
24th UK Workshop on Computational Intelligence (UKCI 2025) Emma Hart, Sarah L.
Thomson, Zhiyuan Tan, Tomas Horvath, Neil Urquhart, Kehinde Babaagba Eds.,

A Genetic Improvement Parameter Benchmark:
rand_malloc.c

William B. Langdon

Department of Computer Science, University College London, UK
w.langdon@cs.ucl.ac.uk

http://www.cs.ucl.ac.uk/staff/W.Langdon/

Abstract. We describe a new benchmark, https://github.com/wblangdon/
rand_malloc, for GI via parameter tuning, and demonstrate it using
heap performance data collected via our modified Valgrind DHAT from
Python/C++ simulation tool gem5 with the GNU gcc compiler’s glibc
malloc. As well as GI applications, rand_malloc might help develop,
stress test, tune, and benchmark other dynamic memory managers.

Keywords: automatic programming · software optimisation · data struc-
tures · dh_view ·M_MMAP_THRESHOLD · evolutionary computing ·
fitness landscapes · SBSE · Magpie · CMA-ES

1 Why a new benchmark

It is often said that for a subject to develop rapidly it needs well designed bench-
marks [31]. For example, genetic algorithms prospered following De Jong’s PhD
thesis [12] and Ackley’s work [1]. This has been further spurred by the Black Box
Optimization Benchmarking (BBOB) competition (e.g. [3]). Genetic Improve-
ment [2,15,26] uses search techniques such as genetic programming [28,18] and
increasingly Artificial Intelligence [6,14] to improve existing programs, e.g. to in-
crease performance [19], reduce energy consumption [7] or for security [25,23,24].

Genetic Improvement [26] has progressed since the introduction of standard
tools such as Gin [30] and MAGPIE [4]. Mostly Genetic Improvement, includ-
ing Automatic Program Repair [22], has concentrated upon improving existing
software by changing its source code [26], however software can sometimes be
improved by tuning parameters [21,10]. For example, Magpie can not only op-
erate on multiple programming languages (C/C++, Java, Python, Ruby, etc.)
but can also tune parameters. Indeed it can do both simultaneously [27].

gem5 [9] https://www.gem5.org/, is a state of the art discrete time simulator
for VLSI digital circuits, such as computer CPUs, GPUs, FPGAs, memory chips
and digital caches. It is open source and widely used both in university research
and in industry [13]. gem5 is written in a combination of C++ and Python
and contains more than a million lines of C++. It is usually compiled with
the GNU g++ compiler. As it actively supported and is open source, we have
used it for research in automated bug finding [11,13], robustness [17] and genetic

1

http://www.cs.ucl.ac.uk/staff/W.Langdon/
https://github.com/gintool/gin
https://github.com/bloa/magpie
https://www.gem5.org/

2 William B. Langdon

dh_view.js dhat_summary.awk order.cDhat runs gem5

Fig. 1. The target program is run by Valgrind’s DHAT to record every malloc oper-
ation. (Here slow down caused by DHAT is 160 fold.) DHAT’s output is processed by
our modified dh_view, in which all significance thresholds, e.g. sig: 0.005, are set to
zero. This means dh_view reports every use of malloc, not just the frequent ones. The
output of dh_view is converted into a C data structure #include file order.c, which is
compiled into rand_malloc

improvement [8]. Indeed by tuning GNU heap memory parameters we reduced
its heap by 11% [16]. Enthused by this initial success we tried tuning the heap
parameters of four more large C/C++ programs: Microsoft’s theorem prover Z3
(600 000 lines of C++), the GNU compiler itself, the Clang LLVM C++ compiler
and Redis Ltd.’s key-value store (150 000 LOC C++ compiled with the GNU
compiler and using the GNU heap). The results were mixed [20], which prompted
this similarly mixed more detailed study of the GNU C runtime library. (The
GNU C and C++ compiler’s dynamic memory use a common run time library,
which we will refer to simply as malloc.)

2 rand_malloc.c
rand_malloc is an abstraction of gem5/Python’s use of the C++ heap. gem5
was run by Valgrind’s DHAT (version 3.16.1) and gem5’s creation of dynamic
memory blocks, subsequent deletion and life time on the heap were recorded, see
Figure 1. DHAT’s significance threshold was set to zero, so that rand_malloc’s
include file, order.c, covers 100% of gem5’s use of the C++ heap. For simplicity
structures from different classes which have the same average size are combined
and, in Table 1 except for the smallest (average 1 bytes) and the largest, only
average sizes with more than 10 000 examples are shown. Notice in gem5, the
huge range of dynamic memory use, both in terms of the size of data structures
(1 byte to 3 MB) and their life times. The shortest lived data item lasts on average
only 55 instructions (0% of program duration) before it is deleted. Whilst the
longest, lasts 4 248 956 352 instructions (99.03% of program duration). By default
rand_malloc applies a linear time rescaling, so that each of its simulation time
steps corresponds to 500 instructions. Thus data with a lifetime of 55 instructions
are created and then immediately deleted. Whilst the longest lived are deleted
about 8.5 million simulation steps after they were created.

Although gem5 is (almost) deterministic, it is simulating events (such as
fetching data from memory) which, at a high level, appear to be in a random
order and to take a random length of time. Most of gem5’s use of the C++
heap is dominated by how it models events. For each event gem5 creates one or
more fixed data structures on the heap. These remain on the heap until gem5
has finish processing the event whereupon they are deleted. This random allo-
cation/deallocation would appear to be a reasonable model of many program’s

rand_malloc.c 3

use of dynamic memory. Therefor rand_malloc abstracts the details by assum-
ing memory is allocated from one of a small number of fixed classes at random.
Each class has an associated fixed heap block size and either a fixed life time or
a random life time of a given average length (see Table 1).

Like gem5, rand_malloc is a discrete time simulation. Since all it does is call
malloc and free, time is also simplified, so that each time step a new randomly
chosen item is added to the heap by calling malloc and the time when it will be
removed is recorded. After the block is added, if any blocks have reached their
time limit rand_malloc calls free for each of them. For simplicity each allocation
is modeled as one instruction. This is probably unrealistic and may lead to more
overlap of short lifetime blocks than actually happens in gem5. At the end of the
simulation, rand_malloc continues calling free in time order until all the blocks
it has added to the heap are removed.

3 Results

The GNU C runtime library, including malloc, has been under development
for several decades. We will concentrate upon two versions GLIBC 2.17 and
GLIBC 2.34 which differ in their level of support for 64 bit pointers, see Figure 2.
Notice in Figure 2 the one dimensional slice of the malloc parameter fitness
is remarkably flat but shows some scope for improvement. For example with
glibc 2.17 a saving of 188 KB is possible. Indeed this is confirmed by ten runs
of Magpie and ten runs of CMA-ES on the whole fitness space, i.e., all three
relevant malloc parameters (whereas Figure 2 shows a projection of the whole
search space). Magpie local search and CMA-ES were run with their default
parameters, except they were both allowed up to 1000 fitness evaluations. Details
are given in [16]. Although improvements seen here are small, rand_malloc might
be a useful testing and benchmarking tool for C, C++ and languages, such as
Python, which interface to C.

4 Summary

Although software has been optimised by Genetic Improvement parameter tun-
ing e.g. [21], rand_malloc is the first purposed designed benchmark for GI pa-
rameter tuning [5]. Use of Valgrind’s DHAT allows integration of real heap mem-
ory statistics. Here although rand_malloc approximates gem5’s use of dynamic
memory, we did not capture the more than 10% heap savings that both Mag-
pie and CMA-ES achieved when tuning gem5 directly [16]. Indeed results are
more like other large C++ programs [20]. We hope the availability of a simple
GI memory management benchmark will simulate further progress and so have
made rand_malloc available via https://github.com/wblangdon/rand_malloc.
Also it may be useful for both functional and performance testing of existing
and future compilers and their dynamic memory managers.

Acknowledgment My thanks to Nicholas Nethercote and the referees.

https://github.com/wblangdon/rand_malloc

4 William B. Langdon

Table 1. Summary of the size of gem5 dynamic data structures. Last four columns
relate to the number of rand_malloc simulation steps before the structure is deleted.

life time
Average size (bytes) number fraction mean std min–max

min 1 9379 0.1% 2789287 3827145 1–8496280
6 34819 0.5% 72004 763265 13–8496440
7 12043 0.2% 280036 1476808 13–8496498
8 138560 2.0% 108025 898063 0–8496436

10 24889 0.4% 2558509 325107 3–8496442
16 232591 3.3% 74028 666639 0–8496667
27 204866 2.9% 3559 170690 0–8496442
32 736320 10.5% 72413 747645 0–8496603
38 18107 0.3% 4697406 879031 0–8496438
48 304795 4.4% 694097 1790222 0–8496665
64 283653 4.0% 82438 613085 0–8492004
65 239296 3.4% 5647 212188 0–8492599
72 205862 2.9% 15093 324314 0–8496278
96 205610 2.9% 21837 420900 1–8496028
120 58384 0.8% 2163 130496 0–8080120
168 224602 3.2% 36052 375617 10–8492689
272 230124 3.3% 2901 113898 1–8496082
512 208190 3.0% 1996 91643 1–8496533

max 3145728 1 0.0% 8487315 0 –
others 129986 1.9% 2320468 3318545 0–8497914

 35.2

 35.4

 35.6

 35.8

 36

 36.2

 2 32 512 8192 131072

 default

232

ra
n
d

_m
a
llo

c
p
e
a
k

h
e
a
p

 s
iz

e
 (

m
e
g
a
b

y
te

s)

MMAP_THRESHOLD

glibc 2.34
glibc 2.17

MMAP_MAX = 0
MMAP_MAX = 0

Fig. 2. Lines show variation of maximum heap used by rand_malloc for two imple-
mentations of glibc with one of malloc’s tuning parameters (MMAP_THRESHOLD,
the other 6 are left at their default values). + data above 800 sampled at powers of

√
2.

Dots show CMA-ES sometimes found marginal improvement by zeroing one of the other
parameters. Notice the older glibc version does not deal correctly with this parameter
above 232. Non-linear horizontal scale.

rand_malloc.c 5

References

1. Ackley, D.H.: An empirical study of bit vector function optimization. In: Genetic
Algorithms and Simulated Annealing, chap. 13, pp. 170–204. Pittman (1987)

2. Arcuri, A., White, D.R., Clark, J., Yao, X.: Multi-objective improvement of soft-
ware using co-evolution and smart seeding. In: SEAL 2008. LNCS, vol. 5361,
pp. 61–70. Springer, Melbourne, Australia (2008), http://dx.doi.org/10.1007/
978-3-540-89694-4_7

3. Auger, A.: Benchmarking the (1+1) evolution strategy with one-fifth success rule
on the bbob-2009 function testbed. In: GECCO 2009. pp. 2447–2452. ACM, Mon-
treal, Canada (2009). https://doi.org/http://dx.doi.org/10.1145/1570256.1570342

4. Blot, A., Petke, J.: MAGPIE: Machine automated general performance improve-
ment via evolution of software. arXiv (2022), http://dx.doi.org/10.48550/arxiv.
2208.02811

5. Blot, A., Petke, J.: A comprehensive survey of benchmarks for improvement of
software’s non-functional properties. ACM Computing Surveys 57(7), Article no.
168 (2025), http://dx.doi.org/10.1145/3711119

6. Bouras, D.S., Petke, J., Mechtaev, S.: LLM-assisted crossover in genetic improve-
ment of software. In: GI@ICSE 2025. pp. 19–26. Ottawa (2025), http://dx.doi.org/
10.1109/GI66624.2025.00012, best presentation

7. Bruce, B.R.: The Blind Software Engineer: Improving the Non-Functional Prop-
erties of Software by Means of Genetic Improvement. Ph.D. thesis, Computer Sci-
ence, University College, London, UK (2018), http://www.cs.ucl.ac.uk/staff/W.
Langdon/ftp/papers/bruce_bobby_r_thesis.pdf

8. Bruce, B.R.: Automatically exploring computer system design spaces. In:
GI@GECCO 2022. pp. 1926–1927. Association for Computing Machinery, Boston,
USA (2022), http://dx.doi.org/10.1145/3520304.3534021

9. Bruce, B.R., Akram, A., Nguyen, H., Roarty, K., Samani, M., Fariborz, M., Reddy,
T., Sinclair, M.D., Lowe-Power, J.: Enabling reproducible and agile full-system
simulation. In: ISPASS 2021. pp. 183–193. , Stony Brook, NY, USA (2021), http:
//dx.doi.org/10.1109/ISPASS51385.2021.00035

10. Chi Ho Chan, Nita, S.: A three-stage genetic algorithm for compiler flag and library
version selection to minimize execution time. In: GI@ICSE 2025. pp. 1–2. Ottawa
(2025), http://dx.doi.org/10.1109/GI66624.2025.00009

11. Dakhama, A., Even-Mendoza, K., Langdon, W., Menendez, H.D., Petke, J.: En-
hancing search-based testing with LLMs for finding bugs in system simulators.
Automated Software Engineering p. Article:63 (2025), http://dx.doi.org/10.1007/
s10515-025-00531-7

12. De Jong, K.A.: An Analysis of the Behavior of a Class of Genetic Adaptive Systems.
Ph.D. thesis, Computer and Communications Sciences, University of Michigan,
USA (1975)

13. Even-Mendoza, K., Menendez, H.D., Langdon, W., Dakhama, A., Petke, J., Bruce,
B.R.: Search+LLM-based testing for ARM simulators. In: ICSE 2025 (SEIP).
pp. 469–480. Ottawa, Canada (2025), https://solar.cs.ucl.ac.uk/pdf/ICSE_SEIP_
2025___SearchSYS_and_ARM.pdf

14. Jingyuan Wang, Hanna, C., Petke, J.: Large language model based code comple-
tion is an effective genetic improvement mutation. In: GI@ICSE 2025. pp. 11–18.
Ottawa (2025), http://dx.doi.org/10.1109/GI66624.2025.00011, best paper

15. Langdon, W.B.: Genetic improvement of programs. In: MENDEL 2012. Brno Uni-
versity of Technology, Brno, Czech Republic (2012), http://www.cs.ucl.ac.uk/staff/
W.Langdon/ftp/papers/Langdon_2012_mendel.pdf, invited keynote

http://dx.doi.org/10.1007/978-3-540-89694-4_7
http://dx.doi.org/10.1007/978-3-540-89694-4_7
https://doi.org/http://dx.doi.org/10.1145/1570256.1570342
https://doi.org/http://dx.doi.org/10.1145/1570256.1570342
http://dx.doi.org/10.48550/arxiv.2208.02811
http://dx.doi.org/10.48550/arxiv.2208.02811
http://dx.doi.org/10.1145/3711119
http://dx.doi.org/10.1109/GI66624.2025.00012
http://dx.doi.org/10.1109/GI66624.2025.00012
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/bruce_bobby_r_thesis.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/bruce_bobby_r_thesis.pdf
http://dx.doi.org/10.1145/3520304.3534021
http://dx.doi.org/10.1109/ISPASS51385.2021.00035
http://dx.doi.org/10.1109/ISPASS51385.2021.00035
http://dx.doi.org/10.1109/GI66624.2025.00009
http://dx.doi.org/10.1007/s10515-025-00531-7
http://dx.doi.org/10.1007/s10515-025-00531-7
https://solar.cs.ucl.ac.uk/pdf/ICSE_SEIP_2025___SearchSYS_and_ARM.pdf
https://solar.cs.ucl.ac.uk/pdf/ICSE_SEIP_2025___SearchSYS_and_ARM.pdf
http://dx.doi.org/10.1109/GI66624.2025.00011
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/Langdon_2012_mendel.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/Langdon_2012_mendel.pdf

6 William B. Langdon

16. Langdon, W.B., Bruce, B.R.: The gem5 C++ glibc heap fitness landscape. In:
GI@ICSE 2025. pp. 3–10. Ottawa (2025), http://dx.doi.org/10.1109/GI66624.
2025.00010

17. Langdon, W.B., Clark, D.: Deep mutations have little impact. In: GI@ICSE 2024.
pp. 1–8. ACM, Lisbon (2024), http://dx.doi.org/10.1145/3643692.3648259, best
paper

18. Langdon, W.B., Harman, M.: Genetically improved CUDA C++ software. In:
EuroGP 2014. LNCS, vol. 8599, pp. 87–99. Springer, Granada, Spain (2014),
http://dx.doi.org/10.1007/978-3-662-44303-3_8

19. Langdon, W.B., Harman, M.: Optimising existing software with genetic program-
ming. IEEE Transactions on Evolutionary Computation 19(1), 118–135 (2015),
http://dx.doi.org/10.1109/TEVC.2013.2281544

20. Langdon, W.B., Petke, J., Clark, D.: gem5/z3/gcc/clang/redis glibc heap fitness
landscapes. In: Evostar 2025 Late breaking abstracts. Trieste (2025), http://www.
cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/Langdon_2025_evostarLBA.pdf

21. Langdon, W.B., Petke, J., Lorenz, R.: Evolving better RNAfold structure predic-
tion. In: EuroGP 2018. LNCS, vol. 10781, pp. 220–236. Springer Verlag, Parma,
Italy (2018), http://dx.doi.org/10.1007/978-3-319-77553-1_14

22. Le Goues, C., Pradel, M., Roychoudhury, A.: Automated program repair. Commu-
nications of the ACM 62(12), 56–65 (2019), http://dx.doi.org/10.1145/3318162

23. Leach, K., Dougherty, R., Spensky, C., Forrest, S., Weimer, W.: Evolutionary com-
putation for improving malware analysis. In: GI@ICSE 2019. pp. 18–19. IEEE,
Montreal (2019), http://dx.doi.org/10.1109/GI.2019.00013, best presentation

24. Mesecan, I., Blackwell, D., Clark, D., Cohen, M.B., Petke, J.: Keeping secrets:
Multi-objective genetic improvement for detecting and reducing information leak-
age. In: ASE 2022. p. Article no. 61. Michigan, USA (2022), http://dx.doi.org/10.
1145/3551349.3556947

25. Petke, J.: Genetic improvement for code obfuscation. In: GI-2016. pp. 1135–1136.
ACM, Denver (2016), http://dx.doi.org/10.1145/2908961.2931689

26. Petke, J., Haraldsson, S.O., Harman, M., Langdon, W.B., White, D.R., Woodward,
J.R.: Genetic improvement of software: a comprehensive survey. IEEE Transac-
tions on Evolutionary Computation 22(3), 415–432 (2018), http://dx.doi.org/doi:
10.1109/TEVC.2017.2693219

27. Songpetchmongkol, T., Blot, A., Petke, J.: Empirical comparison of runtime im-
provement approaches: Genetic improvement, parameter tuning, and their combi-
nation. In: GI@ICSE 2025. pp. 35–42. Ottawa (2025), http://dx.doi.org/10.1109/
GI66624.2025.00014

28. Weimer, W., Nguyen, T., Le Goues, C., Forrest, S.: Automatically finding patches
using genetic programming. In: ICSE 2009. pp. 364–374. Vancouver (2009), http:
//dx.doi.org/10.1109/ICSE.2009.5070536, winner ACM SIGSOFT Distinguished
Paper Award. Gold medal at 2009 HUMIES. Ten-Year Most Influential Paper [29]

29. Weimer, W., Nguyen, T., Le Goues, C., Forrest, S.: It does what you say, not
what you mean: Lessons from a decade of program repair. ICSE 2019 (2019),
https://conf.researchr.org/profile/icpc-2019/westleyweimer

30. White, D.R.: GI in no time. In: GI-2017. pp. 1549–1550. ACM, Berlin (2017),
http://dx.doi.org/doi:10.1145/3067695.3082515

31. White, D.R., et al.: Better GP benchmarks: community survey results and pro-
posals. Genetic Programming and Evolvable Machines 14(1), 3–29 (2013), http:
//dx.doi.org/10.1007/s10710-012-9177-2

http://dx.doi.org/10.1109/GI66624.2025.00010
http://dx.doi.org/10.1109/GI66624.2025.00010
http://dx.doi.org/10.1145/3643692.3648259
http://dx.doi.org/10.1007/978-3-662-44303-3_8
http://dx.doi.org/10.1109/TEVC.2013.2281544
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/Langdon_2025_evostarLBA.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/Langdon_2025_evostarLBA.pdf
http://dx.doi.org/10.1007/978-3-319-77553-1_14
http://dx.doi.org/10.1145/3318162
http://dx.doi.org/10.1109/GI.2019.00013
http://dx.doi.org/10.1145/3551349.3556947
http://dx.doi.org/10.1145/3551349.3556947
http://dx.doi.org/10.1145/2908961.2931689
http://dx.doi.org/doi:10.1109/TEVC.2017.2693219
http://dx.doi.org/doi:10.1109/TEVC.2017.2693219
http://dx.doi.org/10.1109/GI66624.2025.00014
http://dx.doi.org/10.1109/GI66624.2025.00014
http://dx.doi.org/10.1109/ICSE.2009.5070536
http://dx.doi.org/10.1109/ICSE.2009.5070536
https://conf.researchr.org/profile/icpc-2019/westleyweimer
http://dx.doi.org/doi:10.1145/3067695.3082515
http://dx.doi.org/10.1007/s10710-012-9177-2
http://dx.doi.org/10.1007/s10710-012-9177-2

	A Genetic Improvement Parameter Benchmark: rand_malloc.c

