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Genetic Improvement in Code Interpreters and Compilers
Oliver Krauss∗

Abstract
Modern compilers provide di�erent code optimizations before and
during run-time, thus moving required domain knowledge about
the compilation process away from the developer and speeding up
resulting so�ware. �ese optimizations are o�en based on formal
proof, or alternatively have recovery paths as backup. Genetic im-
provement (GI), a �eld of science utilizing the genetic programming
algorithm, a stochastic optimization technique, has been previously
utilized to both �x bugs in so�ware, as well as improving non-
functional so�ware requirements.

�is work proposes to research the applicability of GI in an of-
�ine phase directly at the interpreter or compiler level, utilizing
abstract syntax trees. �e primary goal is to reformulate existing
source code in such a way that existing optimizations can be ap-
plied in order to increase performance even further and requiring
even less domain knowledge from the developer about a speci�c
programming language and/or compiler. From these reformula-
tions, language-speci�c pa�erns can be identi�ed that allow code
restructuring without the execution overhead GI poses.

CCSConcepts •So�ware and its engineering→ So�ware evo-
lution; Search-based so�ware engineering;

Keywords Genetic Programming, Genetic Improvement, Non-
Functional, Compilation, Code Optimization
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1 Motivation
�e process of creating a new programming language, or execution
environment (interpreter or compiler) brings with it the challenge of
optimizations to remain competitive with alternative environments.
�is work suggests the application of Genetic Improvement (GI)
[3, 4] directly at the compiler or interpreter level to utilize it for
programming languages. �e research target is to adapt source
code represented as an AST in such a way that the pre-existing
optimizations in the interpreter or compiler can be utilized.

An example of a possible GI optimization is the reduction of the
function body when containing purely functional code. While this
is an optimization generally done by a compiler, this would have to
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be considered manually by someone developing or using an AST
interpreter. During initial results this optimization has been consis-
tently observed when applying GI to di�erent ASTs. �is makes it
possible to �nd pa�erns that can be applied as optimizations.

2 Problem
Modern compilers utilize various optimizations such as dead-code
elimination, control-�ow optimization and branch prediction. �ese
optimizations take place on di�erent levels (representations) of the
source code. Additionally, some optimizations are only applicable
during the run-time of a program. Run-time optimizations require
a warm-up phase in which the code is analyzed. Optimizations,
such as branch predictions, can be stochastic, and don’t guarantee
an improved performance over every code instance. [5]

Tru�e [12] is an interpreter and framework utilizing self - rewrit-
ing ASTs. It provides the implementer of a language with an API
that can be used to write nodes to prototype and implement pro-
gramming languages which can be interpreted in the Java Virtual
Machine (JVM). In addition to interpreting the language, Tru�e
integrates with the Graal compiler to create optimized machine
code from AST. As the framework is open source and extensible, it
is used as research basis.

�e research �eld of GI utilizes search based optimization, speci�-
cally the genetic programming (GP) algorithm, to improve so�ware.
�e GP algorithm is an evolutionary search strategy that �nds a
solution to a given problem by breeding and mutating a population
of di�erent solutions over several generations. [2]

3 Approach
GI will be applied in programming languages, implemented in
the Tru�e framework and optimized by the Graal compiler in an
o�ine phase. Due to the level of available reference publications
and existing benchmarks an implementation of C in the Tru�e
framework has been chosen as initial starting point.

�e application of GI in Tru�e (RQ-1) requires analysis of the
node implementations existing in the target language, since they
represent the operators that can be utilized. Figure 1 shows a
possible AST rewrite. �e le� side shows the AST parsed from
developer-wri�en source code. �e function evaluates a mathemat-
ical expression using given input, which is loaded into the execution
frame from the parameters, and returns the calculated value. On
the right side the GI has removed the function body and the return
statement, instead opting to directly access the parameters and
returning the value. Nodes existing in both ASTs are marked by
background color.

Concerning the execution context of an AST (RQ-2) the current
approach in Genetic Improvement relies on the inherent mutational
robustness of so�ware [11]. �e currently considered approach
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Figure 1. GI optimization of a function containing only a mathe-
matical expression:
in t FN ( in t x ) { return expr u s i n g x ; }

for this project is, in addition to manual test-cases, to automati-
cally create a regression test suite for the AST being optimized.
�is is achieved by utilizing already existing test suite generation
frameworks [8, 10].

Since some optimizations by GI have been observed to be similar
in di�erent tests, pa�erns can be identi�ed that can be applied to
an AST (RQ-3). Figure 2 shows a possible pa�ern created from the
optimization shown in Figure 1. �e concept is that the original
AST structure is compared to the optimized AST and similarities
are speci�cally marked (background color). From this comparison
a transformation-pa�ern is generated which can be applied to an
AST that shows the same structural hierarchy as de�ned in the
pa�ern.

4 Results and Expected Contributions
�is work is currently in the starting phase. A subset of the C11 ver-
sion [1] of C has been implemented using the Tru�e framework. It
will gradually be extended to enable tests and benchmarks required
for a thorough evaluation. �e language has been enriched with an
optimizer that uses GI to improve an AST based on a simple �tness
function combining the amount of successfully executed tests and
the average run-time of the AST.

A bene�cial side e�ect of integrating GI directly with an in-
terpreter was discovered during testing. While the GP algorithm
can still produce ASTs that result in endless loops or other faults

Figure 2. Pa�ern based on the example in Figure 1, automatically
reducing the function body of a function containing a mathematical
expression

observed during run-time, all generated ASTs are executable. In
literature uncompilable individuals are o�en observed [6, 7, 9].

�e expected contribution of this research work is:
• A case study presenting the e�ects of GI for optimizing non-

functional requirements utilizing existing compiler tech-
niques.

• An approach to optimize a prototyped language using the
tru�e framework.

• A pa�ern-identi�cation framework to enable further re-
search into compiler optimization techniques
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