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ABSTRACT
Modern compilers and interpreters provide code optimizations
before and during run-time to stay competitive with alternative
execution environments, thus moving required domain knowledge
about the compilation process away from the developer and speed-
ing up resulting software. These optimizations are often based on
formal proof, or alternatively have recovery paths as backup.

This publication proposes an architecture utilizing abstract syn-
tax trees (ASTs) to optimize the runtime performance of code with
stochastic - search based - machine learning techniques. From these
AST modifying optimizations a pattern mining approach attempts
to find transformation patterns which are applicable to a software
language. The application of these patterns happens during the
parsing process or the programs run-time.

Future work consists of implementing and extending the pre-
sented architecture, with a considerable focus on the mining of
transformation patterns.
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1 INTRODUCTION
When creating a new programming language or implementing a
new execution environment (such as an interpreter or a compiler)
for an existing language, one challenge is to achieve sufficient
performance to be competitive with other existing environments.
The Truffle interpreter Framework [21] as well as the Graal just-
in-time (JIT) compiler [12] both address these needs by providing
a framework to rapidly prototype new languages, which already
have the benefit of optimization built in due to the aggressive
optimizations of the Graal compiler.

This publication, which is part of an ongoing research series [6],
presents an addition to Truffle and Graal in the form of stochastic
performance optimizations. These optimizations are done with
Genetic Improvement (GI) [8, 10]. GI applies search based machine
learning algorithms, such as genetic or evolutionary algorithms, to
code in order to improve it’s non functional features such as runtime
performance, memory usage or even stability by automatically
fixing bugs. The core research question of the series is to find
optimizations using GI that improve run-time performance and
provide benefits beyond already existing compiler optimizations.
The research concentrates on additional optimizations; replacing
existing ones is not our goal. This publication primarily addresses
a suggested architecture that enables stochastic optimizations of
code in Truffle and Graal and a subsequent identification of code
transformation patterns that can be applied in a deterministic way,
and are also fast enough to apply during program runtime. The GI
part is out of the scope of this publication, with details available in
previous publications in the series [7].

In the context of this publication stochastic code optimizations
are executed on an abstract syntax tree (AST), modifying the AST
before it is interpreted by Truffle or compiled by Graal. The origi-
nating AST is provided by an implementer, and the modified AST
is reached using GI machine learning techniques. These techniques
are the reason the optimizations have to be considered stochastic,
as the outcome of the optimization cannot be predicted. This pro-
vides the challenge of verifying that the modified AST retains the
functionality of the original AST. The advantage of this approach
lies in the implementation specific optimizations which enable sig-
nificant performance improvements [10]. The application of these
optimizations is considered to be especially useful in domains where
some algorithmic accuracy can be sacrificed for faster performance,
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such as improving the performance of heuristic algorithms, or for
example shaders [16].

The remainder of this publication is structured as follows:
• Related work in section 2 presents applications of machine
learning in compiler optimizations.

• The proposed architecture which enables stochastic opti-
mizations, and identification of transformation patterns, as
well as the application of these patterns is discussed in Fig-
ure 3.

• Planned future steps concerning the development and evalu-
ation of the presented framework are outlined in section 4.

• A conclusion is presented in section 5

2 BACKGROUND
The following section gives an overview of the Graal Compiler, the
Truffle Interpreter and Genetic Improvement. In the context of this
work these technologies are used as follows:

• Graal is used as compiler for optimized languages, It is a
highly optimizing JIT compiler that is available in Open-
JDK since Java 9 and is used to compile Truffle ASTs from
bytecode to machine code.

• Truffle is the interpreter framework that the optimized lan-
guages are written in. It can interpret AST nodes on the JVM
without the use of Graal, albeit with a lower performance.

• Genetic Improvement is a search based machine learning
technique used to optimize the Truffle ASTs before they are
interpreted by Truffle or compiled by Graal.

The technology stack was selected as Truffle and Graal allow rapid
prototyping of a programming language. Additionally, the AST
structure of Truffle enables easy manipulation of a given AST [21,
22]. These reasons make them suitable for stochastic optimizations.

2.1 Graal
Graal [12] is an aggressively optimizing just-in-time (JIT) compiler,
written in Java as part of the OpenJDK project. It compiles Truffle
ASTs (in bytecode) to efficient machine code and features several
optimizations, including speculative optimizations which can be
taken back if necessary (called deoptimization). Graal uses an IR
that is a directed graph describing both control flow and data flow.
The Graal IR can be viewed with the Ideal Graph Visualizer (IGV).
Both Graal and IGV are open source and build a basis for research
into compiler optimizations. [15, 17]

2.2 Truffle
Truffle [21] is a self-optimizing interpreter framework for imple-
menting new languages based on Abstract Syntax Trees (AST).
Truffle itself does not feature a lexer, parser or linker. The focus
relies solely on implementing AST nodes that are combined into
a Truffle language that can be executed on any Java VM. Every
node of an implemented language consists of a generic implemen-
tation, and several specializations for each datatype the node sup-
ports. This enables dynamic typing of the language, as well as a
self-optimization of the language by rewriting the nodes through
specialization or generalization. The Truffle optimizer integrates
with the Graal compiler for high performance compilation and

execution. As Truffle-based languages are executed on the JVM,
they provide several services such as garbage collection. Truffle
already features several guest language implementations, including
Python, Ruby, JavaScript and C. Truffle, as well as several of its
guest languages, are open source. [2, 22]

2.3 Genetic Improvement
GI applies search based machine learning algorithms to code, in
order to improve it’s non functional features such as runtime per-
formance, memory usage or even stability by automatically fixing
bugs. The algorithms applied are often from the domain of genetic
algorithms, which maintain a population of possible solutions to
a problem and breed them into better solutions over several gen-
erations by using evolutionary operators such as crossover and
mutation. Each individual in this population is assigned a quality
which is calculated through a fitness function. [3, 10, 20]

3 ARCHITECTURE OVERVIEW
The architecture for stochastic performance optimizations is rooted
in the concept of modifying abstract syntax trees (AST) which
are then interpreted or compiled. In order to lay out the essential
concepts behind this architecture, a running example is used for the
remainder of this section. The example uses a for loop to calculate
the sum of all values in a list of positive integers. As can be seen in
Listing 1 the iteration is done with accessing each element with a
get method and an index. Figure 1 shows the running example as
a Truffle AST. While this code is functionally correct it presents a
significant loss of performance compared to the use of an iterator.
While this example is constructed, and thus obvious performance
losses like this occur often and can happen simply due to missing
domain knowledge of a developer. For example in Java the same
problem could be solved with the streaming library, improving the
performance even further.

Listing 1: Running Example - for loop calculating the sum
of all values in a list of positive integers
int x = 0;

List <Integer > a = listOfPositiveInt ();

for (int i = 0; i < a.size(); i++) {

x += a.get(i);

}

3.1 Optimization Lifecycle
The optimization process is split into two lifecycle phases as can
be seen in Figure 2.

The offline phase is targeted towards optimizing specific code (a)
and towards discovering generally applicable patterns in a Truffle
language (b). The core concern when optimizing specific code, is
retaining the functional aspects of it, while improving on runtime
performance. From a greater number of these optimizations lan-
guage specific recurring patterns can be identified by comparing
in- and output ASTs.

The online phase happens during the a programs runtime. Before
a parsed Truffle AST is handed to Truffle for interpretation, or to
Graal for compilation a check happens if it fits any of the patterns
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Figure 1: Running Example - Truffle AST representation of
Listing 1

Figure 2: The optimization process is split into an offline
and online phase. In the offline phase stochastic optimiza-
tions (a) are applied to code, and recurring transformation
patterns (b) are identified. These patterns are then applied
to code in the online phase (c).

which were identified in the offline phase. If it does the pattern is
applied, and the modified AST is handed to Truffle or Graal.

This lifecycle is supported by a Knowledge Base, and two closely
related frameworks, which can be seen in Figure 3. Both of the
frameworks are integrated in a Java Hotspot VM execution environ-
ment, with Graal as compiler and Truffle as interpreter. While the
frameworks themselves are language independent, the learning of
patterns is happening on a guest language, for which a knowledge
base is built up. The optimizations themselves are specific to a Guest
Application.

3.2 Language Analysis
In order to enable optimizations on any Guest Language, steps need
to be taken to gain a general information about all available node
implementations which can form an AST. This is done by the Truf-
fle Language Analyzer (TLA). Using the current ClassLoader the
TLA collects and analyzes all existing AST nodes in all packages or
classes given by an implementer into the Truffle Language Informa-
tion (TLI). AST nodes are identified by checking if they implement
the Node class provided by Truffle.

Listing 2: Example Truffle Implementation
@NodeChildren ({

@NodeChild("leftNode"),

@NodeChild("rightNode")

})

public abstract class

MinicIntArithmeticNode extends

MinicIntNode {

public abstract static class

MinicIntAddNode extends

MinicIntArithmeticNode {

@Specialization

public int add(int left , int right) {

return left + right;

}

}

}

@GeneratedBy(MinicIntAddNode.class)

public static final class

MinicIntAddNodeGen extends

MinicIntAddNode {

@Child private MinicIntNode leftNode_;

@Child private MinicIntNode rightNode_;

private MinicIntAddNodeGen(MinicIntNode

leftNode , MinicIntNode rightNode) {

this.leftNode_ = leftNode;

this.rightNode_ = rightNode;

}

public static MinicIntAddNode

create(MinicIntNode leftNode ,

MinicIntNode rightNode) {

return new MinicIntAddNodeGen(leftNode ,

rightNode);

}

...

}

The purpose of the TLI is to provide information on nodes of a
language in a generalized way. It contains information on which
nodes are terminal nodes, which nodes are non-terminal and a
mapping from each abstract node (represented as an abstract class)
to all found implementations of that node is provided. This informa-
tion is persisted to the Knowledge Base, and used by the Optimizer
for stochastic optimization, and the Pattern Framework to identify
language specific patterns. An example of an abstract node can
be seen in Listing 2 with the classes MinicIntArithmeticNode and
MinicIntAddNode. Truffle auto-generated the specific class MinicIn-
tAddNodeGen below the generic classes. Finally, the TLI contains
an initialization mechanism for each non-abstract class as each
Truffle Node can be instantiated by only one of the following three
methods:

• Agiven public constructor exists only on non-abstract classes
created by an implementer
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Figure 3: The architecture of the optimization framework in combination with Truffle and Graal (extended from [7].)

• A create method that is auto-generated from Truffle nodes
for abstract classes (as seen in Listing 2)

• A node factory that is auto-generated by Truffle with the
GenerateNodeFactory annotation

3.3 Stochastic Optimization
The stochastic optimization (Figure 2 -> (a), Figure 3 -> program spe-
cific part of the optimization framework and application program-
ming interface (API), from an interpreter and compiler perspective
needs to address the need of retaining the required syntactic cor-
rectness of the optimized code. In the architecture, this is achieved
by defining Experiments, conducted by an Optimizer who produces
Experiment Results, which are also persisted in the Knowledge Base.
These experiments contain a selection of test cases (in / output value
combinations) which are applied to the original AST for verification,
and then to the modified AST for a comparison. This results in a
correctness score between 0 and 1, formally defined as follows [7]:

correctness(AST ,tests) =

∑tests
n=1 succeeded(AST ,test )∑

tests
(1)

In the context of this work the definition of required correctness
lies with the person utilizing the optimization framework. For many
software domains, compilers and intepreters especially, keeping

the syntactical correctness intact, is essential. For other domains
the required correctness is less than an exact match. Amongst those
are, for example are graphics engines, specifically shaders, where a
high framerate is more important than rendering an exact image
[9, 16].

Since compilers have been proven to introduce bugs and security
issues with optimizations even when there exists formal proof of
correctness [1, 19], and the applied optimizations can not produce
proof, an annotation preventing the optimization technique entirely
is provided in the framework. Inversely where the requirement of
code correctness can be reduced in favor of performance another
annotation is introduced that allows a developer to define how
much an optimized version is allowed to differ from the original
solution.

To generalize the approach of verifying test correctness, a re-
gression test suite is automatically generated by input fuzzing. This
is achieved by utilizing already existing test suite generation frame-
works such as Randoop [13] or EvoSuite [14]. As Truffle provides
access to the memory, intermediate values can also be monitored
during testing. In addition to the automatically generated tests,
developers can define manually created tests and add them in the
optimization annotation. In order to prioritize parts of the func-
tionality, manually defined tests can be selected as must pass, in



Stochastic Performance Optimizations in Compilers and Interpreters ManLang’18, Sept. 2018, Linz, Austria

Figure 4: Running Example - Optimized version of Figure 1

addition to defining a percentage of tests that needs to be passed,
or value deviations from an/several inputs.

The runtime of both the original AST and the optimized one
is analyzed and a RuntimeProfile is created containing statistical
information such as the Median, Quartiles, minimal and maximal
runtimes, and the amount of executions in each quartile. This per-
formance analysis must be performed on separate JVM instances.
Otherwise every AST being measured would benefit from the opti-
mizations the Graal Compiler already performed on previous ASTs.
For correct measurement 200.000 executions are recorded. Graal
has a warm-up phase for several of its optimizations which requires
a correct performance measurement to ignore executions before
the initial warm-up is completed.

When considering the running example, a possible improvement
that can be found with the stochastic optimization is replacing
the for loop and get access, with a for each loop. This is shown in
Figure 4. In this case the developer used neither annotation, leading
to a default satisfying all test cases. In the example a developer
would not need to manually define test cases either.

3.4 Pattern discovery
When a sufficient amount of Experiments has been conducted, the
Truffle Pattern Detector (TPD) can be used to find Guest Language
speficic patterns and submit them to theKnowledge Base. The reason
why they are specific is that the discovery uses the AST node classes.
To identify language independent patterns, a mapping between
node implementations of two languages would need to be defined.

The pattern detection is done by using patternmining algorithms
on the optimized ASTs in the Knowledge Base. Here the implemen-
tation work has not started yet. Currently considered approaches
go in the direction of substructure pattern mining, as even partial
overlaps in a tree can lead to a pattern. This is shown in Figure 5
where the white ".." nodes represent a part of the tree which is not
of importance to the pattern [18, 23]. When a pattern has been
found in the Optimized ASTs, their corresponding original ASTs
are selected for pattern mining as well. If a pattern can be identified
in the original ASTs as well, the two patterns, from modified and
original ASTs, combine to form a transformation pattern. The trans-
formation pattern contains information about which AST nodes

Figure 5: Running Example - pattern for replacement of for
loops with foreach loop

need to be used for identification, which can be copied verbatim,
and which nodes must be replaced.

Considering the running example, after several for to for each
transformations have been observed, a transformation pattern is
discovered as shown in Figure 5. The for and {} nodes (green back-
ground, left) are used as identification in originating ASTs and the
transformation is resulting in a base of for, each and {}. The get node
is replaced with a new variable obj. The variable a is retained at
every AST position it was identified at, while the ".." nodes represent
any AST which will be copied verbatim.

Some transformation patterns will relate to other transformation
patterns in the sense, that only one of them can, or should be applied.
The running example the pattern, as shown in Figure 5, does not
consider a modifying access to the collection a. Thus it should be
superceded by pattern which does consider that access. This means
that the patterns follow a hierarchy where the most specific pattern
will be applied, and more general patterns will be applied only if
none of the specific patterns match.

The advantage of using this pattern discovery is that the opti-
mization is language dependent, but problem independent. How-
ever as all patterns are discovered though a knowledge base, the pat-
terns that can be discovered, depend on the Experiments conducted.
This means that it is possible to create domain specific knowledge
bases. One additional advantage of the pattern discovery is that
these patterns can be analyzed by an expert and mathematically
(dis)proven, as opposed to the stochastic optimization.

3.5 Pattern application
The final process step is the application of found transformation
patterns to any given Guest Application. This is handled by the
Truffle Pattern Injector (TPI) either during runtime or while parsing.

During runtime there are several injection options:
The first is during the parsing process of a given Guest Language,

and must be added manually by a developer. There the ASTs which
are parsed are given to the TPI for optimization.
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The second option is right before the first time a Truffle AST
is handed to the Truffle polyglogt engine for interpretation or to
Graal for compilation. This means that when a function is loaded
from the function registry the TPI interjects the AST, analyzes it
for patterns, and applies applicable ones, and only then forwards it.

The third and final (currently considered) option is intercepting
dispatches between functions. This does come with an added run-
time overhead, but has the advantages of being completely language
independent, as well as enabling profiling, meaning the AST trans-
formation is only conducted at often called functions, or functions
that represent bottlenecks.

The option of intercepting dispatches has one additional advan-
tage. Due to the interception, original input and returned values
can be observed. The TPI can use these values, to test the AST that
was created with the transformation pattern, against the results
that would have been produced by the original AST, which is kept
by the TPI. This testing can happen in regular intervals, randomly
or with often/rarely observed values. Whenever an instance is ob-
served where the original AST would have produced a different
output, the pattern can be invalidated, and the original AST can be
replaced back into the running program. The invalidated pattern,
together with the observed incorrect instance is then submitted to
the Knowledge Base and can then be analyzed by a developer at a
later date.

4 FUTUREWORK
The presented architecture for stochastic optimization and pattern
recognition is currently still under development. Looking at the
Figure 3, a Guest Language, MiniC, a subset of the C11 standard [4]
has been developed alongside the architecture to prototype and test
concepts. This language will be continually used during the devel-
opment and research publications. One important goal is to include
more Truffle languages, and make the Optimization Framework and
Pattern Framework applicable to any Truffle language.

Most of the Optimization Framwork has already been imple-
mented. Current goals are to finish work here, as the presented
automated test generation does not as of yet exist, and the proposed
annotations concerning enabling/disabling stochastic optimizations
are still in development. The reason for this is that currently all
Experiments and Tests were created manually to verify the pro-
cess and refine the laid out architecture. Another important step
is a connector to HeuristicLab [5], a framework for heuristic and
evolutionary computation which will provide a solid basis for the
stochastic optimization, as well as an option of distributed compu-
tation utilizing HeuristicLab Hive [11].

The pattern discovery and injection in Pattern Framework do
not as of yet exist. The architecture laid out in this publication is a
first proposal how to tackle these challenges. Hover the Knowledge
Base does already exist, and a manual identification of some simple
patterns is possible.

5 CONCLUSION
This publication presents a novel architecture for stochastic opti-
mization of code, and building on that identification of language
specific AST transformation patterns which can be used to opti-
mize ASTs in a more general way, and without the overhead the

stochastic optimization poses. This is achieved by two distinct life-
cycles: Offline - stochastic optimization, identification of patterns;
Online - application of patterns, testing and possible invalidation
of patterns.

The core of the architecture consists of a Knowledge Base and
two Frameworks for Optimization and Patterns respectively, which
directly integrate with the Truffle [21] interpreter and the Graal
[12] compiler.

The overarching goal of the architecture is to enable additional
AST-modification based optimization techniques in compilers and
interpreters, in addition to other already existing optimizations.
While the focus of this work lies in the optimization of runtime
performance, the resulting architecture and frameworks are general
enough to enable research / optimizations in other domains, for
example memory use or runtime stability.
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