
The Application of Genetic
Programming For Feature

Construction in Classification

A thesis

submitted to the School of Computing Sciences

at the University of East Anglia

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

By

Mohammed Ahmed Yahya Muharram

July 2005

c© Copyright 2005

by

Mohammed Ahmed Yahya Muharram

c© This copy of the thesis has been supplied on condition that anyone who consults

it is understood to recognise that its copyright rests with the author and that no

quotation from the thesis, nor any information derived therefrom, may be published

without the author’s prior written consent.

ii

Abstract

This Thesis addresses the task of feature construction for classification. The quality of

the data is one of the most important factors influencing the performance of any clas-

sification algorithm. The attributes defining the feature space of a given data set can

often be inadequate, making it difficult to discover interesting knowledge. However,

even when the original attributes are individually inadequate, it is often possible to

combine such attributes in order to construct new ones with greater predictive power.

The goal of this Thesis is to restructure the feature space in order to improve the

performance of decision tree classification techniques on complex, real world data.

The proposed framework involves the use of genetic programming to evolve (con-

struct) new attributes, which are non–linear combinations of the original attributes.

This approach incorporates a number of decision tree splitting mechanisms in the

fitness measures of the genetic program.

The empirical results obtained are encouraging and show that classification tech-

niques can definitely benefit from the inclusion of an evolved attribute in terms of the

accuracy and model size (for decision tree classifiers). When compared to existing

approaches, the use of a decision tree splitting criteria as the fitness of the genetic pro-

gram prove to be competitive and robust in terms predictive accuracy. Additionally,

some of the evolved attributes manage to uncover physical properties in the data.

iii

Acknowledgements

Firstly, I thank God for giving me the ability to complete this research and to learn

a little more about one small aspect of His universe.

This thesis could not have been done without the help of a few individuals who

deserve thanks and credit. First of all, I owe a great deal of thanks to my supervisor,

Dr. George Smith, for his sharp insight, expertise and enthusiasm. Because of his

various responsibilities, his time was often in high demand, but he provided me with

all the time that I needed, and always returned my submitted work quickly and with

valuable comments. His continuing encouragement and support has always inspired

me and boosted my confidence in myself before my work. I would also like to ex-

tend my most sincere thanks to my second supervisor, Dr. Beatriz de la Iglesia, for

her continuous support, with her kind and helpful attitude to my questions. Many

thanks go to members of the Mathematical Algorithms Group, particularly those in

the MAG-Lab for their friendship and advice. A great deal of thanks and apprecia-

tion also go to friends like Omar Almansoori, Samhan Arab, Hamdan Dammaj, Nasir

Galal, Adel Mutlak, and many others for the long–years of friendship.

Of course, I am grateful to my parents without whom none of my university ed-

ucation would have come to existence. They have always been there for me and

iv

supported me in every aspect of life. Their love, care and confidence have always

motivated me and gave me hope through the good times and in those more difficult

moments. Not to forget their financial support, even when things were tight, from the

moment I started my higher education learning English through to the completion of

my PhD. To my sisters and brothers who have also been very supportive and caring,

“Thank you too!”.

Most importantly, I owe my deepest gratitude to my wife, Shireen, who enriched

my heart and enlightened the way when things seemed dark. Her contribution to this

research has been her love, patience and willing sacrifice of time and effort in order to

support me through difficult times, and this may never be fully assessed. Her moral

support has made every single day a suitable environment for research. Last but not

least, I owe a special thanks to my newborn son, Yazan, for the joy he has brought

to my life.

Norwich, England Mohammed Muharram

November, 2004

v

Contents

Abstract iii

Acknowledgements iv

List of Tables xiii

List of Figures xv

1 Introduction and Overview 1

1.1 Background to the Research . 1

1.2 Key Contributions of the Thesis . 3

1.3 Outline of the Thesis . 5

2 Data Mining and Knowledge Discovery in Databases 8

2.1 Introduction . 8

2.2 Knowledge Discovery in Databases (KDD) 9

2.2.1 The Pre-processing Phase . 10

2.2.2 The Mining Phase . 11

2.2.3 The Post-processing Phase . 14

2.2.4 The CRISP-DM Model . 16

2.2.5 The KDD Roadmap . 17

vi

2.3 Data Pre-processing . 20

2.3.1 Relevant Features and Data Quality 21

2.3.2 Feature Selection . 22

2.3.3 Feature Extraction . 24

2.3.4 Feature Construction . 26

2.4 Mining techniques for the Classification Task 30

2.4.1 k-Nearest Neighbour (k–NN) 30

2.4.2 Artificial Neural Networks (ANNs) 30

2.4.3 Decision Trees . 31

3 Data Classification: Decision Tree Induction 33

3.1 Introduction . 33

3.2 Data Representation . 34

3.3 Decision Tree Induction . 35

3.3.1 ID3 . 38

3.3.2 C4.5 and C5 . 39

3.3.3 Classification And Regression Tree (CART) 40

3.3.4 Chi-squared Automated Interaction Detector (CHAID) 41

4 Background on Evolutionary Computation 43

4.1 Introduction . 43

4.2 Evolutionary Computation . 43

4.3 Genetic Programming . 47

4.3.1 Problem Encoding and Control Parameters 48

4.3.1.1 The Terminal and Function Sets 49

4.3.1.2 The Closure and Sufficiency Properties 50

4.3.1.3 The Fitness Function 50

vii

4.3.1.4 The Run Parameters 51

4.3.1.5 The Termination Criteria 52

4.3.2 The Initial Population . 52

4.3.3 The Genetic Operations . 53

4.4 Applications of Evolutionary Algorithms 55

4.4.1 Evolutionary Pre–processing 56

4.4.1.1 Feature Selection . 56

4.4.1.2 Feature Extraction 57

4.4.1.3 Feature Construction 60

4.4.2 Evolutionary Data Classification 62

4.5 Summary . 65

5 Experimental Setup 66

5.1 Introduction . 66

5.2 The Problem . 67

5.3 The Data Sets . 69

5.4 Sampling . 70

5.5 The Genetic Program . 70

5.5.1 The Parameter Settings . 71

5.5.2 The Initial Population . 71

5.5.3 The Fitness Measures . 72

5.5.3.1 Information Gain (IG) 73

5.5.3.2 The Gini Index (GI) 74

5.5.3.3 Information gain + Gini Index (IG+GI) 75

5.5.3.4 The Chi2 Test . 76

5.6 Experimental Methodology . 77

5.7 The Evolved Attribute . 80

viii

5.8 Summary . 87

6 Comparing Error Rates 88

6.1 Introduction . 88

6.2 Information Gain (IG) . 91

6.3 Gini Index (GI) . 94

6.4 IG + GI . 98

6.5 Chi2 . 101

6.6 Bias Check . 105

6.7 A Comparative Study . 108

6.7.1 Principle Components Analysis (PCA) 109

6.7.2 Other Evolutionary Approaches 110

6.8 Summary . 113

7 Further Analysis 115

7.1 Introduction . 115

7.2 Tree Size . 116

7.3 A Closer Look at the Evolved Attributes 121

7.3.1 The Balance-Scale . 121

7.3.2 The Wine . 122

7.4 GP for Classification vs Constructive Induction 125

7.5 Summary . 130

8 A Commercial Case Study 131

8.1 Introduction . 131

8.2 An Overview . 132

8.3 Previous Work . 133

8.3.1 Preliminary Analysis . 133

ix

8.3.2 The prediction models . 139

8.4 Attribute Construction Using GP . 141

8.4.1 Feature Subsets . 142

8.4.2 The GP . 142

8.4.3 The Results . 143

8.5 Summary . 144

9 Conclusions, Limitations and Further Suggestions 146

9.1 Conclusions . 146

9.2 Limitations and Further Suggestions 149

Bibliography 151

Appendix A 164

x

List of Tables

1 The Golf data set. 35

2 Examples of functions used in the function set. 49

3 Data Sets used in experimental work. 69

4 Average time for a single GP run. 79

5 Symbolic expressions of some of the features evolved using IG. 80

6 Fitness of the evolved attributes in the Abalone data set. 81

7 Fitness of the evolved attributes in the Balance-scale data set. 82

8 Fitness of the evolved attributes in the Bupa data set. 83

9 Fitness of the evolved attributes in the Wave data set. 85

10 Fitness of the evolved attributes in the Wine data set. 86

11 Error rates for the Abalone data set (Fitness: IG). 91

12 Error rates for the Balance-scale data set (Fitness: IG). 92

13 Error rates for the BUPA data set (Fitness : IG). 92

14 Error rates for the Waveform data set (Fitness : IG). 93

15 Error rates for the Wine data set (Fitness : IG). 93

16 Error rates for the Abalone data set (Fitness : GI). 95

17 Error rates for the Balance-scale data set (Fitness : GI). 95

18 Error rates for the BUPA data set (Fitness : GI). 96

xi

19 Error rates for the Waveform data set (Fitness : GI). 96

20 Error rates for the Wine data set (Fitness: GI). 96

21 Error rates for the Abalone data set (Fitness : IG+GI). 98

22 Error rates for the Balance-scale data set (Fitness : IG+GI). 98

23 Error rates for the BUPA data set (Fitness : IG+GI). 99

24 Error rates for the Waveform data set (Fitness : IG+GI). 99

25 Error rates for the Wine data set (Fitness : IG+GI). 100

26 Error rates for the Abalone data set (Fitness : chi2). 101

27 Error rates for the Balance-scale data set (Fitness : chi2). 102

28 Error rates for the BUPA data set (Fitness : chi2). 102

29 Error rates for the Waveform data set (Fitness : chi2). 103

30 Error rates for the Wine data set (Fitness : chi2). 103

31 Error rates of C5. 105

32 Error rates of CHAID. 106

33 Error rates of CART. 106

34 Error rates of ANN. 107

35 Absolute performance over all data sets. 107

36 The average number of principle components, their eigenvalues and %

of variance. 110

37 Comparison study: error rates (averaged over 10-fold trials) of the GP

augmented attribute sets, the PCA augmented attribute sets, GP-KNN

classifier, EPrep, and GAP. 112

38 Average tree size for the Balance-scale classification by C5, CART and

CHAID. 117

39 Average tree size for the BUPA classification by C5, CART and CHAID.119

xii

40 Average tree size for the Waveform classification by C5, CART and

CHAID. 120

41 Average tree size for the Wine classification by C5, CART and CHAID. 121

42 Examples of the most frequent evolved features on the Balance-Scale

data set. 122

43 Some of the evolved features used to achieve 100% accuracy on the

Wine data set. 123

44 The GP parameters. 126

45 Symbolic Expression of the Evolved Rules and Error Rates on the

Associated Testing sets. 128

46 Error rates for the Balance-scale data set. 128

47 Comparison of classification accuracies for discretisation set D6. . . . 140

48 Comparison of classification accuracies for discretisation set D4. . . . 141

49 Comparison of classification accuracies for discretisation set D2. . . . 141

50 Classification accuracies for discretisation set D2 using original and

augmented feature subsets. 144

51 Classification accuracies for discretisation set D2 using the first, second,

third and third differences of wavelengths. 144

xiii

List of Figures

1 The CRISP-DM Model. 16

2 The KDD Road Map. 18

3 KDD Effort Distribution [42]. 21

4 A multi-layer perceptron artificial neural network. 32

5 A decision tree for the “Golf” data set. Branches correspond to the

partitioning of records; leaves indicate classifications. 36

6 Elements of an Evolutionary Algorithm. 46

7 A parse tree of the program (x2
1 + (x3

2.5
)) ∗ (x2 −√x2). 48

8 GP Crossover. 54

9 GP Mutation. 55

10 Attribute construction using GP. 79

11 Parse tree of the evolved attribute using IG for the Abalone data set. 81

12 Parse tree of the evolved attribute using IG for the Balance-scale data

set. 82

13 Parse tree of the evolved attribute using IG for the Bupa data set. . . 83

14 Parse tree of the evolved attribute using IG for the Wave data set. . . 84

15 Parse tree of the evolved attribute using IG for the Wine data set. . . 86

xiv

16 Absolute improvement in performance of each classifier averaged out

over all data sets using Aug-IG. 94

17 Absolute improvement in performance of each classifier averaged out

over all data sets using Aug-GI. 97

18 Absolute improvement in performance of each classifier averaged out

over all data sets using Aug-IG+GI. 101

19 Absolute improvement in performance of each classifier averaged out

over all data sets using Aug-Chi2. 104

20 Absolute error rate of all classifiers over all data sets. 108

21 Absolute improvement in error rate of all classifiers over all data sets. 108

22 Examples of the decision trees for the Balance data set. 118

23 The decision trees for the Wine data set using Aug-IG. 124

24 The decision trees for the Wine data set using Aug-GI. 124

25 The decision trees for the Wine data set using Aug-Chi2. 125

26 The GP rules represented as trees. 129

27 Mean, min and max values for wavelength data in training set. 134

28 Standard deviations for wavelength data in training set. 135

29 Correlation between the wavelengths and the Brix. 135

30 Correlation of some wavelengths with all other wavelengths. 137

31 sample profiles of particular Brix values plotted over wavelength. . . . 138

xv

Chapter 1

Introduction and Overview

This Thesis concerns the application of evolutionary algorithms for constructive in-

duction, and in particular the use of genetic programming to automatically construct

features from data for supervised classification. This introductory chapter serves as a

guide for the whole thesis, giving the reader a flavour of the background and motiva-

tion for the work, the Thesis contributions and outline, as well as a brief description

of the experiments carried out.

1.1 Background to the Research

As data manipulation technologies rapidly advance, people rely increasingly on com-

puters to accumulate data, process data, and make use of data. Knowledge discovery

in databases consists of intelligent tools that handle massive data sets and find useful

patterns that help people make use of the data [28]. Data Mining, a major process of

knowledge discovery, is concerned with uncovering patterns hidden in the data. Data

classification is a common data mining task that deals with methods for assigning

a set of input objects to a set of decision classes. The input objects are usually de-

scribed by a set of features (such as numbers or a string of symbols). Each feature

1

Chapter 1: Introduction and Overview 2

represents a characteristic of the given object. The classification task is accomplished

by assigning the input objects to a class commonly described by a set of features [58].

Accurate classification is important for making effective decisions in many domains

such as those in commercial, medical and academic organisations. Accuracy of the

results produced by a classification system greatly depends on how well a problem

is represented using a set of features. In most applications of classification systems,

considerable effort is placed on finding an appropriate feature set that produces ac-

ceptable results.

A classification problem is not properly represented if it is defined by using redun-

dant or irrelevant features, or if important interactions and relationships between the

predicting features are not taken into consideration [38]. To overcome these obsta-

cles, a tool must be developed to modify the initial feature set so that the problem is

presented adequately to the classifier. This is a difficult task, because the space of all

potential representations for a given problem is very large. Many attempts have been

made to find appropriate representations for different problem domains. The amount

of effort required to properly represent a problem is variable and depends on the

problem’s formulation. If the appropriate set of features is available and known, then

the representation of a given problem becomes more understandable. For cases where

there are small number of candidate features, an adequate representation or feature

set can commonly be found through extensive trial and error. For many real–world

problems however, we are faced with a situation in which there are many candidate

features, there is little insight or knowledge as to which feature is more suitable, and

it is not even clear that there is an appropriate set of features available. This Thesis

will focus on the development of a system for modifying the initial feature set in order

to provide a suitable set of features for a given problem.

Chapter 1: Introduction and Overview 3

Feature construction modifies the initial feature set by adding to it, one or more

new features which are constructed using the original features [62]. The aim of fea-

ture construction is to find new features which can improve the performance of the

inductive classifier. There are essentially two approaches to feature construction.

The first is to rely on the classifier itself to construct features while performing the

classification, a hybrid approach. The second is to use some technique that con-

structs features separately from the inductive classifier, referred to as constructive

induction. Constructive induction is a method for improving the representation of

an inductive problem by constructing new features (by combining existing features

in various ways). It has proven effective in improving the classification accuracy in

hard domains (domains for which standard inductive classifiers perform poorly) [67].

When performing constructive induction, the system faces a combinatorial explosion

of potential features that it could construct, but only a few of these is useful.

The work carried out in this Thesis uses evolutionary algorithms, namely genetic

programming, for performing constructive induction for classification, particularly

decision tree induction. The aim is to evolve new features so that when they are

added to the existing set of features, decision tree inductive techniques produce more

accurate, concise and understandable models. Other techniques, such as an MLP

neural network are also used in the experimental work to provide a comparison.

1.2 Key Contributions of the Thesis

This Thesis deals with the pre–processing task of feature construction for improving

the representation of the feature space for classification. The main contributions of

this Thesis include:

Chapter 1: Introduction and Overview 4

• A model has been developed using an evolutionary algorithm, namely genetic

programming (GP), for restructuring the feature space by evolving new more

predictive features for a number of classification techniques, particularly, deci-

sion tree classification algorithms.

• As univariate decision tree algorithms, such as C5, CART and CHAID, induce

trees by splitting data using tests on a single attribute at a time, important

relationships and interactions between the features are not taken into account.

The proposed GP system constructs new features which are non–linear combi-

nations of all or some of the original features in the hope of finding interesting

relationships between these features. The GP system constructs a single fea-

ture which is then added to the original feature set to form an augmented set

(original features + an evolved feature).

• The GP incorporates the splitting mechanism of a decision tree clas-

sifier as its fitness for constructing new features.

• The application of GP for feature construction has improved the predictive

capabilities of decision tree classification techniques through its successful ap-

plication to problems varying from artificial data through to complex, noisy

real–world data.

• Analysis of the results showed that the accuracy of the decision tree models

improved using the augmented attribute set, sometimes dramatically.

• It also improved the performance of a non–decision tree classifier, an MLP

artificial neural network, on the same data.

• Bias analysis was performed to ascertain whether decision tree classifiers have

more advantage from enclosing an attribute, constructed using a GP whose

Chapter 1: Introduction and Overview 5

fitness measure incorporates the splitting criterion of the associated tree.

• A comparative study with existing approaches was performed to address the

strengths and weaknesses of the proposed model.

• Further analysis on the tree size showed that all classifiers produce smaller trees

using the augmented feature set.

• A classification GP system was developed to compare the performance of a GP

for classification with the GP developed for constructive induction.

• Further analysis of the constructed features revealed that, in some cases, the

features uncovered important physical characteristics about the data.

• The experimental work was extended to include the application of GP for feature

construction on a confidential commercial data set. [Note: this is provided as a

separate attachment due to its confidential nature.]

1.3 Outline of the Thesis

This Thesis is divided into nine chapters, including this chapter. It includes three

literature review chapters and four chapters containing details and analysis of the

experimental work. The last chapter concludes the Thesis.

A review of the current literature relevant to this Thesis starts in Chapter 2. It

begins by presenting an overview of knowledge discovery in databases, introducing the

main themes of the process. We outline the various phases involved and we present

two methodologies. Some related areas are also highlighted. The pre-processing task

is also addressed and some related work is mentioned. The last part of the chapter

Chapter 1: Introduction and Overview 6

outlines some of the well–known techniques for data classification.

Chapter 3 introduces decision tree induction for classification. The classifica-

tion methods used in the experimental work of this Thesis, namely, C5, CART and

CHAID, are described in greater detail.

Chapter 4 serves as an introduction to evolutionary computation. First, the top-

ics of search and optimisation are introduced. Next, each of the four paradigms of

evolutionary computation are outlined, with more focus on genetic programming,

since this approach forms the basis for the constructive induction model. We also

address previous work in the applications of evolutionary algorithms, particularly in

data pre–processing and data classification.

Chapter 5 outlines the experimental setup and methodology. We present the data

sets used in the experiments and the sampling method. The GP system used for

constructing the features is described along with parameter settings and the fitness

functions used. Then, we present the experimental methodology and classification

techniques used in the experiments. Finally, we show some examples of the evolved

features and their goodness in terms of the splitting criteria.

The error rates of classification are presented in Chapter 6. We compare the er-

ror rates of classification using the original and the augmented (original + evolved)

attribute sets. The results are validated using the statistical measure (T-Test). We

then analyse the results to check for bias, i.e. check whether the performance of any

of the decision tree models is biased towards the attribute set which has an attribute

constructed using a GP whose fitness function incorporates the splitting criteria of

the associated tree. A comparative study is performed to examine the effectiveness of

Chapter 1: Introduction and Overview 7

the current work with other linear and evolutionary approaches to feature construc-

tion.

Further analysis is performed in Chapter 7. We first analyse the size of the resul-

tant trees of the decision tree classification models using the original and augmented

attribute sets. Then we look, in particular, at the evolved attributes of two data sets,

where some classifiers achieve 100% accuracy, to see if they could describe physical

properties of the data. Also in this chapter, we show the results of an experimen-

tal study on the use of GP for classification and compare it to the results shown in

Chapter 6.

In Chapter 8, we extend previous work on a confidential, commercial, real-world

data by performing constructive induction to improve the performance of classifica-

tion. Other pre–processing approaches are also described in this chapter.

Chapter 9 concludes the Thesis outlining the overall summary of research and

performed work, limitations of the current system and suggestions for future work.

Chapter 2

Data Mining and Knowledge
Discovery in Databases

2.1 Introduction

Over the past few decades, rapid advancements in computer technologies have al-

lowed organisations to gather vast quantities of data for various purposes. Database

technology provides efficient and sophisticated access to a myriad of information and

allows the creation and maintenance of massive databases [29]. However, it is far eas-

ier to collect data than to analyse it [2] and extract information from it. Traditionally,

data was analysed manually but as it grows in size, many hidden patterns and po-

tentially useful relationships may not be recognised by the analyst. This resulted in

the growing interest in the field of Knowledge Discovery in Databases (KDD), and a

particular process of it, data mining. Data mining applies data analysis and discovery

algorithms to identify patterns in data.

This chapter provides an overview of the multi–disciplinary field of KDD. In Sec-

tion 2.2, we show KDD as a sequence of various stages, describing two methodologies,

namely the CRISP-DM and the KDD-Roadmap. The areas of most relevance to the

8

Chapter 2: Data Mining and Knowledge Discovery in Databases 9

Thesis, data pre–processing and data classification techniques, are outlined in Sec-

tions 2.3 and 2.4, respectively.

2.2 Knowledge Discovery in Databases (KDD)

In recent years, the advances in computer technologies and the accompanying de-

crease in their cost has expanded the means available to collect and store data. As

an immediate consequence, the amount of information stored has been increasing at

a very fast pace.

Conventional data analysis techniques are useful to create informative reports

from data (statistics), or to confirm predefined hypotheses about the data (on–line

analytical processing). However, the huge volumes of data being collected create new

challenges for such techniques as organisations look for ways to make use of the stored

data . In business, people would like to gain an edge over competitors and, therefore,

it is reasonable to believe that data collected over an extended period contains hidden

knowledge about the business or patterns characterising customer behaviour. For ex-

ample, the manager of a large supermarket would like to have answers to questions

such as who will buy, what items are bought together and in what quantities. To

answer such questions the data analyst needs new tools and techniques to explore the

data in the search for answers to questions which were not considered when the data

was collected. The answers to such questions are, in general, not explicitly available

in the data.

Knowledge discovery is a research field that focuses on the development of tools

which search for hidden patterns in large collections of data. In [28], KDD is defined

as the “non-trivial process of identifying valid, novel, potentially useful, and ultimately

Chapter 2: Data Mining and Knowledge Discovery in Databases 10

understandable patterns in data”.

KDD has emerged from the intersection of research in such fields as databases,

machine learning, statistics and artificial intelligence.

The process of KDD is usually defined as a sequence of specific steps. Its definition

can vary slightly from one author to another [28, 15, 96], however, there is a general

consensus on the main elements of this process. We define the process of KDD as a

sequence consisting of the following three phases; pre-processing, mining, and post-

processing.

2.2.1 The Pre-processing Phase

The pre-processing phase is concerned with defining the problem at hand and is

usually performed before hardly any learning is carried out. The general purpose of

pre-processing data is to reshape and transform the data in order to make it ready for

the mining phase. This phase is considered the most time consuming as it can take

up to 80% of the whole KDD process time [42]. Major processes within this phase

include:

• Domain Understanding

This involves the formation of the picture of what exists in the domain and

gathering relevant facts about the domain. Here the problem space and the

solution space are explored using reports and visualisation tools to identify

what the outcome of the KDD process should look like.

• Data Preparation, Transformation and Cleansing

This involves converting data into a shape suitable for mining. It includes inte-

grating data from different resources and transforming it into a form suitable for

mining. Data cleansing addresses problems arising from noise and inconsistent

Chapter 2: Data Mining and Knowledge Discovery in Databases 11

data. It is also deals with outliers and missing values in the data.

• Feature Space Transformation

This involves modifying the feature space of the data to enhance quality of

the data and hence the performance of the mining algorithms. At this point,

some learning about the features in the data may be performed. The aim is

to focus on relevant features by reducing the feature space and eliminating ir-

relevant features and/or by introducing new features. This is usually achieved

using three common feature space transformation techniques, namely, feature

selection, feature extraction and feature construction [52, 67]. Feature selection

reduces the set of features by choosing the ones that most contribute to the

decision at hand. Feature extraction replaces the original set of features with

a new, potentially better, feature set (usually smaller than the original feature

set), constructed using the original feature set. Feature selection and feature

extraction are referred to as data reduction techniques, as they reduce the di-

mensionality of the feature space. Feature construction, on the other hand,

creates one or more new, potentially better, features from the existing set of

features, which are added to the original ones. Feature selection, extraction and

construction are explained in greater detail in Section 2.3.

2.2.2 The Mining Phase

The data mining phase is a process concerned with the application of algorithms

to uncover patterns, associations, anomalies and statistically significant structures

in data [29]. It typically refers to the case where the data is too large and/or too

complex to allow either a manual analysis or analysis by means of simple queries.

The data mining task is categorised by many researchers in the KDD community into

descriptive and predictive data mining, depending on the desired outcome of this task

Chapter 2: Data Mining and Knowledge Discovery in Databases 12

[96].

• Descriptive Data Mining

The main purpose of descriptive data mining is to describe and present general

interesting properties of the data. It characterises the data based on regularities

found in its examples. The most popular descriptive data mining techniques

include cluster analysis, summarisation and visualisation, all of which are de-

scribed in the following subsections:

Cluster Analysis Cluster analysis is the task of dividing objects within a

data set into a number of groups or clusters of objects, where the cluster

is a collection of “similar” data objects [27, 48]. Similarity is generally

expressed by some metric such as distance measures. The term clustering

is used to describe the methods for grouping unlabelled data. Clustering is

considered as a form of unsupervised learning since the data objects have

no predefined class labels. For instance, given a data set of customers,

clustering be used to identify subgroups of customers with a similar buying

behaviour so they can be targeted for a new sales campaign, i.e. customer

segmentation.

Summarisation and Visualisation Summarisation involves finding a com-

pact description for a subset of the data. This includes summarising the

statistical attributes of the data, such as means and standard deviations.

Data visualisation aids the data miners to look for potentially meaning-

ful links among features. Visualisation techniques can range from simple

scatter and histogram plots to 3D movies.

Chapter 2: Data Mining and Knowledge Discovery in Databases 13

• Predictive Data Mining

Predictive data mining is a search for patterns in data that can generalise to

accurate future decisions [96]. It allows the user to submit records with some

unknown field values, and the system will predict the unknown output values

based on previous patterns discovered from the data. Major tasks of predictive

data mining include classification and regression, presented below:

Classification Data classification is one of the major data mining tasks, in-

volving the prediction of one attribute, a discretised class, based on a set

of predicting attributes [96]. For example, given a data set of patients, to

predict whether a patient could develop a certain disease or could better

respond to a certain drug, the predictor attributes should contain relevant

medical information.

Regression Regression is a statistical technique used for prediction. It is anal-

ogous to classification with the difference being that regression predicts a

numerical attribute from numerical data [44]. For instance, predicting the

relative performance of computer processing power given a set of computer

configurations [99].

There are many other tasks that can be used for both description and predic-

tion. They include tasks for exploring data to find certain regularities and interesting

characteristics, including a search for similar sequences or subsequences, and min-

ing sequential patterns, periodicities, trends and deviations. The two most common

approaches include association rules discovery [2, 3] and time–series analysis [30].

Association rules discovery finds rules about items that appear together in an event

such as a purchase transaction. Market-basket analysis is a well–known example of

association discovery. Time–series analysis is very similar, in that a sequence is an

Chapter 2: Data Mining and Knowledge Discovery in Databases 14

association related over time. For example, one may predict the trend of the stock

values for a company based on its stock history, business situation, competitors’ per-

formance, and current market.

2.2.3 The Post-processing Phase

The post-processing phase requires deeper involvement from domain experts and is

concerned with the steps taken after the data is pre-processed and mined. Processes

within this phase include:

• Results Evaluation

This involves evaluating the discovered patterns where “interestingness” mea-

sures are used to identify patterns that represent knowledge. Due to the nature

of data mining, i.e. the search for patterns in data, it is likely that patterns will

be found. However, these patterns may simply be due to some variation in the

data rather than representing some real world phenomenon [28]. A common

method used to validate results is to use separate training and testing sets of

data. The training data is used to discover patterns then the patterns are tested

on the unseen test data. The performance of the patterns on the test data gives

an indication of the strength of the patterns on other unseen data. Another

validation method that is often used when limited volumes of data are avail-

able, is cross validation [97]. Other aspects of evaluation include checking that

patterns are understandable and that they are novel and potentially useful, in

accordance with the definition of the KDD process [30]. The complexity of pat-

terns and their correspondence with known facts contribute to how easy these

are to understand. Domain experts will often be able to determine if patterns

are novel and potentially useful.

Chapter 2: Data Mining and Knowledge Discovery in Databases 15

• Knowledge Interpretation

Interpretation of discovered knowledge would normally be carried out by domain

experts. As in the evaluation stage, it would be expected that new knowledge

would tend to fit with the existing knowledge and would be explainable by

the domain experts. Obviously, some difference between known and discovered

knowledge is required for patterns to be novel. However, if the differences are

very great it may be because errors have been made in the KDD process.

• Knowledge Deployment

The final stage of the process is the exploitation of the discovered knowledge.

It may be possible to exploit the results without further refinement or it may

be that the results can be taken to represent a hypothesis that requires further

validation. For example, in the medical domain, any results that might effect

clinical practice should be subject to rigorous testing in order to avoid compro-

mising a doctor’s defence in a medical negligence case [102, 84]. Exploitation of

results may include modification of procedures or the production or modifica-

tion of software to embed the discovered knowledge. For example, the software

used to assess risk in insurance companies may be updated as a result of a KDD

exercise.

The KDD process is interactive and iterative which means that at any stage, if

the results are not satisfactory then this may suggest the necessity for better data

cleansing or for different settings of the data mining algorithm parameters.

There are many methodologies that provide a mainstream for the KDD lifecycle

[1]. Most of the available tools have their own models. In most cases, such models are

tightly bound to the respective tools and platforms. Efforts towards standardisation of

the KDD process models are scattered in different industries and research institutions.

Chapter 2: Data Mining and Knowledge Discovery in Databases 16

In the following Subsections, we briefly address two business–orientated approaches

to KDD, namely the CRISP-DM [21] model and the KDD-Roadmap [24, 23].

2.2.4 The CRISP-DM Model

CRoss-Industry Standard Process for Data Mining (CRISP-DM), first conceived in

1996, is a project developing a domain–independent KDD model [98, 21]. The CRISP-

DM model is a consortium formed by leading DM companies. It provides a method-

ology that is supposed to guide data analysts throughout a DM lifecycle, see Figure 1

(adapted from [98]).

Pre-Processing

Figure 1: The CRISP-DM Model.

In the following, we briefly outline the phases within the CRISP-DM model:

1. Business (or Problem) Understanding This phase focuses on understanding

Chapter 2: Data Mining and Knowledge Discovery in Databases 17

the requirements and objectives of the project from a business perspective. It

is also concerned with developing an initial technical problem definition and a

project plan.

2. Data Understanding This phase starts with an initial analysis of the data by

identifying data quality problems and discovering first insights into the data.

3. Data Preparation This phase is concerned with making the data ready for the

modelling (mining) phase. Subtasks include sampling of the data and and other

pre–processing tasks including, transformation and cleansing of data.

4. Modeling In this phase the mining techniques are applied on the data. Revisiting

previous stages is often needed.

5. Evaluation At this phase the data mining model is thoroughly evaluated, and

the steps executed to construct the model are reviewed, to ensure no important

business issues are missed and that the desired business objectives are met. At

the end of this phase, a decision is made as to whether or not the outcome of

the whole process can be deployed.

6. Deployment The deployment phase can be as simple as generating a report or

as complex as implementing a repeatable data mining process. In many cases it

will be the customer, not the data analyst, who will carry out the deployment

steps.

2.2.5 The KDD Roadmap

Here the KDD process is viewed as a roadmap [24, 23]. In this roadmap, shown in Fig-

ure 2 (adapted from [24]), the KDD process contains eight sub-phases, each of which

consists of a number of processes. Inspired by the software engineering life-cycle, the

Chapter 2: Data Mining and Knowledge Discovery in Databases 18

map contains one and two way roads, and locations representing the phases. After a

phase is completed, a valid route is taken to the next one. The processes within the

KDD Roadmap include:

Figure 2: The KDD Road Map.

1. Problem Specification The purpose of this phase is to develop a tightly defined

problem definition from a loosely defined data mining project idea. It is neces-

sary to undertake some preliminary database examination in order to determine

factors such as the size of the database and the proportion of missing data. At

this stage the data itself may not be available so a description of the data might

be used. The resources necessary to carry out the project should be determined

and the feasibility of the project confirmed.

2. Resourcing This phase comprises the collection of the resources required to carry

out the project. This will usually include hardware and data mining software.

Often the most time consuming resource to collect will be the data itself. The

data may not be readily available. For example, it may come from different

sources and require combining and formatting.

Chapter 2: Data Mining and Knowledge Discovery in Databases 19

3. Data Cleansing Data cleansing is concerned with ensuring that the data is cor-

rect, i.e. that errors in the data are removed. The problem of handling missing

values and outliers might also be addressed at this stage although they could

also be dealt with in the pre-processing or data mining stages. The distinction

between data cleansing and pre–processing is that no learning or knowledge

discovery takes place when data cleansing. Data cleansing is usually carried

out only once for each database, whereas pre–processing may be repeated as

the process continues.

4. Data Pre–processing Pre–processing is undertaken to prepare the data so that

it is ready for input into the data mining phase. This includes preparing and

transforming the data to improve its quality and hence the performance of the

data mining algorithms, such as predictive accuracy and reducing the learning

time. This can be achieved by reducing the amount of data, focussing only on

the relevant data. Major processes involved within this phase include feature

selection, construction and extraction, which are discussed in greater detail in

Section 2.3.

5. The Mining Process This phase includes searching for patterns in data, typi-

cally with the aid of powerful algorithms to automate part of the search. These

methods come from disciplines such as statistics, machine learning and pattern

recognition.

6. Results Evaluation This phase is used to assess the success of the overall process.

There are several approaches to evaluate the validity of the discovered patterns;

the performance on the test set, the simplicity, suitability, and so on.

7. Interpretation This phase is concerned with the understandability of the discov-

ered knowledge. It involves employing visualisation and knowledge presentation

Chapter 2: Data Mining and Knowledge Discovery in Databases 20

techniques to present the knowledge to the user.

8. Exploitation Putting the results into use is the final step of the post–processing

phase. Based on the outcome of this stage, the user may incorporate the knowl-

edge into the performance system, taking actions based on knowledge or review

the specification and implementation of the problem set in the pre–processing

phase.

2.3 Data Pre-processing

As mentioned in Subsection 2.2.1, pre–processing data for a data mining task usually

consumes the bulk of the effort invested in the entire KDD process [42], see Figure 3.

The figure shows that about 80% of the KDD time is spent on data acquisition and

pre–processing. This is due to the fact that real world data is often large, noisy, messy,

and contain missing or irrelevant values which make it of a disappointingly low quality

[44]. Therefore, the gap between the format of source or raw data and that required

by data mining algorithms must be bridged before data is presented to the data miner.

Since data is rarely collected for the purposes of mining, many databases contain

features that have little or no relation with the class attribute. Hence, data pre–

processing is mainly concerned with the cleansing, integration, transformation, and

reduction of data. For the purpose of this research, we address the problem of finding

appropriate data representation for the data mining task of classification. Restructur-

ing the feature space of the problem is very significant and has resulted in vigourous

research by the machine learning and KDD communities. Researchers have devel-

oped several techniques and methods to deal with this problem. The most common

methods are feature selection (FS), feature extraction (FE), and feature construction

Chapter 2: Data Mining and Knowledge Discovery in Databases 21

Figure 3: KDD Effort Distribution [42].

(FC) [63].

In the following Subsection, we address the problem of focusing on relevant fea-

tures and how they affect data quality. Then, we elaborate on the pre–processing

methods of feature selection, extraction and construction, reporting on some previ-

ous work done in each of these areas.

2.3.1 Relevant Features and Data Quality

In a typical supervised machine learning task, data is represented as a table of exam-

ples or instances. Each instance is described by a fixed number of measurements, or

features, along with a label that denotes its class. Features, also known as attributes,

are typically one of two types: categorical or numerical [80].

The features within a data set provide the information that make classification

feasible. One can assume that expanding the feature space can always improve class

Chapter 2: Data Mining and Knowledge Discovery in Databases 22

description. In reality, however, adding more features can actually lead to a degrada-

tion in the classifier performance [11]. In many real-world problems, there are often

far too many features for the classifier, most of which are irrelevant or redundant.

Choosing relevant features, and eliminating irrelevant ones, is a crucial problem in

machine learning. Before a classifier can move beyond the training data to make

predictions about novel test cases, it must decide which features to use in these pre-

dictions and which to ignore. Intuitively, one would like the classifier to find subsets

of the feature population that are relevant to the target class and worthy of focused

analysis [12].

There are many learning methods that can select or extract features. However, in

general, they do not cope well with high-dimensional domains. Data reduction is one

of the methods proposed to tackle the problem of high-dimensional data. There are

three types of data reduction: feature reduction, case reduction and feature smoothing

(reducing the number of values in a feature) [96]. Reducing high-dimensional feature

spaces is addressed in the next two Subsections. The main objective of feature re-

duction is to improve the quality of the data by using fewer features and focusing on

the relevant data [63].

2.3.2 Feature Selection

Since each additional feature used as part of the classification procedure can increase

the cost and running time of a classification system as well as reduce the accuracy of

the result, there is a strong demand for developing methods to select smaller feature

subsets. At the same time there is a potentially opposing need to include a sufficient

set of features to achieve high accuracy rates and provide better understanding of

Chapter 2: Data Mining and Knowledge Discovery in Databases 23

results. This has led to the development of a variety of techniques within the ma-

chine learning community for finding an optimal subset of features from the superset

of original features [99].

Kira et al. [52] define feature selection as “the problem of choosing a small subset

of features that ideally is necessary and sufficient to describe the target concept”. It

is concerned with identifying and removing as many of the irrelevant and redundant

features as possible. Given a data set with original features A, after applying feature

selection, we retain a smaller subset B of the original features. The new subset should

provide more or similar learning power to the classifier.

There are two main approaches to feature selection: the filter approach and the

wrapper approach [62]. The sole difference between these two approaches is that the

filter approach selects features independent from their effect on the performance of

the induction algorithms. It aims at selecting a subset of the features that preserves

as much as possible the relevant information found in the entire set of features [53, 39].

There are few methods that implement the filter approach to feature selection.

The FOCUS algorithm [4] was designed for noise-free Boolean domains and it follows

the MIN-FEATURES bias. It examines all feature subsets and selects the minimal

subset of features that is sufficient to predict the class targets for all records in the

training set. Relief is an instance–based feature selection method introduced by Kira

et al. [52] and later enhanced by Kononenko [54]. Relief was originally developed for

two-class problems and was later extended (Relief–F) to handle noise and multi-class

data sets. Relief works by randomly sampling an instance from the data and then

locating its nearest neighbour from the same and opposite class. The values of the

features of the nearest neighbours are compared to the sampled instance and used

Chapter 2: Data Mining and Knowledge Discovery in Databases 24

to update relevance scores for each feature. This process is repeated for a number of

instances. The idea is that a useful attribute should differentiate between instances

from different classes and have the same value for instances from the same class. One

major disadvantage of the filter approach is the non–involvement of the classification

algorithm in selecting the feature subset [39].

In contrast, in the wrapper approach, the selection is performed using the classi-

fication algorithm as part of the evaluation function [53]. Information gain and gain

ratio [80] are good examples of measuring the relevance of features for decision tree

induction. They use the entropy measure to rank the features based on the informa-

tion gained; the higher the gain the better the feature. Moore et al. [70] proposed

another model using an instance-based algorithm, called RACE, as the induction en-

gine, and leave-one-out cross–validation (LOOCV) as the subset evaluation function.

Searching for feature subsets is done using backward and forward hill-climbing tech-

niques. John et al. [49] proposed a similar method and applied it to ID3 and C4.5

on real world domains. Langley et al. [60] also used LOOCV in a nearest-neighbour

algorithm. Caruana et al. [20] test the forward and backward stepwise methods on

the Calendar Apprentice domain, using the wrapper model and a variant of ID3 as

the induction engine. Wrapper models are usually slower than filter models in the

sense that inductive learning is carried out more than once. Overfitting is another

drawback of the wrapper approach.

2.3.3 Feature Extraction

Feature extraction is another approach for minimising the dimensionality of the fea-

ture space. The assumption here is that there exists a transform function T that

Chapter 2: Data Mining and Knowledge Discovery in Databases 25

converts the original feature set F = {f1, f2, .., fn} of n features into another set

AF = {af1, af2, .., afm} of m features which has lower dimensionality (m < n) and

is more conducive to classification, where afi = T (f1, f2, .., fn). Feature extraction

replaces the set of original features by searching for a minimum set of new features

that satisfy some performance criteria [63].

One of the most fundamental feature extraction techniques is principal component

analysis (PCA) [50]. First introduced by Pearson [77] and independently by Hotelling

[47], the PCA calculates the covariance matrix of the data set and finds its correspond-

ing eigenvalues and eigenvectors. Each of the eigenvectors (αi) is a transform that

acts on the original feature set to create a new feature; they are called principal com-

ponents. The eigenvalue (λi) corresponding to each eigenvector denotes the variance

of the data over each principal component. The number of significant eigenvalues is

taken as a measure of intrinsic dimensionality. The underlying assumption here is

that principal components with the largest variances make the best features. Thus,

the PCA utilises the eigenvalues as the basis for selecting the best m features. The

chosen eigenvectors are used to transform the original data set to a new one.

A more sophisticated feature extraction technique known as Decision Boundary

Feature Analysis (DBFA), was developed by Lee and Landgrebe [61]. This approach

winnows the data set using a k–Nearest Neighbor (k–NN) algorithm to remove data

points that obscure the true class boundaries. With the classes more clearly sepa-

rated, the algorithm proceeds to identify all potential decision boundaries. A vector

normal to each decision boundary is then computed. Each of these vectors repre-

sent the direction of optimal class separation for its respective decision boundary.

The covariance matrix describing this set of vectors is termed the Effective Decision

Boundary Feature Matrix (EDBFM). The EDBFM is the covariance matrix of unit

Chapter 2: Data Mining and Knowledge Discovery in Databases 26

vectors normal to the class decision boundaries. EDBFM is used in a manner anal-

ogous to the covariance matrix in the PCA to derive a new feature set. The key

difference is that the eigenvalues of the EDBFM are far more accurate indicators of

features that increase class separation.

Another approach to extracting features is a feed–forward Neural Network, pre-

sented in [85]. A multi–layer perceptron with one single hidden layer is adopted for

this task where, the basic idea is to use the hidden units as newly extracted features.

The extracted features are evaluated using a performance measure based on their pre-

dictive accuracy. The extracted features that result in the best predictive accuracy are

chosen. These features are the non–linear transformation from input units to hidden

units. The algorithm is designed to construct a network with the minimum number

of hidden units (i.e. minimum number of new features) and the minimum number of

connections between the input and hidden layers: the network construction algorithm

parsimoniously adds one more hidden unit to improve predictive accuracy; and the

network pruning algorithm generously removes redundant connections between the

input and hidden layers if predictive accuracy does not deteriorate.

2.3.4 Feature Construction

Much research has focused on restructuring the original feature space representation

by reducing its dimensionality. Most feature selection techniques focus on the rela-

tionship between the individual predicting attributes and the class attribute. Any

combination of predicting attributes that presents a much stronger prediction may

therefore be missed, if the operators available to the induction process are insufficient

to identify that combination.

Chapter 2: Data Mining and Knowledge Discovery in Databases 27

One approach to overcome this problem is to allow the induction process the

flexibility to identify and construct these powerfully predictive combinations. For

instance, in the work of [94], where the authors use a feed–forward neural network

to extract knowledge from corporate accounting reports, it is interesting to note that

the first hidden layer of nodes were inclined to construct ratios from some of the

raw accounting data. It is widely recognised that accounting ratios, rather than the

basic accounting data, are more useful in terms of what can be deduced about a com-

pany’s financial status. Turning to decision trees, OC1 is an oblique tree induction

technique designed for the use with continuous real-valued attributes. During the

induction stage, OC1 considers linear combinations of attributes, and partitions the

data set into both oblique and axis–parallel hyperplanes [74].

Another approach is to construct new attributes (feature construction) which are

combinations of the original attributes, the objective of the construction technique

being to identify highly predictive combinations of the original attribute set and

hence, by including such combinations as new features (attributes), to improve the

predictive power of the attribute vector. Feature construction is an approach to aug-

menting the feature space by creating additional features. The aim is to discover the

relationships between the original features in the hope of increasing the expressive

(prediction) power of the original feature set [63]. Given a set F = {f1, f2, .., fn}
of n features, after constructing (m ≥ 1) new features, the augmented feature set

is AF = {f1, f2, .., fn, fn+1, fn+2, ..fn+m}. For example, given the two features height

and weight it might be advantageous to construct a feature body mass index (BMI),

which is expressed by weight÷ height2.

Since manual feature construction is difficult, the question of how to automate

this task is addressed by many practitioners. This has resulted in the concept of

Chapter 2: Data Mining and Knowledge Discovery in Databases 28

constructive induction. Constructive induction is concerned with the automated con-

struction of new features to facilitate concept learning [67]. There are essentially two

approaches to constructive induction in relation to data classification; one method is

as a separate pre–processing stage, in which the new attributes are constructed before

any induction process, i.e. before the classification algorithm is applied to build the

model. The second approach is an integration of construction and induction, in which

new attributes are constructed within the induction process. The latter is therefore

a hybrid induction algorithm.

Matheus et al. [67] proposed the CITRE system, a framework for constructive in-

duction. CITRE uses background knowledge in two different ways: domain–knowledge

constraints, to eliminate less desirable new attributes beforehand and domain–dependant

transformations to generalise newly constructed attributes in ways meaningful to

the current problem. The work by Wnek et al. [100] categorised constructive in-

duction into four approaches: data–driven, hypothesis–driven, knowledge–based and

multi–strategy constructive induction (MCI). The data–driven approach constructs

new features based on analysis of the available data by applying various operators.

The hypothesis–driven approach constructs new features based on the hypotheses

generated previously. Useful concepts in the induced hypotheses (e.g. rules) can be

extracted and used to define new features. The knowledge–based approach constructs

new features applying existing knowledge and domain knowledge which is particu-

larly helpful in determining the type of new compound features and choosing suitable

operators. The MCI approach integrates the data–driven and the hypothesis–driven

approaches with empirical induction and deduction.

Chapter 2: Data Mining and Knowledge Discovery in Databases 29

Constructive induction systems usually consist of two components: one for con-

structing new attributes, and the other for generating concepts. After the construc-

tion, new attributes are treated exactly in the same way as the primitive (original)

ones. For a non-trivial learning problem the number of possible constructive op-

erators, such as logical operators and mathematical operators, and the number of

possible operands, are usually very large, so it is not feasible to search through all

the possible combinations.

Usually, systems select as a bias, a goal set of possible operators and reduce the

search space of new attributes. Conjunction, disjunction, and negation are commonly

used constructive operators, whereby they produce binary attributes. Another type of

constructive operator is M -of -N including the variants at-least M -of -N , at-most M -

of -N , and exactly M -of -N [105]. A M -of -N operator generates boolean attributes.

It consists of a value M and a set of N conditions based on existing attributes. An

at-least M–of–N attribute is true if at least M of the N conditions are true. Zheng

[105] proposes the X-of -N constructor that returns the number of true conditions.

It generates ordered discrete values. One of the well–known constructive induction

systems is the FRINGE family of algorithms [76]. All algorithms from this family

iteratively build a decision tree based on the existing attributes (initially only prim-

itive attributes), and then construct new attributes by using conjunctions and/or

disjunctions of two conditions from the tree paths. The new attributes are added to

the set of existing attributes, and the process is repeated. The conditions used for

generating new attributes are chosen from fixed positions in the paths, either near

the root and/or near the fringe of a tree.

Chapter 2: Data Mining and Knowledge Discovery in Databases 30

2.4 Mining techniques for the Classification Task

There are many techniques used for data classification. We describe only three,

namely k–nearest neighbour, artificial neural networks and decision trees.

2.4.1 k-Nearest Neighbour (k–NN)

k-nearest neighbour is a predictive technique suitable for classification models. k

represents a number of similar cases or the number of items in a group [69]. With the

k-NN technique, the model is created using the training data. When a new case or

instance is presented to the model, the algorithm looks at all the data to find a subset

of cases that are most similar to it and uses them to predict the outcome. k–NN is

based on a concept of distance, and uses some metric to measure this similarity. For

continuous attributes, Euclidean distance can be used, while for categorical variables,

one has to find a suitable way for calculating the distance between attributes in the

data. Choosing a suitable metric is a very delicate task, since different metrics used

on the same training data can result in completely different predictions. This means

that a domain expert is needed to help determine a good metric.

2.4.2 Artificial Neural Networks (ANNs)

Artificial Neural Networks are computational algorithms based on the virtues of the

biological brain rather than on the true physical details [11]. Interconnections of syn-

thetic neurons are used to learn from observed data in a manner that is amenable to

parallelism, robust to noise and fault tolerant. ANNs are among the most complicated

of the classification algorithms. They are often considered as a black box. A neural

network requires a lot of data for training, thus consuming time, but once trained, it

can make predictions for new cases very quickly, even in real time. Moreover, neural

Chapter 2: Data Mining and Knowledge Discovery in Databases 31

networks can provide multiple outputs representing multiple simultaneous predictions.

Neural networks are defined by their architecture. A typical ANN consists of three

groups of layers: an input layer, one or more hidden layers, and an output layer. A

feed–forward neural network is perhaps the most commonly used technique for clas-

sification. It consists of several layers of neurons with the output of each neuron in

layer k connected to the input of each neuron in layer k + 1. In other words, data

is presented at the input layer and the signals propagate through the layers of the

network to produce a result at the output layer, see Figure 4. A typical feed–forward

neural network is the multi–layer perceptron (MLP). In an MLP network, data is

fed into the input layer and transformed by weights and transformation functions

at each neuron as it flows through the network. The network output is a resultant

transformation that forms the relationship between inputs (predicting fetures) and

the output (class feature) [17]. MLPs are trained to find relationships by presenting

the network with historical values of inputs and outputs. Training is the search for a

set of weights which best matches the inputs onto the output for the samples in the

data set. Training the network is thus an optimisation problem where the optimal

solution lies somewhere in weight space.

2.4.3 Decision Trees

Decision tree learning is one of the most widely used and practical methods for in-

ductive learning. It is a method for predicting discrete-valued classes, using a set of

predicting attributes. Decision trees classify data by successively splitting the train-

ing set into partitions based on splitting measures. Decision trees perform many tests

on the predicting attributes, starting at the root node, and then try to arrive at the

Chapter 2: Data Mining and Knowledge Discovery in Databases 32

Wieghts

Input Layer

X1

Xd

X3

X2

.

.

.

. .

. .

. .

. .

. .

.

.

.

Hidden Layers
 Output Layer

Figure 4: A multi-layer perceptron artificial neural network.

best sequence for predicting the class. Each test creates branches that lead to more

tests, until testing terminates in a leaf node. The path from the root to the leaf nodes

is the rule that predicts the class of the data samples belonging these leaf nodes. The

rules are expressed as {if antecedents then consequent} form.

The process of creating the decision tree is called induction. Most decision tree

inductions go through three phases: a tree growing (splitting), stopping and pruning,

and these are different for every decision tree algorithm. The splitting criterion is the

most important measure for differentiating between decision tree algorithms. Clas-

sification tree algorithms can be divided into those that yield binary splits, such as

CART [16], Quest [64] and OC1 [74], and those that yield trees with multiway splits,

such as C4.5/C5 [80, 83] and CHAID [51]. In keeping with the theme of this Thesis,

classification decision trees are further discussed in Chapter 3.

Chapter 3

Data Classification: Decision Tree
Induction

3.1 Introduction

The subject of this Thesis is to restructure the feature space for decision tree classi-

fication. Learning how to classify objects to one of a predefined set of categories or

classes is a characteristic of intelligence that has been of keen interest to researchers in

data mining as well as machine learning. Identifying the essential characteristics of a

set of examples that represent their class is of enormous use in focusing the attention

of a person or computer program. The ability to perform classification and to be able

to learn to classify gives people and computer programs the power to make decisions.

The efficacy of these decisions is affected by performance of the classification task. In

machine learning, the classification task is commonly referred to as supervised learn-

ing. In supervised learning there is a specified set of classes, and example objects are

labelled with the appropriate class. The goal is to generalise (form class descriptions)

from the training objects that will enable novel objects to be identified as belong-

ing to a particular class. In contrast to supervised learning is unsupervised learning

where, the goal is to decide which objects should be grouped together, in other words,

33

Chapter 3: Data Classification: Decision Tree Induction 34

the learner forms the classes itself. Of course, the success of classification learning is

heavily dependent on the quality of the data provided for training, where a learner

has only the input (training set) to learn from. If the data is inadequate or irrelevant

then the concept descriptions will reflect this and misclassification will result when

they are applied to new data (testing set).

In Section 3.2, we address some of the characteristics of data and representation

issues for classification. We describe the decision tree induction techniques related to

the work of this Thesis in Section 3.3.

3.2 Data Representation

In a typical classification task, data is represented as a table of examples or instances.

Each instance is described by a fixed number of measurements, or features, along with

a label that denotes its class. Features (sometimes called attributes) are typically one

of two types: categorical (nominal or dicrete), or numerical (real or integer). Table 1

shows fourteen instances of suitable and unsuitable days for which to play a game

of golf [80]. Each instance is a day described in terms of the (categorical) attributes

Outlook and Wind, and the (numerical) attributes Temperature and Humidity, along

with the class label which indicates whether the day is suitable for playing golf or

not. A typical application of a classification algorithm requires two sets of data: a

training set and a testing set. The training set is used to produce the learned concept

descriptions and a separate testing set is needed to evaluate the accuracy of these

descriptions. When testing, the class labels are not presented to the algorithm. The

algorithm takes, as input a test example and produces, as output, a class label (the

predicted class for that example).

Chapter 3: Data Classification: Decision Tree Induction 35

Table 1: The Golf data set.
Instance # Outlook Temperature Humidity Wind Class

1 sunny 85 85 false Don’t play
2 sunny 80 90 true Don’t Play
3 overcast 83 78 false Play
4 rain 70 96 false Play
5 rain 68 80 false Play
6 rain 65 70 true Don’t Play
7 overcast 64 65 true Play
8 sunny 72 95 false Don’t Play
9 sunny 69 70 false Play
10 rain 75 80 false Play
11 sunny 75 70 true Play
12 overcast 72 90 true Play
13 overcast 81 75 false Play
14 rain 71 80 true Don’t Play

3.3 Decision Tree Induction

An induction algorithm, forms concept descriptions from example data. Concept

descriptions are often referred to as the knowledge or model that the learning algo-

rithm has induced from the data. Knowledge may be represented differently from one

algorithm to another. As mentioned in the previous chapter, there are numerous ap-

proaches to classifying data. Perhaps one of the most common approaches is decision

trees.

A decision tree is a tree–like data structure that can be employed in certain data

classification tasks. A data set should include the following characteristics in order

to be suitable for classification by a decision tree:

• Each instance in the data set must be represented by a fixed number of attributes

and must belong to a class.

Chapter 3: Data Classification: Decision Tree Induction 36

OUTLOOK

HUMIDITY
 WINDY?
PLAY

Sunny
 Outcast
 Rain

Don’t PLAY
 PLAY
PLAY
Don't PLAY

False
True
<= 75
> 75

Figure 5: A decision tree for the “Golf” data set. Branches correspond to the parti-
tioning of records; leaves indicate classifications.

• Attributes may be categorical or numerical.

• Classes must be discrete–valued, i.e. categorical.

For a given record, the classification process starts from the root node. The

attribute in the node is tested, and the value determines which branch is to be taken.

This process is repeated until a leaf node is reached. The record is then classified as

the class of the leaf.

For example, Figure 5 shows a simple decision tree for classifying the “Golf” data

set presented in Table 1.

Most decision tree inductions go through three phases: tree growing or splitting,

stopping and pruning, and these are different for every decision tree algorithm.

• Splitting: The tree growing phase is an iterative process which involves splitting

the training data into progressively smaller subsets. The first iteration considers

the root node that contains all the data. Subsequent iterations work on deriv-

ative nodes that will contain subsets of the data. At each split, all features are

analysed and the best split is chosen. One important characteristic of splitting

Chapter 3: Data Classification: Decision Tree Induction 37

is that it is greedy, which means that the algorithm does not look at any other

part of the tree to see if another decision would best produce a better overall

result.

• Stopping: Decision tree algorithms usually have several stopping rules. These

rules are usually based on several factors including maximum tree depth, mini-

mum number of instances in a node considered for splitting, or its near equiv-

alent, the minimum number of elements that must be in a new node. In most

implementations the user can alter the parameters associated with these rules.

Some algorithms, in fact, begin by building trees to their maximum depth.

While such a tree can precisely predict all the instances in the training set, the

problem with such a tree is that, more than likely, it has overfitted the data.

• Pruning: After a tree is grown, one can explore the model to find out nodes

or subtrees that are undesirable because of overfitting, or rules that are judged

inappropriate. Pruning removes leaves and is a common technique used to

make a tree more general. Algorithms that build trees to maximum depth will

automatically invoke pruning. In some products, users also have the ability to

prune the tree interactively.

Decision trees that allow only a single test on a single attribute per branch node

are known as univariate trees, whereas those permitting multiple tests on one or more

attributes per node are commonly known as multivariate trees. For the purpose of

this Thesis we will consider only univariate trees.

The construction of decision trees is referred to as decision tree induction. Gen-

erally, decision tree induction involves the following steps:

1. Start at a single node representing all data (root node).

Chapter 3: Data Classification: Decision Tree Induction 38

2. If records are all in the same class then node becomes a leaf labelled with that

class.

3. Otherwise, split using the attribute that “best” separates records into individual

classes.

4. Repeat until:

• All records in a node belong to the same class, or;

• majority of records in same class; or

• node contains too few records.

The fundamental difference between decision tree induction techniques lies in the

splitting criteria. There are many decision tree induction algorithms that deploy the

univariate approach including, C5 [83] and its predecessors ID3 [79] and C4.5 [80],

CART [16] and CHAID [51], which are discussed in the Subsections that follow.

These inductive techniques are exploratory data analysis methods used to study the

relationship between the class and the predicting attributes. They are chosen in our

research because of their wide application in data mining.

3.3.1 ID3

The Interactive Decotimizer 3 (ID3) [79] is a simple decision tree algorithm used

for data classification. It performs a heuristic top–down greedy search. Initially all

training samples are placed in the root node. Then ID3 uses information gain as

the splitting criterion for selecting the branching attribute of a node. Let the node

contain a set S of cases, with |Cj| of the cases belonging to one of the predefined

classes Cj. The information needed for classification in the current node, referred to

Chapter 3: Data Classification: Decision Tree Induction 39

as entropy, is

Entropy(S) = −
c∑

j=1

|Cj|
|S| × log2

(|Cj|
|S|

)

This value measures the average amount of information required to identify the class

of a case. Assume that we use an attribute A as the branching attribute which,

divides the cases into n subsets. Let Si denote the set of cases in subset i. The

information needed for the subset i is Entropy(Si). Thus the expected information

required after choosing attribute A as the branching attribute is the weighted average

of the subtree information:

EntropyA(S) =
n∑

i=1

|Si|
|S| × Entropy(Si)

Thus, the information gain of splitting using attribute A, Gain(A), is the expected

reduction in entropy caused by partitioning the cases in accordance with attribute A:

Gain(A) = Entropy(S)− EntropyA(S)

As a smaller value in the entropy corresponds to better classification, the attribute

A with the maximum information gain is selected for the branching of the node.

After the branching attribute is selected, the training cases are divided by the

different values of the branching attribute. If all cases belong to the same class, then

this branch becomes a leaf node labelled with that class. If all cases are labelled with

a class, the algorithm terminates. Otherwise, the process is recursively applied on

each branch.

3.3.2 C4.5 and C5

C4.5 is a successor of ID3, also developed by Ross Quinlan. The use of information

Chapter 3: Data Classification: Decision Tree Induction 40

gain measure has a serious deficiency that favors tests with many outcomes [80]. C4.5

improves this by using gain ratio as the criterion for selecting the branching attribute.

The gain ratio is computed in two steps. Firstly, the split infoA(S), which represents

the potential information generated by dividing S into n subsets, is measured:

split infoA(S) = −
n∑

i=1

|Si|
|S| × log2

(|Si|
|S|

)

Secondly, splitinfoA(S) is used to normalise the gain criterion computed above

to yield the gain ratio:

Gain ratio(A) = Gain(A)/split infoA(S)

The attribute with the maximum value of gain ratio is selected as the branching

attribute.

C5 is the successor to C4.5 which also uses gain ratio to select the branching

attribute. C5 offers more enhancements to C4.5 in terms of reduced memory usage,

increased speed and improved accuracy [83].

3.3.3 Classification And Regression Tree (CART)

CART is another well-known decision tree classification algorithm, popularised by

Breiman et al. [16]. Like the C5 family, for each attribute, CART tries to find the

best split, then it selects the attribute with the best split. The criteria for finding

the best split is to maximise the decrease in the impurity of the parent node. A node

is pure if all its cases belong to one class. Thus, it prefers splits that put the largest

class in one pure node. The impurity measure used in CART is referred to as the gini

index. For instance, given a data set S with c classes, then

Gini(S) = 1−
c∑

i=1

p2
i

Chapter 3: Data Classification: Decision Tree Induction 41

where pi is the relative frequency of class i in S.

If a test attribute A splits S into two subsets S1 and S2 with sizes N1 and N2

respectively, then

GiniA(S) =
N1

N
×Gini(S1) +

N2

N
×Gini(S2)

where N is the total number of samples in the node.

Therefore, the decrease in impurity caused by splitting on attribute A, GIA, is

measured as

GIA(S) = Gini(S)−GiniA(S)

The attribute that provides the highest GiniA(S) implies the least interesting

information, whereas the attribute that gives the smallest GiniA(S) implies the most

interesting information and is therefore chosen to split the node.

3.3.4 Chi-squared Automated Interaction Detector (CHAID)

CHAID is a decision tree induction algorithm developed by G. V. Kass [51]. CHAID,

like C5, is a greedy algorithm. However, the manner in which these two algorithms

construct their tree differs greatly.

Suppose we have a class attribute with c ≥ 2 classes and a predicting attribute

with n ≥ 2 different values. We reduce the given c× n contingency table to the most

significant m× c table by merging categories of the predicting attribute, where m =

2, 3, .., n. CHAID uses the Chi2 test of significance for determining which categories

to merge. The c × n contingency table consists of n rows and c columns, where oij

is the observed frequency of the ith row in the jth column, and eij is the expected

frequency of the ith row in the jth column, such that

Chapter 3: Data Classification: Decision Tree Induction 42

eij =
RowTotal × ColumnTotal

GrandTotal
.

then the Chi2 test is

Chi2 =
n∑

j=1

c∑
i=1

oij − eij

eij

.

The full algorithm, found in [51], is outlined below:

1. For each predictor in turn, cross-tabulate the categories of the predictor with

the categories of the dependent variable and do steps 2 and 3.

2. Find the pair of categories of the predictor (only considering allowable pairs as

determined by the type of predictor) whose 2× d sub-table is least significantly

different. If this significance does not reach a critical value, merge the two

categories, consider this merger a new compound category and repeat step.

3. For each compound category consisting of three or more of the original cate-

gories, find the most significant binary split (constrained by the type of predic-

tor). If this significance is beyond some boundary, implement the split to form

two new categories and repeat step 2.

4. Calculate the significance of each optimally merged predictor and isolate the

most significant one. If the significance is greater than a criterion value, subdi-

vide the data according to the (merged) categories of the chosen predictor.

5. For each partition of the data that has not yet been analysed, return to step 1.

This step may be modified by excluding from further analysis partitions with a

small number of observations.

Each of these decision tree algorithms, namely C5, CART and CHAID, is used in

the experimental work presented in later chapters.

Chapter 4

Background on Evolutionary
Computation

4.1 Introduction

The previous two chapters presented a background to KDD, data mining and clas-

sification using decision tree induction, addressing issues related to the work of this

Thesis. In this chapter, we introduce the topic of evolutionary computation. Firstly,

evolutionary computation is presented in Section 4.2 as a set of algorithms inspired

by the principles of biological evolution. In Section 4.3, we describe in more detail

the paradigm of particular relevance to this Thesis, namely genetic programming. A

survey of relevant applications of evolutionary algorithms is presented in Section 4.4.

Section 4.5 summarises the chapter.

4.2 Evolutionary Computation

A search algorithm searches through the space of possible solutions. The term search

is strongly related to optimisation because optimisation is actually a search for the

optimal solution(s) [35]. In order to perform optimisation, it is crucial to have a way

43

Chapter 4: Background on Evolutionary Computation 44

of measuring the quality of any possible solution in the search space. This is achieved

by employing an objective (fitness) function, which evaluates a solution by assigning

to it a numerical value which in some way reflects its quality.

Search techniques can be divided into weak and strong methods [5]. Weak search

techniques are general domain-independent methods and hence are widely applica-

ble to different problems. On the other hand, strong search techniques are prob-

lem specific and they require some domain knowledge to guide the search. Domain

knowledge allows strong methods to generally reach an acceptable solution faster

than weak methods. Also, search techniques can be categorised as trajectory and

population–based. In a trajectory approach, a single initial solution is the start of a

trajectory through the space, the rest of the trajectory is achieved through iterative–

based algorithms such as local search, simulated annealing [26] and tabu search [40].

In population–based approach an initial population of solutions are used to search

the space, such as those used in evolutionary and other population–based search.

Evolutionary computation is a field of biologically-inspired research concerned with

optimisation and search algorithms that imitate the principles of biological evolution

[33]. Evolutionary algorithms (EAs) are weak, population–based, search techniques

which use stochastic search procedures inspired from biological evolution [5]. EAs

employ the Darwinian principle of survival of the fittest and natural selection, and

hence the representation of solutions and operators is borrowed from the terminology

used in natural evolution [10].

The origins of EAs can be traced back to the 1950’s [34]. The first published work

on simulating the evolution of genetic systems was first published by A. Fraser [36]

and G. Box [14]. For the sake of brevity we will not concentrate on this early work

Chapter 4: Background on Evolutionary Computation 45

but will discuss four methodologies that have emerged in the last few decades:

Evolution Strategies (ESs), were developed by Rechenberg, Schwefel and Bienert

at the Technical University of Berlin in 1964 [32, 7]. The aim of ESs is to solve

continuous optimisation problems [31]. Basically, the phenotype of an individual is

a vector containing the candidate values of the parameters being optimised. The

genotype of each individual is a pair of real-valued vectors of the phenotypic vector

and a vector of standard deviations used to apply the mutation operator.

Evolutionary Programming (EP) was proposed by Lawrence Fogel in 1962 [31].

EP is used for evolving programs that are capable of predicting their environment,

and use those predictions to achieve some goal. In its most general approach, the

environment is described as a sequence of symbols taken from a finite alphabet. With

its knowledge of the environment the evolving entity is supposed to produce an output

symbol that is related in some way to the next symbol appearing in the environment.

The output symbol should maximise a payoff function, which measures the accuracy

of the prediction. Finite state machines were selected to represent individuals in EP

as they provide a meaningful representation of behavior based on interpretation of

symbols.

Genetic Algorithms (GAs), first proposed by John Holland in 1975 [46, 41], are

the most well-known paradigm of evolutionary computation. GAs operate on an

encoding of the problem solution in a manner similar to the manipulation of natural

genetic encodings. In the traditional GA, the solution to a problem is encoded as a

fixed-length string of bits. Each bit represents a gene, and its value and position in

the chromosome determines its meaning. This genotypic representation is decoded by

a user-defined function to produce a phenotype, which is a solution to the problem.

The fitness function is normally applied to the phenotype.

Chapter 4: Background on Evolutionary Computation 46

Genetic Programming (GP), as GP plays a major role in this Thesis, it is ad-

dressed separately in Section 4.3.

All evolutionary computation methods differ from one another in the manner that

they represent their solutions, the genetic operators they use and the selection meth-

ods. However, they all have common elements, as shown in Figure 6.

¦ A population P = {s1, s2, .., sN} of N individuals, where each individual si ∈ P being
a solution to the problem.

¦ A user-defined fitness function f : P → < for assessing how well an individual solves
the problem. This is non-trivial and dominates the computation time of the algorithm.

¦ A mechanism for creating the initial population, P0, often generated at random.

¦ A probabilistic selection mechanism.

¦ Genetic operators similar to reproduction, mutation and sexual recombination in natural
organisms for generating new populations.

¦ A termination (stopping) criteria.

Figure 6: Elements of an Evolutionary Algorithm.

EAs operate on a population of individuals that represent possible solutions to

a problem in their chromosomes. Each individual can be as simple as a string of

bits (zeroes and ones), or as complex as a computer program (parse trees). The ini-

tial population of individuals may be created entirely at random, or some knowledge

about previously known solutions may be used to seed the population. The algorithm

evaluates the individuals to determine how well they solve the problem at hand us-

ing a user–defined objective function, which is unique to each problem. Evolution

Chapter 4: Background on Evolutionary Computation 47

proceeds as the current population is iteratively transformed into a new population

through one or more of the following procedures: selection, reproduction, recombi-

nation and mutation. Although transformation is different from one algorithm to

another, it generally involves two stages:

• The fitness-proportionate selection of individuals from the population to form

the mating pool.

• The application of genetic operators to individuals in the mating pool to produce

offspring. These offspring are combined with the parent population in some way

to make up the new population.

Each iteration of this transformation is called a generation. The offspring are

evaluated, and the cycle of selection and creation of new individuals is iterated until

a satisfactory solution is found or some termination criteria is met. This is usually

when a predetermined limit on the number of generations (iterations) is reached.

The above describes one run of the algorithm. Since the results are based on a

stochastic process, it is recommended that multiple runs be performed.

4.3 Genetic Programming

Genetic Programming (GP) was pioneered by John Koza in 1992. In his books [55,

56, 57], he successfully applied GP to many problems from different domains. GP

is essentially a branch of GAs, with the primary difference being the representation

of the structures undergoing adaptation. However, the concept of evolving computer

programs was first introduced in 1985 by N. Cramer [22].

Chapter 4: Background on Evolutionary Computation 48

4.3.1 Problem Encoding and Control Parameters

The individuals in a GP population are not fixed-length binary strings, but rather

trees which can vary in size and shape. Each tree is a parse-tree encoding of a

computer program or functional expression. The reason for this representation is

because most language compilers translate a given program into a parse–tree before

generating a sequence of executable machine instructions. For example, the program

(x2
1 + (x3

2.5
)) ∗ (x2 − √x2) can be represented in the parse–tree (* (+ (* x1 x1) (/ x3

2.5)) (- x2 (
√

x2))), see Figure 7.

Figure 7: A parse tree of the program (x2
1 + (x3

2.5
)) ∗ (x2 −√x2).

Figure 7 shows that a parse-tree consists of branch nodes and leaf nodes. The

branch nodes (with children) are functions which take arguments from their child

nodes. The leaf nodes (without children) are terminals which are the inputs to the

overall program.

There are five essential elements that must be determined to make up a genetic

program [55]:

Chapter 4: Background on Evolutionary Computation 49

• the set of terminals,

• the set of operators or functions,

• the fitness function,

• the parameters controlling the run,

• and the termination criteria of the GP.

4.3.1.1 The Terminal and Function Sets

The function and terminal sets define the search space for the problem. The func-

tion set contains NF functions from F = {f1, f2, ..., fNF
} in the language such that

each function fi has arity (number of arguments) arity(fi) > 1. The functions can

be typical constructs found in programming languages, including those in Table 2.

Alternatively, the function set can contain user–defined functions depending on the

application domain.

Table 2: Examples of functions used in the function set.
Functions Type Examples

Arithmetic +, −, ×, ÷
Mathematical sin, cos, log, exp
Boolean AND, OR, NOT

Conditional IF , IF − THEN − ELSE

Loop FOR, WHILE, DO −WHILE,
Comparative ≥, ≤, <, >, =
: :

Similarly, the terminal set contains NT elements from T = {t1, t2, ..., tNT
}. The

terminals can be problem-specific variables, random constants or zero-arity (with no

Chapter 4: Background on Evolutionary Computation 50

arguments) functions. The random constants can be any real or integer numbers that

are initialised randomly at the start of the run and maintain their values throughout

the run. An example of zero-arity functions can be GoLeft, PickUP, .. etc, for a

robot control problem. Recalling the example shown in Figure 7, the function set is

F = {+,−,×,÷,
√} and the terminal set is T = {x1, x2, x3, 2.5}.

4.3.1.2 The Closure and Sufficiency Properties

For any problem, in order for the GP to work properly, F and T must consider

the closure and sufficiency properties [55]. If all terminals are considered 0 − arity

functions, then we can form the uniform function set C = F∪T . The closure property

requires that each function in F is able to accept, as its arguments, any values and

data types that may be returned by any function in C. This avoids runtime errors.

The sufficiency property ensures that the functions in C are capable of expressing the

solutions to the problem.

4.3.1.3 The Fitness Function

The fitness function measures the success of an evolved individual and is obtained

by executing the individual for a set of test cases and seeing how well it solves the

problem. The measured fitness of a program determines whether it will take part

in the creation of the next generation. There are four types of fitness measures;

raw fitness, standardised fitness, adjusted fitness and normalised fitness [55]. These

fitness measures are arranged in some hierarchy or sequence, i.e. each fitness measure

is a transformation of the preceding measure. Raw fitness of an individual i, r(i),

measures the fitness that is defined in the natural terminology of the problem, usually

evaluated over a set of fitness cases. For example, if the task is classification then

the raw fitness is the classification accuracy or error rate. Standardised fitness, s(i),

Chapter 4: Background on Evolutionary Computation 51

restates the raw fitness such that the lower numerical value is always the better value.

As a result the fittest individual will have a fitness value of zero. Adjusted fitness,

a(i), is measured from the standardised fitness. The adjusted value for any individual

in a population is always between zero and one. Adjusted fitness has the benefit over

standardised fitness in that it exaggerates the importance of small differences in values

of standardised fitness as the standardised fitness of multiple individuals approaches

zero. Adjusted fitness can be calculated as: a(i) = 1
1+s(i)

. Normalised fitness, n(i), of

an individual, i, in a population of size M is within the range of zero and one and is

calculated as: n(i) = a(i)PM
k=1 a(k)

. The sum of the normalised fitness of all the individuals

in a generation is one. The fitter individuals have a larger value of normalised fitness.

4.3.1.4 The Run Parameters

Two of the most important parameters are the population size and the maximum

number of generations. These parameters determine the amount of exploration and

exploitation performed by the GP. A small population that is evolved for a large

number of generations is biased for exploitation. Similarly, a large population evolved

over a small number of generations is biased towards greater exploration. By carefully

choosing the value of these parameters, one can balance exploration with exploitation.

The reproduction, crossover and mutation probabilities are used to select rates

of the genetic operator to be used to create offsprings. They specify the probability

with which each of the three genetic operators are chosen. Reproduction and muta-

tion probabilities are usually set to be very small.

The shape and depth of the trees created for the initial population can be specified

by the creation method, and the maximum depth parameters respectively. There are

Chapter 4: Background on Evolutionary Computation 52

three creation methods commonly in use, called the full, grow, and ramped half-and-

half methods. The full method creates symmetric trees that are of maximum depth

along any branch from the root. This is achieved by selecting the root node randomly

from the function set, and then continuing recursively to select randomly from the

function set for subnodes until the maximum allowable depth is reached (at which

point a node is selected from the terminal set). Selecting the grow method creates

asymmetric trees. As with full trees, the root is always chosen from the function set,

this time however we continue recursively by selecting children from C, until either a

terminal is selected or the maximum depth is reached (at which point a terminal is

always selected). The ramped half-and-half is used to ensure population diversity in

the initial population. The size of trees created is ramped up from 2 to the maximum

allowable tree depth. Half of these trees are created using the full method, and the

other half are created using the grow method.

4.3.1.5 The Termination Criteria

As the name suggests, the termination criteria determine the ending of the GP run.

Typical termination criteria include:

• the fitness of the best individual scores the desired value, resulting in a successful

run.

• or the maximum number of generations is reached, resulting in a less successful

run.

4.3.2 The Initial Population

The initial population P0 is typically randomly generated from C. Since it is the

starting point for the search, it is important that a range of tree shapes and sizes be

Chapter 4: Background on Evolutionary Computation 53

present to avoid bias. Although functions and terminals absent from the population

can be regenerated by mutation, this process should not be relied upon, and the

initial population should contain an even distribution of the functions and terminals

available. Genotypic duplicates should not be allowed so as to use the full potential

of the population [55].

4.3.3 The Genetic Operations

The traditional GP operators are similar to those used in GAs, but have been adapted

to work with trees. Each operator must ensure that the offspring do not exceed the

maximum allowable tree depth.

Reproduction and crossover are viewed as the primary genetic operators, while

mutation and other novel operators are secondary. Reproduction simply copies the

individual to obtain an identical offspring. Crossover requires two parents and ran-

domly selects a node in each as a crossover point. The sub-trees rooted at these

crossover points are swapped to obtain the offspring, see Figure 8. There are a few

important points about crossover in GP. Firstly, unlike GAs, crossover between two

identical parents can result in different offspring. Secondly, if the crossover points are

the roots of both parents, then crossover degenerates to reproduction. Thirdly, if the

two crossover points are terminal nodes, crossover is like point mutation that simply

changes a single node. Because of this latter point, internal points are typically cho-

sen as crossover sites with a higher probability than terminals.

The most common form of mutation is sub-tree or grow mutation. A node is ran-

domly selected from the tree, and the subtree rooted at the selected node is replaced

with a new, randomly-generated sub-tree, see Figure 9. The usefulness of mutation

Chapter 4: Background on Evolutionary Computation 54

Figure 8: GP Crossover.

is questionable according to Koza: mutation is useful in GAs to relieve a search from

stagnation and to re-introduce lost alleles into the population. Since in GP, identical

parents can result in different offspring through crossover, mutation is not required

to avoid stagnation. In GP the meaning of an allele is not fixed to its position, and

since the sizes of the function and terminal sets are much smaller than the number

of nodes in the population, it is unlikely that a symbol would disappear from the

population.

Koza used several other secondary operators particular to GP, such as permuta-

tion, editing and encapsulation. For a fuller description of these operators, please

refer to [55, 56].

Chapter 4: Background on Evolutionary Computation 55

Figure 9: GP Mutation.

4.4 Applications of Evolutionary Algorithms

The versatility of the GP representation is its strength, which enables it to solve a wide

variety of symbolic problems. Unlike other methods, GP allows the size and struc-

ture of the final solution to be left unspecified and undergo adaptation [55]. GP has

achieved slightly superior performance than the best known human-generated solu-

tions. The application areas of GP include electrical circuit design, image processing,

robotics, autonomous agents and pattern recognition. A survey of some these appli-

cations can be found in [8, 55, 56, 57]. William Langdon maintains a bibliography

of published material at the Genetic Programming Bibliography1. John Koza also

maintains information of GP applications, and other events such as conferences, work-

shops, .. etc. at the genetic–progamming.com2 and at the genetic–programming.org3

websites.

In this Section, we survey the role that EAs, particularly GP and GA, play in

the data mining task of classification and the preprocessing tasks of feature selection,

extraction and construction.

1http://www.cs.bham.ac.uk/∼wbl/biblio/README.html
2http://www.genetic-pogamming.com
3http://www.genetic-pogamming.org

Chapter 4: Background on Evolutionary Computation 56

4.4.1 Evolutionary Pre–processing

Since the main problem with the preprocessing tasks of feature selection, extraction

and construction is how to cope with feature interaction, redundancy and correlation,

local search-based approaches become less effective. Hence, there was a strong need

to adapt new, more powerful methods in global search [38].

4.4.1.1 Feature Selection

There are many ways in which EAs can be used to address the problem of feature

selection. The evolutionary approach most often applied for feature selection is to hy-

bridise the selection method with the learning algorithm (i.e. the wrapper approach).

In this approach, the learning algorithm is used to evaluate the fitness of the fea-

ture subsets obtained during the evolutionary computation. While this preserves any

inductive and representational biases of the learning algorithm, it is more computa-

tionally intensive than selecting the features independently.

Siedlecki et al. [88] used GAs to select features for thek–NN algorithm. GAs as-

signed each individual in the population a binary (zero or one) value, where a one

indicated that a feature was included in the classification, and a zero indicated that

it was not. The KNN algorithm was then used to evaluate how good each individual

is based on its classification accuracy and the number of the features used.

Others have applied the same basic binary encoding to select features in classifi-

cation problems using neural networks [19, 18]. Punch et al. [78] extended the simple

binary feature selection idea by representing an individual by a series of weights be-

tween zero and ten, thus weighting some features as more important than others.

They found that their extension appeared to work better than the zero/one approach

Chapter 4: Background on Evolutionary Computation 57

of Siedlecki et al. [88] on noisy real world datasets.

Vafaie et al. [95] also investigated a similar approach to feature selection using

decision trees for classification. However, in their work, instead of just weighting

each feature, they allowed the combination of existing features to form new features

through simple operations such as add, subtract, multiply, and divide. This adaptive

feature–space transformation led to a significant reduction in the number of features

and improved the classification accuracy. Other related work in this area is that of

Yang et al. [103] who used neural networks as the classifier and a simple zero/one

strategy for weighting each feature.

A very different use of genetic algorithms in feature selection is in the generation

of ensembles of classifiers. Recent work by Dietterich [25] has shown that it was

possible to improve classification accuracy by combining the prediction of multiple

classifiers. These ensembles of classifiers differed in the ways in which the classifiers

were generated and their results were combined. Early work of Ho [45], which used a

random selection of features to create an ensemble, was extended by Guerra-Salcedo

et al. [43]. They replaced the random selection with a more intelligent approach using

genetic algorithms, and showed empirically that their method was more accurate.

4.4.1.2 Feature Extraction

EAs have proven to be effective in extracting new features to reduce the dimensional-

ity of the feature space. Bot [13] proposed a GP framework for extracting features to

improve the performance of the KNN classifier. The new features were constructed

from the original variables by adding, subtracting, multiplying or dividing the original

Chapter 4: Background on Evolutionary Computation 58

variables by constants and/or the other variables. Besides these operators, the Mean

function has also been added which takes two or three inputs and returns their mean.

Individuals in the population are formulas that specify how a new feature should be

calculated. For each additional feature, the GP is run. Suppose n − 1 runs have

already taken place. These previous n − 1 runs have resulted in a new dataset of

n− 1 columns (the new features) plus the class attribute. In this run the nth column

will be evolved.

This work followed the interleaving approach to feature extraction, in which the

fitness of the GP was based on the accuracy of the associated classifier on the training

set. The author used three different fitness measures; the accuracy of the K–NN , the

minimum distance to means (MDM), and the parallelepiped classifier. He compared

the performance of the KNN classifier on the evolved features to those extracted

using discriminant analysis, principal component analysis (PCA), and the add–one

algorithm. The results showed that the GP performed best with the MDM accuracy

as fitness function. The accuracy of GP was similar to that of the discriminant analy-

sis but outperformed those of the PCA and the add–one algorithms. The GP reduced

the feature set, on most datasets, to one, two, or three features. The results of this

work are used in the comparison study, shown in Chapter 6.

Sherrah et al. [86] proposed a feature extraction system, called the Evolutionary

Pre–Preprocessor (EPrep), which used GP to evolve new features to improve the clas-

sification task. EPrep employed the wrapper approach, where the central component

of EPrep was the genetic program, and each individual in the population represented

a pre–processor network and a standard classification algorithm (Generalised Linear

Machine, k–NN or Maximum Likelihood Classifier). The pre–processor extracted new

features, which are non-linear combinations of the original ones and passed them to

Chapter 4: Background on Evolutionary Computation 59

the specified classifier. The fitness function was based on the error rate of the classi-

fier on the pre–processed data. The authors claimed that EPrep did not only extract

features, it also chose the classifier that performed best on the pre–processed data.

This claim can be questionable as both feature construction and classifier selection

are random processes.

Experiments were carried out on 9 datasets and the error rate of the best classi-

fier was compared to that of the EPrep [87]. The results, on the testing sets, showed

significant improvement on only 2 datasets. On the rest, EPrep could not make sig-

nificant improvement. In another experimental work [86], the performance of EPrep

was compared to that of an MLP ANNs. The experiments were performed on 15 data

sets from the UCI ML repository [68]. The results showed that EPrep outperformed

ANNs on only 4 out of the 15 data sets and ANNs performed much better on the

remaining 11 data sets. In Chapter 6 we compare the results of our experimental

work to that of Sherrah’s [86] on two common data sets, namely the Abalone and the

Balance-scale.

Raymer et al. [82] applied GP to improve k-NN performance without feature

reduction. For each attribute, they evolved a tree which was a function of the at-

tribute itself and zero or more constants, e.g. 2.1x3 + 1.5x. They applied this to a

biochemistry database and claimed improvement over a similar system with a GA.

No comparisons were made to other feature extraction algorithms.

Masand et al. [66] used GP to find additional features for one historical customer

dataset used for predicting future customer behavior. They reported improved per-

formance of C4.5 for this dataset.

Chapter 4: Background on Evolutionary Computation 60

Early work by Tackett [93] identified targets in a cluttered image by combining

simple features extracted from the segmented image through linear and non-linear

operations. If the resulting single value at the root of the tree was greater than zero,

then the object was classified as a target. Stanhope et al. [92] used a similar approach

in their work on target classification using Synthetic Aperture Radar (SAR) images.

4.4.1.3 Feature Construction

There are essentially two approaches to constructing attributes in relation to data

mining; one method is as a separate pre-processing stage, in which the new at-

tribute(s) are constructed before any induction process, i.e. before the classification

algorithm is applied to build the model. The second approach is an integration of

construction and induction, in which new attributes are constructed within the in-

duction process. The latter is therefore a hybrid induction algorithm.

In [59] and [9], the authors have developed a GP to evolve new Boolean attributes

from the original Boolean attribute vector. This was applied as a pre-processing stage

prior to testing the inclusion of the new attributes on parity problems, using C4.5

and backpropagation [9] and quick-prop [59].

In a recent study by Otero et al. [75], the authors used genetic programming as a

pre–processing, attribute construction technique. For each data set used, and for each

trial in a 10xCV test, a single new attribute was evolved using a GP with Information

Gain Ratio as the fitness function of the GP. The GP constructed new attributes out

of the continuous (real-valued) attributes of the data set being mined. Each indi-

vidual corresponds to a candidate new attribute. The terminal set consisted of all

Chapter 4: Background on Evolutionary Computation 61

the continuous attributes in the data. The function set consisted of arithmetic and

relational comparison operators. No restriction was applied on the depth or breadth

of the GP trees, however, the overall size of the trees was restricted.

Classification using C4.5 was applied to the data set, both with and without the

new attribute and the results showed an improvement in the performance of C4.5

with the use of the newly evolved attribute. However, in this study, it is notable that

the objective function of the pre-processing technique, i.e. the attribute construction

GP, and the induction technique C4.5, both use Information Gain Ratio. One is left

asking, therefore, will a classifier whose induction process is not based on information

gain benefit, or indeed benefit as much as C4.5, with the inclusion of an attribute

which has been evolved by a GP with information gain as its fitness function? This

question is addressed in Chapter 6, Section 6. 6.

Smith and Bull [90] proposed a system called GAP, which uses both GP and GAs

to construct and select features. Their approach involves two stages; feature con-

struction using GP and the feature selection using GAs. They used the WEKA [99]

implemetation of C4.5, known as J48, to evaluate the fitness of both the constructed

and selected features. In the feature construction stage, the population consisted of

101 genotypes, created at random. Each genotype consisted of n GP trees, where n is

the number of numeric valued features in the data set. Each GP trees might contain

1 or more nodes. The fitness measure here was the accuracy of C4.5. Only one new

feature was passed from the GP to the GA which selected from original features and

the constructed one, those that are most predictive. The fittest individual from the

feature creation stage (using GP) was analysed to see if any of the original features

did not appear to be used. If there are any missing, sufficient trees were added to

ensure that every original feature in the dataset appeared at least once (the new trees

Chapter 4: Background on Evolutionary Computation 62

are not randomly generated as in the feature construction stage, but have single nodes

containing the required attribute). The extended genotype (up to twice as long as

the fittest individual of the feature creation stage) replaced the initial individual and

was used as the basis of the feature selection stage (using GA). A new data set was

constructed with one attribute for every tree in the extended genotype.

The performance of GAP was compared to C4.5 and another four classifiers on ten

datasets from the UCI repository. The results over ten-fold trials showed a slight im-

provement in the accuracy of eight datasets using GAP when compared C4.5. When

compared with other classifiers, GAP was slightly better in only four. They extended

their work to include a choice of another two classifiers, namely k–NN and Näıve

Bayes, for evaluating the selected and constructed features [91]. This work was sim-

ilar to Vafaie et al. [95] who used GAs to perform the feature selection for a face

recognition dataset. The selected features were evaluated using the accuracy of C4.5.

The feature subsets were then passed onto the GP to evolve new features which are

evaluated again by C4.5. The performance of GAP is also included in the comparison

study presented in Chapter 6.

4.4.2 Evolutionary Data Classification

In this Section we survey some of the applications of EAs in data classification. The

main advantages in the use of EAs over the classical greedy induction algorithms are

their ability to perform a global search and the way they treat the attribute inter-

action problem. Generally, there are two approaches to using EAs for classification;

combined with another inductive algorithm (a hybrid approach) or as a stand–alone

classifier. In the hybrid approach, EAs are used in conjunction with classification

Chapter 4: Background on Evolutionary Computation 63

algorithms such as neural networks and decision trees. In the stand-alone classifier,

EAs are used to actually perform the classification.

In [104], Yao proposed a hybrid EAs–ANN framework (EANN). In this frame-

work, EAs can be used to perform various tasks, such as finding a near–optimal ANN

architecture automatically, and evolving connection weights which provides a global

approach to connection weight training. EAs can also allow an ANN to adapt its

learning rule to its environment. Wong et al. [101] proposed a generic genetic pro-

gramming (GGP) framework to integrate GP and inductive logic programming (ILP).

The developed a system called LOGENPRO (LOgic grammer based GEnetic PRo-

gramming system) which was used to discover knowledge represented as functional

programs and to induce knowledge represented as rules. A hybrid GP–decision tree

approach for classification was proposed by Marmelstein et al. [65]. The authors de-

veloped a a hybrid GP-decision tree classifier for finding decision region boundaries,

which differentiate one class from another. The proposed system incorporates GP

classifiers into a decision tree structure. This was achieved by incrementally con-

structing a decision tree using GPs to implement the decision nodes. At the root

node, each node’s GP is evolved to separate the data into groups corresponding to

a particular class and those corresponding to the remaining classes. Then each child

node classifies a successively smaller subset of the data processed by its parent. After

a parent node classifies its assigned data subset, this subset is passed to the child

node to rectify any residual mistakes. The process continues until the error rate is

below a predefined threshold, the maximum depth of the tree is reached or there is

no fertile nodes. The fitness function was based on the addition of the error rates on

the training and validation sets.

In the context of rule discovery, Freitas [37] proposed a GP framework for the

Chapter 4: Background on Evolutionary Computation 64

induction of both classification and generalised rules from databases. The framework

outlined a method for classification using tuple set descriptors (TSD) in the form

of WHERE clauses for SQL queries, and a count of rows of a goal attribute class

matching the TSD. The fitness function corresponded to some rule quality evaluation

measures. A selection procedure used the fitness value to choose the best rules. In

Au et al. [6], the authors proposed an evolutionary learning algorithm for data min-

ing (DMEL) to mine rules in databases. DMEL searches through huge rule spaces

effectively using an evolutionary approach. The algorithm encodes a complete set of

rules in one single chromosome. It performed its tasks by generating a set of initial

first–order rules using a probabilistic induction technique in order to obtain higher

order rules. DMEL evaluates the fitness of a chromosome using a function defined

in terms of the probability that the attribute values of a record can be correctly de-

termined using the rules it encodes. DMEL was applied to telecommunications data

for churn prediction to mine rule representing the churn patterns and to predict the

likelihood of a customer churning in the near future.

There is a wealth of resources on the applications of EAs in data mining. This

includes international conferences such as the International Conference on Machine

learning (ICML), the Genetic and Evolutionary Computation Conference (GECCO)

and the Congress on Evolutionary Computation (CEC). The journals IEEE Transac-

tions on Evolutionary Computation (EC) and the IEEE Transactions on Knowledge

and Data Engineering (KDE) are also excellent resources.

Chapter 4: Background on Evolutionary Computation 65

4.5 Summary

This chapter has presented a brief introduction to the field of evolutionary com-

putation, and in particular, genetic programming. The applications of GP in data

pre-processing and classification were also addressed. The next chapter starts the

novel content of this Thesis by addressing the problem of feature construction in

classification and describing how genetic programming can be used to that end. The

experimental results of the application of GP to feature construction are presented in

Chapters 6 and 7. In Chapter 8 we present a commercial case study.

Chapter 5

Experimental Setup

5.1 Introduction

In this chapter, we describe the experimental set up and methodology of the research

undertaken. The objective is to investigate the use of GP for the task of attribute

construction (constructive induction) for decision tree classification. The intention is

to study the effect of including a constructed feature in the original set of attributes on

the performance of the classification models, particularly on the predictive accuracy

and the size of the resultant trees (for decision tree models). The constructed at-

tributes are analysed for potential hidden relationships among the original attributes

as well as explaining physical properties about the data. We also compare the use of

GP for classification to using it for feature construction.

In Section 5.2, we introduce the problem of feature construction for decision tree

classification, outlining the objectives of the experimental work. The data sets used

in the experiments are presented in Section 5.3. Section 5.4 outlines the sampling

method of the data sets. In Section 5.5, we describe the GP algorithm and various

algorithm parameter settings, including the four fitness measures used to evolve new

66

Chapter 5: Experimental Setup 67

features. The experimental methodology is given in Section 5.6. Examples of the

evolved features are shown in Section 5.7. Finally, Section 5.8 concludes this chapter.

5.2 The Problem

In data mining, when constructing classification models from data sets, the data is

normally presented as a fixed number of features, or attributes, one of which is the

discrete valued, dependent or class variable. The purpose of classification is to find a

description of the class variable based on some or all of the other predicting variables.

The representation of this description varies depending on the particular induction

technique used, and includes decision trees, rules, artificial neural networks, Bayesian

classifiers, and many others, see [99].

We are primarily addressing the performance of decision tree classifiers. A deci-

sion tree is typically constructed using a greedy, iterative process, wherein, during

the induction stage, each internal decision node is associated with a test on one of the

predicting attributes, the particular test being chosen to optimise a measure relating

to the splitting criterion. Successors of the internal nodes are formed and the process

is repeated at each successor node. In C4.5/C5, for instance, the splitting criterion

is the Information Gain Ratio [80], whilst in CART (Classification and Regression

Trees), the splitting criterion is the Gini Index [16], which is a measure of impurity.

Another decision tree classifer, CHAID [51], uses the Chi–squared test of significance

to evaluate proposed groupings of predictor values and to assess the quality of a pro-

posed split.

The success of any classification algorithm depends on its ability to represent any

Chapter 5: Experimental Setup 68

inherent patterns in the data set, and hence depends on the set of predictive at-

tributes available, or its attribute vector. Greedy techniques such as tree induction,

typically assess the predictive ability of attributes on a one–by–one basis. In other

words, at each internal node of the tree, each attribute is analysed in turn to measure

its predictive power in terms of the class output.

In this Thesis, we restrict our attention to the construction of new attributes, and

in particular, to the use of GP [55] to construct/evolve new attributes. The aim of

this research is to study the effect on the performance of a range of classification al-

gorithms with the inclusion of the evolved attributes. Four different fitness functions

are used in the genetic program; the information gain (IG), the gini index (GI), infor-

mation gain+gini index (IG+GI) and the Chi–squared test (Chi2). The classification

algorithms used are three classification tree algorithms, namely C5, CART, CHAID

and an MLP neural network.

We perform attribute construction with the aim of improving the performance of

classification models in two aspects. The first is the classification accuracy, i.e. im-

proving the classifiers error rates, these results are presented in Chapter 6. The second

aspect is the size of the resulting classification tree models, this is shown in Chapter

7. The experiments presented in this Thesis also address the question of whether or

not decision tree algorithms benefit more from the inclusion of an attribute evolved

using a GP whose fitness function is based on the splitting criterion of the associated

decision tree [72, 73, 71]. Another objective is to analyse the evolved (constructed)

attributes to determine whether they reveal hidden relationships between the predic-

tive attributes or other physical properties about the data, presented in Chapter 7.

Finally, we also investigate the use of GP for classification and compare it to using it

for feature construction, see Chapter 7.

Chapter 5: Experimental Setup 69

5.3 The Data Sets

The experiments are performed on five data sets, all from the UCI data repository

[68]. Table 3 shows the number of cases, classes and attributes for each data set.

Note that our GP considers all attributes to be real-valued variables. Thus the single

boolean attribute in the Abalone data set is considered as real-valued for the purposes

of this study. A fuller description of each data set is given in Appendix A.

Table 3: Data Sets used in experimental work.
Data Set Cases Classes Attributes
Abalone 4177 28 8

Balance-scale 625 3 4
BUPA Liver Disorder 345 2 6

Waveform 5000 3 21
Wine 178 3 13

Although the number of data sets used in our experiments is relatively small, these

data sets were chosen to have one or more of the following desirable characteristics:

• Real, noisy data.

• Medium to large size to avoid issues concerning the statistical validity of results

due to small sample sizes.

• Problems from different domains such as medical diagnosis, social science and

image processing.

• Dimensionality of problems over a broad range.

• Number of classes of problems over a broad range.

Chapter 5: Experimental Setup 70

• Non-trivial classification tasks.

5.4 Sampling

The problem of partitioning the data into training and testing sets suitable for classi-

fication has interested researchers for some time. The aim is to choose representative

sets which give the particular learning method every opportunity to produce an ef-

fective classifier, based on the training set, and an accurate estimate of how well the

classifier will generalise to unseen data, based on the performance on the test set.

Simply partitioning the data randomly into two sets runs the risk of selecting non-

representative sets. One method in particular has been established as a popular and

effective selection method, namely cross–validation [97].

Cross-validation (CV) involves splitting the data into k equal or nearly equal sized

sets. One of the k sets is taken as the test set, and the remaining k-1 sets are combined

to form the training set. This is repeated, taking each of the k sets in turn as the

test set. The learning algorithm is trained and tested on each of the combinations.

Choosing the value of k can be done by guesswork or experiment. In our experiments,

we randomly partition the data into ten folds, using each as a testing set, while the

remaining nine folds form the training set.

5.5 The Genetic Program

In this section we present the technical issues related to the GP system used in the

experiments, including the parameter settings, the initial population and the four

fitness measures.

Chapter 5: Experimental Setup 71

5.5.1 The Parameter Settings

The genetic program used in our experiments is designed to construct real-valued

attributes from the original (assumed) real-valued attributes of the data set. Thus

the terminal set consists of all the original attributes plus the constant 1, whilst the

function set consists of the arithmetic operators +,−,×, /. We use a GP system,

GPSys1, written in Java and developed at the University College of London by M. A.

Qureshi [81].

The initial population is created using a ramped half-and-half method, and the

size is fixed at 600. The GP was run for 100 iterations.

The selection method used is tournament, with a tournament size of 7. Mutation

and crossover are fairly standard, with mutation replacing nodes with like nodes, and

crossover swapping subtrees. The mutation rate is 50%, whilst the crossover rate is

50%. The fitness of an evolved attribute is measured as it would be at a branch node

of the decision tree, whether IG, GI, IG+GI or the Chi2 is used, see Subsection 5.5.3.

Finally, Otero et al. [75] showed that limiting the size of the tree, and hence

the complexity of the constructed attribute, made little difference to the results. In

[72, 73, 71], we limit the size of the constructed trees, choosing an upper limit of 30

or 40 nodes, depending on the number of features of the data set.

5.5.2 The Initial Population

The evolutionary process starting point is the random generation of the initial popu-

lation. It is therefore crucial that the population be initialised with care, since biases

1http://www.cs.ucl.ac.uk/staff/A.Qureshi/gpsys.html

Chapter 5: Experimental Setup 72

introduced in the initial population will inevitably bias the search algorithm. To

obtain a wide range of shapes and sizes in the new trees, the ramped half-and-half

generation method is used [55]. This method generates equal numbers of solutions

with depths ramping from 2 up to a user-specified maximum initial depth, in this case

17. Half of the individuals are created using the full method, and half using the grow

method. The full method ensures that all terminals occur at the maximum depth

of the tree (ie: all nodes at less than the maximum depth are functions), and the

grow method allows functions or terminals at any point in the tree. The algorithm is

described in more detail in Chapter 4.

5.5.3 The Fitness Measures

For the fitness measures, we use the splitting criteria of the decision tree classifiers

used in the experiments. The splitting criteria are the IG, the GI and the Chi2 test.

We also evolve features which have better IG + GI combination.

Since we only deal with numerical attributes, we use Quinlan’s method for split-

ting the values of the test attribute [80]. This method is also used by Breiman [16]

where the aim is to try to find appropriate thresholds against which to compare the

values of the test attribute. Assuming the number of values of a given test attribute

is m, the values of this attribute are first sorted in ascending order, {v1, v2, ..., vm}.
A threshold value lying between vi and vi+1, calculated as vi+vi+1

2
, has the same effect

of dividing the data set into cases with values lying in {v1, v2, ..., vi} and those with

values lying in {vi+1, vi+2, ..., vm}. Therefore, we can examine m − 1 possible splits

on the test attribute. This method is used for splitting the constructed attribute for

all fitness measures in our experiments.

Chapter 5: Experimental Setup 73

The following Subsections show the fitness measures used in our experiments. For

a deeper description on the decision trees that incorporate these measures as their

splitting criteria, the reader can revisit Chapter 3.

5.5.3.1 Information Gain (IG)

The first set of experiments use IG, used in C4.5 and C5, as the fitness function of the

GP system. Given a set S of cases with c classes, Entropy(S) measures the average

information needed to identify the class of a case in S

Entropy(S) = −
c∑

j=1

pj × log2 pj,

where pj is the proportion of cases in S belonging to class j.

EntropyA(S) measures the average information needed to identify the class of a

case in S when S is partitioned using attribute A

EntropyA(S) =
n∑

i=1

|Si|
|S| × Entropy(Si)

where n is the number of partitions caused by attribute A, and Si is the subset of

cases in S belonging to partition i.

The expected reduction in entropy caused by partitioning the examples in accor-

dance with attribute A is

IG(A) = Entropy(S)− EntropyA(S)

By using IG as the fitness function, we aim at evolving an attribute, EA, which

maximises the expected reduction in entropy, caused by using this attribute to parti-

tion the cases, i.e. minimising EntropyEA(S), and hence, maximising IG(EA). Thus

fitness(EA) = EntropyEA(S)

Chapter 5: Experimental Setup 74

5.5.3.2 The Gini Index (GI)

The GI, used in CART, is the second fitness measure used in the experiments. The

GI is referred to as an impurity measure [16]. A set of examples is said to be pure if

all its records belong to one class. GI prefers splits that put the largest class in one

pure node. For example, given a data set S with c classes, then the GI is defined by

Gini(S) = 1−
c∑

i=1

p2
i

where pi is the relative frequency of class i in S.

If a test attribute A splits S into two subsets S1 and S2 with sizes N1 and N2

respectively, then

GiniA(S) =
N1

N
×Gini(S1) +

N2

N
×Gini(S2),

where N is the number of samples in the node.

The attribute that provides the highest GiniA(S) implies the least interesting in-

formation, whereas the attribute that gives the smallest GiniA(S) implies the most

interesting information and is therefore chosen to split the node. When all records

belong to one class, then GiniA(S) = 0. On the other hand, when records are equally

distributed among all classes, then GiniA(S) = 0.5 (for a two class problem), and

this number increases closer to 1 as the number of classes increase.

By using GI as the fitness function, we aim at evolving an attribute EA which

minimises the GI.

fitness(EA) = GiniEA(S)

Chapter 5: Experimental Setup 75

5.5.3.3 Information gain + Gini Index (IG+GI)

The fitness measure used in the third set of experiments is the sum of the IG and GI.

The concept behind using this measure is to construct new attributes with combined

enhancement of IG and GI. Given a set S, when constructing a new attribute (EA),

the aim is to minimise both the GI, giniEA(S), and the entropy of EA, EntropyEA(S).

Thus

fitness(EA) = EntropyEA(S) + GiniEA(S) + (|EntropyEA(S)−GiniEA(S)| × 0.5)

We use |EntropyEA(S)−GiniEA(S)| × 0.5 to prevent any biases towards any of the

measures. In other words, we penalise attributes that have a bigger gap between

the two measures. If the fitness of an evolved attribute EA is just EntropyEA(S) +

GiniEA(S), then we could have a fit attribute with much better IG than GI, or vice

versa.

The above formula has some deficiencies as the range of EntropyEA(S) is [0,1],

whereas the range of GiniEA(S) varies, depending on the number of classes in the

data. Nevertheless, the constructed features using this fitness function provided pre-

dictive power comparable to other approaches, see Chapter 6.

To overcome the difference in range between the possible values of the Entropy

and the Gini, the fitness can be measured as

fitness(EA) = EntropyEA(S) + Norm(GiniEA(S)) +

(|EntropyEA(S)−Norm(GiniEA(S))| × 0.5)

Chapter 5: Experimental Setup 76

where

Norm(GiniEA(S)) =
GiniEA(S)

Max((GiniEA(S))

The normalised GI, Norm(GiniEA(S)), ensures that the value of the Gini is in

the range [0,1], which is the same range of the Entropy. This is done by dividing

GiniEA(S) by the maximum (worst) GI, Max(GiniEA(S)), which occurs when all

cases in a single node are equally distributed among all classes.

5.5.3.4 The Chi2 Test

The fourth fitness measure used is the Chi2 test, used in CHAID. When calculating

the Chi2 test, we use a contingency table which cross-tabulates the test attribute

against the class attribute. If the continency table consists of x rows and y columns,

where oij is the observed frequency of the ith row in the jth column, and eij is the

expected frequency of the ith row in the jth column, such that

eij =
RowTotal × ColumnTotal

GrandTotal
,

then the Chi2 test is

Chi2 =
x∑

j=1

y∑
i=1

oij − eij

eij

.

If Chi2 > Chi2α with v = (x − 1)(y − 1) degrees of freedom, then we reject the null

hypothesis that the variables are independent at the α = 0.05 level of significance.

This test forms the basis of CHAID’s method of grouping categories and branching

on predictors. Thus when using the Chi2 test as the fitness function, the aim is to

maximise the Chi2 of the evolved attribute.

fitness(EA) = Chi2(EA)

Chapter 5: Experimental Setup 77

5.6 Experimental Methodology

The main aim of this work is to improve decision tree classification and to ascertain

if classification using a decision tree is biased in any way by the inclusion of a con-

structed attribute which has been evolved by a GP whose fitness function is based on

the splitting criteria of the decision tree. For the fitness function of the GP therefore,

we use one of four measures, namely GI (the basis of the splitting criterion used in

C5) and GI (the splitting criterion used in CART), IG+GI and Chi2 (the splitting

criterion used in CHAID).

The attribute construction stage is a pre-processing stage prior to the classification

stage, see Figure 10. For the classification, we use four algorithms as in [72, 73, 71]:

1. C5, a descendant of C4.5, a decision tree algorithm whose splitting criterion is

based on Information Gain Ratio, see [80];

2. CART, a decision tree algorithm whose splitting criterion is based on the Gini

Index; see [16];

3. CHAID, a decision tree algorithm whose splitting criterion is based on achieving

a threshold level of significance in a Chi2 test, see [51].

4. MLP ANN. an ANN algorithm in which hidden layers use inner products to

combine values coming from preceding layers [11].

For each data set we use 10-fold CV to compute the error rate. Thus the data set

is firstly partitioned into 10 subsets. For each trial, 9 of the 10 subsets are used as

the training set whilst the remaining set is used as the test set.

Chapter 5: Experimental Setup 78

For each data set and for each 10-fold trial, the methodology is as follows:

Original Apply each classification algorithm to the training set (original attributes

only) and evaluate resulting models on the test set.

Aug-IG Evolve a single, new attribute from the training set using GP with IG as the

fitness function; apply each classification algorithm on the augmented training

set (original attribute set plus IG-evolved attribute). Evaluate resulting model

on the test set.

Aug-GI Evolve a single, new attribute from the training set using GP with GI as the

fitness function; apply each classification algorithm on the augmented training

set (original attribute set plus GI-evolved attribute). Evaluate resulting model

on the test set.

Aug-IG+GI Evolve a single, new attribute from the training set using GP with

IG plus GI as the fitness function; apply each classification algorithm on the

augmented training set (original attribute set plus IG+GI-evolved attribute).

Evaluate resulting model on the test set.

Aug-Chi2 Evolve a single, new attribute from the training set using GP with Chi2 as

the fitness function; apply each classification algorithm on the augmented train-

ing set (original attribute set plus Chi2-evolved attribute). Evaluate resulting

model on the test set.

For both the classification using original attributes and those using the augmented

sets, we determine the average error rate over the 10 trials for each algorithm and

for each data set. These are referred to respectively as Original, Aug-IG, Aug-GI,

Aug-IG+GI and Aug-Chi2 in the results tables in Chapter 6.

Chapter 5: Experimental Setup 79

GP

Original Attributes

Original Attributes

Data
 Decision Tree

Classifier

Model

New

Attribute

Figure 10: Attribute construction using GP.

The attribute construction is a pre-processing technique. Thus, in the current

work, for each data set, the GP was run 40 times (10 folds × 4 fitness measures),

making the total number of GP runs equal to 200 (5 data sets × 40). 50 classification

models were created for each data set using each classifier (10 trials × (4 augmented

+ 1 original)), making the total number of models for the 4 classifiers on the 5 data

sets equal to 1000 (5 sets × 4 classifiers × 50 models). Note also that, for each trial,

a different attribute may be evolved by the GP, even when the same fitness function

is used.

The GP running time was varied, and was dependent on the size of the data rather

than the fitness measure. Hence, Table 4 shows the average time for a single GP run

on each trial in (hh:mm:ss) format. The standard deviations show that running time

of the GP was consistent on all ten-fold trials.

Table 4: Average time for a single GP run.
Data set Average Time
Abalone 25 : 26 : 42 ± 0.11
Balance 00 : 31 : 24 ± 0.00
Bupa 00 : 34 : 41 ± 0.00
Waveform 45 : 38 : 26 ± 0.03
Wine 00 : 46 : 58 ± 0.00

Chapter 5: Experimental Setup 80

5.7 The Evolved Attribute

In this Section we outline the properties and nature of the evolved features. The

fitness of the evolved features is a significant factor for the goodness of these features.

However, if the GP evolves very complex features, then the understandability of the

feature and hence the classification model becomes harder. The GP always evolves

“fitter” features than the primitive ones, and this fitness ranges from marginal to

significant improvement. Similarly, the complexity of the evolved features (features

and operators) can be as simple as 3 or as complex as 39 (the maximum limit on

feature complexity), depending on the dimensionality of the feature space (the num-

ber of original attributes). The evolved features are symbolic expressions, similar to

those used in LISP [55]. Table 5 shows some examples of the features evolved using

IG as the fitness measure. Figures 11 to 15 show the parse tree representation of the

features listed in Table 5.

Table 5: Symbolic expressions of some of the features evolved using IG.
Data Set Symbolic Expression of the Evolved Feature Complexity
Abalone (- (- (- f6 (* (* f1 (* f8 (/ f5 (/ f3 f5)))) (/ (+ f7 f2)

(/ (+ (/ f1 f8) f8) f5)))) f4) (+ f7 f8))
29

Balance-
Scale

(/ (* f3 f4) (* f1 f2)) 7

Bupa-Liver
Disorder

(/ (/ (- f2 (/ f2 f3)) (+ f5 (/ ((+ f2 f6) f3))) (/ f4 f3)) 17

Waveform (- (* f6 f8) (- (+ (* (- f15 f5) f10) (+ (* (- f7 (- (- f7
1) 1)) (+ (+ f13 f14) f12)) (+ (+ f11 f12) (- f16 (+ f7
(* f6 f7)))))) f7))

37

Wine (* f7 (/ f11 f10)) 5

In Tables 6 to 10, we show the fitness of the evolved attributes listed in Table 5.

In each Table, and for each splitting measure, the attributes are listed in descending

Chapter 5: Experimental Setup 81

or ascending order according to the values of the splitting measure, i.e. fitness. That

is, the fitter attributes appear in the higher of the table.

Figure 11: Parse tree of the evolved attribute using IG for the Abalone data set.

Table 6: Fitness of the evolved attributes in the Abalone data set.
IG GI Chi2

EA 0.415 EA 0.858 f8 2183.755
f8 0.362 f8 0.862 f3 2123.587
f4 0.328 f7 0.865 f2 2108.73
f7 0.324 f4 0.865 f5 2072.338
f5 0.324 f3 0.866 f7 2071.770
f3 0.323 f5 0.866 f6 2038.116
f2 0.314 f2 0.867 EA 1874.1821
f6 0.276 f6 0.870 f4 1837.006
f1 0.226 f1 0.873 f1 1152.333

Chapter 5: Experimental Setup 82

/

*

f3
 f4

*

f2
f1

Figure 12: Parse tree of the evolved attribute using IG for the Balance-scale data set.

Table 7: Fitness of the evolved attributes in the Balance-scale data set.
IG GI Chi2

EA 0.999 EA 0.133 EA 563.0
f4 0.108 f4 0.502 f4 81.545
f1 0.108 f1 0.503 f1 80.944
f2 0.107 f2 0.503 f2 80.407
f3 0.099 f3 0.508 f3 74.804

Chapter 5: Experimental Setup 83

/

f2

/

-

/

f2
 f3

+

f5
 /

f3
+

f6
f2

/

f3
f4

Figure 13: Parse tree of the evolved attribute using IG for the Bupa data set.

Table 8: Fitness of the evolved attributes in the Bupa data set.
IG GI Chi2

EA 0.198 EA 0.358 EA 82.084
f5 0.048 f5 0.454 f5 20.494
f3 0.027 f3 0.469 f3 11.404
f2 0.027 f2 0.469 f2 11.301
f4 0.021 f4 0.475 f4 7.238
f1 0.015 f1 0.477 f1 6.349
f6 0.011 f6 0.479 f6 4.605

Chapter 5: Experimental Setup 84

-

f6

*

+

*

f10

+

*

-

f7

-

f7
f8

-

f15
 f5

-

1
-

f7
 1

+

f12
+

f13
 f14

+

+

f11
 f12

-

f16
 +

f7
 *

f6
 f7

Figure 14: Parse tree of the evolved attribute using IG for the Wave data set.

Chapter 5: Experimental Setup 85

Table 9: Fitness of the evolved attributes in the Wave data set.
IG GI Chi2

EA 0.525 EA 0.456 EA 2814.706
f7 0.296 f7 0.545 f7 1638.569
f15 0.287 f6 0.549 f15 1596.973
f6 0.2794 f15 0.549 f6 1575.146
f16 0.249 f5 0.562 f16 1405.492
f13 0.249 f13 0.563 f8 1403.545
f14 0.248 f8 0.563 f5 1390.479
f8 0.246 f16 0.564 f14 1388.7810
f5 0.245 f14 0.564 f13 1382.107
f9 0.234 f11 0.569 f11 1312.686
f11 0.232 f17 0.572 f17 1289.709
f17 0.224 f9 0.572 f9 1289.332
f12 0.206 f12 0.577 f12 1190.101
f10 0.198 f10 0.584 f10 1129.214
f18 0.176 f18 0.593 f18 1002.213
f4 0.157 f4 0.599 f4 905.849
f19 0.089 f3 0.628 f19 517.962
f3 0.082 f19 0.629 f3 511.170
f20 0.027 f20 0.654 f20 173.996
f2 0.025 f2 0.655 f2 152.488
f1 0.002 f1 0.666 f1 10.292
f21 0.001 f21 0.666 f21 8.798

Chapter 5: Experimental Setup 86

*

f7
 /

f10
f11

Figure 15: Parse tree of the evolved attribute using IG for the Wine data set.

Table 10: Fitness of the evolved attributes in the Wine data set.
IG GI Chi2

EA 0.879 EA 0.350 EA 161.0
f7 0.710 f7 0.414 f7 128.868
f12 0.669 f12 0.423 f12 124.319
f13 0.587 f13 0.425 f13 114.649
f10 0.571 f10 0.428 f11 108.634
f1 0.530 f1 0.448 f10 108.407
f11 0.521 f11 0.453 f1 98.288
f6 0.511 f6 0.488 f6 90.006
f9 0.294 f4 0.545 f2 60.535
f4 0.293 f2 0.546 f9 60.254
f2 0.289 f9 0.548 f4 59.124
f8 0.239 f5 0.569 f8 48.534
f5 0.233 f8 0.570 f5 43.053
f3 0.166 f3 0.594 f3 31.995

For some of the data sets, namely the Balance and the Wine, the evolved features

do not only provide more predictive power, they also reveal physical properties about

the data. They show important relationships between the predicting attributes and

the class attribute. These properties and relationships are believed to reveal physical

characteristics about the data. This is discussed further in Chapter 7.

Chapter 5: Experimental Setup 87

5.8 Summary

In this chapter, we presented the experimental methodology for the experiments in

this thesis. The data sets and GP system used are outlined. In Chapter 6 we show the

error rates of classification and investigate any bias in the results. We also compare

the results with those of other approaches. Chapter 7 presents further analysis of

the resultant trees of the classification tree models and the evolved attributes. A

comparison study on the use of GP for classification to its use for feature construction

is also presented in Chapter 7. We extend the experimental work by applying GP for

feature construction on a real–world commercial data.

Chapter 6

Comparing Error Rates

6.1 Introduction

In Chapter 5, we presented the experimental methodology and the GP setup used to

construct features on a number of domains. In this chapter, we present the results

of classification using four inductive algorithms, namely, C5, CHAID, CART and an

MLP ANN, on the five data sets presented in previous chapter. The aim of this work

is determine whether the performance of the inductive classifiers improve when a

constructed attribute is included in the attribute set. We also check for any biases in

the performance of decision tree classifiers towards the attribute sets which include a

constructed attribute evolved using a GP system whose fitness function incorporates

the same fundamental learning mechanism as the splitting criteria of the associated

decision tree.

The performance of a decision tree classification model built using a training set

can be measured by a number of methods, one of which is the model’s prediction

accuracy when applied to a testing set, known as the error rate. The error rate is the

proportion of all the misclassifications made over the whole set of samples.

88

Chapter 6: Comparing Error Rates 89

In Sections 6.2 to 6.5 we present the error rates for each classifier on all data sets,

using original and augmented attribute sets. In Tables 11 to 30, we show and compare

the performance of three decision tree classifiers and an MLP ANN classifier on each

data sets, all outlined in Chapter 5. The experiments are performed using the original

attribute set and the augmented attribute set (the original attributes plus the single

evolved attribute)1. We present the error rates (for the testing sets) averaged over

the 10xCV trials. The meanings of the columns and the rows in the Tables are:

The first column lists the classifiers used in the experiments. The remaining columns

are explained as follows:

Original : shows the error rate achieved by the induction technique using the original

attribute set. The figure after the ± is the standard deviation of the accuracies

over the 10 trials.

Aug-* : the average error rates achieved by the induction technique on the aug-

mented attribute set over the ten fold trials. The figure after the ± is the

standard deviation of the error rates over the 10 trials. The * is one of (IG, GI,

IG+GI, Chi2)

Imp : shows the absolute improvement in error rate by the induction technique on

the augmented attribute set.

R-Imp : shows the % relative improvement achieved by the induction technique

on the augmented attribute set with regard to the error rate on the original

attribute set.

1Note that, in each of the 10 runs necessary for 10xCV, a new attribute was evolved from scratch.

Chapter 6: Comparing Error Rates 90

T-Test : is a statistical measure used to assess whether the means of two groups are

statistically different from each other. The t-value will be positive if the first

mean is larger than the second and negative if it is smaller. Once we compute

the t-value we have to look it up in a table of significance to test whether the

ratio is large enough to say that the difference between the groups is not likely

to have been a chance finding. To test the significance, we need to set a risk

level (called the alpha level). In most research, the “rule of thumb” is to set the

alpha level at 0.05. This means that five times out of a hundred we would find

a statistically significant difference between the means even if there was none

(i.e., by “chance”). In our experiments, we use the T-Test with the assumption

that we have a hypothesis that the original testing error rates are bigger than

the augmented testing sets error rates. We compare the testing error rates of

the ten folds of the original attribute sets with the testing error rates of the ten

folds of the augmented attribute set. If the value of the T-Test is less than or

equal to 0.05 then the difference of the two groups is significant (shown in bold

font).

In Section 6.6, we investigate the performance of the all classifiers to check for

any biases, particularly the performance of decision tree models towards attribute

sets which include an additional attribute constructed using a GP whose fitness func-

tion incorporates the same splitting mechanism of the associated tree. In Section 6.7,

compare the results with theresults of other approaches to feature construction. Sec-

tion 6.8, summarises this chapter.

Chapter 6: Comparing Error Rates 91

6.2 Information Gain (IG)

In this Section, we present the results using IG as the fitness measure of the GP. For

the Abalone data set, Table 11 shows that, although all decision tree techniques show

an improvement using the augmented attribute set, Aug-IG, the results are barely

significant. In fact, it has to be said that all classification algorithms perform rather

badly with this data set, even with the evolved attribute. Although the performance

of the ANN is slightly better than the other inductive techniques using the original

attribute set, its performance deteriorates slightly using Aug-IG.

Table 11: Error rates for the Abalone data set (Fitness: IG).
Abalone Original Aug-IG Imp R-Imp T-Test
C5 79.26± 1.21 79.09± 2.06 0.17 0.21 0.42
CHAID 76.45± 1.61 74.77± 2.62 1.68 2.2 0.025
CART 74.69± 1.76 73.02± 2.55 1.67 2.24 0.032
ANN 72.45± 1.93 72.49± 2.74 -0.04 -0.06 0.468

On the other hand, when we look at the results for the Balance data set, in Ta-

ble 12, we see a significant improvement in accuracy when we include the evolved

attribute, particularly for C5 and CART, in which the error rate for the test set, as

well as the training set, was 0 in all 10 trials. CHAID also achieves an 80.1% relative

improvement. Indeed, the absolute accuracies of all the decision tree techniques are

improved by almost 23%. The ANN, although having a better performance than the

other classifiers with the original attributes, also improves performance with the aug-

mented attribute set, but not so dramatically, and indeed less significantly if we take

the standard deviations into account. It is also worth pointing out that, for this data

set, not only are the error rates reduced significantly, but the standard deviations are

Chapter 6: Comparing Error Rates 92

also reduced showing a more consistent performance, only for the decision tree models.

Table 12: Error rates for the Balance-scale data set (Fitness: IG).
Balance-scale Original Aug-IG Imp R-Imp T-Test
C5 22.42± 6.20 0.00± 0.00 22.42 100 0.00
CHAID 28.39± 5.17 5.65± 2.55 22.74 80.1 0.00
CART 22.74± 5.01 0.00± 0.00 22.74 100 0.00
ANN 10.00± 3.79 9.36± 4.01 0.64 6.4 0.212

Table 13 shows the average error rates for the BUPA data set. Once again, all clas-

sifiers have improved their performance with the augmented set. Although it shows

worse error rates than all other classifiers on the original attribute set, CHAID man-

ages to achieve the best error reduction with the augmented attributes. Nevertheless,

the relatively large standard deviations represent a more inconsistent performance all

round, even with the augmented attribute set. The story is much the same with the

Waveform data set, see Table 14, with all classifiers showing an improvement with

the inclusion of an evolved attribute, although only barely significantly.

Table 13: Error rates for the BUPA data set (Fitness : IG).
BUPA Original Aug-IG Imp R-Imp T-Test
C5 36.47± 7.99 32.35± 6.50 4.12 11.3 0.141
CHAID 40.00± 9.73 30.00± 6.17 10 25 0.004
CART 32.35± 7.21 30.29± 8.77 2.06 6.37 0.283
ANN 37.65± 7.18 35.29± 10.47 2.36 6.27 0.262

Finally, turning attention to the Wine data set, although not statistically signif-

icant, bearing in mind the standard deviations, the results in Table 15 show that,

Chapter 6: Comparing Error Rates 93

Table 14: Error rates for the Waveform data set (Fitness : IG).
Waveform Original Aug-IG Imp R-Imp T-Test
C5 22.94± 2.23 19.54± 1.64 3.4 14.82 0.002
CHAID 28.36± 1.81 24.92± 2.30 3.44 12.13 0.00
CART 24.58± 2.61 20.02± 1.71 4.56 18.55 0.00
ANN 17.15± 7.41 15.20± 2.29 1.95 11.37 0.189

while the performance of C5, CART and ANN has marginally improved with the

augmented attribute, the performance of CHAID has deteriorated slightly.

Table 15: Error rates for the Wine data set (Fitness : IG).
Wine Original Aug-IG Imp R-Imp T-Test
C5 6.47± 7.04 5.29± 7.04 1.18 18.24 0.222
CHAID 17.06± 8.06 17.65± 8.77 -0.59 -3.46 0.363
CART 10.59± 9.92 5.88± 8.32 4.71 44.48 0.026
ANN 3.53± 7.44 2.94± 5.72 0.59 16.71 0.295

The results shown in Tables 11 to 15 generally prove that attribute construction

using GP can generate improvements in the performance of a classifier, sometimes

significantly so, as in the case of the Balance-scale data set.

If we measure the absolute improvement in performance for each classifier, av-

eraged out over all the data sets, see Figure 16, then, using the attributes evolved

using IG, C5 manages an overall 6.26% improvement in accuracy, CHAID achieves

a 7.45% improvement, CART 7.15% and ANN 1.10%. It cannot be concluded from

these results, therefore, that C5 has any advantage over the other classifiers with the

inclusion of a feature evolved using a GP with information gain as a fitness measure.

However, it is obvious that decision tree classifiers benefit more from the inclusion of

Chapter 6: Comparing Error Rates 94

a new attribute that has been evolved using a GP with information gain as a fitness

function.

0

1

2

3

4

5

6

7

8

C5
 CHAID
 CART
 ANN

A
b

so
lu

te
 Im

p
ro

ve
m

en
t

%

Figure 16: Absolute improvement in performance of each classifier averaged out over
all data sets using Aug-IG.

6.3 Gini Index (GI)

In this Section, the GI is used as the fitness measure in the GP. It is clear from

Table 16 that the Abalone data set continues to prove difficult. For all classification

algorithms, the error rates in the test sets are significant, even with the evolved at-

tribute. Arguably, the Aug-IG errors, see Table 11, are marginally better than the

Aug-GI, but the standard deviations make this inconclusive.

The results for the Balance data set, in Table 17, are consistent with those shown

in Tables 12 with C5 and CART, achieving 0% error (on all training and test sets)

with the inclusion of the evolved attribute. The ANN, although having a better

Chapter 6: Comparing Error Rates 95

Table 16: Error rates for the Abalone data set (Fitness : GI).
Abalone Original Aug-GI Imp R-Imp T-Test
C5 79.26± 1.21 80.07± 2.40 -0.81 -1.02 0.182
CHAID 76.45± 1.61 75.40± 2.34 1.05 1.37 0.042
CART 74.69± 1.76 73.86± 2.43 0.83 1.11 0.17
ANN 72.45± 1.93 73.14± 2.79 -0.69 -0.95 0.166

performance than the other classifiers with the original attributes, also improves per-

formance with the augmented attribute set, but not so dramatically, and indeed less

significantly if we take the standard deviations into account.

Table 17: Error rates for the Balance-scale data set (Fitness : GI).
Balance-scale Original Aug-GI Imp R-Imp T-Test
C5 22.42± 6.20 0.00± 0.00 22.42 100 0.00
CHAID 28.39± 5.17 5.49± 2.30 22.9 80.66 0.00
CART 22.74± 5.01 0.00± 0.00 22.74 100 0.00
ANN 10.00± 3.79 9.19± 3.65 0.81 8.1 0.149

Table 18 shows the average error rates for the BUPA data set. Once again, all clas-

sifiers have improved their performance with the addition of the evolved attributes.

However, it is notable that CART does not appear to be benefiting more from the

addition of the attributes evolved using GI. The story is much the same with the

Waveform data set, see Table 19, with all classifiers showing an improvement with

the inclusion of an evolved attribute, however, CART achieves a slightly better im-

provement.

Finally, turning attention to the Wine data set, the results in Table 20 once again

indicate the potential for any classification algorithm to benefit from the inclusion

Chapter 6: Comparing Error Rates 96

Table 18: Error rates for the BUPA data set (Fitness : GI).
BUPA Original Aug-GI Imp R-Imp T-Test
C5 36.47± 7.99 32.94± 8.75 3.53 9.68 0.122
CHAID 40.00± 9.73 32.06± 8.14 7.94 19.85 0.01
CART 32.35± 7.21 31.18± 7.87 1.17 3.62 0.303
ANN 37.65± 7.18 31.47± 8.66 6.18 16.41 0.034

Table 19: Error rates for the Waveform data set (Fitness : GI).
Waveform Original Aug-GI Imp R-Imp T-Test
C5 22.94± 2.23 19.64± 2.37 3.3 14.39 0.003
CHAID 28.36± 1.81 24.64± 2.12 3.72 13.12 0.001
CART 24.58± 2.61 19.54± 1.76 5.04 20.5 0.00
ANN 17.15± 7.41 15.77± 2.28 1.38 8.05 0.274

of evolved, highly predictive variables. The ANN, despite achieving around 96.5%

accuracy with the original attribute vector, still manages to improve its performance

using the augmented attribute set, attaining 100% accuracy over a number of the 10-

fold test sets. However, the Aug-GI set, in Table 20, appears to be giving marginally

better results than the Aug-IG set (Table 15), but the standard deviations are too

large to make this significant.

Table 20: Error rates for the Wine data set (Fitness: GI).
Wine Original Aug-GI Imp R-Imp T-Test
C5 6.47± 7.04 4.12± 4.84 2.35 36.32 0.155
CHAID 17.06± 8.06 15.29± 7.94 1.77 10.38 0.139
CART 10.59± 9.92 3.53± 3.04 7.06 66.67 0.026
ANN 3.53± 7.44 1.76± 2.84 1.77 50.14 0.197

Chapter 6: Comparing Error Rates 97

The results shown in Tables 16 to 20 generally prove, again, that attribute con-

struction using GP can generate improvements in the performance of a classifier,

sometimes significantly so, as in the case of the Balance-scale data set.

However, we can claim here that the improvement in performance, if any, of the

classifiers is not significantly dependent on which measure is used in the GP to evolve

the attributes. If we measure the absolute improvement in performance for each clas-

sifier, averaged out over all the data sets, see Figure 17, then, using the attributes

evolved using the GI, C5 achieves a 6.16% improvement, CHAID achieves a 7.48%

improvement, CART 7.37% and ANN 1.89%. It cannot be concluded from these

results, therefore, that C5 (resp. CART) has an advantage over the other classifiers

with the inclusion of a feature evolved using a GP with IG (resp. GI) as a fitness

measure. Nevertheless, it is still obvious that decision tree classifiers benefit more

from the inclusion of a new attribute that has been evolved using a GP with infor-

mation gain or gini index as fitness functions.

0

1

2

3

4

5

6

7

8

C5
 CHAID
 CART
 ANN

A
b

so
lu

te
 Im

p
ro

ve
m

en
t

%

Figure 17: Absolute improvement in performance of each classifier averaged out over
all data sets using Aug-GI.

Chapter 6: Comparing Error Rates 98

6.4 IG + GI

In this Section, the sum of IG and GI is used as the fitness measure in the GP. Once

again, the results shown in Table 21, for the Abalone data set, are consistent with

those in Tables 11 and 16. It shows the highest deterioration, so far, of the ANN’s

performance using the augmented attribute set, Aug-IG+GI.

Table 21: Error rates for the Abalone data set (Fitness : IG+GI).
Abalone Original Aug-IG+GI Imp R-Imp T-Test
C5 79.26± 1.21 79.28± 2.4 -0.02 -0.06 0.485
CHAID 76.45± 1.61 74.61± 1.88 1.84 2.41 0.005
CART 74.69± 1.76 73.76± 1.85 0.93 1.26 0.05
ANN 72.45± 1.93 73.64± 1.99 -1.19 -1.64 0.03

The results for the Balance data set, in Table 22, are consistent with those shown

in Tables 12 and 17 for C5 and CART, achieving 0% error (on all training and test

sets) with the inclusion of the evolved attribute. Furthermore, the results of CHAID

and ANN show smaller error rates than those in Tables 12 and 17.

Table 22: Error rates for the Balance-scale data set (Fitness : IG+GI).
Balance-scale Original Aug-IG+GI Imp R-Imp T-Test
C5 22.42± 6.20 0.00± 0.00 22.42 100 0.00
CHAID 28.39± 5.17 5.16± 2.92 23.23 81.82 0.00
CART 22.74± 5.01 0.00± 0.00 22.74 100 0.00
ANN 10.00± 3.79 7.42± 4.57 2.58 25.8 0.06

Table 23 shows the average error rates for the BUPA data set. Although all clas-

sifiers have improved their performance with the addition of the evolved attributes,

Chapter 6: Comparing Error Rates 99

decision tree classifiers appear to benefit the most, particularly CHAID. It is therefore

clear that Aug-IG+GI is superior to Aug-IG and Aug-GI on this data set. However,

these results are not statistically significant if standard deviations are taken into ac-

count.

Table 23: Error rates for the BUPA data set (Fitness : IG+GI).
BUPA Original Aug-IG+GI Imp R-Imp T-Test
C5 36.47± 7.99 26.47± 10.65 10 27.42 0.022
CHAID 40.00± 9.73 27.94± 6.83 12.06 30.15 0.006
CART 32.35± 7.21 27.65± 8.34 4.7 14.53 0.084
ANN 37.65± 7.18 31.18± 8.46 6.47 17.18 0.025

The situation is different with the Waveform data set, see Table 24, with all clas-

sifiers showing an improvement with the inclusion of an evolved attribute. Decision

tree error rates do not improve as much as those in Tables 14 and 19, however,

although the ANN achieves a better error rate.

Table 24: Error rates for the Waveform data set (Fitness : IG+GI).
Waveform Original Aug-IG+GI Imp R-Imp T-Test
C5 22.94± 2.23 20.22± 1.77 2.72 11.86 0.00
CHAID 28.36± 1.81 25.3± 1.92 3.06 10.79 0.00
CART 24.58± 2.61 20.04± 1.41 4.54 18.47 0.00
ANN 17.15± 7.41 14.4± 1.53 2.75 16.03 0.126

With the Wine data set, see Table 25, while other classification algorithms indi-

cate potential improvement in their performance, C5 deteriorates with the inclusion

of an evolved attribute. On the other hand, CHAID achieves additional enhancement.

Chapter 6: Comparing Error Rates 100

Table 25: Error rates for the Wine data set (Fitness : IG+GI).
Wine Original Aug-IG+GI Imp R-Imp T-Test
C5 6.47± 7.04 7.06± 7.75 -0.59 -9.12 0.411
CHAID 17.06± 8.06 14.12± 7.44 2.94 17.23 0.069
CART 10.59± 9.92 7.77± 9.92 2.82 26.63 0.170
ANN 3.53± 7.44 2.35± 5.68 1.18 33.43 0.084

The results shown in Tables 21 to 25 generally prove, again, that attribute con-

struction using GP can generate improvements in the performance of a classifier,

sometimes significantly so, as in the case of the Balance-scale data set.

However, we can claim here that the improvement in performance, if any, of the

classifiers is not significantly dependent on which measure is used in the GP to evolve

the attributes. If we measure the absolute improvement in performance for each

classifier, averaged out over all the data sets, see Figure 18, then, using the attributes

evolved using the IG and GI, C5 achieves a 6.91% improvement, CHAID achieves

a 8.63% improvement, CART 7.15% and ANN 2.36%. It can be concluded from

these results, therefore, that decision tree classifiers have an advantage over the other

classifiers with the inclusion of a feature evolved using a GP with IG + GI as a fitness

measure.

Chapter 6: Comparing Error Rates 101

0

2

4

6

8

10

C5
 CHAID
 CART
 ANN

A
b

so
lu

te
 Im

p
ro

ve
m

en
t

%

Figure 18: Absolute improvement in performance of each classifier averaged out over
all data sets using Aug-IG+GI.

6.5 Chi2

In this Section, the Chi2 test is used as the fitness measure in the GP. The results

in Table 26 confirm that the ANN does not gain any improvement on the Abalone

data set, using Aug-Chi2. Indeed this result is in keeping with those of Tables 11, 16

and 21, as they all show deterioration in the ANN’s performance on the augmented

Abalone data set.

Table 26: Error rates for the Abalone data set (Fitness : chi2).
Abalone Original Aug-Chi2 Imp R-Imp T-Test
C5 79.26± 1.21 79.26± 1.16 0 0 0.499
CHAID 76.45± 1.61 75.33± 0.99 1.12 1.47 0.021
CART 74.69± 1.76 74.56± 1.87 0.13 0.17 0.353
ANN 72.45± 1.93 72.88± 3.08 -0.43 -0.59 0.289

The results for the Balance data set, in Table 27, are consistent with those shown

Chapter 6: Comparing Error Rates 102

in Tables 12 and 17 for C5 and CART, achieving 0% error (on all training and test

sets) with the Aug-Chi2. An interesting observation is the result of CHAID, where

it shows the best error rate so far, when compared to those in Tables 12, 17 and 22.

The ANN, on the other hand, shows the least improvement of all results.

Table 27: Error rates for the Balance-scale data set (Fitness : chi2).
Balance-scale Original Aug-Chi2 Imp R-Imp T-Test
C5 22.42± 6.20 0.00± 0.00 22.42 100 0.00
CHAID 28.39± 5.17 4.19± 2.04 24.2 85.24 0.00
CART 22.74± 5.01 0.00± 0.00 22.74 100 0.00
ANN 10.00± 3.79 9.68± 4.93 0.32 3.2 0.352

As for the Bupa data set, see Table 28, all errors rates improve, however, the

results of CHAID, which uses Chi2 as its splitting criterion, show less improvement

compared with the results in Tables 13, 18, and 23.

Table 28: Error rates for the BUPA data set (Fitness : chi2).
BUPA Original Aug-Chi2 Imp R-Imp T-Test
C5 36.47± 7.99 26.77± 7.26 9.7 26.6 0.007
CHAID 40.00± 9.73 33.24± 6.05 6.76 16.9 0.035
CART 32.35± 7.21 29.71± 7.52 2.64 8.16 0.169
ANN 37.65± 7.18 32.06± 7.9 5.59 14.85 0.031

The results for the Waveform data set, see Table 29, show similar improvement

rates on all decision tree classifiers, ranging between 3.72% to 5.1%. The ANN,

however, while it shows better error rates on both the original and the augmented

attribute sets, the rate of improvement is very marginal.

Chapter 6: Comparing Error Rates 103

Table 29: Error rates for the Waveform data set (Fitness : chi2).
Waveform Original Aug-Chi2 Imp R-Imp T-Test
C5 22.94± 2.23 19.22± 2.03 3.72 16.22 0.00
CHAID 28.36± 1.81 24.36± 2.79 4 14.1 0.00
CART 24.58± 2.61 19.48± 2.46 5.1 20.75 0.00
ANN 17.15± 7.41 15.44± 2.03 1.71 9.97 0.256

Finally, if we look at the Wine data set, see Table 30, we notice the results of C5

do not improve at all from the inclusion of evolved attributes. On the other hand,

other classifiers improve but only marginally.

Table 30: Error rates for the Wine data set (Fitness : chi2).
Wine Original Aug-Chi2 Imp R-Imp T-Test
C5 6.47± 7.04 6.47± 8.06 0 0 0.5
CHAID 17.06± 8.06 14.12± 9.28 2.94 17.23 0.122
CART 10.59± 9.92 5.88± 8.32 4.71 44.48 0.035
ANN 3.53± 7.44 2.35± 4.11 1.18 33.43 0.172

The results shown in Tables 26 to 30 generally prove, again, that attribute con-

struction using GP can generate improvements in the performance of a classifier,

sometimes significantly so, as in the case of the Balance-scale data set.

However, we can claim here that the improvement in performance, if any, of the

classifiers is not significantly dependent on which measure is used in the GP to evolve

the attributes. If we measure the absolute improvement in performance for each

classifier, averaged out over all the data sets, see Figure 19 then, using the attributes

evolved using the Chi2, C5 achieves a 7.17% improvement, CHAID achieves a 7.80%

improvement, CART 7.06% and ANN 1.67%. It can be concluded from these results,

Chapter 6: Comparing Error Rates 104

therefore, that neither C5 nor CART nor CHAID have an advantage over the other

classifiers with the inclusion of a feature evolved using a GP with IG, GI or Chi2,

respectively, as a fitness measure. Nevertheless, it is still obvious that decision tree

classifiers benefit more from the inclusion of a new attribute that has been evolved

using a GP with IG, GI or Chi2 as the fitness measure.

0

1

2

3

4

5

6

7

8

9

C5
 CHAID
 CART
 ANN

A
b

so
lu

te
 Im

p
ro

ve
m

en
t

%

Figure 19: Absolute improvement in performance of each classifier averaged out over
all data sets using Aug-Chi2.

The results presented in Sections 6.2 to 6.5 to show that all classifiers in general,

and decision tree classifiers in particular improve the classification accuracy using the

augmented attribute sets. This conclusion is proven to be statistically valid as shown

by the values of the T-Tests.

Chapter 6: Comparing Error Rates 105

6.6 Bias Check

The above Sections presented the error rates of the classification algorithms on five

data sets. We discussed the performance of these classifiers on the original and the

augmented attribute sets. The augmented attribute set contains the original at-

tributes and one feature constructed using GP.

In this Section, we compare the error rates of each classifier using the original

and the augmented attribute sets to examine whether there are biases in perfor-

mance when the augmented attribute set includes an attribute constructed using a

GP whose fitness function incorporates the same fundamental learning mechanism as

the associated decision tree.

Table 31 shows the average error rates of C5 on the five data sets using the original

attribute sets and all other augmented attribute sets. The results show no indication

that C5 benefits more using Aug-IG, except for the Abalone and the Balance data

sets. However, using the Bupa data set, C5 shows the lowest error rate using Aug-

IG+GI. Nevertheless, for each data set, the performance of C5 is very similar on all

augmented attribute sets.

Table 31: Error rates of C5.
C5 Original Aug-IG Aug-GI Aug-IG+GI Aug-Chi2

Abalone 79.26 79.09 80.07 79.28 79.26
Balance 22.42 0.00 0.00 0.00 0.00
Bupa 36.47 32.35 32.94 26.47 26.77
Waveform 22.94 19.54 19.64 20.22 19.22
Wine 6.47 5.29 4.12 7.057 6.471

Chapter 6: Comparing Error Rates 106

Table 32 shows the average error rates of CHAID on the 5 data sets. Although,

once again, the error rates are very similar using the augmented attribute sets, Ta-

ble 32 shows that CHAID performs best using Aug-IG+GI and Aug-Chi2. Therefore,

the results show no clear bias towards Aug-Chi2. Recall that Chi2 is the basis of the

splitting measure for CHAID.

Table 32: Error rates of CHAID.
CHAID Original Aug-IG Aug-GI Aug-IG+GI Aug-Chi2

Abalone 76.45 74.77 75.4 74.61 75.32
Balance 28.39 5.65 5.49 5.16 4.19
Bupa 40 30 32.06 27.94 33.24
Waveform 28.36 24.92 24.64 25.3 24.36
Wine 17.06 17.65 15.29 14.12 14.12

The error rates of CART, shown in Table 33, tell a similar story to that of C5.

The results show no indication that CART benefits more using Aug-GI, except for

the Wine and the Balance data sets. Once again, on the Bupa data set, CART shows

the lowest error rate using Aug-IG+GI. Thus, it can be concluded that the CART

performance was not biased towards Aug-GI.

Table 33: Error rates of CART.
CART Original Aug-IG Aug-GI Aug-IG+GI Aug-Chi2

Abalone 74.69 73.02 73.86 73.76 74.56
Balance 22.257 0.00 0.00 0.00 0.00
Bupa 32.35 30.29 31.18 27.65 29.71
Waveform 24.58 20.02 19.54 20.04 19.48
Wine 10.59 5.88 3.53 7.77 5.88

If we compare the error rates of the ANN, see Table 34, with those in Tables 31

Chapter 6: Comparing Error Rates 107

to 33, we will see that the ANN has the smallest error rate baseline than the other

classifiers using the original attributes, except for the Bupa data set. Although there

is not significant improvement in the error rates using the augmented attribute sets,

the ANN seems to perform best using Aug-IG+GI.

Table 34: Error rates of ANN.
ANN Original Aug-IG Aug-GI Aug-IG+GI Aug-Chi2

Abalone 72.45 72.49 73.14 73.64 72.88
Balance 10.00 9.36 9.19 7.42 9.68
Bupa 37.65 35.29 31.47 31.18 32.06
Waveform 17.15 15.2 15.77 14.4 15.44
Wine 3.53 2.94 1.76 2.35 2.35

By measuring the absolute error rate of each classifier over all data sets, we can

conclude that, while all classifiers benefit from the inclusion of the constructed at-

tribute, none show any clear bias towards any of the augmented attribute sets, see

Table 35. This is also clearly shown in Figure 20.

Table 35: Absolute performance over all data sets.
Original Aug-IG Aug-GI Aug-IG+GI Aug-Chi2

C5 33.51 27.25 27.35 26.61 26.34
CHAID 38.05 30.6 30.58 29.43 30.25
CART 32.99 25.84 25.62 25.84 25.93
ANN 28.16 27.6 26.27 25.8 26.48

Figure 21 shows the absolute improvement in error rates of all classifiers using

the augmented attribute sets. It is clear that all decision tree classifiers show higher

improvement than the ANN. However, we should not forget that, initially, the ANN

Chapter 6: Comparing Error Rates 108

20

25

30

35

40

Original
 IG
 GI
 IG+GI
 Chi2

E

rr
o

r
R

at
es

 %

C5

CHAID

CART

ANN

Figure 20: Absolute error rate of all classifiers over all data sets.

had a better error rate baseline on most data sets, see Figure 20.

0

5

10

15

20

25

IG
 GI
 IG+GI
 Chi2

A
b

so
lu

te
 Im

p
ro

ve
m

en
t

%

C5

CHAID

CART

ANN

Figure 21: Absolute improvement in error rate of all classifiers over all data sets.

6.7 A Comparative Study

In this Section, we compare our results with those of other approaches to feature

construction, namely, PCA (principle components analysis) and other evolutionary

techniques discussed in Chapter 4.

Chapter 6: Comparing Error Rates 109

6.7.1 Principle Components Analysis (PCA)

We perform principle components analysis on the ten-fold trials of each data set. The

principle components are created by linearly combining the original set of attributes

(using SPSS) with the aim of finding a smaller new subset with similar/better pre-

dictive power.

SPSS is used to extract the component scores which are used to calculate the prin-

ciple components. The rotation method used is varimax as it minimises the number

of variables that have high loadings on each component. The number of extracted

components is determined by their eigenvalues. For this comparative study, only com-

ponents with eigenvalues greater than 1 are extracted. Table 36 shows the average

number of components for each data set along with their eigenvalues and percentages

of variance. The number of principle components ranges from a minimum of 1 com-

ponent, for the Abalone, to a maximum of 3 components, for the Wave and Wine,

see Table 36. For each data set, two augmented attribute sets are created for each

trial. In the first attribute set we add the principle components to the original set of

attributes to form aug-PC (feature construction). The second attribute set consists

of the principle components only, PC (feature extraction). The error rates of classi-

fication using the GP augmented attribute sets and PCA augmented attribute sets

(bolded) are shown in Table 37. C5, CART and ANN are used in this comparative

study.

The results in Table 37 show that the error rates of classification using the GP

augmented attribute sets are generally better than those using the PCA augmented

sets, particularly on the Balance, Bupa and Wine data sets. In fact, on the Wine

data set, the performance of classifiers using all PCA augmented sets is even worse

Chapter 6: Comparing Error Rates 110

Table 36: The average number of principle components, their eigenvalues and % of
variance.

Data set Number of components Eigenvalues % of Variance
Abalone 1 6.61 82.57
Balance 2 1.03, 1.01 25.66, 25.18
Bupa 2 2.50, 1.07 41.71, 17.91
Wave 3 7.90, 3.26, 1.02 37.64, 15.53, 4.88
Wine 3 4.71, 2.50, 1.45 36.22, 19.21, 11.16

than using the original attribute sets. The performance using the PC sets is bad all

around, except on the Wave data set. The error rates using the Abalone data set,

once again, do not show much benefit from all augmented attribute sets. Only for

the Waveform data set, do we see better error rates using the two PCA augmented

attribute sets. This could be due to the fact that there is a linear relationship between

the predicting attributes and the class attribute, which is exploited by the principle

components. However, with no size limitation, the GP should be able to find this

linear combination of the original attributes. Furthermore, as the only constant in the

GP terminal set is the number 1, it would require the GP to construct large subtrees

to find the appropriate eigenvalues.

6.7.2 Other Evolutionary Approaches

In Table 37 we also compare error rates of our approach with those using other evo-

lutionary work presented in Chapter 4, particularly with that of Bot [13] (GP-KNN

Classifier), Sherrah et al. [86] (EPrep), and Smith et al. [90, 91] (GAP). Although

the classifiers used in the other approaches are different from the ones used in our

experimental work, it is thought that such a comparison would provide the reader

with a broader idea of existing work on evolutionary feature construction/extraction.

Chapter 6: Comparing Error Rates 111

The results on common data sets (shown in Table 37) are outlined as follows:

• Although the error rates of C5, CHAID, CART and ANN using original at-

tributes were lower than those of the KNN’s [13] on the Bupa, Wave and Wine

data sets, generally, the rate of improvement using the augmented attribute sets

in our approach was not only higher than that of [13], it was more consistent

all around. We can also see that the error rates of the KNN using the Wave

augmented attribute sets of [13] are worse than those of the original’s. Only

the performance of CHAID on the Wine data set was worse than the KNN’s

performance.

• It is not very clear what classifier Eprep [86] used to get the error rates using

the Abalone and the Balance data sets, however, our experiments show better

error rates than those of EPrep’s, particularly on the Balance.

• Compared to decision tree classifiers, GAP [91] showed a slightly better perfor-

mance using all augmented attribute sets on the Wine data set. Nevertheless,

ANN in our approach performed better. As for the Bupa, all classifiers showed

superior performance than that of GAP’s.

Chapter 6: Comparing Error Rates 112

Table 37: Comparison study: error rates (averaged over 10-fold trials) of the GP
augmented attribute sets, the PCA augmented attribute sets, GP-KNN classifier,
EPrep, and GAP.

Classifer Attribute set Abalone Balance Bupa Wave Wine
Original 79.26± 1.21 22.42± 6.20 36.47± 7.99 22.94± 2.23 6.47± 7.04
Aug-IG 79.09± 2.06 0.00± 0.00 32.35± 6.50 19.54± 1.64 5.29± 7.04
Aug-GI 80.07± 2.40 0.00± 0.00 32.94± 8.75 19.64± 2.37 4.12± 4.84

C5 Aug-IG+GI 79.28± 2.40 0.00± 0.00 26.47± 10.65 20.22± 1.77 7.06± 7.75
Aug-Chi2 79.26± 1.16 0.00± 0.00 26.77± 7.26 19.22± 2.03 6.47± 8.06
Aug-PC 79.139± 2.21 15.00± 6.36 35.00± 8.14 14.44± 2.10 8.82± 7.47
PC 79.523± 2.47 26.29± 11.1 41.77± 7.94 13.48± 1.25 21.77± 12.10
Original 76.45± 1.61 28.39± 5.17 40.00± 9.73 28.36± 1.81 17.06± 8.06
Aug-IG 74.77± 2.62 5.65± 2.55 30.00± 6.17 24.92± 2.30 17.65± 8.77

CHAID Aug-GI 75.40± 2.34 5.49± 2.30 32.06± 8.14 24.64± 2.12 15.29± 7.94
Aug-IG+GI 74.61± 1.88 5.16± 2.92 27.94± 6.83 25.30± 1.92 14.12± 7.44
Aug-Chi2 75.32± 1.00 4.19± 2.04 33.24± 6.05 24.36± 2.79 14.12± 9.28
Original 74.69± 1.76 22.26± 4.74 32.35± 7.21 24.58± 2.61 10.59± 9.92
Aug-IG 73.02± 2.55 0.00± 0.00 30.29± 8.77 20.02± 1.71 5.88± 8.32
Aug-GI 73.86± 2.43 0.00± 0.00 31.18± 7.87 19.54± 1.76 3.53± 3.04

CART Aug-IG+GI 73.76± 1.85 0.00± 0.00 27.65± 8.34 20.04± 1.41 7.77± 9.92
Aug-Chi2 74.56± 1.87 0.00± 0.00 29.71± 7.52 19.48± 2.46 5.88± 8.32
Aug-PC 73.16± 2.18 18.23± 5.27 31.18± 6.82 14.00± 1.01 11.18± 8.53
PC 74.84± 1.80 29.68± 10.54 45.59± 11.02 13.56± 1.17 21.76± 10.76
Original 72.45± 1.93 10.00± 3.79 37.65± 7.18 17.15± 7.41 3.53± 7.44
Aug-IG 72.49± 2.74 9.36± 4.01 35.29± 10.47 15.20± 2.29 2.94± 5.72
Aug-GI 73.14± 2.79 9.19± 3.65 31.47± 8.66 15.77± 2.28 1.76± 2.84

ANN Aug-IG+GI 73.64± 1.99 7.42± 4.57 31.18± 8.46 14.40± 1.53 2.35± 5.68
Aug-Chi2 72.88± 3.08 9.68± 4.93 32.06± 7.90 15.44± 2.03 2.35± 4.11
Aug-PC 73.164± 2.18 10.324± 4.18 42.35± 10.85 15.32± 1.60 3.53± 7.44
PC 74.844± 1.80 32.742± 13.26 48.24± 10.21 13.46± 1.35 31.18± 19.81

Original - - 49.6± 10.2 31.2± 11.3 29.00± 14.4
KNN [13] Aug-KNN - - 41.6± 11.53 38.2± 14.87 12.4± 9.53

Aug-mdm - - 38.3± 11.51 31.9± 13.74 11.9± 7.64
Aug-ppd - - 42.6± 11.5 34.3± 13.07 14.00± 11.10

EPrep [86] - 76.98± 1.6 9.28± 11.25 - - -
C4.5 [90] GAP-C4.5 - - 34.23± 8.67 - 4.71± 5.64
IBK [91] GAP-IBK - - 39.95± 11.23 - 3.45± 4.75
NB [91] GAP-NB - - 29.56± 6.33 - 3.64± 5.00

Chapter 6: Comparing Error Rates 113

Generally, using GP for feature construction has proven to very effective in terms

of improving the classification accuracy of various classifiers on different domains.

The results of our experimental work support such claim and show a great potential,

particularly for decision tree classification. Most evolutionary approaches to feature

construction, including those used in the comparison, however, employ the hybrid or

interleaving approach, where a classifier is run every time the fitness is calculated.

One of the strengths of our approach is the use of the node-splitting criteria as the fit-

ness function of the GP. This approach avoids embedding the classification technique

within the GP and using its performance as the fitness measure, causing overfitting

and longer execution time. However, there are some limitations with the existing

work that need to be tackled, which are addressed in Chapter 9.

6.8 Summary

This chapter presents the results of classification of a number of inductive algorithms,

namely C5, CHAID, CART, and an MLP ANN, on different domains. We performed

attribute construction with the aim of improving the error rates of classification on

five data sets. The presented error rates are on the testing sets using the augmented

attribute sets which include an additional attribute evolved using GP. Four fitness

measures were used, individually, in the GP. They include information gain, gini in-

dex, combined information gain and gini index, and the Chi2 test. The reason for

choosing to evolve attributes using these fitness measures is to improve the classifi-

cation error rate and to investigate whether any of the decision tree classifiers have a

bigger advantage over attribute sets that include a constructed attribute whose GP

fitness function incorporates the classifier’s splitting mechanism.

Chapter 6: Comparing Error Rates 114

The results show a clear improvement in error rate, particularly for all decision

tree classifiers. The improvement in performance was statistically validated, as shown

in the T-Tests. However, no obvious biases were found in the performance of any of

the classifiers.

The results of the current show the robustness and consistency in performance

when constructing attribute using GP whose fitness function is based on the split-

ting criteria of decision tree classifiers. When compared to other approaches, the

current work showed lots of strength and proved competitive, particularly with those

employing an evolutionary approach.

Chapter 7

Further Analysis

7.1 Introduction

In the previous chapter, we presented the accuracies of four classification techniques,

namely, C5, CHAID, CART and ANN on a number of data sets. We compared their

performance on the original attribute sets and on the augmented attribute sets which

includes an additional attribute constructed using a GP whose fitness function incor-

porates the splitting mechanism of one of the decision trees used. In this chapter, we

perform further analysis on the size of the decision trees and the evolved attributes.

Furthermore, we examine the effectiveness of GP for classification to GP for attribute

construction by comparing its classification performance to the performance of the

classification techniques used in Chapter 6 on the Balance–scale data set.

In Section 7.2 we turn our attention to the issue of the size of the resultant

decision tree when an evolved attribute is included in the attribute set. Further

illustration of the decision trees and the evolved attributes of two data sets is given

in Section 7.3. We show the error rates of GP classification and compare the results

to those achieved by other classifiers before and after the evolved attributes were

115

Chapter 7: Further Analysis 116

included in the attribute set in Section 7.4. In Section 7.5, we present a summary of

this chapter.

7.2 Tree Size

In this Section, for four data sets, we have a look at the characteristics of the resultant

decision trees with the original and augmented attribute sets. These characteristics

are presented for the Balance, BUPA, Wave and Wine data sets, in Tables 38 to 41,

respectively. The decision trees for the Abalone data set are not discussed in this

chapter as they are computationally expensive to analyse, particularly C5 trees. This

is because C5 produces very large trees, where the number of nodes for one trial is

2120 and the depth of the tree is 22. In Tables 38 to 41, for each data set, and for

each tree induction algorithm (C5, CHAID, CART), there are four groups of entries.

The terms Original, Aug-IG, Aug-GI and Aug-Chi2 correspond to the constructed

decision trees using the original attribute set, the augmented attribute sets. The

meanings of the columns and the rows in the table are:

D : the average depth of all decision trees over the 10 fold trials.

N : the average number of nodes in the trees over the 10 fold trials.

Occur. : the average number of times that the evolved attribute appears in the tree

over the 10 fold trials.

Av. Complexity : this is the last row and it shows the average complexity of the

evolved attribute over the 10 fold trials. The complexity represents the number

of original attributes, constants and the number of operators used to form the

Chapter 7: Further Analysis 117

new feature.

Table 38: Average tree size for the Balance-scale classification by C5, CART and
CHAID.

Balance Original Aug-IG Aug-GI Aug-Chi2

D N D N Occur. D N Occur. D N Occur.
C5 8.7 80.8 2 5 2 2 5 2 2 5 2
CHAID 4.4 43.7 1.4 4.8 1 1.6 5.5 1 1.4 4.8 1
CART 7.2 82.2 2 5 2 2 5 2 2 5 2
Av. Complexity 7.2 7 7

For the Balance data set, the tree sizes are presented in Table 38 and it shows that

all classifiers produce much smaller trees with all augmented attribute sets compared

to the trees produced using the original attribute sets. The depths, D, of the trees,

for C5 and CART on the augmented attribute sets is reduced by between 72% to 77%

of D using the original attribute sets and the number of nodes, N, is around 6% of

N using the original sets. CHAID trees using the augmented attribute sets are also

much smaller than original trees with D showing between 64% to 68% reduction and

N reduced to around 11.5% of the original N. By relating D, the average tree depth,

and the number of times the evolved feature appears on the trees of the augmented

attribute sets, Occur, we see that for C5 and CART, the evolved feature is the only

attribute used in the branch nodes of the trees, see Figures 22(a) and 22(b). On

the other hand, for CHAID, the evolved feature appears once at the top of the tree,

which indicates that, when the depth of a tree is greater than 1, some of the original

attributes are used in that tree, see Figures 22(c) and 22(d).

It is therefore very clear that all classifiers produce significantly smaller trees, how-

ever, no algorithm shows a clear bias towards the set that has an additional feature

Chapter 7: Further Analysis 118

(F4 / F1) X (F3 / F2)

CLASS 2
(F4 / F1) X (F3 / F2)

CLASS 1
CLASS 3

<= 1 > 1

 <= 0.94 > 0.94

(a) C5.

(F4 / F1) X (F3 / F2)

CLASS 2
(F4 / F1) X (F3 / F2)

CLASS 1
CLASS 3

<= 1.03 > 1.03

 <= 0.97 > 0.97

(b) CART.

(F4 / F1) X (F3 / F2)

CLASS 2
CLASS 1 & 2
CLASS 3

[0.04,1.00) [1.00,1.33) [1.33,25.00]

(c) CHAID(1).

((F4 / (F1 / F3)) - F2

CLASS 2
CLASS 3

[-4.80,0.00) [0.00,1.00) [1.0,24.00]

F2

CLASS 1

1.00,
 4.00,

2.00,
 5.00

3.00

F1

CLASS 2
CLASS 1

1.00,
 3.00,

2.00,
 4.00,

5.00

(d) CHAID(2).

Figure 22: Examples of the decision trees for the Balance data set.

which embeds the same splitting mechanism as the associated decision tree.

We now look at the decision trees for the BUPA data set, shown in Table 39.

CHAID trees are generally smaller on the original and augmented attribute sets. The

depths using the augmented attributes are reduced by between 26.3% to 29% and

the reduction in the number of nodes, N, ranges from 15.7% to 27%. However, if we

take into account, Occur, the number of times the evolved attribute appears in a tree,

and the complexity of the evolved attributes, we find that CHAID does not benefit

in terms of the overall size of the trees. In other words, the computation time for

creating a new attribute is not justified by CHAID as it is only used once in the trees

Chapter 7: Further Analysis 119

and does not result in significant reduction in the tree size. C5 shows a significant

improvement as the number of nodes is reduced to about 50% of the original number.

However, the depths of the trees decrease only slightly, ranging from 11% to 21%.

CART trees, on the other hand, do not show much reduction on the augmented at-

tribute sets. In fact, the range of increase of the depths of the trees is 6% to 11% while

the number of nodes decreases by between 26% to 34.5%. By taking into account Av.

Complexity, the average complexity of the evolved attributes, together with Occur,

the average number of times they appear in the trees, we see that the overall number

of nodes (N−Occur)+(Av.complexity×Occur)) using the augmented attribute sets

is much higher than the number of nodes of the original trees. Nevertheless, Occur

shows that C5 and CART uses the constructed attribute more times in the trees,

which means that they both benefit from the inclusion of the constructed attributes.

Table 39: Average tree size for the BUPA classification by C5, CART and CHAID.
BUPA Original Aug-IG Aug-GI Aug-Chi2

D N D N Occur. D N Occur. D N Occur.
C5 9.1 61.9 7.5 28 3.3 7.2 26.4 2.3 8.1 32.8 2.5
CHAID 3.8 13.4 2.8 10.5 1 2.8 9.8 1 2.7 11.3 1
CART 6.7 45.2 7.5 33 4.5 6.5 29.6 2.3 7.1 33.6 3.9
Av. Complexity 24.2 25.2 24.7

The decision trees on the Wave data set are incredibly large, specially for C5 and

CHAID, see Table 40. The trees using the augmented attribute sets show hardly any

reduction in the size from the original trees, except for C5, which shows a reduction

in the number of nodes, N, by around 25%. The average complexity of the con-

structed attributes are the highest so far, however, Occur shows that the constructed

attributes appear between 10 to 19 times on the C5 and CHAID trees, and around

Chapter 7: Further Analysis 120

3.4 times on CART trees, which means that they all benefit from the inclusion of the

constructed attributes.

Table 40: Average tree size for the Waveform classification by C5, CART and CHAID.
Wave Original Aug-IG Aug-GI Aug-Chi2

D N D N Occur. D N Occur. D N Occur.
C5 15.2 353.4 14.5 275.6 10.2 14.9 259.2 11.1 15.6 278 9.6
CHAID 7.2 377.8 6.2 336.8 13.1 7.5 338.9 16 7.4 349.5 18.8
CART 7.5 53.4 6.3 48.2 3.8 6.5 44.8 3.4 6.5 47.6 3.1
Av. Complexity 32.8 32.7 30.3

Finally, we look into the decision trees using the Wine data set, shown in Ta-

ble 41. Originally, the tree sizes are much smaller than those of the other data sets.

If we measure relative performance for CART, we see that it achieves the highest

reduction in size with D reduced to between 57% and 90% and N between 44% and

73%. C5 trees show less improvement with N reduced to between 57% and 92% and

D decreased to between 72% and 87% using the augmented attribute sets IG and

GI but increases using Aug-Chi2 by 12%. On the other hand, CHAID trees show

the worst deterioration using the augmented attribute sets except for Aug-IG where

there is slight improvement. By looking into the columns in Table 41, we see that all

classifiers achieve the best reduction in tree sizes using Aug-IG attribute set.

The last row in Tables 38 to 41, Av. Complexity, shows the average complexity

of the evolved attributes using the three fitness measures, IG, GI and Chi2. By

comparing these values, we see that the GP produces smaller attributes when Chi2

is used as the fitness measure. In Table 41, for example, the average complexity of

the evolved feature in Aug-Chi2 is as little as 5.2, which is no more than 40% of the

Chapter 7: Further Analysis 121

Table 41: Average tree size for the Wine classification by C5, CART and CHAID.
Wine Original Aug-IG Aug-GI Aug-Chi2

D N D N Occur. D N Occur. D N Occur.
C5 3.2 9.8 2.3 5.6 1 2.8 7.2 1.1 3.6 9 1
CHAID 2.1 11.6 1.8 10.1 1.1 2.2 11.9 1.2 2.3 10.7 0.8
CART 4 14 2.3 6.2 1 2.5 6.4 1 3.6 10.2 1
Av. Complexity 12.8 14.2 5.2

average complexities of the other evolved features using other fitness functions. We

explore this further in the next Section.

7.3 A Closer Look at the Evolved Attributes

In this Section we further discuss the characteristics of two data sets, the artificial

data set, Balance, and the real world data set, Wine. Further details on these two and

all other data sets used in the thesis are available in [68] and are shown in Appendix

A. We analyse the properties of the evolved features used to achieve 100% accuracy

on both the training and testing sets. We try to find similarities and relationships

among features evolved using the same fitness measure over all trials.

7.3.1 The Balance-Scale

The Balance data set was generated to model psychological experimental results.

Each example is classified as having the balance scale tip to the right, tip to the left,

or be balanced. The attributes are the left weight (f1), the left distance (f2), the

right weight (f3), and the right distance (f4). The correct way to find the class is

the greater of (left-distance × left-weight), i.e. (f1× f2) and (right-distance × right-

weight), i.e. (f3× f4). If they are equal, it is balanced. In other words, if (f1× f2)

Chapter 7: Further Analysis 122

is greater than (f3 × f4), then the class is Left (L), else if (f1 × f2) is less than

(f3× f4) then the class is Right (R) otherwise, the class is Balanced (B).

For all fitness measures, the GP managed to evolve a feature, which is a com-

bination of all primitive features in the data set, that satisfies the above property.

Table 42 shows some of the most frequently evolved features.

Table 42: Examples of the most frequent evolved features on the Balance-Scale data
set.

Fitness Measure Evolved Feature
IG (f3× f4)÷ (f1× f2) or (f1× f2)÷ (f3× f4)
GI (f3× f4)÷ (f1× f2) or (f1× f2)÷ (f3× f4)
IG+GI (f3× f4)÷ (f1× f2) or (f1× f2)÷ (f3× f4)
Chi2 (f3× f4)÷ (f1× f2) or (f1× f2)÷ (f3× f4)

Figures 22(a) and 22(b) reveal one interesting finding, that both C5 and CART

produce identical trees on all augmented attribute sets, with some variation on the

splitting values.

7.3.2 The Wine

The Wine data set represents a chemical analysis of wines grown in the same region

in Italy but derived from three different cultivars. This data set has three classes

(wine types) and thirteen features representing the quantities of constituents found

in each type.

Although this data set has 13 features, only 4 to 6 original features appeared

in any single evolved feature when IG and GI were used as fitness measures. The

Chapter 7: Further Analysis 123

features that appeared regularly are f1, the alcohol content, f7, the flavanoids, f10,

the colour intensity, f11, the hue, and f13, the proline. When Chi2 was used as

the fitness measure, the GP evolved features with a maximum complexity of 5, the

features appearing in this single evolved feature are f7, f10 and f11, see Table 43.

In Table 43, we show some of the evolved features that, when added to the original

attributes set, C5 and CART achieve 100% accuracy on both the training and test-

ing sets, i.e. score 100% accuracy on the whole data set. Interestingly enough, Chi2

seems to evolve the smallest feature that scores 100% accuracy on both C5 and CART.

Table 43: Some of the evolved features used to achieve 100% accuracy on the Wine
data set.

Fitness Measure Evolved Feature Classifiers
IG (((f3× f3)÷ f7) + (f1 + (f1÷ f11)))× (f13× f10) C5, CART

((1− (f10− f11))× ((f3× f5)÷ (f10 + f4))) C5, CART
×(f12× ((f13− f5)÷ f7))

f7× (f11÷ f10) CART
GI (((f11× f7)− f1)× f13)× ((f1− f11)× f10) C5, CART

f13× ((f1 + (f1× f10))× ((f1÷ f11)− (f9− f3)) C5, CART
Chi2 f10÷ (f7× f11) C5, CART

f7× (f11÷ f10) CART

Figures 23 to 25 show some of the decision trees built using the augmented at-

tribute sets where accuracies of 100% are scored on both the training and testing sets.

As is the case with most of the other trees, we notice that C5 and CART construct

identical trees, with some minor variation in the splitting values. The decision trees

built using Aug-IG and Aug-GI, see Figure 23 and 24, first split on the evolved fea-

ture then, almost always, split on f7. This is interesting because the evolved feature,

almost always, separates the samples that belong to Class 2 from the rest, and then

Chapter 7: Further Analysis 124

(((F3 X F3) / F7) + (F1 +

(F1 / F11))) X (F13 X F10)

CLASS 2

CLASS 1
CLASS 3

<= 83302.62
 > 83302.62

 <= 1.85 > 1.85

F7

(a) C5.

(((F3 X F3) / F7) + (F1 +

(F1 / F11))) X (F13 X F10)

CLASS 2

CLASS 1
CLASS 3

<= 83536.17
 > 83536.17

 <= 1.88 > 1.88

F7

(b) CART.

Figure 23: The decision trees for the Wine data set using Aug-IG.

(((F11 X F7) - F1) X F13)

X ((F1 - F11) X F10)

CLASS 2

CLASS 1
CLASS 3

<= -354955.94
 > -354955.94

 <= 1.85 > 1.85

F7

(a) C5.

(((F11 X F7) - F1) X F13)

X ((F1 - F11) X F10)

CLASS 2

CLASS 1
CLASS 3

<= -354845.94
 > -354845.94

 <= 1.88 > 1.88

F7

(b) CART.

Figure 24: The decision trees for the Wine data set using Aug-GI.

Chapter 7: Further Analysis 125

F10 / (F7 X F11)

CLASS 3

<= 4.16
 > 4.16

F13

CLASS 1
CLASS 2

 <= 3.4 > 3.4

F10

CLASS 2

 <= 13.17 > 13.17

F1

 <= 750
 > 750

CLASS 1
CLASS 2

<= 4 > 4

F10

(a) C5.

F10 / (F7 X F11)

CLASS 3

<= 4.24
 > 4.24

F13

CLASS 1
CLASS 2

 <= 3.4 > 3.4

F10

CLASS 2

 <= 13.18 > 13.18

F1

 <= 755
 > 755

CLASS 2
CLASS 1

<= 13.25 > 13.29

F1

(b) CART.

Figure 25: The decision trees for the Wine data set using Aug-Chi2.

f7 perfectly separates samples belonging to Class 1 from Class 3.

Using Aug-Chi2, although the evolved features are much smaller than those evolved

using other fitness measures, all classifiers produce slightly bigger decision trees than

those built using other augmented attribute sets, see Figure 25. Both C5 and CART

first split on the evolved features which, this time, separate samples belonging to

Class 3 from the rest. They then split on f13, f1 and f10 to separate between Class

1 and Class 2. It is noticed that f7 was never used in any of the subsequent splits.

It is therefore clear that two separate attributes are evolved.

7.4 GP for Classification vs Constructive Induc-

tion

Since for the Balance data set, the GP managed to find a feature that, when added to

the original attribute set, all decision tree classifiers managed to improve the classifica-

tion accuracy, sometimes dramatically, as in the case of C5 and CART, we investigate

Chapter 7: Further Analysis 126

the performance of classification using GP as the inductive algorithm. In this Section,

we address the question of whether GP is as powerful, when used for classification as

it is for feature construction.

We perform two sets of experiments, where the GP is used for classifying the

Balance data set. We use the same trials that were used in the feature construction

process. The outcome of the evolution process is a rule of the form ”if <condition>

then <classA> else <classB>”, since we know that the rule which perfectly classifies

the samples in this Balance data is something like:

if (f1 × f2) > (f3 × f4) then Class = L

else if (f1 × f2) < (f3 × f4) then Class = R

else Class = B

For this reason the function set is extended to include the logical operators

{if, =, >, <,AND, OR}, in addition to the arithmetic operators {+,−,×, /}. The

terminal set includes the original four attribute and the values of the class 1, 2, 3,

denoting B, L and R. We apply the same GP parameters as those used in the feature

construction process, see Table 44.

Table 44: The GP parameters.
Parameter Value
Population Size 600
Generations 100
Crossover Probability 50%
Mutation Probability 50%
Selection Method Tournament Selection of 7
Initial Population Generation Ramped Half–and–Half

Chapter 7: Further Analysis 127

The fitness function of the GP is the classification error rate on the training data.

We applied the same restriction on rule size as the one used in the attribute construc-

tion, i.e a maximum of 30. This means that any rule exceeding this predefined size

is penalised. Ideally, one would expect the GP to evolve a rule of the form (if (> (*

(f1 f2)) (* (f3 f4))) 1 (if (< (* (f1 f2))(*(f3 f4))) 2 3)) that achieves 100% accuracy

on the Balance–scale data set. This rules would have a complexity of 19.

In the two experiments, the GP produces relatively similar rules on all 10 trials

(in terms of rule complexity and error rate). For simplicity, only the rules produced

by one set of experiments are shown in this Section. The rules, shown as symbolic

expressions, and the error rates on the associated training and testing sets are shown

in Table 45. As can be seen in the Table, the evolved rules contain combinations

of all primitive attributes. We also notice that the evolved rules manage to classify

samples belonging to class 2 (scale to the left) and class 3 (scale to the right) only.

Samples belonging to class 1 (scale balanced) are not classified by any of the rules.

This may be due to the fact that samples belonging to classes 2 and 3 form 92.16%

of the whole data. In fact, the training and testing error rates shown in Table 45

represent exactly the proportion of samples that belong to class 1 in each trial. The

evolved rules shown in Table 45 can be represented in three trees, see Figure 26.

Chapter 7: Further Analysis 128

Table 45: Symbolic Expression of the Evolved Rules and Error Rates on the Associ-
ated Testing sets.

Trial # Produced Rules Error Rates
Training Testing

1 (If (> (/ (* f2 f1) f4) f3) 3 2) 8.17 4.84
2 (If (< (* (/ f1 f3) f2) f4) 2 3) 7.28 12.9
3 (If (> (/ (* f2 f1) f4) f3) 3 2) 7.82 8.06
4 (If (< f2 (/ f4 (/ f1 f3))) 2 3)) 8.17 4.84
5 (If (< f4 (/ (+ 1 (* f2 f1)) f3)) 3 2)) 7.28 12.9
6 (If (> f2 (/ f3 (/ f1 f4))) 3 2) 7.64 9.68
7 (If (> (* f4 (/ f3 f1)) f2) 2 3) 8.35 3.23
8 (If (< f2 (* (/ f4 f1) f3)) 2 3) 8.35 3.23
9 ((If (< (/ f1 (/ f4 f2)) f3) 2 3) 7.99 6.45
10 ((If (> (/ (* f1 f2) f4) f3) 3 2) 7.28 12.9

In Table 46, we show the error rates of all classifiers using the original and aug-

mented attribute sets, and the classification results of the GP. The Table shows that

GP is superior to all decision tree classifiers on the original attributes, however, on

the augmented attribute sets, all decision tree classifiers outperform the GP, showing

error rates as small as 0%. On the other hand, the ANN shows a similar performance

to the GP using the original and augmented attribute sets.

Table 46: Error rates for the Balance-scale data set.
Balance Original IG GI IG+GI Chi2

C5 22.42± 6.20 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00
CHAID 28.39± 5.17 5.65± 2.55 5.49± 2.30 5.16± 2.92 4.19± 2.04
CART 22.74± 5.01 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00
ANN 10.00± 3.79 9.36± 4.01 9.19± 3.65 7.42± 4.57 9.68± 4.93
GP 7.903± 3.98 - - - -

Chapter 7: Further Analysis 129

(F2*F1)/F4

CLASS 3
CLASS 2

< F3 > F3

(a) Trials 1, 3, 9 and 10.

(F3*F4)/F1

CLASS 2
CLASS 3

< F2 > F2

(b) Trials 4, 6, 7 and 8.

(F2*F1)/F3

CLASS 3
CLASS 2

< F4 > F4

(c) Trials 2 and 5.

Figure 26: The GP rules represented as trees.

Chapter 7: Further Analysis 130

7.5 Summary

In this chapter, we performed in depth analysis of the resultant decision trees. We

presented and compared the sizes of the trees using the original and augmented at-

tribute sets. Generally, all decision tree classifiers produced smaller trees, sometimes

significantly, using the augmented attribute sets, as in the case of the Balance data

set. The complexity of the evolved attributes was variable, and its use in the decision

tree was dependent on the data as well as the classifier.

We also investigated the nature of the evolved attributes that, when included in

the attribute sets, the classifiers perform perfectly. We found that, for the Balance,

on all trials, the GP evolves an attribute that perfectly classifies all samples in the

data set, using C5 and CART. On the Wine data set, the GP also evolved two at-

tributes that enabled the classifiers to achieve the optimum accuracy. Our findings

on the Balance data set encouraged us to further investigate the power of GP and

use it for classification. Although GP outperformed all classifiers using the origi-

nal attributes, it failed to perform better than all decision tree classifiers using the

augmented attribute sets.

Chapter 8

A Commercial Case Study

8.1 Introduction

In this chapter we present an experimental study on the Apple NIR (near infra red)

data, a real-world commercial data set. The data set contains 231 samples (151

training and 80 testing) and represented by 213 attributes. They include a sample

number attribute, 211 attributes representing NIR wavelengths, and a class attribute

(Brix). The initial overall aim of the exercise was to explore the data and to ascertain

if it is feasible to use some or all of the 211 input fields to predict the target Brix value

for the samples. A range of exploratory and investigatory analyses were performed

to achieve these objectives:

• Applying statistical techniques such as correlation and collinearity which allow

more familiarity with the data. They are used to test the data for strong

predictors (wavelengths).

• Applying visualisation techniques allows us to explore the data in a much more

visual manner, ranging from individual field analysis, through scattergrams of

key predictors, to high dimensionality reduction visualisation techniques.

131

Chapter 8: A Commercial Case Study 132

• Preprocessing the data using feature reduction techniques, such as feature se-

lection.

• Applying data mining techniques on the pre–processed data to predict the Brix

values. These include approximation methods and classification methods.

The purpose of this chapter is to extend the work performed in [89]. We perform

attribute construction using the original and pre–processed data to enhance the per-

formance of the classification models. Section 8.2 provides an overview of the data.

In Section 8.3 previous work is presented. In Section 8.4, we present and compare

the classification error–rates before and after attribute construction. Section 8.5

summarises this chapter.

8.2 An Overview

The Apple NIR data consists of 231 samples represented by 213 numerical attributes.

The first attribute is the sample number and is eliminated from the data. The last at-

tribute, Brix, is the class attribute with values in the range [9.4,17.9]. The remaining

211 attributes represent the NIR values measured at wavelengths ranging from 680

to 1100 in steps of 2, and denoted by wv680, wv682,..., wv1098, wv1100, respectively.

The data was provided in two sets, a training set and a testing set. The training

set consists of 151 samples with the Brix values in the range [10.2,15.9]. The testing

set consists of 80 samples with the Brix values in the range [9.4,17.9].

The overall aim of the exercise is to explore the data and to ascertain if it is

feasible to construct attributes from some of the 211 to predict the target Brix value

Chapter 8: A Commercial Case Study 133

for the samples. The sample number played no role in the analysis.

A number of models have been built and tested according to the standard method-

ology, i.e. each model is constructed using the samples in the training data set and

the model is subsequently tested by applying it to the samples in the testing data set

and measuring its accuracy.

8.3 Previous Work

In this Section, we outline previous work performed on the Apple NIR data. The

following Subsection present the preliminary analysis and the prediction models per-

formed on the data [89].

8.3.1 Preliminary Analysis

In this Section we present the preliminary analysis and previous work on the Apple

NIR data set. A range of techniques was applied to explore the data initially. Note

that some techniques apply only to numerical data, whilst others can be applied once

the Brix values have been discretised.

Statistical analysis of NIR data was performed to determine the characteristics

of the data. Figure 27 shows the min, max and mean value of the values for each

wavelength in the training set. We note at this stage that there appears to be a

wider variation in values for the lower wavelengths indicating that they may be more

powerful predictors.

This wider variation is confirmed when we look at the values of the standard

Chapter 8: A Commercial Case Study 134

Mean, Min and Max

0

10

20

30

40

50

60

680
 730
 780
 830
 880
 930
 980
 1030
 1080

Wavelength

M
ea

n
 /

M
in

 /
M

ax

minimum

maximum

mean

Figure 27: Mean, min and max values for wavelength data in training set.

deviation for each wavelength, once again for the training set, see Figure 28.

Comparison of training and testing sets to ensure that the sets are statistically

similar revealed two facts:

• The range of Brix values for the testing sample [9.4, 17.9] is slightly larger than

the range [10.2, 15.9] of Brix values of samples in the training set. This may

cause a slight problem for models in that they are typically less well trained on

data at the extreme edges of the Brix range.

• There are relatively few samples of high Brix value compared to the number of

samples with low to medium Brix values. The resulting models may therefore

be biased towards the lower Brix valued samples.

Identification of strong predictive fields using correlation analysis of predictive

attributes (wavelength NIR data) with the class attribute (Brix), see Figure 29, for

approximation models revealed the following:

Chapter 8: A Commercial Case Study 135

Standard Deviations

0

2

4

6

8

10

12

68
0

69
8

71
6

73
4

75
2

77
0

78
8

80
6

82
4

84
2

86
0

87
8

89
6

91
4

93
2

95
0

96
8

98
6

10
04

10
22

10
40

10
58

10
76

10
94

wavelength

S
D

Figure 28: Standard deviations for wavelength data in training set.

brix

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

w
68

0

w
69

4

w
70

8

w
72

2

w
73

6

w
75

0

w
76

4

w
77

8

w
79

2

w
80

6

w
82

0

w
83

4

w
84

8

w
86

2

w
87

6

w
89

0

w
90

4

w
91

8

w
93

2

w
94

6

w
96

0

w
97

4

w
98

8

w
10

02

w
10

16

w
10

30

w
10

44

w
10

58

w
10

72

w
10

86

w
11

00

Wavelengths

C
o

rr
el

at
io

n

Figure 29: Correlation between the wavelengths and the Brix.

Chapter 8: A Commercial Case Study 136

• There is a relatively high correlation between the lower wavelengths (WV680-

WV696) and the Brix value (correlation values 0.57 - 0.43).

• There is little correlation between the medium valued wavelengths (WV700-

WV1090) and the Brix value (absolute correlation values less than 0.35).

• There is a slight increase in (absolute value of) correlation between the higher

wavelengths (WV1092-WV1100) and the Brix value (absolute correlation values

between -0.35 and -0.4).

• By applying cross-correlation analysis on the input fields alone, there is high

correlation (in excess of 0.9) between the wavelengths WV680-WV696, but the

correlation between this subset and the remaining wavelengths drops off rapidly,

see Figure 30(a). However, there is stronger correlation (almost 1.0) between the

middle wavelengths, see Figures 30(b) and 30(c). At high wavelengths, although

they are still highly correlated with the middle wavelengths, there is an increase

in correlation (negative) with the lower wavelengths, see Figure 30(d).

• By looking at sample profiles of particular Brix values plotted over wavelength,

there appears to be a distinction between low Brix value samples (<13) and

high Brix value samples (>13) only at the lower wavelengths, see Figure 31.

Thus the subset WV680-WV696 is likely to be dominant at predicting the Brix

value. However, because of the high cross-correlation, only one wavelength need be

used to construct the model (this is confirmed by comparing the accuracies from dif-

ferent models constructed using different sets of wavelengths).

Based on the above analysis, we performed feature subset selection, in which we

select the wavelengths that will be used to construct the models. A range of five

different feature subsets was chosen:

Chapter 8: A Commercial Case Study 137

w680

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

w
6

8
0

w
6

9
8

w
7

1
6

w
7

3
4

w
7

5
2

w
7

7
0

w
7

8
8

w
8

0
6

w
8

2
4

w
8

4
2

w
8

6
0

w
8

7
8

w
8

9
6

w
9

1
4

w
9

3
2

w
9

5
0

w
9

6
8

w
9

8
6

w
1

0
0

4

w
1

0
2

2

w
1

0
4

0

w
1

0
5

8

w
1

0
7

6

w
1

0
9

4

Wavelengths

C
o

rr
e

la
ti

o
n

(a) Correlation of WV680 data with all other wave-
lengths.

w738

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

w
6

8
0

w
6

9
8

w
7

1
6

w
7

3
4

w
7

5
2

w
7

7
0

w
7

8
8

w
8

0
6

w
8

2
4

w
8

4
2

w
8

6
0

w
8

7
8

w
8

9
6

w
9

1
4

w
9

3
2

w
9

5
0

w
9

6
8

w
9

8
6

w
1

0
0

4

w
1

0
2

2

w
1

0
4

0

w
1

0
5

8

w
1

0
7

6

w
1

0
9

4

Wavelengths

C
o

rr
e

la
ti

o
n

(b) Correlation of WV738 data with all other wave-
lengths.

w1000

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

w
6

8
0

w
6

9
8

w
7

1
6

w
7

3
4

w
7

5
2

w
7

7
0

w
7

8
8

w
8

0
6

w
8

2
4

w
8

4
2

w
8

6
0

w
8

7
8

w
8

9
6

w
9

1
4

w
9

3
2

w
9

5
0

w
9

6
8

w
9

8
6

w
1

0
0

4

w
1

0
2

2

w
1

0
4

0

w
1

0
5

8

w
1

0
7

6

w
1

0
9

4

Wavelengths

C
o

rr
e

la
ti

o
n

(c) Correlation of WV1000 data with all other wave-
lengths.

w1100

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

w
6

8
0

w
6

9
8

w
7

1
6

w
7

3
4

w
7

5
2

w
7

7
0

w
7

8
8

w
8

0
6

w
8

2
4

w
8

4
2

w
8

6
0

w
8

7
8

w
8

9
6

w
9

1
4

w
9

3
2

w
9

5
0

w
9

6
8

w
9

8
6

w
1

0
0

4

w
1

0
2

2

w
1

0
4

0

w
1

0
5

8

w
1

0
7

6

w
1

0
9

4

Wavelengths

C
o

rr
e

la
ti

o
n

(d) Correlation of WV1100 data with all other wave-
lengths.

Figure 30: Correlation of some wavelengths with all other wavelengths.

Chapter 8: A Commercial Case Study 138

0

10

20

30

40

50

60

w6
80

w7
04

w7
28

w7
52

w7
76

w8
00

w8
24

w8
48

w8
72

w8
96

w9
20

w9
44

w9
68

w9
92

w1
01

6

w1
04

0

w1
06

4

w1
08

8

10.2

10.2

10.3

10.4

12.4

12.4

12.5

12.5

14.6

15.4

15.7

15.9

(a) Profile of 12 samples (4 low Brix value, 4 medium and 4 high).

0

10

20

30

40

50

60

w6
80

w7
04

w7
28

w7
52

w7
76

w8
00

w8
24

w8
48

w8
72

w8
96

w9
20

w9
44

w9
68

w9
92

w1
01

6

w1
04

0

w1
06

4

w1
08

8

10.8

14.3

(b) Two sample profiles showing the potential difficulty of using higher
wavelength data to predict the Brix value.

Figure 31: sample profiles of particular Brix values plotted over wavelength.

Chapter 8: A Commercial Case Study 139

• FS1: the wavelengths 680-696 and wavelengths 1092-110, chosen because of

relatively high correlation with the Brix values.

• FS2: the wavelengths 680-696, chosen for their high correlation with the Brix

values.

• FS3: the wavelengths 680, 682, chosen to illustrate the fact that, because of

high correlation between the wavelengths 680-696, there is no need to use the

whole set.

• FS4: the single wavelength 680, chosen to represent the group of wavelengths

(680-696) with relatively high collinearity.

• FS5 the three wavelengths 686, 716 and 1100, chosen because of their relatively

low correlation with each other.

8.3.2 The prediction models

Two approaches were used to predict the Brix values. The first is approximation

models. In these models, the output is a real-valued variable approximating the Brix

value of each sample. The models constructed were based on regression and artificial

neural networks. Models are constructed for each feature subset. The results show

that neither approach appeared to provide very accurate models, with correlations

between actual and predicted Brix values of around 0.64-0.68 for the various feature

subsets used.

The second approach is classification. In order to perform classification, the Brix

values were discretised prior to model construction. A variety of different discetisa-

tions have been used for both the information gain analysis and subsequent model

construction:

Chapter 8: A Commercial Case Study 140

• D6: the Brix values are discretised into 6 equally sized bins (< 11, (11,12],

(12,13], (13,14], (14,15], ≥ 15).

• D4: the Brix values are discretised into 4 bins (< 11.5, (11.5, 13], (13, 14.5],≥
14.5).

• D2: the Brix values are discretised into 2 bins (≤ 13, > 13).

By measuring the information gain of the discretised data, we notice that the fea-

ture subsets FS1, FS2 and FS5 appear to mostly have the strongest predictors. We

also use FS6, a feature subset created using stepwise reduction technique. FS6 in-

cludes wv680, wv700, wv718, wv750, wv820, wv834, wv908, wv936, wv1002, wv1060

and wv1092.

In the classification models, the output is an integer value approximating the bin

associated with the Brix value of each sample. The models constructed were based

on tree induction (C5), rule induction and multi-discriminant analysis. Models are

constructed for each discretisation/bin set and for some of the feature subset sets.

Information gain measures were used for classification models. The results varied

more than in the approximation models showing that no one technique may be robust

enough to rely upon. However, tree induction appears to have a slight edge over the

others. Tables 47 to 49 show the accuracy of each model.

Table 47: Comparison of classification accuracies for discretisation set D6.
Method No FSS FS1 FS2 FS3 FS4 FS5 FS6
Tree Induction 33.75 37.50 - - - - -
All-rules model 28.75 - - - - - -
MDA-direct - 35.8 35.8 27.2 27.2 33.8 48.3
MDA-stepwise - 33.1 29.1 27.2 - 31.8 -

Chapter 8: A Commercial Case Study 141

Table 48: Comparison of classification accuracies for discretisation set D4.
Method No FSS FS1 FS2 FS3 FS4 FS5 FS6
Tree Induction 52.50 53.75 - - - - -
All-rules model 48.75 - - - - - -
MDA-direct - 53.60 53.60 44.40 44.40 52.30 60.90
MDA-stepwise - 49.00 46.40 43.70 - 51.70 -

Table 49: Comparison of classification accuracies for discretisation set D2.
Method No FSS FS1 FS2 FS3 FS4 FS5 FS6
Tree Induction 68.75 67.50 - - - - -
All-rules model 63.75 - - - - - -
MDA-direct - 65.6 - - - - 74.80
MDA-stepwise - 62.3 - - - - -

8.4 Attribute Construction Using GP

In this Section, we focus on the performance of the decision tree models, built using

C5. Based on the results from previous work, it is clear that classification models

show superior performance using the discretised data set D2. Therefore, D2 is se-

lected for further experimentation.

We use GP for constructing new features in the same manner used in the pre-

vious chapters, i.e. the constructed feature is added to the original feature set then

classification is performed using the augmented feature set. As mentioned earlier, the

training and testing set were provided by the client, therefore, no cross–validation

was performed.

Chapter 8: A Commercial Case Study 142

8.4.1 Feature Subsets

The feature subsets FS1, FS2, FS5 and FS6 are used for feature construction as well

as the following subset:

• NoFS, which includes the whole set features.

• FS90, which includes the first 30, middle 30, and last 30 attributes. These are

chosen to promote diversity in selection and to represent the middle attributes

as well as the extreme sides.

• FS52, which includes the 52 attributes where the information gain does not vary.

This set is a good representative of the whole data set, in terms of information

gain.

• FSDiff1, which includes the first difference of neighbouring attributes.

• FSDiff2, FSDiff3 and FSDiff4, which include the second, third and fourth dif-

ference of the attributes, respectively. These are not used in the feature con-

struction process.

8.4.2 The GP

Since we used C5 for the decision tree classification models, the fitness function used

is information gain (IG). The terminal set consists of all the original attributes plus

the constant 1, whilst the function set consists of the arithmetic operators +,−,×, /.

The initial population is created using a ramped half-and-half method, and the

size is fixed at 600. The GP was run for 100 iterations.

Chapter 8: A Commercial Case Study 143

The selection method used is tournament, with a tournament size of 7. Mutation

and crossover are fairly standard, with mutation replacing nodes with like nodes, and

crossover swapping subtrees. The mutation rate is 50%, whilst the crossover rate is

50%.

8.4.3 The Results

A total of 16 experiments were carried out using the original and augmented feature

subsets of the discretised data, D2. The results of the experiments conducted to as-

sess the performance of C5 models on the original and augmented feature subsets are

presented in Table 50. The Orginal column shows the classification accuracies using

the associated feature subsets. The augmented column shows the accuracies after an

evolved attribute is included in the associated feature subset. Table 50 shows that

the performance using the augmented attribute sets is superior to that of the original

feature subsets, particularly on the whole attribute set (No FSS) and on the subset

created using stepwise reduction (FS6), with a relative improvement of almost 11%.

Only using FSDiff1 does C5 perform better on the original subset than on the aug-

mented subset.

Since the predicting attributes are basically NIR wavelengths measured in steps of

2, we transform the data by approximating the gradient of the different wavelengths

using differences. We investigate the performance of C5 on the first, second, third

and fourth difference of the wavelengths. Table 51 show the classification accuracies

on the training and testing set. The results show a dramatic increase in accuracy

using the training sets to between 97.35% and 99.34%, whereas the testing sets do

not show much improvement, except for the first difference. One reason for this big

difference in accuracies between the training and testing sets is because of overfitting.

Chapter 8: A Commercial Case Study 144

Table 50: Classification accuracies for discretisation set D2 using original and aug-
mented feature subsets.

Feature subset Originial Augmented
No FSS 68.75 76.25
FS1 67.5 68.75
FS2 67.5 67.5
FS5 67.5 67.5
FS6 67.5 76.25
FS90 68.75 68.75
FS52 70.00 72.5
FSDiff1 73.75 68.75

It could also be because the number of samples in the data is too small, represented

by a large number of attributes.

Table 51: Classification accuracies for discretisation set D2 using the first, second,
third and third differences of wavelengths.

Feature subset Training Testing
FSDiff1 99.34 73.75
FSDiff2 98.68 61.25
FSDiff3 97.35 50.00
FSDiff4 97.35 51.25

8.5 Summary

The work presented in this chapter extends the work performed by Smith et al. [89]

on the Apple NIR data, a commercial data. We performed attribute construction

with the aim of improving the performance of classification. The nature of the data

has led us to believe that the accuracy of classification could improve when evolved

features using GP are included in the attribute set. There are two reasons for this

Chapter 8: A Commercial Case Study 145

assumption. The first reason is the fact that the Apple NIR data is numeric and

the attributes represent NIR values measured at wavelengths ranging from 680 to

1100 in steps of 2. The second is because the GP finds non–linear combinations of

the attributes that could explain physical traits in the data, as is the case with the

Balance-scale and the Wine data sets, see Chapter 6 and 7.

There were two approaches to transforming the data. The first was to construct

attributes using the feature subsets listed in Section 8.4. The second approach to

transforming the data was by approximating the gradient of the different wavelengths

using their differences. This included four data transformations using the first, sec-

ond, third and fourth difference. Attribute construction was performed only on the

first difference.

The results of the experiments of the first approach generally showed slight im-

provement in classification accuracy using the attribute sets which include an evolved

attribute compared to the results using the original attribute sets. Only using the

augmented attribute set of the first difference did we see a slight deterioration.

The results using the second approach show that the accuracies on the training

data increases significantly (more than 97%), whereas, only using the first difference

that the accuracies on the testing show superior performance.

Chapter 9

Conclusions, Limitations and
Further Suggestions

9.1 Conclusions

This Thesis has presented an approach for restructuring feature spaces to improve

decision tree classification. The developed model is based on using genetic program-

ming as the search procedure for performing attribute construction. The constructed

attributed is added to the original attributes to form an augmented attribute set

which is presented to a classifier.

Chapter 1 described the background to the problem, the major motivations and

contributions of this research. Chapter 2 outlined the field of KDD, major tasks and

relevant subjects. We presented related previous work on data pre–processing and

listed a number of approaches to data classification. In Chapter 3, we described three

decision tree algorithms used in the experimental work. Chapter 4 introduced evolu-

tionary computation techniques, addressing four well known algorithms. We focused

on genetic programming which was used in our work. We also surveyed some of the

applications of genetic programming in data mining.

146

Chapter 9: Conclusions and Future Work 147

The general approach and experimental methodology was presented in Chapter 5.

It is based on the construction of a new attribute using genetic programming, which

is then added to the original attribute set to form an augmented attribute set. The

general aim is to improve the performance of classification on a number of data sets.

In this chapter, the data sets, the genetic program and its fitness measures, and the

experimental methodology were described some detail. We also presented some of the

evolved attributes and show their fitness to give the reader an idea about the nature

and properties of the evolved attributes.

The remaining chapters presented analysis of the results pertaining to the objec-

tives of the research:

1. Successful use of the decision tree splitting criteria as the fitness

function of a GP system for feature constuction.

2. Improve classification accuracy of decision tree and non–decision tree clas-

sification models (Chapter 6).

3. Perform bias analysis of the classifiers’ performance (Chapter 6).

4. Compare with existing approaches, the classification accuracy of the ex-

perimental work (Chapter 6).

5. Perform tree size analysis on the resultant trees of the decision tree models

(Chapter 7).

6. Ascertain physical properties of data, which may be explained by the

introduction of an evolved attribute (Chapter 7).

Chapter 9: Conclusions and Future Work 148

7. Compare the performance of GP for classification with the performance of

GP for constructive induction (Chapter 7).

8. Undertake a commercial case study involving the application of GP for

constructive induction on real–world commercial data (Chapter 8).

In Chapter 6, we addressed objectives 1 and 2. We examined the performance of

three decision tree classifiers, C5, CHAID, and CART and an MLP ANN on five data

sets using the original and augmented attribute sets. The results showed that, for

all data sets, the error rates of all classifiers improved using the augmented attribute

set. Obviously, decision tree models showed a much better improvement rate than

the ANN. The bias check presented in Chapter 6 showed that, generally, no decision

tree model had more advantage using an augmented attribute set which included an

attribute evolved using the GP when the fitness incorporates the associated splitting

measure. We also performed a comparative study of the results of our experimental

work with those of PCA and other evolutionary approaches. The comparison showed

that our current work was robust and performed consistently on all data sets. It also

showed that our approach was comparable to existing approaches.

In Chapter 7, we performed further analyses which cover objectives 3, 4 and 5.

Analysis of the size of the resultant trees showed that, when the complexity of the

evolved attribute is not taken into account, the models produce smaller, sometimes

very concise trees using the augmented attribute sets. The structure of the evolved at-

tributes had led us to believe that they could reveal interesting characteristics about

the data as well as improving the performance of classification. For instance, on

the Balance data set, the evolved attributes exposed how the data was created. On

the Wine data set, where accuracy on the training and testing sets was 100%, the

Chapter 9: Conclusions and Future Work 149

evolved attributes were almost always constructed of 5 out of 13 of the original at-

tributes (constituents). In some trials, the evolved attribute was made of 3 attributes

only. When we used GP for classification, it outperformed all the other four tech-

niques using the original attribute sets. However, using the augmented attribute sets,

all other techniques were superior.

In Chapter 8, two data transformation approaches were carried out to improve

the classification of C5 on a real–world commercial data. This work was an extension

to the work in [89]. The first approach was to perform attribute construction on all

original attributes and a number of feature subsets. The results showed that the C5

model performed better using all augmented attribute sets. In the second approach,

we approximated the gradient of the different attributes (wavelengths) using their

differences (first, second, third and fourth). The results showed that the C5 model

scored accuracies of more than 97% on the training data, whereas, on the testing

data, the accuracy drops dramatically.

9.2 Limitations and Further Suggestions

There are few limitations of the GP System. The first is that, although it has proved

to be robust, the current system is computationally expensive and is sensitive to

the dimensionality of input data. The increase in the number of attributes as well

as the number of samples would bring about a significant increase in computation

time. More computational resources are needed and effective methods for sampling

the data, rather than random sampling, have to be developed to deal with these

problems. To reduce the computational overhead of local optimisation, algorithms

could be developed to apply different amounts of computational resources to different

indiduals. For instance, individuals whose ancestors have been optimised and that

Chapter 9: Conclusions and Future Work 150

are similar to those ancestors could be considered relatively well optimised and hence,

receive few optimisation trials in future.

Secondly, the current system only deals with numerical data and could be extended

to deal with categorical data through strong typing and extending the function set to

cope with such data.

Thirdly, the Chi2 test used in the GP uses binary splitting of attribute values

similar to that used in information gain and the gini index. We do not merge and

group values in the same manner used in CHAID.

Most importantly, rather than evolving a single attribute that generates the best

split at the root node of the tree, there are plans to extend the current work to evolve

a set of attribute that can also split subsequent nodes, and hence, evolving a whole

decision tree.

Finally, further research is required to enhance the fitness measure of the GP

to suit a wider range of classifiers. Also, since the current GP system is concerned

with constructing attributes to improve the classification task, we are looking into

extending this work to include other data mining tasks.

Bibliography

[1] KDnuggets: Data Mining, Web Mining, and Knowledge Discovery Guide. http:

//www.kdnuggets.com.

[2] R. Agrawal, T. Imielinski, and A. Swami. Database Mining: A performance

Perspective. In IEEE Transactions on Knowledge and data Engineering, volume

5(6), pages 914–925. IEEE Computer Society, 1993.

[3] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. Verkamo. Fast Discov-

ery of Association Rules. In Advances in Knowledge Discovery and Data Mining,

U.M. Fayyad, G. Piatetski-Shapiro, P. Smyth and R. Uthurusamy (Eds), pages

307–328. AAAI Press, 1996.

[4] H. Almuallim and T. Dietterich. Learning with Many Irrelevant Features”,

booktitle =”Proceedings of the Ninth National Conference on Artificial Intelli-

gence. pages 547–552. MIT Press, 1991.

[5] P. Angeline. Genetic Programming and Emergent Intelligence. In Advances in

Genetic Programming, pages 75–98. MIT Press, 1994.

[6] W. Au, K. Chan, and X. Yao. A Novel Evolutionary Data Mining Algorithm

With Applications to Churn Prediction. IEEE Transactions on Evolutionary

Computation, 7, 2003.

151

Bibliography 152

[7] T. Back. Evolutionary Algorithms. SIGBIO Newsletter, 12(2):26–31, June 1992.

[8] W. Banzhaf, P. Nordin, R. Keller, and F. Francone. Genetic Programming –

An Introduction: On the Automatic Evolution of Computer Programs and its

Applications. Morgan Kaufmann, 1998.

[9] H. Bensusan and I. Kuscu. Constructive Induction using Genetic Programming.

In Proceedings of International Conference on Machine Learning, Evolutionary

Computing and Machine Learning Workshop, Fogarty, T. and Venturini, G.

(Eds), 1996.

[10] H. Beyer, E. Brucherseifer, W. Jakob, H. Pohlheim, B. Sendhoff, and

T. Binh To. Glossary: Evolutionary Algorithms - Terms and Definitions.

2002. http://ls11-www.cs.uni-dortmund.de/people/beyer/EA-glossary/

def-engl-html.html.

[11] C. Bishop. Neural Networks for Pattern Recognition. Oxford University Press,

1995.

[12] A. Blum and P. Langley. Selection of Relevant Features and Examples in Ma-

chine Learning. Artificial Intelligence, pages 245–271, 1997.

[13] M. Bot. Feature Extraction for the k-Nearest Neighbour Classifier with Genetic

Programming. In EuroGP 2001, Computer Science, 4th European Genetic Pro-

gramming Conference, Lake Como, Italy, Lecture Notesin Computer Science,

LNCS, no 2038, J. Miller, M. Tomassini, P.L. Lanzi, C. Ryan, A.G.B. Teta-

manzi, W.B. Langdon (Eds), pages 256–267. Springer-Verlag, April 18-20, 2001.

[14] G. E. P. Box. Evolutionary operation: a method of increasing industrial pro-

ductivity. Applied Statistics, 6:81–101, 1957.

Bibliography 153

[15] R. Brachman and T. Anand. The Process of Knowledge Discovery in Databases:

A Human Centred Approach. In Advances in Knowledge Discovery and Data

Mining, Fayyad, U., Piatetsky-Shapiro, G., Smyth, P. and Uthurusamy, R.

(eds). AAAI/MIT Press, 1996.

[16] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and

Regression Trees. Wadsworth, Inc. Belmont, California, 1984.

[17] P. Brierley and B. Batty. Data Mining With Neural Networks: An Applied

Example in Understanding Electricity Consumption Patterns. IEE, Knowledge

Discovery and Data mining, Bramer, M. (eds), 1999.

[18] F. Brill, D. Brown, and W. Martin. Genetic algorithms for feature selection for

counterpropagation networks. Tech. Rep. No. IPC-TR-90-004, 1990.

[19] T. Brotherton and P. Simpson. Dynamic feature set training of neural nets for

classification. In Evolutionary Programming IV, McDonnell, J. and Reynolds,

R. and Fogel, D.(Eds.), pages 83–94, Cambridge, MA, 1995. MIT Press.

[20] R. Caruana and D. Freitag. Greedy Attribute Selection. In Machine Learning:

Proceedings of the Eleventh International Conference, W. Cohen and H. Hirsh

(eds). Morgan Kaufmann, 1994.

[21] P. Chapman, J. Clinton, R. Kerber, T. Khabaza, T. Reinartz, C. Shearer, and

R. Wirth. CRISP-DM 1.0: Step–By–Step Data Mining Guide. 2000.

[22] N. L. Cramer. A Representation for the Adaptive Generation of Simple Se-

quential Programs. In ICGA85: Proceeding of the International Conference on

Genetic Algorithms, pages 183–187, 1985.

Bibliography 154

[23] J. Debuse, B. de la Iglesia, C. Howard, and V. Rayward-Smith. A Methodology

for Knowledge Discovery: a KDD Roadmap. Sys-c99-01, School of Computing

Sciences, University of East Anglia, 1999.

[24] J. Debuse, B. de la Iglesia, C. Howard, and V. Rayward-Smith. Building the

KDD Roadmap: A Methodology for Knowledge Discovery. Industrial Knowl-

edge Management, R. Roy (Ed.), Springer-Verlag, London.:179–196, 2000.

[25] T. Dietterich. Experimental comparison of three methods for constructing

ensembles of decision trees: bagging, boosting, and randomization. Machine

Learning, 40 (2):139–158, 2000.

[26] K. Dowsland. Simulated Annealing. In Modern Heuristic Techniques for Com-

binitorial Problems, C. R. Reeves (eds), pages 20–69, Oxford, UK, 1993. Black-

well Scientific.

[27] F. Farnstrom, J. Lewis, and C. Elkan. Scalability for Clustering Algorithms

Revisited. ACM SIGKDD, 2:1:5151–57, Jul 2000.

[28] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. Knowledge Discovery and

data mining: Towards a Unifying Framework. In Proceedings of the second

International Conference on Knowledge Discovery and data Mining (KDD-96),

pages 82–88. AAAI Press, 1996.

[29] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. The KDD Process for Extract-

ing Useful Knowledge from Volumes of Data. Communications of the ACM,

39(2):27–34, 1996. ACM, 1996.

[30] U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. (eds) Uthurusamy. Advances

in Knowledge Discovery and Data Mining. AAAI Press / The MIT Press, 1996.

Bibliography 155

[31] D. Fogel. Evolutionary Computation Toward a New Philosophy of Machine

Intelligence. IEEE Press, 1995.

[32] D. Fogel. The Advantages of Evolutionary Computation. Biocomputing and

Emergent Computation, pages 1–11, 1997.

[33] D. Fogel. An Introduction to Simulated Evolutionary Optimization. IEEE

Transactions on Neural Networks, pages 3–14, January 1994.

[34] D. B. (Editor) Fogel. Evolutionary Computation: The Fossil Record. Wiley-

IEEE Press, 1998.

[35] L. Foulds. Optimization Techniques : An Introduction. Springer-Verlag, New

York, 1981.

[36] A. S. Fraser. Simulation of genetic systems by automatic digital computers.

Australian Journal of Biological Science, 10:484–491, 1957.

[37] A. Freitas. A Genetic Programming Framework for Two Data Mining Tasks:

Classification and Generalized Rule Induction. In GP97: Proceedings of the

second Annual Conference, pages 96–101. Morgan Kaufmann, 1997.

[38] A. Freitas. Understanding the Crucial Role of Attribute Interaction in Data

Mining. Artificial Intelligence Review 16(3), pages 177–199, 2001.

[39] A. Freitas. Data Mining and Knowledge Discovery with Evolutionary Algo-

rithms. Springer-Verlag, 2002.

[40] F. Glover and M. Laguna. Tabu Search. In In Modern Heuristic Techniques for

Combinitorial Problems, C. R. Reeves (eds), pages 70–151, Oxford, UK, 1993.

Blackwell Scientific.

Bibliography 156

[41] D. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learn-

ing. Addison Wesley, 1989.

[42] M. Gonzales. Data Mining: A Call To Action. Intelligent Enterprise,

(2003, April). http://www.intelligententerprise.com/030405/606feat2

1.shtml.

[43] C. Guerra-Salcedo and D. Whitley. Genetic Approach to Feature Selection For

Ensemble Creation. In Proceedings of the Genetic and Evolutionary Computa-

tion Conference, pages 236–243, 1999.

[44] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan

Kaufmann, San Francisco, 2001.

[45] T. Ho. The Random Subspace Method for Constructing Decision Forests. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 20 (8):832–844,

1998.

[46] J. Holland. Adaptation in Natural and Artificial Systems. MIT Press, 1995.

[47] H. Hotelling. Analysis of a Complex of Statistical Variables into Principal

Components. Journal of Educational Psychology, 24:417–441, 1933.

[48] A. Jain, M. Murty, and P. Flynn. Data Clustering: A Review. ACM Computing

Surveys, 31:30:264–323, 1999.

[49] G. John, R. Kohavi, and K. Pfleger. Irrelevant Features and Subset Selection

Problem. In Proceedings of the Eleventh International Conference on Machine

Learning, pages 121–129. Morgan Kaufmann Publishers, 1994.

[50] I. Jolliffe. Principal Component Analysis. Springer-Verlag, second edition edi-

tion, 2002.

Bibliography 157

[51] G. Kass. An Exploratory Technique for Investigating Large Quantities of Cat-

egorical Data. Applied Statistics, 29:119–127, 1980.

[52] K. Kira and L. Rendell. The Feature Selection Problem: Traditional Method

and a New Algorithm. In Proceedings of the Tenth National Conference on

Artificial Intillengence, pages 129–134. MIT Press, 1992.

[53] R. Kohavi and G. John. Wrappers for Feature Subset Selection. Artificial

Intellengence 97, pages 273–324, 1997.

[54] I. Kononenko. Estimating Attributes: Analysis and Extensions of Relief. In

Proceedings of the Seventh European Conference on Machine Learning, pages

171–182. Springer-Verlag, 1994.

[55] J. Koza. Genetic Programming: On the Programming of Computers by Natural

Selection. MIT Press, Cambridge, MA, USA, 1992.

[56] J. Koza. Genetic Programming II: Automatic Discovery of Reusable Programs.

MIT Press, Cambridge, MA, 1994.

[57] J. Koza, F. Bennett III, D. Andre, and M. Keane. Genetic Programming III:

Darwinian Invention and Problem Solving. Morgan Kaufmann, San Francisco,

CA, 1999.

[58] M. Kubat, I. Bratko, and R. Michalski. A Review of Machine Learning Methods.

John Wiley and Sons Ltd., 1998.

[59] I. Kuscu. A Genetic Constructive Induction Model. In Proceedings of Congress

on Evolutionary Computation, Angeline, P. J. and Michalewicz, Z. and Schoe-

nauer, M. and Yao, X. and Zalzala, A. (Eds), volume 1, pages 212–217. IEEE

Press, 1999.

Bibliography 158

[60] P. Langley and S. Sage. Oblivious Decision Trees and Abstract Cases. In

Working Notes of the AAAI94 Workshop on CaseBased Reasoning, 1994.

[61] C. Lee and D. Landgrebe. Feature Extraction Based on Decision Boundaries.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 15 (4), 1993.

[62] H. Liu and H. Motoda. Feature Extraction, Construction and Selection: A Data

Mining Perspective. Kluwer Academic Publishers, Boston/Dordrecht/London,

Boston, 1998.

[63] H. Liu, H. Motoda, and L. Yu. Feature Extraction, Selection, and Construction.

In Handbook of Data Mining (Human Factors And Ergonomics), Nong Ye (ed),

pages 409 – 423. Lawrence Erlbaum Associates, Inc., 2003.

[64] W. Loh and Y. Shih. Split Selection Methods for Classification Trees. Statistica

Sinica, 7:815–840, 1997.

[65] R. Marmelstein and G. Lamont. Pattern Classification using a Hybrid Genetic

Program Decision Tree Approach. In Genetic Programming 1998: Proceedings

of the Third Annual Conference, Koza, J. and Banzhaf, W. and Chellapilla, K.

and Deb, K. and Dorigo, M. and Fogel, D. and Garzon M. and Goldberg, D.

and Iba H. and Riolo, R. (eds), pages 223–231, San Francisco, CA, USA, 1998.

Morgan Kaufmann.

[66] B. Masand and G. Piatetsky-Shapiro. Discovering Time Oriented Abstractions

in Historical Data to Optimize Decision Tree Classification. In Advances in

Genetic Programming, Angeline, P. and Kinnear Jr, E. (Eds), volume 2, pages

489–498. MIT Press, 1996.

Bibliography 159

[67] C. Matheus and L. Rendell. Constructive Induction on Decision Trees. In

Proceedings of the Eleventh International Joint Conference on Artificial Intel-

ligence, pages 645–650, San Mateo, CA, 1989. Morgan Kaufmann.

[68] C. Merz and P. Murphy. UCI Repository of Machine Learning Databases. 1996.

http://www.ics.uci.edu/\simmlearn/MLRepository.

[69] T. Mitchell. Machine Learning. WCB/McGraw-Hill, 1997.

[70] W. Moore and S. Lee. Efficient Algorithms for Minimizing Cross Validation

Error. In Machine Learning: Proceedings of the Eleventh International Confer-

ence, W. Cohen and H. Hirsh (eds). Morgan Kaufmann, 1994.

[71] M. Muharram and Smith. G. A Comparison of GP Fitness Functions in Evolu-

tionary Feature Construction. Accepted in IEEE Transaction on Knowledge and

Data Engineering (TKDE), 2005. A Special Issue on Intelligent Data Prepara-

tion.

[72] M. Muharram and G. Smith. The Effect of Evolved Attributes on Classification.

In AI 2003, Advances in Artificial Intelligence, 16th Australian Conference on

AI, Perth 2003 Lecture Notes in Artifical Intelligence, LNAI, no 2903, T.D.

Gedeon and L. C. C. Fung (Eds), pages 933–941. Springer-Verlag, 2003.

[73] M. Muharram and G. Smith. Evolutionary Feature Construction using Infor-

mation Gain and Gini Index. In EUROGP2004, Proceedings of the Seventh

European Conference on Genetic Programming, Coimbra 2004, Lecture Notes

in Artificial Intelligence, LNAI, no 3003, pages 379–288. Springer-Verlag, 2004.

[74] S. Murthy and S. Salzberg. A System for Induction of Oblique Decision Trees.

Journal of Artificial Intelligence Research, 2:1–32, 1994.

Bibliography 160

[75] F. Otero, M Silva, M. Freitas, and J. Nievola. Genetic Programming For At-

tribute onstruction in Data Mining. In Genetic Programming: Proceeding of

the Sixth European Conference (EuroGP-2003), LNCS., volume 2610, pages

384–393, 2003.

[76] G. Pagallo and D. Haussler. Boolean Feature Disovery in Empirical Learning.

Machine Learning, 5:199, 1990.

[77] K. Pearson. On Lines and Planes of Closest Fit to Systems of Points in Space.

Philosophical Magazine, 2:559–572, 1901.

[78] W. Punch, E. Goodman, M. Pei, C. Lai, P. Hovland, and R. Enbody. Further

Research on Feature Selection and Classification Using Genetic Algorithms. In

Proceedings Fifth International Conference on Genetic Algorithms, pages 557–

564, 1993.

[79] J. Quinlan. Induction of Decision Trees. Machine Learning, 1:81–106, 1986.

[80] J. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San

Mateo, 1993.

[81] M. Qureshi. The Evolution of Agents. PhD Thesis, 2001.

[82] M. Raymer, W. Punch, E. Goodman, and L. Kuhn. Genetic Programming

for Improved Data Mining: An Application to the Biochemistry of Protein

Interactions. In Proceedings GP 1996, pages 375–380. MIT Press, 1996.

[83] RuleQuest Research. See5: An Informal Tutorial. http://www.rulequest.com.

[84] G. Richards, V. Rayward-Smith, P. Snksen, S. Carey, and C. Weng. Data

mining For Indicators of Early Mortality in a Database of Clinical Records. In

Artificial Intelligence in Medicine, volume 22(3), pages 215–231. Elsevier, 2001.

Bibliography 161

[85] R. Setiono and H. Liu. Feature Extraction via Neural Networks. In Feature

Extraction, Construction and Selection: A Data Mining Perspective. H. Liu and

H. Motoda (eds) (1998). 2nd Printing, pages 191–204, Boston, 2001. Kluwer

Academic Publishers.

[86] J. Sherrah. Automatic Feature Extraction for Pattern Recognition. PhD thesis,

University of Adelaide, South Australia, 1998.

[87] J. Sherrah, R. Bogner, and A. Bouzerdoum. The Evolutionary Pre–Processor:

Automatic Feature Extraction for Supervised Classification using Genetic Pro-

gramming. In GP-97, Proceedings of the Second Annual Genetic Programming

Conference, University of Stanford, CA, Koza, J., Deb, K., Dorigo, M., Fogel,

D., Garzon, M., Iba, H., and Riolo, R. (Eds), pages 304–312. Morgan Kauf-

mann, 1997.

[88] W. Siedlecki and J. Sklansky. A Note on Genetic Algorithms For Large–Scale

Feature Selection. Pattern Recognition Letters, 10:335–347, 1989.

[89] G. Smith and G. Richards. A Report on Apple NIR Data for Sinclair Interna-

tional Ltd. A Confidential, Commercial Report, 2000.

[90] M. Smith and L. Bull. Feature Construction and Selection Using Genetic Pro-

gramming and a Genetic Algorithms. In EuroGP 2003, Proceedings of 6th

European Conference on Genetic Programming, C. Ryan, T. Soule, E. Tsang,

R. Poli and E. Costa (Eds), pages 229–237, Essex, UK, 2003. Springer-Verlag.

[91] M. Smith and L. Bull. Using Genetic Programming for Feature Creation with a

Genetic Algorithm Feature Selector. In In Parallel Problem Solving from Nature

- PPSN VIII, X. Yao et al. (Eds). Springer-Verlag, 2004.

Bibliography 162

[92] S. Stanhope and J. Daida. Genetic Programming For Automatic Target Classi-

fication and Recognition in Synthetic Aperture Radar Imagery. In Evolutionary

Programming VII, Proceedings of the Seventh Annual Conference on Evolution-

ary Programming, V.W. Porto, N. Saravan, D. Waagen, and A.E. Eiben (Eds),

Berlin, pages 735–744. Springer-Verlag, 1998.

[93] W. Tackett. Genetic Programming for Feature Discovery and Image Discrimi-

nation. In Proceedings of the Fifth International Conference on Genetic Algo-

rithms, pages 303–309. Morgan Kaufmann, 1993.

[94] D. Treigueiros and R. Berry. The Application of Neural Network Based Methods

to the Extraction of Knowledge From Accounting Reports. In Proceedings of

24th Annual Hawaii International Conference on System Sciences IV, pages

137–146, 1991.

[95] H. Vafaie and K. DeJong. Feature Tpace Transformation Using Genetic Algo-

rithms. IEEE Intelligent Systems and their Applications, 13(2):57–65, 1998.

[96] S. Weiss and N. Indurkhya. Predictive Data Mining, a Practical Guide. Morgan

Kauffmann, San Francisco, California, 1998.

[97] S. Weiss and C. Kulikowski. Computer Systems That Learn: Classification and

Prediction Methods From Statistics, Neural Nets, Machine Learning and Expert

Systems. Morgan Kaufmann, 1991.

[98] R. Wirth and J. Hipp. Crisp-dm: Towards a Standard Process Model For Data

Mining. In Proceedings of the 4th International Conference on the Practical

Applications of Knowledge Discovery and Data Mining, Manchester, UK, April

2000.

Bibliography 163

[99] I. Witten and E. Frank. Data Mining: Pracitcal Machine Learning Tools and

Techniques with JAVA Implementations. Morgan Kaufmann Publishers, 2000.

[100] J. Wnek and R. Michalski. Hypothesis-Driven Constructive Induction in AQ17-

HCI: A Method and Experiments. Machine Learning, 14:139–168, 1994.

[101] M. Wong and K. Leung. Data Mining Using Grammar Based Genetic Progam-

ming and Applications. Kluwer Academic Publishers, USA, 2000.

[102] J. Wyatt and D. Altman. Prognostic Models: Clinically useful or Quickly

Forgotten? BMJ, 311:1539–1541, 1995.

[103] J. Yang and V. Honavar. Feature Subset Selection Using a Genetic Algorithm.

IEEE Intellegent Systems, 1998.

[104] X. Yao. Evolving Artificial Neural Networks. Proceedings of the IEEE,

87(9):1423–1447, 1999.

[105] Z. Zheng. Constructing X–of–N Attributes for Decision Tree Learning. In

Machine Learning, pages 1–43. Kluwer Academic Publishers, 1998.

Appendix A

This Appendix contains a description of each of the 5 public-domain data sets used in

the experiments of Chapter 5. Each data set has a subsection with a brief description

of the classification problem, and three tables containing the details of the data set.

The fields of the tables are:

Dimensions: number of input attributes from which to predict the class label.

Classes: number of distinct classes.

Samples: number of examples in the database.

Preparation: steps carried out on the data to prepare it for use with GP and for

the classification models.

Partition: number of samples of the training and testing sets, and the sampling

method used for partitioning.

Source: where the data came from.

Missing values: describes how missing values, if any, were handled by the original

collectors of the data.

The input attributes Table includes the name, type and range of values for each

input attribute from the database. The class distribution Table includes the name

164

Appendix A 165

of each class, along with the number and proportion of samples from the database

belonging to that class.

The Abalone Data Set

Predicting the age of abalone from physical measurements. The age (class) of abalone

is determined by the long process of cutting the shell through the cone, staining it,

and counting the number of rings through a microscope. Other measurements, which

are easier to obtain, are used to predict the age. Further information, such as weather

patterns and location (hence food availability) may be required to solve the problem.

From the original data, examples with missing values are removed (the majority

having the predicted value missing), and the ranges of the continuous values have

been scaled by dividing by 200.

Description of the data:
Dimensions 8
Classes 28
Samples 4177
Preparation For attribute 1, replaced M with 1, F with 2, and I with 3.
Partition 10–fold cross–validation
Source UCI Machine Learning Repository
Missing values None

Appendix A 166

The input attributes:
Attr. Name Type Values/Range
1 Sex categorical male, female, infant (converted to 1, 2 and 3)
2 Length numerical 0.075–0.815
3 Diameter numerical 0.055–0.65
4 Height numerical 0.00–1.13
5 Whole weight numerical 0.002–2.826
6 Shucked weight numerical 0.001–1.488
7 Viscera weight numerical 0.001–0.76
8 Shell weight numerical 0.002–1.005

The class distribution:
Class Samples Proportion (%)

1 1 0.0239
2 1 0.0239
3 15 0.3591
4 57 1.3646
5 115 2.7532
6 259 6.2006
7 391 9.3608
8 568 13.5983
9 689 16.4951
10 634 15.1784
11 487 11.6591
12 267 6.3921
13 203 4.8599
14 126 3.0165
15 103 2.4659
16 67 1.604
17 58 1.3886
18 42 1.0055
19 32 0.7661
20 26 0.6225
21 14 0.3352
22 6 0.1436
23 9 0.2155
24 2 0.0479
25 1 0.0239
26 1 0.0239
27 2 0.0479
29 1 0.0239

Total 4177 100.00

Appendix A 167

The Balance-Scale Data Set

This data set was generated to model psychological experimental results. Each ex-

ample is classified as having the balance scale tip to the right, tip to the left, or be

balanced. The attributes are the left weight, the left distance, the right weight, and

the right distance. The correct way to find the class is the greater of (leftdistance ×
leftweight) and (rightdistance × rightweight). If they are equal, it is balanced.

Description of the data:

Description of the data:
Dimensions 4
Classes 3
Samples 625
Preparation Replaced letters: L with 0, B with 1, R with 2
Partition 10–fold cross–validation
Source UCI Machine Learning Repository
Missing values None

The input attributes:
Attr. Name Type Values/Range
1 Left-Weight numerical 1, 2, 3, 4, 5
2 Left-Distance numerical 1, 2, 3, 4, 5
3 Right-Weight numerical 1, 2, 3, 4, 5
4 Right-Distance numerical 1, 2, 3, 4, 5

The class distribution:
Class Samples Proportion (%)
Left 288 46.08

Balanced 49 7.84
Right 288 46.08
Total 625 100.00

Appendix A 168

The Bupa Liver Disorders Data Set

Each line in the data constitutes the record of a single male individual. The first 5

variables are all blood tests which are thought to be sensitive to liver disorders that

might arise from excessive alcohol consumption. The final attribute was changed to a

nominal attribute by discretising the number of units consumed into two classes > 5

and <= 5.

Description of the data:
Dimensions 6
Classes 2
Samples 345
Preparation None
Partition 10–fold cross–validation
Source UCI Machine Learning Repository
Missing values None

The input attributes:
Attr. Name Type Values/Range
1 mcv (mean corpuscular volume) numerical 65–103
2 alkphos (alkaline phosphotase) numerical 23–138
3 sgpt (alamine aminotransferase) numerical 4–155
4 sgot (aspartate aminotransferase) numerical 5–82
5 gammagt (gamma–glutamyl transpeptidase) numerical 5–297
6 drinks numerical 0–20

The class distribution:
Class Samples Proportion (%)

1 (> 5) 88 25.5
2 (<= 5) 257 74.5

Total 345 100.00

Appendix A 169

The Waveform Data Set

This example is a three class problem based on linear waveforms described in

details by [16]. Each class consists of a random convex combination of two of these

waveforms sampled at the integers with noise added. The attributes are the values

of the measurement vectors (cases or instances).

Description of the data:
Dimensions 21
Classes 3
Samples 5000
Preparation None
Partition 10–fold cross–validation
Source UCI Machine Learning Repository
Missing values None

Appendix A 170

The input attributes:
Attr. Name Type Values/Range
1 f1 numerical -3.34–3.94
2 f2 numerical -3.25–3.88
3 f3 numerical -4.20–4.72
4 f4 numerical -3.84–5.75
5 f5 numerical -3.48–6.50
6 f6 numerical -2.76–7.62
7 f7 numerical -3.32–8.76
8 f8 numerical -3.52–7.84
9 f9 numerical -3.38–7.90
10 f10 numerical -1.79–7.63
11 f11 numerical -1.48–9.06
12 f12 numerical -1.69–7.40
13 f13 numerical -2.61–7.50
14 f14 numerical -2.82–7.75
15 f15 numerical -2.56–8.72
16 f16 numerical -2.99–7.86
17 f17 numerical -3.56–6.74
18 f18 numerical -4.08–6.20
19 f19 numerical -3.50–5.28
20 f20 numerical -3.57–4.65
21 f21 numerical -3.88–4.01

The class distribution:
Class Samples Proportion (%)

0 1657 33.14
1 1647 32.94
2 1696 33.92

Total 5000 100.00

Appendix A 171

The Wine Data Set

These data are the results of a chemical analysis of wines grown in the same

region in Italy but derived from three different cultivars. The analysis determined

the quantities of 13 constituents found in each of the three types of wines.

Description of the data:
Dimensions 13
Classes 3
Samples 178
Preparation None
Partition 10–fold cross–validation
Source UCI Machine Learning Repository
Missing values None

The input attributes:
Attr. Name Type Values/Range
1 Alcohol numerical -3.34–3.94
2 Malic acid numerical -3.25–3.88
3 Ash numerical -4.20–4.72
4 Alcalinity of ash numerical -3.84–5.75
5 Magnesium numerical -3.48–6.50
6 Total phenols numerical -2.76–7.62
7 Flavanoids numerical -3.32–8.76
8 Nonflavanoid phenols numerical -3.52–7.84
9 Proanthocyanins numerical -3.38–7.90
10 Color intensity numerical -1.79–7.63
11 Hue numerical -1.48–9.06
12 OD280/OD315 of diluted wines numerical -1.69–7.40
13 Proline numerical -2.61–7.50

Appendix A 172

The class distribution:
Class Samples Proportion (%)

1 59 33.15
2 71 39.89
3 48 26.96

Total 178 100.00

