMs (Selec-

tive) are significant (p < 0.01) with a large effect size (A12 > 0.9), while for the
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other two subjects, the difference is not significant.
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Figure 5.2: Pareto fronts of GI-HOMs and GI-FOMs for espresso. Lower and lefthand
solutions dominate high and righthand solutions.
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Figure 5.3: Pareto fronts of GI-HOMs and GI-FOMs for gawk. Lower and lefthand solu-
tions dominate high and righthand solutions.

In summary, the answer to RQ2 is that GI-HOMs can improve the time per-

formance by up to 18.2% or the memory performance by up to 19.7%. For the GI-

HOMs using Selective Mutation Operators only, we found the same upper bound

of the improvement, but only achieved sub-optimal solutions on two subjects. By

including Memory Mutation Operators, further improvement on these subjects was

found. Therefore, we can conclude that Memory Mutation Operators provide fur-

ther improvement potentials for both time and memory optimisation.
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Figure 5.4: Pareto fronts of GI-HOMs and GI-FOMs for flex. Lower and lefthand solutions
dominate high and righthand solutions.
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Figure 5.5: Pareto fronts of GI-HOMs and GI-FOMs for sed. Lower and lefthand solutions
dominate high and righthand solutions.

5.3.3 HOMI vs ‘plastic surgery’ GP based GI

This RQ investigates whether the granularity of mutation changes can also be gen-

erated by the ‘plastic surgery’ GP approach. To answer this question, we inves-

tigated the GI-HOMs found in all experiments and manually reproduce them fol-

lowing the evolution rules used in the line/statement based ‘plastic surgery’ GP

approach [63, 111]. All together HOMI found 273 mutations in the improved GI-

HOMs across all subjects. We first applied a simple hill-climbing algorithm to clean

up the mutations that do not contribute to the improvement. This step narrowed the
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number of mutations down to 141. In total, there are 108 unique mutations identi-

fied (the same mutations may be found in several GI-HOMs).

For each of the unique mutation changes, we search the entire program to see

if the mutated line/statement exists in the program. Because the typical changes

generated by the ‘plastic surgery’ GP approach are movements or replacements of

different lines of code [63, 111], if a mutation does not appear somewhere else

in the original source code, it cannot be generated directly from this form of GP

approaches. The result shows that 95 (88%) out of 108 mutations cannot be found

in the original source code. Therefore, the answer to RQ3 is, there are 108 unique

mutational changes found in the GI-HOMs, 88% of which cannot be generated from

the line-based ‘plastic surgery’ GP approach directly.

This result can only demonstrate how differently these two approaches modi-

fies the subject programs, but does not represent the semantic differences between

the modifications, neither does it provide evidences of which approach is better.

For instance, if the original code writes ‘v = v + 2’, HOMI approach may mu-

tate it to ‘v = v + 1’, while Plastic Surgery approaches may replace the whole

statement with ‘v++’, which is grafted from the codebase. Though these two ap-

proaches yield syntactically different modifications, the semantics of the outcome

is the same, and this kind of semantic equivalence is not accounted for in this study.

However, with 88% of the changes being syntactically different, it motivates us to

conduct a full comparison of these two approaches in the future.

5.3.4 HOMI combines with Deep Parameter Optimisation

In the last Research Question, we want to understand whether the improvement

can be preserved or even promoted if we combine GI-HOMs with Deep-Parameter-

optimised memory management library. To answer this question, we use the mem-

ory allocation libraries that were optimised for the time and memory performance

for each subject in Chapter 3. We created four new optimised version of each sub-

ject by linking the most time/memory-saving GI-HOMs and libraries in pairwise.

The results are reported in Table 5.4. In the table, rows represent HOMI-

improved programs and columns represent Deep-Parameter-optimised libraries,
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where ‘Original’ indicates the original program or library, ‘T’ indicates it is the most

time-saving ones and ’M’ indicates the most memory-saving ones. All of the num-

bers are the improvement in percentage compared with the original version. If in a

combination (that does not involve the Original program/library), the time/memory

performance is not worse than that of any of the ‘ingredient’ program/library, it is

highlighted in bold font. On the other hand, all the underlined performances are the

ones that are worse than both of the ‘ingredient’ program and library. For subject

sed, there is only one GI-HOM on the Pareto front, thus it is both the most time and

memory-saving program.

Table 5.4: HOMI combines with Deep Parameter Optimisation. Each cell reports the time
improvement followed by memory improvement in percentage. ‘T’ or ‘M’ indi-
cates it is most time-saving or memory-saving GI-HOM/optimised library.

Memory Management Library
Original Deep(T) Deep(M)

es
pr

es
so Original 0/0 0.8/0.1 0.7/0.2

GI-HOM(T) 6.9/-0.2 4.8/0.1 4.7/0.2
GI-HOM(M) 6.5/1.7 4.7/1.8 6.7/1.7

fle
x

Original 0/0 15.7/-2.6 -1.1/0.6
GI-HOM(T) 2.3/0 14.4/-2.6 -Inf/-Inf
GI-HOM(M) -10.3/19.7 -3.5/19.7 -Inf/-Inf

ga
w

k Original 0/0 5.4/1.6 -0.2/2.3
GI-HOM(T) 9.8/-0.1 5.6/1.6 5.4/2.3
GI-HOM(M) 6.1/4.3 4.1/5.8 4.8/5.5

se
d Original 0/0 7.9/-1208 5.6/2.0

GI-HOM(TM) 18.2/0.5 5.8/-1208 4.1/0.9

We observe that there are 10 out of 28 cases (bold numbers) when combining

GI-HOMs with the Deep-Parameter-optimised library, the performance is at least

the same as the best performance of the GI-HOM or library it is combined from, and

is strictly better in four cases. However, there are three cases (underlined) that the

combination makes their performance worse. In most of the cases, the performance

lies between the performance of the GI-HOM and the library that it is combined

from. In one extreme case (flex), we found that the most memory-saving library

breaks the functionality of HOMs (indicated by ‘-Inf’ in the table). Therefore, the

answer to RQ4 is, when combining the HOMI approach with Deep Parameter opti-
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misation, the GI-HOM programs can be either improved or jeopardised. This result

motivates a future study that searches and optimises HOMI and Deep Parameters

altogether.

5.4 Threats to Validity
We discuss the threats to validity in this sections, where the threats to internal va-

lidity are discussed in Section 5.4.1 and those to external validity are discussed in

Section 5.4.2.

5.4.1 Internal Validity

We used the regression tests that come with the subjects to evaluate the correct-

ness of mutants. All the subject programs used in this work were well tested in

established works, and their tests used are regression tests, deemed to be useful and

practical by their developers. However, passing the regression tests does not neces-

sarily mean the semantics of the mutant is the same as the original program. This

may pose a threat to the correctness of the GI-HOMs. To mitigated this threat, we

set HOMI to apply mutation changes at the code that is covered by the regression

tests.

After the sensitivity information is collected, we focus on 10% most sensi-

tive locations only. This is based on an assumption that less sensitive code is less

likely to affect the performance of the program. However, there are still chances

that the interactions between multiple less sensitive code may lead to some signif-

icant improvement. This possible synergy, if there is any, requires a much larger

search space, thus, will make the approach much less scalable. To make the HOMI

approach scalable, we confine the search on the most sensitive locations, making

the search more effective. Furthermore, we make the ratio of sensitive locations a

parameter of our approach, such that it can be adapted to trade between exploration

and exploitation.

Another threat to validity comes from the measurement of time and memory

performance. We applied the same measurement approach as the one used in Chap-

ter 3. To make the measurement accurate, we use CPU time and use the mean of 10
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measurements to minimise the noise. For memory consumption, we instrument the

memory management library to calculate the exact use of virtual memory. There-

fore, the measurement noise is minimised.

5.4.2 External Validity

The approach can be easily applied to other subjects, but the conclusion may not

generalise to larger scale systems. We use four subjects with varying sizes from

5,000 to 45,000 lines of code, and the results are consistent across all subjects.

Therefore, we have confidence that the results may likely be generalised to larger

scale systems, and the threat is thereby ameliorated.

We adopt Memory Mutation Operators in our approach because we are inter-

ested in time and memory performance. However, the same set of Mutation Oper-

ators does not necessarily lead to similar results when other software qualities are

concerned. Since the selection of Mutation Operators is independent of the other

parts of the approach, the choices of Mutation Operators can be easily adapted ac-

cordingly, thereby minimising this threat.

5.5 Conclusion
In this chapter, we have introduced, HOMI, a search-based higher order mutation

approach to GI. HOMI uses mutation operators to automatically modify subject pro-

grams at a finer granularity. Using a multi-objective search algorithm, HOMI found

GI-HOMs that improve subject programs by 18.2% on time performance or 19.7%

on memory consumption without breaking any regression tests. In our empirical

study, we also find that by including Memory Mutation Operators, HOMI can find

GI-HOMs that achieve better performance than using just traditional Selective Mu-

tation Operators on two subjects. Furthermore, we find that 88% of the mutational

changes in our GI-HOMs cannot be generated from the currently widely-used line

based ‘plastic surgery’ GP approach. Finally, by combining GI-HOMs with Deep-

Parameter-optimised memory management libraries, we found further improvement

than GI-HOMs or optimised libraries alone could achieve, which motivates a future

research direction that searches and optimises GI-HOMs and Deep Parameters al-

together.



Chapter 6

General Conclusion and Discussion

This chapter summarises the achievements of this thesis, draws general conclusions

from the findings in this thesis, and lists several potential future works.

6.1 Summary of Achievements
Manually optimising non-functional properties while maintaining functionalities of

a program is not practical for human programmers. Therefore automatically op-

timising the non-functional properties or even automatically improving the func-

tionalities are demanding. Most recent works used Genetic Programming or patch-

based Genetic Improvement to automatically modify the source code to achieve bet-

ter performance. However, Genetic Programming has only previously been shown

to work well on small programs, so the approach may become impractically ex-

pensive when the program size increases. On the other hand, patch-based Genetic

Improvement approaches usually work on a coarse level of code granularity such as

line-based or block-based, therefore some optimal solutions that need a finer level

of modification, such as an operator or a variable, may be missed.

The goal of this thesis was to propose new mutation-based Genetic Improve-

ment approaches that operate on a finer code granularity and are scalable to large

programs. By focusing on two of the most important non-functional properties for

all programs: execution time and memory consumption, we wanted to evaluate the

newly proposed approaches when these two competing non-functional properties

are to be improved together. To achieve this goal, we proposed two novel Genetic
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Improvement approaches that use Mutation Operators to precisely operate on a finer

level of code granularity, whilst keeping the search space size manageable by sen-

sitivity analysis prior to the optimisation stage.

Deep Parameter Optimisation approach (Chapter 3) applies Mutation Opera-

tors to automatically generate different versions of the program, each of which only

differs from the original program on a single syntax, and evaluates the mutants with

respect to a given regression test suite to find out the most sensitive code to the

property-to-be-improved. It only selects the most sensitive locations and exposes

implicit (“deep”) parameters that are later tuned to improve the performance of the

program whilst keeping it faithful to the regression test. In our empirical study, we

only modified the memory management library dlmalloc for C programs and used

four subject programs to demonstrate the approach. The results showed a promis-

ing 20% reduction on memory consumption and 12% reduction on execution time

in the best cases.

Though using only traditional Mutation Operators has shown promising im-

provement in our experiments, these operators were not designed to influence soft-

ware’s memory performance. Therefore we proposed Memory Mutation Operators

that directly target memory management statements for C programs (Chapter 4). In

order to show that these operators can also be used to reveal memory vulnerabili-

ties, we analysed these operators in the context of traditional Mutation Testing and

compared them with Selective Mutation Operators.

Our results on 18 real-world programs showed that not only Memory Mutation

Operators generated fewer mutants, but also generated higher quality mutants that

are harder to kill. In addition to traditional strongly killing criterion, we proposed

two weakly killing criteria to more effectively distinguish non-equivalent mutants.

Our study suggests that all three criteria contributed in killing non-equivalent mu-

tants with no one completely subsuming another, therefore all three killing criteria

should be applied in future Mutation Testing studies.

We did not apply Memory Mutation Operators in the Deep Parameter Optimi-

sation approach because, these operators modify C language memory management
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functions such as malloc() and free(), while our Deep Parameter Optimisa-

tion study focused on the source code of these functions themselves, where these

functions were not regressively called. Therefore, in the corpus of our Deep Param-

eter Optimisation study there was no memory management functions and adding

Memory Mutation Operators would not change the results. However, in the study

of another mutation-based approach “HOMI” (Chapter 5), we applied Mutation Op-

erators on the source code of the subject programs themselves, therefore both Selec-

tive Mutation Operators and Memory Mutation Operators were included. Similar

to the Deep Parameter Optimisation approach, the HOMI approach applies Muta-

tion Operators and conducts sensitivity analysis to find out which part of the code

is more sensitive to the property-to-be-improved. In the second stage, HOMI ap-

plies search algorithms to find the optimal Higher Order Mutants (or combinations

of multiple First Order Mutants) that keep the functionalities and outperform the

original program on the target non-functional property(ies).

our results showed 20% memory reduction and 18% time reduction in the best

cases on the same four subjects that were used in the Deep Parameter Optimisation

study. In addition, we combined HOMI-optimised programs with Deep-Parameter-

optimised libraries to see whether there was further improvement. According to

the results, we found not only further improvement, but also some synergy between

subjects and libraries, which motivates further study in the future.

In summary, the overall contribution of this thesis is a demonstration that

mutation-based Genetic Improvement is not only effective in finding better per-

formance, but also ensures a manageable search space through sensitivity analysis,

so that the approach can easily scale up to large real-world applications. In addi-

tion, we also demonstrated that our Memory Mutation Operators generate fewer but

higher-quality mutants, and that when used in mutation-based GI approaches, they

are effective in providing more potential memory improvement.
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6.2 Future Work

In this section, we summarise potential future research directions following this

work.

We evaluated the Deep Parameter Optimisation approach on the source code

of memory management library for C language, and linked the library with several

real-world subjects to demonstrate the improvement. The advantage of modifying

the library only is that it will never change the semantic of the subjects so that it

is more likely to generate mutants that are faithful to the functionalities than other

approaches. However, because it does not modify the source code of the subjects, it

cannot improve the sub-optimal code in the subjects themselves. In fact, the Deep

Parameter Optimisation approach itself does not have any limit on where it can be

applied: source code of the subjects or libraries. Therefore, it could be applied to the

source code of subjects themselves, or both the subjects and multiple libraries that

affect performance. When Deep Parameter Optimisation approach is applied on the

source code of subjects, Memory Mutation Operators can be included to potentially

increase the memory/time reduction.

Though HOMI approach differs from Deep Parameter Optimisation, they do

not necessarily conflict with each other. Deep Parameter Optimisation favours ex-

ploitation since it searches the optimal values for each deep parameter, while HOMI

favours exploration because it combines many simple changes together. In future

work, these two approaches are likely to be combined together to balance explo-

ration and exploitation.

For instance, HOMI can be applied in the first step to explore potential ben-

eficial changes, followed by a sensitivity analysis to determine which of them can

be further exploited to gain more improvement. In the second step, Deep Parameter

Optimisation can be performed on these places to find the optimal solutions. We

can even dynamically perform Deep Parameter Optimisation during the process of

HOMI approach, to optimise each Higher Order Mutant before they are compared

with each other.

For different purposes, software may have requirements for different non-
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functional properties. In this thesis, we focus on two of the most important non-

functional properties as our objectives: execution time and memory consumption,

but the approaches are not limited to these objectives. Energy consumption is cru-

cial to portable devices such as laptops and cell phones, and response time can be

crucial to web applications. A direction for future work may extend the current

objectives to more non-functional properties or even functional properties. In the

meantime, other types of Mutation Operators may be proposed to target correspond-

ing performance vulnerabilities and to be applied in our approaches to have more

impact on the objectives.

We used automated approaches to find modifications to the source code to

gain improvement on the properties of interest. However, whether these modifi-

cations can be understood and accepted by human developers remains unknown.

A future study may compare the machine-generated modifications with human-

written patches, both of which can be assessed manually by a third party to de-

termine the quality of them. The goal of this study is not to show how machine-

generated patches are similar to human-written patches, but to investigate the qual-

ity of machine-generated patches compared with human-written ones, even though

they may be completely different. In addition, a large empirical study may be con-

ducted to find out how likely a machine-generated patch will be accepted by the

software’s developer, given the improvement gained from the patch.
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