
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Late-Breaking Papers of EuroGP-99

Edited by: W.B. Langdon, R. Poli, P. Nordin, T. Fogarty

Software Engineering (SEN)

SEN-R9913 May 31, 1999

Report SEN-R9913
ISSN 1386-369X

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

1

Late-Breaking Papers of EuroGP-99

Edited by

W.B. Langdon, Riccardo Poli,

Peter Nordin, Terry Fogarty

PREFACE

This booklet contains the late-breaking papers of the Second European Workshop

on Genetic Programming (EuroGP'99) held in G�oteborg Sweden 26{27 May 1999.

EuroGP'99 was one of the EvoNet workshops on evolutionary computing, EvoWork-

shops'99. The purpose of the late-breaking papers was to provide attendees with

information about research that was initiated, enhanced, improved, or completed after

the original paper submission deadline in December 1998.

To ensure coverage of the most up-to-date research, the deadline for submission

was set only a month before the workshop. Late-breaking papers were examined for

relevance and quality by the organisers of the EuroGP'99, but no formal review process

took place.

The 3 late-breaking papers in this booklet (which was distributed at the work-

shop) were presented during a poster session held on Thursday 27 May 1999 during

EuroGP'99.

Authors individually retain copyright (and all other rights) to their late-breaking

papers.

This booklet is available as a technical report SEN-R9913 from the Centrum voor

Wiskunde en Informatica, Kruislaan 413, NL-1098 SJ Amsterdam.

1991 ACM Computing Classi�cation System: I.2.8

Note: The editors' a�liations are W. B. Langdon (CWI, P.O. Box 94079, 1090 GB,

Amsterdam, The Netherlands, e-mail W.B.Langdon@cwi.nl); Riccardo Poli (The Uni-

versity of Birmingham, Edgbaston, Birmingham, B15 2TT, UK, e-mail R.Poli@cs.

bham.ac.uk); Peter Nordin (Chalmers University of Technology, S-41296, G�oteborg,

Sweden, e-mail nordin@fy.chalmers.se); Terry Fogarty (Napier University, 219 Col-

inton Road, Edinburgh, EH14 1DJ, UK, e-mail t.fogarty@dcs.napier.ac.uk).

2

TABLE OF CONTENTS

Controlling Code Growth in Genetic Programming by Mutation 3{12

Anik�o Ek�art

Parametric Coding vs Genetic Programming: A Case Study 13{22

Alain Racine, Sana Ben Hamida and Marc Schoenauer

Genetic Programming as an Analytical Tool for Metabolome Data . 23{33

Richard J. Gilbert, Helen E. Johnson, Michael K. Winson, Jem J. Rowland,

Royston Goodacre, Aileen R. Smith, Michael A. Hall and Douglas B. Kell

3

Controlling Code Growth in Genetic Programming by Mutation

Anik�o Ek�art

Computer and Automation Research Institute

Hungarian Academy of Sciences

1518 Budapest, POB. 63, Hungary

E-mail: ekart@sztaki.hu

Tel: +36 1 209 6194

ABSTRACT

In the paper a method that moderates code growth in genetic programming is pre-

sented. The addressed problem is symbolic regression. A special mutation operator

is used for the simpli�cation of programs. If every individual program in each genera-

tion is simpli�ed, then the performance of the genetic programming system is slightly

worsened. But if simpli�cation is applied as a mutation operator, more compact so-

lutions of the same or better accuracy can be obtained.

1. INTRODUCTION

An important problem with genetic programming systems is that in the course of evo-

lution the size of individual programs is continuously growing. The programs contain

more and more non-functional code. When evaluating the genetic programs over the

�tness cases, much of the time is spent on these irrelevant code fragments. Thus, they

reduce speed and, in the meantime, make the programs unintelligible for humans.
[Koza, 1992] proposes the use of a maximum permitted size for the evolved genetic

programs as parameter of genetic programming systems. Therefore, genetic programs

are allowed to grow until they reach a prede�ned size. In the same work a so-called

editing operation is proposed for (1) making the output of genetic programming more

readable and (2) producing simpli�ed output or improving the overall performance

of genetic programming. The editing operation consists in the recursive application

of a set of editing rules. However, it was shown that for the boolean 6-multiplexer

problem applying the editing operation does not in
uence the performance of genetic

programming in a notable way.
[Hooper and Flann, 1996] apply expression simpli�cation in a simple symbolic re-

gression problem. They conclude that the accuracy of genetic programming could be

improved by simpli�cation. Additionally, simpli�cation could (1) prevent code growth

and (2) introduce new useful constants.

4

[Langdon, 1999] introduces two special crossover operators, the so-called size fair and

homologous crossovers. These operators create an o�spring by replacing a subtree of

one parent with a carefully selected similar-size subtree of the other parent. By using

these operators, code growth is considerably reduced without a�ecting the performance

of genetic programming.

There are several studies that suggest taking into account the program size when

computing the �tness value.
[Iba et al., 1994] de�ne a �tness function based on a Minimum Description Length

(MDL) principle. The structure of the tree representing the genetic program is re
ected

in its �tness value:

mdl = Error Coding Length + Tree Coding Length.

[Zhang and M�uhlenbein, 1995] demonstrate the connection between accuracy and

complexity in genetic programming by means of statistical methods. They use a �tness

function based on the MDL principle:

Fitnessi(g) = Ei(g) + �(g)Ci(g),

where Ei(g) and Ci(g) stand for the error and the complexity of individual i in gen-

eration g. The Occam factor �(g) is computed as a function of the least error in the

previous generation Ebest(g � 1) and the estimated best program size for the current

generation Ĉbest(g). Thus, their �tness function is adaptively changing from generation

to generation.
[Soule et al., 1996] compare two methods for reducing code growth in a robot guid-

ance problem: (1) the straightforward editing out of irrelevant and redundant parts

of code and (2) the use of a �tness function that penalizes longer programs. They

conclude that applying the penalty outperforms any kind of editing out, so providing

new evidence for [Iba et al., 1994; Zhang and M�uhlenbein, 1995].

Notwithstanding, other studies show that these seemingly irrelevant or redundant

parts of code are useful because they shield the highly-�t buiding blocks of programs

from the destructive e�ects of crossover.
[Angeline, 1994] calls these apparently useless fragments of code introns, in analogy

with the introns contained in DNA. He points out that the formation of introns should

not be hindered, since they provide a better chance for the transfer of complete subtrees

during crossover.
[Nordin et al., 1995] demonstrate through experiments that introns allow a popu-

lation to keep the highly-�t building blocks and in the meantime make possible the

protection of individuals against destructive crossover. They introduce the so-called

Explicitly De�ned Introns that are inserted in the code and serve as a control mecha-

nism for the crossover probability of the neighboring nodes.

In the present paper we describe a method that takes both advices into account:

5

� Code growth in genetic programming should be limited in order to obtain a

comprehensible solution in a reasonable amount of time.

� Introns should be preserved, since they shield the highly-�t building blocks from

the harmful e�ects of crossover.

The paper is organized as follows: In Section 2 the biological evidence that inspired

this work is presented. In Section 3 the method is described and in Section 4 the

results of 800 runs of the system on two symbolic regression problems are shown. Then

a real-world application using these results is discussed and conclusions are drawn.

2. BIOLOGICAL BACKGROUND

The DNA of living organisms contains:

� genes - the active DNA sequences;

� junk DNA - with no apparent e�ect on the organism; and

� control segments - that regulate timing and conditions of protein production.

Generally, the genes consist of:

� exons - base sequences that encode proteins or polypeptides; and

� introns - base sequences that do not participate in the production of proteins.

The DNA of procaryotes contains one continuous sequence of exons and no introns.

However, the genes of most eukaryotic organisms are discontinuous, and the sequences

of interrupting introns are much longer than those of exons. There is evidence sug-

gesting that: \introns were present in ancestral genes and were lost in the evolution

of organisms that have become optimized for very rapid growth, such as eubacteria and

yeast" [Stryer, 1988].

Apparently introns play no role in the production of proteins, just like junk DNA.

But they represent regions in which DNA can break and recombine without a�ecting

the encoded proteins [Stryer, 1988].
[Gilbert, 1985] points out that \introns have been used to assemble those genes that

are the late product of evolution". At the same time, he brings evidence for the loss of

introns during evolution.

Thus, introns play an important role in evolution, when shielding the exons from

destruction through crossover. But they can disappear in the course of evolution.

On the other hand, the main source of variability is mutation. From the many

existing types of mutation, we consider the following [Watson et al., 1987; Banzhaf et

al., 1998]:

� change of one base pair to another;

� frameshift mutation - addition or deletion of one or more base pairs; and

� large DNA sequence rearrangement.

Usually, in genetic programming systems the analog of the �rst type is implemented.

In addition, we also consider here the other two mutation types.

6

3. THE PROPOSED METHOD

The goal of this work is to reduce the size of genetic programs evolved in symbolic re-

gression problems. However, the method could be applied to any genetic programming

system after de�ning the corresponding rules that simplify the structure of programs.

We designed a special mutation operator that modi�es only the structure of a genetic

program; the interpretation and the �tness value remain the same. This modi�cation

is intended to eliminate the occasional introns and simplify the structure of the genetic

program, without altering its accuracy (in a similar way to the editing operation of
[Koza, 1992] and the expression simpli�er of [Hooper and Flann, 1996]). Since the

problem is symbolic regression, the mutation operator performs the algebraic simpli�-

cation of the expression of a genetic program. The simpli�er is implemented in Prolog

and consists of approximately 250 clauses. Some of the simpli�cation rules are shown

in Table 1.

Table 1: Some Simpli�cation Rules.

Original expression Simpli�ed expression Binding

0 + x x

K1 � x+K2 � x K � x K = K1 +K2

K1 �K2 � x K � x K = K1 �K2

(�1) � x �x

Let us see two short examples:

f(x; y) = x � 2� x � (3� 1) + 3 � x=y
simpl

= 3 � x=y

g(x) = x � (x� 2) + 3 � x
simpl

= x + x � x

In the �rst example the non-functional part was removed and in the second one

algebraic simpli�cation was performed.

One can see the analogy of this simpli�cation to the biological mutation:

� removal of non-functional code - frameshift mutation; and

� algebraic simpli�cation - large DNA sequence rearrangement.

The removal of non-functional code is more restricted than frameshift mutation,

since it is applied only to non-functional code and there is no addition, just deletion of

this code.

The algebraic simpli�cation is in fact more than a rearrangement. For a more precise

analogy with biology we could have made just a simple transformation, such that:

g(x) = x � (x� 2) + 3 � x
transf

= (3 � x� 2 � x) + x � x.

7

This transformation is closer to large DNA sequence rearrangement and could be

the subject of later experiment.

Since the simpli�cation of an algebraic expression involves the removal of non-

functional code, we decided for a single mutation operator, that performs all possible

simpli�cations on the selected expression (like the editing operation proposed by [Koza,

1992]).

We applied this mutation operator in addition to the usual recombination opera-

tors. We thought that applying the simpli�cation in every generation might be too

drastic and time-consuming and, therefore, we made the frequency of its application a

parameter of the genetic programming system (also suggested by [Koza, 1992]).

4. EXPERIMENTAL RESULTS

Experiments were conducted on two symbolic regression problems. The goal was to

evolve the programs that approximate the functions (1) F1(x) = x+ x2 + x3 + x4 and

(2) F2(x) = 1:5 + 24:3x2 � 15x3 + 3:2x4, respectively, in 100 data points, that were

randomly selected in the [0; 1] interval. The parameter setting is shown in Table 2.

Table 2: The Genetic Programming Parameter Setting.

Objective Evolve a function that �ts the data points of the

�tness cases

Terminal set x, real numbers 2 [�100; 100]

Function set +; �; =

Fitness cases N = 100 randomly selected data points (xi; yi),

(1) yi = xi + x2
i
+ x3

i
+ x4

i

(2) yi = 1:5 + 24:3x2
i
� 15x3

i
+ 3:2x4

i

Raw �tness and also standard-

ized �tness

q
1

N

P
N

i=1
(gp(xi)� yi)2

Population size 100

Crossover probability 90%

Mutation probability 10%

Selection method Tournament selection, size 10

Termination criterion none

Maximum number of generations 50

Maximum depth of tree after

crossover

20

Initialization method Grow

Frequency of simpli�cation Every 1., 2. or 5. generation

Simpli�cation probability 0-100%

In the �tness measure only the error is included, there is no term related to the

8

program size. We think that a shorter program with more errors should not be preferred

to a longer program containing less errors. The mechanism for limiting code growth

should be distinct from the selection mechanism. We introduced the simpli�cation as

a mutation operator in order to reduce code size without in
uencing the �tness-based

selection mechanism.

We added two parameters: the frequency of simpli�cation (F) and the simpli�cation

probability (P). Simpli�cation is applied every F -th generation, on every individual

program with probability P .

Table 3: Parameter Setting for Simpli�cation.

Frequency F[gen.] Probability P[%]

- 0

1 10, 20, 100

2 20, 40, 60

5 20, 25, 50, 75, 80, 100

In each parameter setting shown in Table 3 we performed 50 runs and recorded their

average. The plots for the regression of F2 are presented, since it is a more di�cult

problem. Nonetheless, the plots for F1 have the same character.

In order to establish a good ratio between the probability and the frequency of

simpli�cation, we compared the results of the runs with the same overall simpli�cation

ratio P=F . (P=F = 10% is achieved when (1) 10% probability of simpli�cation in

each generation, (2) 20% probability of simpli�cation in every second generation or (3)

50% probability of simpli�cation in every �fth generation is applied). Particularly, we

analysed the results for P=F = 10% and P=F = 20%. The results for P=F = 20% are

shown in Figures 1 and 2.

Considering program size, best results were obtained when simpli�cation was applied

in every generation: code growth practically stopped at the 30th generation. In the case

of 100% simpli�cation in every �fth generation, the form of the graphics (Figure 2 right)

clearly re
ects the alternating behavior of program size: after every �fth generation the

average program size is reduced by simpli�cation, then programs are allowed to grow

for the next �ve generations. In fact, if we look at the average program size at every

�fth generation (after simpli�cation), we can see that in this case code growth is also

moderated after the 30th generation. In the meantime, the �tness of the best program

(Figure 1 left) was slightly lower when simpli�cation was applied less frequently (and

with higher probability, keeping P=F constant).

We made another comparison among the results of runs with di�erent frequencies

of simpli�cation, keeping the probability constant at 20%. Figures 3 and 4 show the

results for the cases: (1) no simpli�cation (original genetic programming), (2) simpli-

�cation in every generation, (3) every second or (4) every �fth generation. The results

9

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 5 10 15 20 25 30 35 40 45 50

F
itn

es
s

Generations

Every gen. 20% simplifications
Every 2nd gen. 40% simplifications

Every 5th gen. 100% simplifications

8

10

12

14

16

18

20

22

0 5 10 15 20 25 30 35 40 45 50

B
es

t P
ro

gr
am

 S
iz

e

Generations

Every gen. 20% simplifications
Every 2nd gen. 40% simplifications

Every 5th gen. 100% simplifications

Figure 1: The Best Program Fitness and Size over Generations.

6

8

10

12

14

16

18

20

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 F
itn

es
s

Generations

Every gen. 20% simplifications
Every 2nd gen. 40% simplifications

Every 5th gen. 100% simplifications

6

8

10

12

14

16

18

20

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 P
ro

gr
am

 S
iz

e

Generations

Every gen. 20% simplifications
Every 2nd gen. 40% simplifications

Every 5th gen. 100% simplifications

Figure 2: The Average Program Fitness and Size over Generations.

for simplifying every individual in every generation (F = 1, P = 100%) are very

close to those obtained when simplifying in every generation with probability P = 20%

(since the corresponding graphics are practically undistinguishable, we do not show the

graphics corresponding to total simpli�cation). As we expected, in the case of genetic

programming without simpli�cation, the program size is continuously growing and in

the case of simpli�cation in every generation, the program size stabilizes at a low value

after 25 generations. The �tness of the best program (Figure 3 left) is slightly worse

when simpli�cation is applied more often. The average �tness (Figure 4 left) of the

cases when using simpli�cation is better than that of the case with no simpli�cation.

We also compared the results of runs, when the frequency of simpli�cation was

constant (every �fth generation) and the probability of simpli�cation varied between

0-100%. While the size of programs was growing fast when no simpli�cation was

applied, it was quite stable when the probability of simpli�cation was high. In the case

of simplifying each individual program, the accuracy of the best program was slightly

worse than for the other cases. Thus, we found again that applying simpli�cation more

often conducts to much shorter, but slightly worse solutions.

10

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 5 10 15 20 25 30 35 40 45 50

F
itn

es
s

Generations

Original GP
Every gen. 20% simplifications

Every 2nd gen. 20% simplifications
Every 5th gen. 20% simplifications

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30 35 40 45 50

B
es

t P
ro

gr
am

 S
iz

e

Generations

Original GP
Every gen. 20% simplifications

Every 2nd gen. 20% simplifications
Every 5th gen. 20% simplifications

Figure 3: The Best Program Fitness and Size over Generations.

6

8

10

12

14

16

18

20

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 F
itn

es
s

Generations

Original GP
Every gen. 20% simplifications

Every 2nd gen. 20% simplifications
Every 5th gen. 20% simplifications

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 P
ro

gr
am

 S
iz

e

Generations

Original GP
Every gen. 20% simplifications

Every 2nd gen. 20% simplifications
Every 5th gen. 20% simplifications

Figure 4: The Average Program Fitness and Size over Generations.

When choosing the probability of simpli�cation, one has to make a trade-o� between

accuracy and program size:

� more accurate programs that grow moderately (less simpli�cations); or

� less accurate programs that do not grow (more simpli�cations).

5. APPLICATION

Our interest for limiting code growth in symbolic regression problems stems from the

need for reducing the CPU time of our machine learning system [Ek�art, 1998]. The

system is based on constructive induction, having the two components:

� learning engine - the C4.5 decision tree learning program [Quinlan, 1993]; and

� new feature generator - genetic programming.

We use this system in solving a mechanical engineering design problem, namely

four bar mechanism synthesis [Sandor and Erdman, 1984]. The learning task is to

discover the structural description of classes of such mechanisms. When generating

the structural description, genetic programming creates the new features as algebraic

11

functions of the six structural parameters of four bar mechanisms (simple symbolic

regression with a terminal set consisting of six variables).

Genetic programming is called at the creation of each node in the decision tree

(about 50 times in each run), on the data that has to be classi�ed at that node .

The training data set (i.e., the �tness cases) contains more than 7000 items. Thus,

evaluating irrelevant code on these data takes much CPU time.

6. CONCLUSIONS

In the paper a method for limiting code growth in genetic programming was presented.

The mechanism for controlling the size of programs was distinct from the �tness-based

selection mechanism. The control of code growth was realized by a special mutation

operator, inspired by two forms of mutation in biology. The method was applied to

symbolic regression, where the special mutation operator consisted in algebraic simpli-

�cation. The evolution of programs had two alternating phases:

� classical genetic programming - allowing code growth and intron formation (sev-

eral generations); and

� simpli�cation of programs - eliminating introns and reducing program size by

means of a mutation operator (one generation).

The experimental results show that code growth can be moderated or even stopped

without the deterioration of performance by choosing the right frequency and proba-

bility for the application of simpli�cation.

Acknowledgements

This work has been supported by grant No. T25471 of the National Research Foun-

dation of Hungary and by the E�otv�os Lor�and University. The author is grateful to A.

M�arkus and J. V�ancza for many helpful discussions.

References

[Angeline, 1994] Peter J. Angeline. Genetic programming and emergent intelligence.

In Kenneth E. Kinnear, editor, Advances in Genetic Programming, pages 75{97. MIT

Press, 1994.

[Banzhaf et al., 1998] Wolfgang Banzhaf, Peter Nordin, Robert E. Keller, and Frank D.

Francone. Genetic Programming: An Introduction. Morgan Kaufmann, 1998.

[Ek�art, 1998] Anik�o Ek�art. Generating class descriptions of four bar linkages. In

John R. Koza, editor, Late Breaking Papers at the Genetic Programming 1998 Con-

ference, pages 42{47, 1998.

[Gilbert, 1985] Walter Gilbert. Genes-in-pieces revisited. Science, 228:823{824, 1985.

[Hooper and Flann, 1996] Dale C. Hooper and Nicholas S. Flann. Improving the ac-

curacy and robustness of genetic programming through expression simpli�cation. In

12

John R. Koza, David E. Goldberg, David B. Fogel, and Rick L. Riolo, editors, Genetic

Programming 1996: Proceedings of the First Annual Conference, page 428, 1996.

[Iba et al., 1994] Hitoshi Iba, Hugo de Garis, and Taisuke Sato. Genetic program-

ming using a minimum description length principle. In Kenneth E. Kinnear, editor,

Advances in Genetic Programming, pages 265{284. MIT Press, 1994.

[Koza, 1992] John R. Koza. Genetic Programming: On the Programming of Computers

by Means of Natural Selection. MIT Press, 1992.

[Langdon, 1999] William B. Langdon. Size fair and homologous tree genetic program-

ming crossovers. In W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar,

M. Jakiela, and R. E. Smith, editors, GECCO-99: Proceedings of the Genetic and

Evolutionary Computation Conference, 1999.

[Nordin et al., 1995] Peter Nordin, Frank D. Francone, and Wolfgang Banzhaf. Explic-

itly de�ned introns and destructive crossover in genetic programming. In Justinian P.

Rosca, editor, Proceedings of the Workshop on Genetic Programming: From Theory

to Real-World Applications, pages 6{22, 1995.

[Quinlan, 1993] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan

Kaufmann, 1993.

[Sandor and Erdman, 1984] George N. Sandor and Arthur G. Erdman. Advanced

mechanism design: Analysis and synthesis, volume 2. Prentice Hall, 1984.

[Soule et al., 1996] Terence Soule, James A. Foster, and John Dickinson. Code growth

in genetic programming. In John R. Koza, David E. Goldberg, David B. Fogel, and

Rick L. Riolo, editors, Genetic Programming 1996: Proceedings of the First Annual

Conference, pages 215{223, 1996.

[Stryer, 1988] Lubert Stryer. Biochemistry. Freeman, 1988.

[Watson et al., 1987] J. Watson, N. H. Hopkins, J. W. Roberts, J. Argetsinger-Steitz,

and A. M. Weiner. Molecular Biology of the Gene. Benjamin-Cummings, 1987.

[Zhang and M�uhlenbein, 1995] Byoung-Tak Zhang and Heinz M�uhlenbein. Balanc-

ing accuracy and parsimony in genetic programming. Evolutionary Computation,

3(1):17{38, 1995.

13

Parametric Coding vs Genetic Programming:
A Case Study

Alain RACINE, Sana BEN HAMIDA, Marc SCHOENAUER

Centre de Math�ematiques Appliqu�ees

Ecole Polytechnique

91128 PALAISEAU, FRANCE

ABSTRACT

The goal is to design the 2-dimensional pro�le of an optical lens in order to control focal-
plane irradiance of some laser beam. The numerical simulation of the irradiance of the beam
through the lens, including some technological constraints on the correlation radius of the
phase of the lens, involves two FFT computations, whose computational cost heavily depends
on the chosen discretization.

A straightforward representation of a solution is that of a matrix of thicknesses, based on a
N�N (with N = 2p) discretization of the lens. However, even though some technical simpli-
�cations allow us to reduce the size of that search space, its complexity increases quadratically
with N , making physically realistic cases (e.g. N � 256) almost untractable (more than 2000
variables). An alternative representation is brought by GP parse trees, searching in some
functional space: the genotype does not depend any more on the chosen discretization.

The implementation of both parametric representation (using ES algorithms) and func-
tional approach (using \standard" GP) for the lens design problem are described. Both
achieve good results compared to the state-of-the-art methods for small to medium values of
the discretization parameter N (up to 256). Moreover, preliminary comparative results are
presented between the two representations, and some counter-intuitive results are discussed.

1. Introduction

Many optimization problems actually look for a function: unknown pro�les can be seen as
spatial functions, unknown commands can be described as time-dependent functions, : : : Two
approaches are then possible: standard numerical methods often discretise the de�nition do-
main of the unknown function, and the search space is then transformed into a space of
�xed-length vectors of parameters (one value per discrete point). The original optimization
problem is thus amenable to parametric optimization. But the accuracy of the solution is
then highly dependent on the dicretization, and the �ner the discretization, the larger the
parametric search space. On the other hand, Genetic Programming (GP) o�ers an alternate
approach where the search space is some functional space, independent of any discretization.

This paper presents a case study of such situation. The goal is to design a lens in order to
control focal-plane irradiance of some laser beam. Irradiance control allows to concentrate
laser beam energy on a particular region of the focal-plane of a focusing lens. Physicists use
this technology to experiment a speci�c kind of nuclear fusion : Inertial Con�nement Fusion.
A tiny pellet of fuel is heated to a very high temperature by powerful beams of energy. Thus
the laser inertial con�nement process produces powerful bursts of fusion energy.

14

The best-to-date method to optimize the pro�le of the phase plate is simulated anneal-
ing [YLL96]. Nevertheless, this approach requires a signi�cant computational time (120h of
CPU time on a Cray YMP-2 computer). Others heuristical methods [SNDP96, fLEa, fLEb]
can be used to provide an approximate phase pro�le. But these lenses are not eÆcient, i.e.
they induce a drastical loss of energy outside the target: the spared computational time is
balanced by a loss of precision.

We propose in this paper to use the Evolutionary Computation paradigm to handle the
lens design problem. The choice of a representation is well known to be a crucial step in
any Evolutionary Algorithm (EAs) { see e.g. the early debate on binary vs real encoding
for real-valued parameters. On the other hand, EAs are
exible enough to be able to handle
non-standard search spaces, such as spaces of variable length lists, graphs, etc. Along those
lines, many representations have been designed to handle functions, among which Genetic
Programming has proven very eÆcient on a number of problems (see e.g. [SSJ+96, Koz94]
among others).
In the case of the lens pro�le design, the computation of the �tness of a given pro�le

requires some numerical simulation of optical propagation of a laser beam, and the best-
to-date methods for that involve Fast Fourier Transforms (FFTs), based on some 2N � 2N

discretization of the pro�le (see section 2). Hence a \natural" representation for a pro�le is
the 2-dimensional matrix that will be used to compute those FFTs. But, even though working
in the time domain allows us here to decrease the number of unknown parameters (see again
section 2 for the details), the size of this parametric search space increases quadratically with
the chosen discretization size N . So even without considering the computational cost of a
single �tness evaluation, it is commonly acknowledged that the number of generations before
convergence of any EA increases at least linearly with the size of the search space (see e.g.
[TG93, Cer96]).
This is where functional approaches, among which Genetic Programming (GP), can take

over: indeed, if the lens pro�le at a given point is represented as a function of that point,
the size of the search space is independent of any discretization. Hence the number of gen-
erations to reach a given accuracy will hopefully be independent of any discretization, too
{ even though the computational cost of a single �tness evaluation will still depend on the
discretization (i.e. the number of points where GP trees need to be evaluated still increases
quadratically with the discretization parameter N).
Both approaches are presented in this paper: the parametric representation is handled by

a (� + �) Evolution Strategy, and the non-parametric functional approach uses \standard"
Genetic Programming to represent solutions by parse trees.

This paper �rst describes the application background and presents some feasibility con-
straints (section 2). The parametric representation, together with the associated ES algo-
rithm, is introduced in section 3.1, while the functional approach based on Genetic Program-
ming is detailed in section 3.2. The results of both algorithms are presented and compared in
section 4. Both approaches give very good results compared to the state-of-the-art methods.
But whereas GP quickly �nds some good solutions (almost independently of the discretiza-
tion, as expected), it experienced some diÆculty in the �ne-tuning of those solutions, and the
ES method ultimately gives slightly better results. This suggest to build a hybrid algorithm
that would take advantage of both methods: some further research directions are sketched
in that perspective in section 5.

15

2. Focal-Plane Irradiance Problem

Consider a laser beam, speci�ed by its scalar electrostatic �eld. The problem consists in de-
signing a continuous distributed phase plate (the unknown lens shape) to produce a speci�ed
irradiance pro�le at the focal-plane of a given focusing lens.
Without any phase plate, the focal-plane pro�le corresponds to a single (very energetic!)

peak at the focal point. In order to achieve the inertial con�nement fusion, it is mandatory
to be able to illuminate a given small circular target around the focal point of the focusing
lens. Hence a phase plate is added before the focusing lens and its shape directly acts on the
irradiance pro�le.
More precisely, the optical system (See �gure 1) is composed by :

� a large pupil to control the complete illumination of the phase plate.

� a phase plate (to be determined) to modify the distribution of the phase along the
section of the laser beam.

� a focusing lens

� a virtual screen at the focal-plane to measure the focal pro�le.

E0 E1

Laser light

Focal plane

Focusing
distributed
Continous

phase plate
lens

pupil

TF()ϕ

Lx 0.9.Lx

Spot
Focal

E2

F

2.r0

Figure 1: The optical system. All physical values have been normalized.

2.1 Analytic formulation

Figure 1 shows the experimental layout. First, the pupil produces a scalar electrostatic �eld:

E0(x; y) = e
��
�p

(x2+y2)

R

�8

The new �eld E1(x; y) generated by the phase plate '(x; y) is:

E1(x; y) = E0(x; y):e
i'(x;y)

Thus, the �eld at the focal-plane is obtained by a simple Fourier Transform: E2(x; y) =
FT(E1(x; y))
Finally, the relative lighting intensity at the focal-plane is given by the intensity of the �led

E2, the Fourier transform of E1:

I(x; y) = (E2(x; y))
2 = (FT(E1(x; y)))

2

16

2.2 The optimization problem

The goal is to design a phase plate such that a small circular target of radius r0 on the focal
plane is uniformly illuminated by the laser beam (see Figure 2-a): the perfect solution shows
a radial step-like pro�le on the focal plane { which will be smoothed to a super-Gaussian
pro�le of order 8 (i.e. t(r) = exp(� (r=r0)

8) in the following.
The radial pro�le I(r) from I(x; y) � I(r; �) is given by:

I(r) =
1

2�r

Z 2�

0

I(r; �) d�

The goal is to design a phase-plate whose illumination pro�le on the focal plane will be as
close as possible from the super-Gaussian pro�le (see Figure 2-b). The cost function (to be

minimized) Err becomes (after renormalization of I(r)! eI(r)) :
Err =

Z 1

0

h
t(r)� eI(r)i2 dr (2.1)

r r0

D
iam

eter of target
A

round the focal point

Irradiance field
D

iam
eter of

Radius

In
te

ns
ity

0 1000500

0

1

0.5

Desired Profile
Obtained Radial Profile

Radial Profile

(a) The target in the focal plane. (b) Desired and sample radial pro�les.

Figure 2: The optimization problem: �tting the desired radial pro�le.

2.3 Manufacturing Constraints

Some technological constraints have to be taken into account: manufacturers are not able to
make very rough phase-plates. To ensure an acceptable smoothness of all designs, a common
practice is to �lter out the high frequencies of the phase-plate in the frequency domain
(after applying Fourier transform), before transforming the �ltered signal back into the space
domain.
This leads to consider a new unknown �eld Z(x; y), and to compute the phase plate ' by

�ltering out the high frequencies in Z as shown in Table 1 below.

Table 1: Smoothing the phase plate: the �lter simply zeroes out high frequencies

Z(x; y) �! ~Z �! ~Z � Filter �! '(x; y)
FFT Filtering FFT�1

17

2.4 Working in Fourier space

Table 1 suggested a simpli�cation of the search space: instead of working on Z, it is possible
to consider directly the �ltered Fourier transform ~Z � Filter as the unknown �eld. The
number of non-zero terms in ~Z � Filter is much smaller than the number of terms in Z

as all high frequencies correspond to a zero in the �lter. Whereas it is clear that this will
be an advantage for the parametric representation (see section 3.1 below), it nevertheless
decreases the number of points where the unknown �eld ~Z � Filter has to be computed in
the functional approach (section 3.2).
The number of non-zero values in ~Z � Filter is given in Table 2 for the di�erent values of

the discretization N used in the di�erent FFT involved in the �tness.

Table 2: Non-zero terms in ~Z � Filter for di�erent values of the discretization parameter N
N = 32 �! nval = 32
N = 64 �! nval = 148
N = 128 �! nval = 560
N = 256 �! nval = 2284

2.5 Fitness function

From the above consideration, the �tness function used thereafter can be graphed as in
Figure 3, the comparison between both pro�le being given by equation (2.1).

Matrix
Fourier

Profile
Irradiance

Irradiance
Desired

Profile

Fitness

The
Individual
(Genotype)

Filling
Simple

Phase
(Phenotype)

Filtering + FFT
Optic

Simulation

Comparison

Smoothing

Figure 3: Fitness computation

The remaining open issue is the representation of the non-zero �eld ~Z�Filter - which will
be thoroughly addressed in next section.

3. The evolutionary algorithms

3.1 Parametric representation

The most \natural" representation for the �eld ~Z � Filter of Table 1 is the direct encoding
of all non-zero terms into a real-valued matrix - the size of the matrix is a function of the
discretization parameter N as given in Table 2 (though it is not N2, it is quadratically
increasing with N).
We are then back into the familiar framework of parametric optimization, and have chosen

a self-adaptive Evolution Strategy algorithm to address that problem (see [Sch81, B�95, BS93,
BHS97] for more details on standard ES with self-adaptive mutation parameters).
Brie
y, a standard deviation is attached to each design variable, and the mutation operator

�rst mutate the standard deviation following a log-normal mutation before modifying the

18

design variable with a Gaussian noise using the new value of its standard deviation.
The recombination used is the standard ES \global discrete recombination" for both the

standard deviations and the design variables. Note that a 2-dimensional crossover operator
was also tried (the unknown parameters are indeed a 2-D matrix [KS95]) which did not give
better results. All parameters are given in Table 3.

Table 3: ES parameters

Population size: � 50
Number of o�spring: � 100
Selection Mode (�+ �)

Mutation parameters

Initial std. dev.: �0 0.3
Global update: � 0.7
Local update: �L 0.3

3.2 Functional representation: GP

As discussed in the introduction, Evolutionary Algorithms o�er alternate representations for
functions { and the idea here is to represent directly the unknown �eld ~Z�Filter as a parse
tree, using \standard" Genetic Programming as the optimization algorithm [Koz92, Koz94].
Table 4 is the standard GP tableau, giving all parameters.

Table 4: Tableau for the GP algorithm

Set of nodes f+;�; �; sing

Set of terminals fx; y;Rg

Raw and stand. �tness Given by Equ. (2.1)
Wrapper See Table 1
Population size 100
Selection Mode Tournament (Size=10)
Replacement Generational with elistism
Crossover probability 0.6
Mutation probability 0.4
Types of mutations

Promotion of a branch
Random Replacement of a branch
Node and terminal permutation

Constant terminals Gaussian mutation
Maximal depth of an individual 14
Minimal depth at initialization 3
Interval for initialization of constant terminals [-100,100]
Std. dev. for Gaussian mutation of constant terminals 10

19

4. Results

Table 5 gives the average number of generations (over 11 runs) to reach a particular error
level, while Figure 4 is a graphical view of the same results.

Table 5: Average number of generations to reach a speci�c error level. \??" means that error

level was never reached, and a 0 error level indicates that the value is obtained at the �rst generation.

Discretization 32 64 128 256

ES GP ES GP ES GP ES GP

Error=1.0 51 0 220 0 416 9 799 45

Error=0.5 66 0 237 3 420 48 1021 553

Error=0.05 1216 10 608 69 1510 ?? 4741 ??

Error=0.025 ?? 698 3896 2175 5277 ?? ?? ??

The �rst important result is that the results are very good indeed: an error of 0.025 is
reached in 5277 generations for the 128�128 case { corresponding to a total computing time
of about 30 hours of computing time for a Pentium II 350 Mhz, to be compared to the 120
hours of Cray YMP-2 for the 64 � 64 discretization. The best solution is given in Figure 5,
showing a very good �tting of the target irradiance pro�le.
But when it comes to compare the parametric and the functional approaches, some sur-

prising facts arise: as can be seen on Figure 4, GP is indeed more eÆcient than ES to reach
quite large values of the error, but seems to have much diÆculty to �ne-tune the solutions
and reach smaller errors. And this tendency is clearer as the discretization parameter N

increases, which is the opposite of what was expected.
Figure 6 gives another point of view on this phenomenon: GP performs better than ES at

the beginning of the evolution (until generation 630 for N = 128 on the �gure.
It seems that in the early generations, ES has to optimize each coeÆcient one by one

and takes a long time to reach reasonable performance while GP makes large jumps in the
search space since a small modi�cation of a tree generates a drastically di�erent behavior.
These results tallies with Angeline's work concerning the link between crossover and macro-
mutation [Ang97]. In fact, both GP-mutations and GP-crossover are at this stage exploration
operators.
In a second part, after ES has met GP performance, ES still improves the best �tness -

thanks to self-adaptation. So even if the convergence of ES remains very slow, the �tness
continues to decrease { and this is true up to 15000 generations, though the decrease becomes
almost zero as the self-adapted parameters go to zero themselves.
These results reveal the lack of precision of our GP approach. GP roughs out very eÆciently

the exploration of the �tness landscape, but has a lot of diÆculties to re�ne the solution. A
possible improvement would be to also use self-adaptation to tune the constant terminals in
GP rather than performing Gaussian mutation with �xed standard deviation { future work
will investigate this possibility.
Another point that enforces this explanation is that the best results for GP are provided

with a rather large tournament size (10 out of a population of 100). Indeed, this forces
to concentrate the GP exploration around the best solution to improve the re�nement pro-
cess. However this approach rapidly reduces the diversity in the population, and GP is then
searching in a quite narrow region of the search space.

20

C
entrum

 voor W
iskunde en Inform

atica

R
E

P
O

R
T

R
A

P
P

O
R

T

Late-B
reaking P

apers of E
uroG

P
-99

E
dited by: W

.B
. Langdon, R

. P
oli, P

. N
ordin, T

. F
ogarty

S
oftw

are E
ngineering (S

E
N

)

S
E

N
-R

9913 M
ay 31, 1999

R
eport S

E
N

-R
9913

IS
S

N
 1386-369X

C
W

I
P

.O
. B

ox 94079
1090 G

B
 A

m
sterdam

T
he N

etherlands

C
W

I is the N
ational R

esearch Institute for M
athem

atics
and C

om
puter S

cience. C
W

I is part of the S
tichting

M
athem

atisch C
entrum

 (S
M

C
), the D

utch foundation
for prom

otion of m
athem

atics and com
puter science

and their applications.
S

M
C

 is sponsored by the N
etherlands O

rganization for
S

cientific
R

esearch
(N

W
O

).
C

W
I

is
a

m
em

ber
of

E
R

C
IM

,
the

E
uropean

R
esearch

C
onsortium

for

Inform
atics and M

athem
atics.

C
opyright ©

 S
tichting M

athem
atisch C

entrum
P

.O
. B

ox 94079, 1090 G
B

 A
m

sterdam
 (N

L)
K

ruislaan 413, 1098 S
J A

m
sterdam

 (N
L)

T
elephone +

31 20 592 9333
T

elefax +
31 20 592 4199

0

200

400

600

800

1000

1200

32 64 128 256

A
ve

ra
ge

 n
um

be
r

of
 g

en
er

at
io

ns

Discretization level

ES (Error=1.0)
GP (Error=1.0)
ES (Error=0.5)
GP (Error=0.5)

Figure 4: Behavior of GP and ES according to the discretization rate N

Radius

A
ve

ra
ge

 R
ad

ia
l P

ro
fil

e

0 100 200 300 400 500 600

0

1

0.5

Desired profile
ES profile
GP profile

Irradiances Profiles

Figure 5: The best radial pro�les (ES & GP) and the best phase plate (ES) for N = 128

Generations

A
ve

ra
ge

 b
es

t f
itn

es
s

0 100 200 30050 150 250

0

41. 10

42. 10

35. 10

41.5 10

ES
GP

First Generations

Generations

A
ve

ra
ge

 b
es

t f
itn

es
s

0 1000 2000 3000 4000 5000 6000 7000

0

0.1

0.2

0.3

0.4

0.5
ES
GP

Last generations

Figure 6: Average curves of the best individual with ES and GP (discretization rate=128)

21

5. A hybrid algorithm

From the evolution curves of GP and ES for N = 128 (Figure 6), it is clear that ES loses a
lot of time at the beginning.
Hence in order to take advantage of both evolutionary approaches, we designed an hybrid

algorithm. We start GP algorithm, and when it starts to stagnate, we transform the GP
trees in the population into matrices of real values that are the initial population of an ES
parametric run. This population at the resumption point naturally provides a genotypical
diversity to the further optimization with ES.
Figure 7 shows �rst results (via semi-log scale) based on this two-steps strategy and un-

derlines the increase of precision relatively to both algorithms alone a simple GP algorithm.
Indeed, after the cross point, we notice that continued evolution with ES signi�cally improve
the �nal solution. Moreover, we can verify that the hybrid algorithm provides better results
even than pure ES : solution at generation 5000 produces an error of 0:0172634 at the focal-
plane (ES took an average number of 5277 generations to reach an error level equals to 0:025,
see Table 5). However, no conclusion should ever be drawn from a single run ([Jr94]), and
more experiments are needed to test the robustness of this hybrid approach.

Generations

F
itn

es
s

of
 th

e
be

st
 in

di
vi

du
al

0 1000 2000 3000 4000 5000

-210

-110

010

GP
Last generations with GP
Last generations with ES

Resumption point

0.0598324

0.0172634

Figure 7: Comparison of evolution curves of GP and Hybrid algorithm

6. Conclusion

In this paper, a diÆcult real-world problem has been tackled by Evolutionary Computation
using two di�erent representations: the straightforward parametric representation by a matrix
of real numbers, optimized using an ES+ algorithm, and the functional representation allowed
by Genetic Programming.
Both algorithms gave good results compared to the state-of-the-art results, but the com-

parison of the parametric and the functional approaches lead to some surprising results.
Whereas the GP functional approach was expected to be less sensitive than the ES paramet-
ric approach, the latter was able to obtain better-tuned results { whatever the discretization
parameter. Our explanation lies in the inability of our GP implementation to �ne-tune the

22

constant terminals { and hence locally optimize the good solutions it has found.
This was somewhat con�rmed by the �nal experiment presented, which hybridized GP and

ES, switching from the functional to the parametric representation to �ne tune the solution
{ and reaching better solutions that both approaches alone. However, more experiments are
needed to con�rm the usefulness of that hybrid approach.
But the ultimate functional approach would be to use even further the analytic form of GP

trees, postponing the numerical discretization as much as possible: We are presently working
on a a pure symbolic system based on GP { using symbolic maths to compute all Fourier
Transform whenever possible. This approach should provide a functional representation of
the optimized phase plate instead of a discrete representation, hopefully avoiding most side
e�ects generated by the discretization.

References
[Ang97] Peter J. Angeline. Subtree crossover: Building block engine or macromutation? In J. R.

Koza and al., editors, GP97: Proceedings of the 2nd Annual Conf. Morgan Kaufmann,
13-16 July 1997.

[B�95] T. B�ack. Evolutionary Algorithms in theory and practice. New-York:Oxford University
Press, 1995.

[BHS97] Th. B�ack, U. Hammel, , and H.-P. Schwefel. Evolutionary computation: Comments on the
history and current state. Transactions on Evolutionary Computation, 1(1):3{17, 1997.

[BS93] Th. B�ack and H.-P. Schwefel. An overview of evolutionary algorithms for parameter opti-
mization. Evolutionary Computation, 1(1):1{23, 1993.

[Cer96] R. Cerf. An asymptotic theory of genetic algorithms. In J.-M. Alliot and al., editors,
Arti�cial Evolution, volume 1063 of LNCS. Springer Verlag, 1996.

[fLEa] Laboratory for Laser Energetics. Distributed phase plates for super gaussian focal-plane
irradiance pro�les. LLE Review.

[fLEb] Laboratory for Laser Energetics. High-eÆciency distributed phase plate generation and
characterization. LLE Review.

[Jr94] K. E. Kinnear Jr. A perspective on GP. In Jr K. E. Kinnear, editor, Advances in Genetic
Programming, pages 3{19. MIT Press, Cambridge, MA, 1994.

[Koz92] J. R. Koza. Genetic Programming: On the Programming of Computers by means of Natural
Evolution. MIT Press, Massachussetts, 1992.

[Koz94] J. R. Koza. Genetic Programming II: Automatic Discovery of Reusable Programs. MIT
Press, Massachussetts, 1994.

[KS95] C. Kane and M. Schoenauer. Genetic operators for two-dimensional shape optimization. In
J.-M. Alliot and al., editors, Arti�cial Evolution, number 1063 in LNCS. Springer Verlag,
Septembre 1995.

[Sch81] H.-P. Schwefel. Numerical Optimization of Computer Models. John Wiley & Sons, New-
York, 1981. 1995 { 2nd edition.

[SNDP96] M. D. Perry S. N. Dixit, M. D. Feit and H. T. Powell. Designing fully continuous phase
screens for tailoring focal-plane irradiance pro�les. Optics Letters 21, 1996.

[SSJ+96] M. Schoenauer, M. Sebag, F. Jouve, B. Lamy, and H. Maitournam. Evolutionary identi�ca-
tion of macro-mechanical models. In P. J. Angeline and Jr K. E. Kinnear, editors, Advances
in GP II, Cambridge, MA, 1996. MIT Press.

[TG93] D. Thierens and D.E. Goldberg. Mixing in ga. In S. Forrest, editor, Proceedings of the 5th

International Conference on Genetic Algorithms. Morgan Kaufmann, 1993.

[YLL96] T. J. Kessler Y. Lin and G. N. Lawrence. Design of continuous surface-relief phase plates
by surface-based simulated annealing to achieve control of focal-plane irradiance. Optics
Letters, 1996.

23

Genetic Programming as an Analytical Tool for
Metabolome Data

Richard J. Gilbert, Helen E. Johnson, Michæl K. Winson, Jem J. Rowland†,
Royston Goodacre, Aileen R. Smith, Michæl A. Hall and Douglas B. Kell

Institute of Biological Sciences, University of Wales, Aberystwyth, Ceredigion SY23 3DD, UK
†Department of Computer Science, University of Wales, Aberystwyth, Ceredigion SY23 3DB, UK

rcg@aber.ac.uk, hej93@aber.ac.uk, mkw@aber.ac.uk, jjr@aber.ac.uk,
ars@aber.ac.uk, mah@aber.ac.uk dbk@aber.ac.uk

Corresponding Author: Richard Gilbert. Tel: +44 (0)1970 622353. Fax: +44 (0)1970 622354. http://gepasi.dbs.aber.ac.uk/rcg

Abstract

Genetic programming, in conjunction with advanced analytical instruments, is a novel tool for
the investigation of complex biological systems at the whole-tissue level.

In this study, samples from tomato fruit grown hydroponically under both high- and low-salt
conditions were analysed using Fourier-transform infrared spectroscopy (FTIR), with the aim of
identifying spectral and biochemical features linked to salinity in the growth environment.

FTIR spectra are not amenable to direct visual analysis, so supervised machine learning was used
to generate models capable of classifying the samples based on their spectral characteristics. The
genetic programming (GP) method was chosen, since it has previously been shown to perform
with the same accuracy as conventional data modelling methods, but in a readily-interpretable
form.

Examination of the GP-derived models showed that there was a small number of spectral regions
that were consistently being used. In particular, the spectral region containing absorbances
potentially due to a cyanide/nitrile functional group was identified as discriminatory. The
explanatory power of the GP models enabled a chemical interpretation of the biochemical
differences to be proposed. The combination of FTIR and GP is therefore a powerful and novel
analytical tool which, in this study, improves our understanding of the biochemistry of salt
tolerance in tomato plants.

Introduction

The metabolome is a generic term for the total biochemical composition of a cell or tissue sample at any
given time. Recent advances in DNA sequencing have lead to an explosion in the number of known
gene sequences, but the majority of these new genes have never been characterised experimentally, and
most have completely unknown functions within the cell. By investigating the changes in the
metabolome of biological systems under different conditions, it is hoped that previously undescribed
metabolic processes or pathways may be uncovered, leading to functional assignments for many of the
newly-discovered genes within the genomic databases. This area of biology, termed functional
genomics, will be a major focus of study over the next decade.

24

In order to study the metabolome of biological samples, new analytical techniques need to be
developed. A typical metabolome study seeks to detect changes in the levels of a few specific
biochemicals against a background of more than a thousand other cellular components. To address this,
analytical instumentation is being developed which is capable of measuring biochemical signatures
from whole-tissue or whole-organism samples. This typically results in datasets comprising
measurements of many hundreds or thousands of variables. To complicate this task further, the
identities of the particular biochemicals to be monitored are frequently unknown at the outset. The
power of GP to select variables from high dimensional data and to form interpretable predictive models
gives it a unique advantage in the analytical interpretation of metabolomic data.

Over the past two decades, the tomato as a crop has increased in popularity. Consequently, much
research has been aimed at improving the economic viability of tomato production and post-harvest
stability. Environmental stress, such as high salt concentration, is one of the main parameters limiting
crop production. The tomato cultivar Edkawy is potentially salt-tolerant as it grows in the El-Bosaily
area of North Egypt, where the soils are saline sands. Edkawy has already been studied in terms of salt
tolerance and previous literature provides evidence that this tomato variety may have salt tolerant
attributes[1,2]. In this study, Edkawy plants were cultivated using a hydroponic drip irrigation system,
allowing precise control of the nutrient conditions within the root zone, including the salinity level. The
aim of the study was to identify biochemical constituents (biomarkers) within the fruit tissue which are
discriminatory for salt-grown tomato plants, and hence to contribute to the understanding of the
fundamental biological mechanisms potentially underlying salt tolerance in tomato plants. This in turn
may lead to rational improvements in the quality of tomato fruit grown in conditions of high salinity.

Fourier-transform infrared spectroscopy [3] is a physico-chemical analytical technique, which uses the
vibrational characteristics of chemical bonds within molecules to obtain a ‘fingerprint’ spectrum with
features defined by the functional chemical groups within the sample. This form of analytical technique
is therefore able to give quantitative information about the total biochemical composition of a sample.
A thin layer of the biological sample to be analysed is illuminated in the infrared to obtain an
interferogram (produced by splitting an infrared beam of light, extending the path length of one half by
reflecting it off a movable mirror, and recombining the beams optically). Chemical groups within the
sample absorb specific frequencies of light within the interferogram due to ‘resonance’ with their
vibrational motions, the precise frequencies absorbed being related to the energies specific to the
vibrational modes of each chemical group. The information encoded in the reflected/absorbed light is
then recovered by performing a Fourier-transform on the detected signal. The FTIR spectrum so
obtained comprises 882 variables, each of which indicates the level of absorbance at a particular
frequency of infrared light.

A readily accessible interpretation of such extremely high-dimensional spectra, also known as
hyperspectral data, is often very difficult to obtain. Conventional analysis of data of this form falls into
two types. The first type, unsupervised learning methods, includes principal components analysis
(PCA), discriminant function analysis (DFA) and hierarchical cluster analysis (HCA), and seeks to form
separable clusters in the data by performing mathematical transforms derived from the variables within
the dataset without reference to known classes. The second type, supervised learning methods, includes
partial least squares (PLS), multivariate rule induction (MRI), inductive logic programming (ILP) and
artificial neural networks (ANNs), and seeks to refine a model based on the accuracy of its predictions
for a set of examples with a known class structure. Although widely used, none of these methods
provide models which are readily interpretable in a chemical sense.

Genetic programming [4-6] is an evolutionary technique which uses the concepts of Darwinian
selection to generate and optimise a desired computational function or mathematical expression. GP is a

25

supervised learning method, and consequently requires a set of training examples to form predictive
models that can then be applied to the classification of a set of previously unseen test samples. It has
previously been shown that GP performs at least as well as conventional predictive modelling methods
for analysing hyperspectral data [7].

Recently, hybrid GA-GP systems have been described [8,9] which are able to produce accurate
predictive models whilst minimising their complexity by enforcing constraints on their functional form
and expression length. However, a full GP system was chosen for use in this study because the precise
mathematical form and complexity of predictive models able to classify tomato fruit tissue samples
based on their FTIR spectra were unknown at the outset.

Methods

Plant Cultivation

The plants were grown in a hydroponic open-drip irrigation system, using perlite as an inert substrate.
The use of a hydroponic system is ideal for studies into plant physiology as it allows complete control
over the nutrients applied to the plants. The system was arranged to facilitate saline and control
treatments. The capacity of this system was 120 plants with 60 replicates per treatment. All plants were
irrigated with complete liquid fertiliser and supplementary sodium chloride (4000 ppm) was applied to
the saline treated plants.

Fruit Tissue Preparation

Twenty fully ripe (at stage 10 on the OCDE tomato ripening chart) Edkawy fruits were harvested. Fruit
were selected for uniformity to maximise homogeneity between samples. Ten fruit were taken from salt-
grown plants, and ten from control plants. The seeds and skin were removed, the outer pericarp was
crushed using a press, and kept on ice. The extract was homogenised using a Polytron blender at speed
5 for 1 minute. After homogenisation, 1ml aliquots of the sample were placed in Eppendorf tubes, and
snap-frozen in liquid N2. These were stored at -70°C until needed.

FTIR Spectroscopy

Ten replicate 5µl samples of each of the 20 fruit tissue samples were applied to wells drilled on a
sandblasted aluminium plate, arranged to minimise the effects of artifactual trends in the data. Prior to
analysis, the samples were oven-dried at 50 °C for 30 min. The plate was loaded onto the motorised
stage of a reflectance thin-layer chromatography (TLC) accessory attached to a Bruker IFS28 FTIR
spectrometer (Bruker Ltd.) equipped with a mercury-cadmium-telluride (MCT) detector cooled using
liquid N2.

The FTIR spectra were collected over a wavenumber range from 4000 cm-1 to 600 cm-1 under the
control of an IBM-compatible personal computer using OPUS 2.1 software running under the IBM
OS/2 Warp operating system. Spectra were acquired at a rate of 20 s-1, and at a resolution of
approximately 3.85 cm-1. To improve the signal-to-noise ratio, 256 spectra were recorded and averaged
for each sample. The complete dataset therefore comprised 200 averaged spectra, each containing 882
input variables. 100 spectra (50 from saline-grown and 50 from control fruit samples) were used by the
GP as a training set to derive the models, and the remaining 100 spectra were used to test their
predictive ability.

26

Genetic Programming

The GP implementation used in this study was capable of performing non-linear multivariate
regressions with automatic variable selection. It was written in C, and was run on IBM-compatible PCs
under Windows NT 4.0, and on DEC Alpha-based PCs under Linux 5.1.

The GP used the arithmetic operator functions add, subtract, multiply, and protected divide and a
Boolean ‘if greater than or equal to’ function. The if function returned a value of 1.0 if the first
argument was greater than or equal to the second argument; 0.0 otherwise. To avoid possible numeric
overflows, a protected divide function was used which returned a numerical value of 1015 for divisions
with a denominator ≤10-15. Additional protection from floating-point errors was enforced by clipping
the return value of each node into the range ±1015.

Terminals comprised either floating-point constants (initialised randomly in the range –10.0 to 10.0) or
input variables (corresponding to one of the 882 absorbance measurements which comprised each
spectrum).

The GP generated initial individuals with random function trees of depth 2 to 6, and assessed their
fitness using a scoring function that compared ei (the model’s estimate of the output for example i) with
oi (the experimentally-observed value) by calculating the root-mean-square error of prediction
(RMSEP) for n training examples:

()
n

eo
RMSEP

n

i
ii∑

=

−
= 1

2

The fittest individuals were those which gave the lowest RMSEPs for the training set examples.

Since the dataset contains two classes (fruit from plants grown under either saline or control
conditions), class membership was defined in the training examples by assigning a target output value
of 1.0 to members of the saline-grown class, and 0.0 to members of the control class. A correct
classification assigned when the output value of the GP-derived rule was within 0.01 of the target
output for any given spectrum.

GP-generated rules, if allowed to evolve unchecked, tend to become longer and more arithmetically
complex as the evolution proceeds, a phenomenon known as bloat [10]. This increase in complexity
reduces the ready interpretability of the expressions generated. To combat this, a penalty of 0.01 × N,
where N represents the number of nodes in the function tree, was added to the fitness calculation. This
ensured that, for a given RMSEP, a shorter tree would be chosen over a longer one. In addition, a
maximum tree depth of 10, and a maximum node count of 100 was enforced during the evolution.

The size constraints on the GP rules meant that even the longest rules could use only a small subset of
the available input variables comprising the dataset. The GP was therefore compelled to perform an
automatic variable selection, resulting in predictive models with significantly lower dimensionality (i.e.
using far fewer variables) than the dataset as a whole. The automatic variable-selection ability of the GP
approach is one of the main benefits of using this as a predictive modelling method [11]. Since the GP-
derived models are readily-interpretable, analysis of the selected variables can lead to a rationalisation
of the mechanism underlying the model.

27

The GP used five demes (sub-populations) each of 7500 individuals. Every 10 generations, the best 5%
of the individuals in each of four satellite demes replaced the worst 5% in a central deme. The best 5%
from this deme then replaced the worst 5% in the satellite demes. This divergent evolution and
migration strategy has been shown to be more effective at solving high-dimensional problems than a
conventional single-population GP [12].

During each generation, 1500 new individuals were created by single-point mutation, and 3000 by
single-point crossover. Parental selection was proportional to fitness, and new individuals were retained
in the deme if their fitness was higher than that of the current worst individual.

Partial Least Squares Modelling

Partial least squares (PLS) modelling is a widely-used supervised learning technique which reduces the
dimensionality of multivariate data by using a priori knowledge of which spectra were derived from
plants grown under saline or control conditions to produce mathematical models comprising linear
combinations of variables. For this study, we used a PLS modelling system written in house by Dr. Alun
Jones.

Variable Analysis

An analysis was performed to investigate the correlation between the GP-selected input variables and
the known class structure of the data. Product moment correlation (PMC) is a method which uses linear
transformations to quantify which variables (x) are most strongly related to the output data (y) being
modelled.

The PMC (R) ranges from -1 to +1, indicating a perfect negative to a perfect positive correlation R
takes the sign of Cxy. A value of 0 indicates that x is uncorrelated with y. R for n examples be calculated
as follows:

R
C

C C
xy

xx yy

=
⋅

where ()C x y n x yxy i i
i

n

= ⋅





− ⋅ ⋅
=
∑

1

()C x n xxx i
i

n

= 





− ⋅
=
∑ 2

1

2

()C y n yyy i
i

n

= 





− ⋅
=
∑ 2

1

2

Quantum Mechanics and Infrared Spectral Analysis

The semi-empirical quantum mechanics program PM1, part of the HyperChem 5.1 molecular modelling
package (HyperCube, Inc.) was used to calculate infrared vibrational spectra and molecular vibrational
modes for potential metabolites identified during the analysis of the data. The infrared spectral analysis

28

package IR Mentor Pro 2.0 (Bio-Rad Laboratories) was used to suggest candidate chemical groups
responsible for the particular spectral features selected as discriminatory by the GP models.

Results and Discussion

After a sufficient number of reproductive generations, the GP was able to derive expressions capable of
correctly classifying the examples in both the training and test sets to an average accuracy approaching
90%. The final GP model was produced after fewer than 400 generations. The PLS model was also to
separate the classes to a similar accuracy (Figure 1). However, the PLS model, in common with the
other widely-used statistical modelling methods, does not provide readily-available information about
which variables have been selected.

The rules from 30 independent GP runs used 112 of the 882 input variables. The dataset as a whole
contained variables with PMC values ranging from 0.000332 to 0.4401. The GP-selected variables had
PMC values ranging from 0.000642 to 0.4296, indicating that the GP selected variables with both high
and low correlations with the known class structure. The two most widely-used variables (each found in
five models) had a PMC value of 0.3055 and 0.2876, both reasonably well-correlated with the class
structure. Although the most-correlated variable in the data set was not used, the GP selected an
adjacent variable on two occasions.

-1

-0.5

0

0.5

1

1.5

0 5 10 15 20 25 30 35 40 45 50

Sample number

P
L

S
1

p
re

d
ic

ti
o

n

Control Salt

Figure 1

Partial Least Squares 1 (PLS1) was used to classify the samples. The PLS1 model was
trained on 50 spectra. The chosen model used 11 components, which gave the minimum
RMS error in the prediction values (0.3302) for a validation set of 50 previously unseen
spectra. This model was then applied to 100 previously unseen spectra, comprising 50
control and 50 saline-grown samples. The plot below shows the model’s predicted
output values for this test set.

29

The GP-derived models used, on average, five variables in their predictive rules. No single variable
could be used to classify the spectra with an accuracy approaching the 90% value of the GP-derived
rules. Despite the reasonably high PMC values for most of the variables within the dataset PLS was
unable to completely separate the two classes based on the spectral data (Figure 1). This indicates that
the dataset does not contain enough information to allow a high degree of separation of the two classes
to be made without using non-linear combinations of variables. The if operator was used in every GP
rule, a clearly essential function for a classification problem which is not readily available to neural
networks and the conventional statistical modelling methods.

The GP models were all different. The prediction accuracy ranged from 84.5% to 94% correct. Runs 9,
13, 18 and 27 produced remarkably similar models, with the same logical structure and using very
similar variables:

Run 9: IF (A2164-A2245) ≥ (A2060-A2098) THEN [Saline] ELSE [Control] (89% correct)

Run 13: IF (A2171-A2245) ≥ (A1963-A2106) THEN [Saline] ELSE [Control] (88% correct)

Run 18: IF (A2168-A2257) ≥ (A2029-A2114) THEN [Saline] ELSE [Control] (89.5% correct)

Run 27: IF (A2179-A2230) ≥ (A2025-A2118) THEN [Saline] ELSE [Control] (90.5% correct)

In the above rules, An represents the measured absorbance at n wavenumbers. These rules may be
indicative of the nature of the globally-optimal rule derivable from this dataset. The best performing
rule, with a 94% predictive accuracy, used a similar logical construct and selected similar variables.
However it included an additional term associated with a spectral feature at 2480 wavenumbers which
enabled a better class prediction for some of the saline-grown samples which were incorrectly classified
by the simpler rules:

Run 28:

IF () () ()[]211020173638155821332268
3499

3476
8832480 IF AAAAAA

A
A

AA −++×−≥







×





≥

THEN [Saline] ELSE [Control] (94% correct)

An analysis of which input variables (in terms of absorbances at particular wavenumbers) were selected
showed that there were a few regions of the spectra that were consistently being used to form the
different models (Figure 2a). In particular, the spectral region covering 2270 to 1960 cm-1 was used by
most of the rules, and all of the best-performing models were based on a few small but distinct features
within this critical region. The absolute differences between saline and non-saline grown samples in this
region are relatively small, and so would not have been selected in a direct visual analysis, for example
by using a difference spectrum.

30

(A)

0

1

2

3

4

5

6

4000 3811 3626 3441 3256 3071 2886 2701 2516 2331 2146 1961 1776 1591 1406 1221 1036 851 666

Wavenumber cm-1

N
um

b
er of rules

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

A
b

so
rban

ce

(B)

0

1

2

3

4

5

6

4000 3811 3626 3441 3256 3071 2886 2701 2516 2331 2146 1961 1776 1591 1406 1221 1036 851 666

Wavenumber cm -1

N
um

b
er of rules

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

A
bsorb

ance

Figure 2

(A) The wavenumbers selected by the 30 GP rules are shown in reference to a spectrum
averaged from the whole data set. The vertical lines represent the number of GP-derived
rules that use particular wavenumbers to form a predictive model. The region from 2270
to 1960 wavenumbers is clearly important for producing good predictive models.

(B) The wavenumbers selected by the 30 GP rules are shown in reference to the FTIR
spectrum of 0.1M β-cyanoalanine. The highly characteristic region identified by the
GPs corresponds to the two distinctive peaks for the cyanide group in β-cyanoalanine.

31

Quantum mechanics calculations showed that the only biochemically-reasonable functional groups that
absorb strongly in this critical part of the IR spectrum are acetylenes (R – C ≡ C – R’) and cyanides
or nitriles (R – C ≡ N), with the absorption due to a periodic stretching motion of the triple-bond.
Acetylenes have a second characteristic vibration at approximately 3300 wavenumbers, a region unused
by any of the GP-derived rules. If an acetylene group were responsible for the characteristic spectral
features, this region would also be expected to be used by the rules. Therefore, the most likely
candidate chemical moiety being identified by the predictive models as characteristic for tomatoes
grown under saline conditions is a cyanide or nitrile group.

Cyanide, in the form of HCN, is formed in plants as a by-product during the conversion of the
precursor 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene by the enzyme ACC oxidase [13]:

NH3
+

COO
- + O2 CH2 CH2 + CO2+ HCN + H2O2

ACC Ethylene Cyanide

O CH2OH

OH

H

O

HO O
-

O CH2OH

OH

H

O

O O

+

Ascorbate Dehydroascorbate

+ 22

Increased ethylene biosynthesis is known to occur in plants in response to stress and during climacteric
fruit ripening [14]. It has previously been reported that tomato plants grown under saline conditions
show enhanced ethylene production [15]. Hydrogen cyanide is an extremely toxic molecule, and plants
have evolved a protective mechanism for its conversion to a less-harmful form. The cyanide produced
during ethylene biosynthesis is rapidly converted to the less-toxic compound -cyanoalanine by the
enzyme cyanoalanine synthase (CAS):

H2N
OH

O

SH

H2N
OH

O

N

H2SHCN+ +

Cysteine Hydrogen cyanide Cyanoalanine Hydrogen sulphide

The samples presented to the FTIR instrument were oven-dried in order to reduce the adverse effects of
water in the spectra collected. This would also have driven off most of the other volatile compounds
within the sample, such as free HCN. It is therefore a possibility that the compound being detected by
the FTIR-GP analysis is -cyanoalanine, or a related metabolite, which would be expected to remain in
the dried samples. Quantum mechanical predictions of the spectral regions to which the cyanide group
of -cyanoalanine would contribute show a very high degree of correspondence with the critical
regions selected by the GP models (Figure 2b). This is by no means conclusive evidence that -
cyanoalanine is the actual metabolite being detected as a discriminatory biomarker for salt-grown
tomatoes, but it is consistent with this hypothesis.

From the observations and computational analyses, it seems reasonable to propose that tomato plants
grown in conditions of high salinity produce enhanced levels of cyanide as a result of an increase in the
production of the stress hormone ethylene. This is being detected by the analytical method described
here, potentially in the form of -cyanoalanine. It is possible that many of the toxic effects observed
under saline-induced stress conditions are caused not by the salt per se, but by the concomitant increase
in cyanide or a cyanide-containing compound as a result of increased ethylene biosynthesis. This
proposed biochemical explanation is now subject to experimental verification using conventional
biochemical techniques.

32

This study has shown that FTIR, in combination with GP, is a powerful new tool for the analysis of
whole-tissue biological samples at the metabolome level. The technique is sensitive enough to detect
changes in the levels of a single metabolite against the background of the entire cellular components,
and can provide chemical information which can lead to the identification of the biochemicals which
may be involved in metabolic processes under investigation. This method has the promise of becoming
an extremely sensitive and discriminatory analytical tool which may be of crucial importance in the
emerging field of functional genomics, and so help to advance the understanding of metabolic processes
as yet unexplored by biological science.

Acknowledgements

RJG, JJR and DBK thank the UK EPSRC for financial support. MKW, JJR and DBK thank the UK
BBSRC for financial support. HEJ and ARS and MAH acknowledge the financial support of the
European Union INCO-DC programme. We thank Pat Causton and Dave Summers for their help in
plant cultivation. We also thank Dr. Gary Salter for his assistance and encouragement.

 References

[1] Mahmoud, M.H., El-Beltagy, A S, Helal, R M, Maksoud M A (1986) Tomato variety
evaluation and selection for salt tolerance. Acta Horticulture 190, 559 - 565.

[2] Mahmoud, M.H., Jones, R A, El-Beltagy, A S (1986) Comparative responses to high salinity
between salt-sensitive and salt-tolerant genotypes of tomato. Acta Horticulture 190, 533 - 543.

[3] Winson, M.K., Goodacre, R., Woodward, A.M., Timmins, É., Jones, A., Alsberg, B.K.,
Rowland, J.J. and Kell, D.B. (1997) Diffuse reflectance absorbance spectroscopy taking in
chemometrics (DRASTIC) A hyperspectral FT-IR based approach to rapid screening for
metabolite overproduction. Analytica Chema Acta 348, 273 - 282.

[4] Koza, J.R. (1992) Genetic Programming: On the Programming of computers by Means of
Natural Selection., pp. 819 MIT Press, Cambridge, MA.

[5] Koza, J.R. (1994) Genetic Programming II: Automatic Discovery of Reusable Programs., pp.
746 MIT Press, Cambridge, MA.

[6] Koza, J.R. (1995) Survey of Genetic Algorithms and Genetic Programming. In: Wescon® 95 :
E2. Neural-Fuzzy Technologies and Its Applications, pp. 589 - 594 IEEE, San Francisco,
California, USA.

[7] Gilbert, R.J., Goodacre, R., Woodward, A.M. and Kell, D.B. (1997) Genetic programming: A
novel method for the quantitative analysis of pyrolysis mass spectral data. Analytical
Chemistry 69, 4381-4389.

[8] Taylor, J., Winson, M.K., Goodacre, R., Gilbert, R.J., Rowland, J.J. and Kell, D.B. (1998)
Genetic Programming in the Interpretation of Fourier Transform Infrared Spectra:
Quantification of Metabolites of Pharmaceutical Importance. In: Genetic Programming 1998
(Koza, J.R. et al., Eds.) Morgan Kaufmann, Madison, Wisconsin, USA.

[9] Taylor, J., Goodacre, R., Wade, W.G., Rowland, J.J. and Kell, D.B. (1998) The deconvolution
of pyrolysis mass spectra using genetic programming: application to the identification of some
Eubacterium species. Fems Microbiology Letters 160, 237-246.

[10] Langdon, W.B., Poli, R (1998) Fitness causes bloat: mutation. In: EuroGP '98, Vol. 1391, pp.
37 - 48 (Banzhaf, W., Poli, R, Schoenauer, M, Fogarty, T C, Ed.) Springer, Paris, France.

[11] Gilbert, R.J., Goodacre, R., Shann, B., Rowland, J.J. and Kell, D.B. (1998) Genetic
Programming-Based Variable Selection for High-Dimensional Data. In: Genetic Programming
98: Proceedings of the Third Annual Conference, pp. 109 - 115 (Koza, J.R., Banzhaf, W,

33

Chellapilla, K, Deb, k, Dorigo, M, Fogel, D B, Garzon, M H, Goldberg, D E, Iba, H, Riolo, R
L, Ed.) Morgan Kaufmann, Madison, Wisconsin, USA.

[12] Whitlock, M.C., Barton, N H (1997) The effective size of a subdivided population. Genetics
146, 427 - 441.

[13] Peiser, G.D., Wang, T.T., Hoffman, N.E., Yang, S.F., Liu, H.W. and Walsh, C.T. (1984)
Formation of Cyanide From Carbon-1 of 1-Aminocyclopropane-1- Carboxylic Acid During Its
Conversion to Ethylene. Proceedings of the National Academy of Sciences of the United
States of America-Biological Sciences 81, 3059-3063.

[14] Hulme, A.C. (1970) The Biochemistry of Fruits and their Products. In: Food Science and
Technology, Vol. 1 (Stewart, G.F., Chichester, C O, Galliver, G B, Morgan, A I, Mrak, E M,
Scott, J K, von Sydow, E, Ed.) Academic Press, London.

[15] Mizrahi, Y. (1982) Effect of Salinity on Tomato Fruit Ripening. Plant Physiol. 69, 966 - 970.

