
Search Based Software Engineering 2013

The GISMOE Architecture
Yue Jia1, Mark Harman2, Bill Langdon3,

1(CREST, University College London, yue.jia@ucl.ac.uk)
2(CREST, University College London, mark.harman@cs.ucl.ac.uk)
3(CREST, University College London, w.langdon@cs.ucl.ac.uk)

Abstract: The GISMOE research agenda is concerned with optimising programs for non-functional
properties such as speed, size, throughput, power consumption and bandwidth can be demanding.
GISMOE sets out a vision for a new kind of software development environment inspired by recent
results from Search Based Software Engineering (SBSE). Details of the GISMOE research agenda are
provided in the extended keynote paper for the 27th IEEE/ACM International Conference on
Automated Software Engineering (ASE 2012). This talk overview is a brief introduction to the
approach and a description of the talk about the GISMOE agenda at the 2nd Chinese SBSE workshop in
Dalian, 8th and 9th June 2013.

Key words: SBSE; GISMOE

1 Introduction

In this talk overview (which is extracted from our full paper at ASE 2012 [1]) we provide a glimpse

of how a combination of advances in software test data generation, genetic programming and multi

objective optimisation can be combined to realise a vision of automated program synthesis. We can think

of this approach as a new kind of compiler; one that produces multiple versions of a source program on a

conceptual pareto program surface. We briefly describe our proposed architecture and the principal

features of this proposed development environment, which we call GISMOE: Genetic Improvement of

Software for Multiple Objective Exploration. This is work in progress at UCL CREST, the Centre for

Research on Evolution Search and Testing, University College London, UK.

2 GISMOE

The GISMOE approach focuses on pre-existing programs as the source of functional descriptions in

this paper. GISMOE uses automated testing to assess the degree to which the functional properties are

preserved and to measure the achievement of non-functional requirements. Measurements of both

functional and non-functional requirements are used to provide the fitness functions that guide a multi

objective optimisation and visualisation process.

 A more detailed explanation of the GISMOE approach and architecture can be found in the ASE keynote paper [1].

Search Based Software Engineering 2013

Existing Code

Executable
Declarative
specification

Executable
Functional

Oracle

Sansitivity
Analysis

Mobile
Device

IOS

Memory Speed Power

Example Test Harness
Instance

Fixed
Software

Linux IOSEmbedded
System

Social
Media

middleware
...

Non-functional
Test Harness Memory Speed Power ...Bandwidth

Platform
Mobile
Device Desktop Cloud ...

Sensitivity
Analysers

Test cases

Fitness

GP
Engine

Evolution

Correct evovled
softwareCorrect evovled

softwareCurrent Best
Solution Surface

Visulization

Users

Test Data
Generators

Interaction

Original Solution New Best
Solution

Test Data
Generators

New Test Data

Parallel Execution

3 Architecture

Our proposed GISMOE architecture is depicted in Figure 1. Dotted lines indicate choices of

components. Solid lines indicate data flows. The ‘fixed software’ is the code that is not changed by GP.
The choice of platform and fixed software constitute the environment in which the non-functional
properties are evaluated. Together, these non-functional evaluators constitute the collections of multiple
objective fitness values for which GISMOE seeks Pareto optimal solutions (thereby creating the Pareto
program surface).

The software developer can choose to combine arbitrary sets of non-functional-property fitness
functions with different environments to make a harness that provides fitness data as an input to the GP
engine and sensitivity analysis. Test cases can come from any test data generation technique, for which
there are many options (already available) that can be used as a component to GISMOE.

Sensitivity information can be pre-computed before the GP improvement process commences. The
sensitivity of the program to each non-functional property is computed using the non-functional
evaluation harness. This process requires no knowledge of the functional test cases, since it seeks to
identify those parts of the program that are non-functionally sensitive, irrespective of functional
properties.

The GP engine uses the test cases and the non-functional harness to compute its fitness. In the
conformant version of GISMOE, the only solutions considered are those that pass all test cases (these
programs are functionally conformant and the approach is conformant to the view that ‘correctness is
paramount’).

4 References

[1] Harman, M.; Langdon, W.B.; Jia, Y.; White, D.R.; Arcuri, A.; Clark, J.A., "The GISMOE
challenge: constructing the pareto program surface using genetic programming to find better programs
(keynote paper)," Proceedings of the 27th IEEE/ACM International Conference on Automated Software
Engineering (ASE 2012), pages 1-14, 3rd-7th September, 2012.

Figure 1: The GISMOE Architecture [1]

