
GA4GC: Greener Agent for Greener Code via
Multi-Objective Configuration Optimization

Jingzhi Gong1 , Yixin Bian2 , Luis de la Cal3 , Giovanni Pinna4 , Anisha
Uteem5 , David Williams6 , Mar Zamorano6 , Karine Even-Mendoza5 ,

W.B. Langdon6 , Hector D. Menendez5 , and Federica Sarro6

1 University of Leeds j.gong@leeds.ac.uk
2 Harbin Normal University bianyixin@hrbnu.edu.cn

3 Universidad Politécnica de Madrid l.delacal@upm.es
4 University of Trieste giovanni.pinna@phd.units.it

5 King’s College London {anisha.uteem, karine.even_mendoza,
hector.menendez}@kcl.ac.uk

6 University College London {ucabdjj, maria.lopez.20, w.langdon,
f.sarro}@ucl.ac.uk

Abstract. Coding agents powered by Large Language Models (LLMs)
face critical sustainability and scalability challenges in industrial deploy-
ment, often incurring costs that may exceed optimization benefits. We
introduce GA4GC, the first framework to optimize coding agent runtime
(greener agent) and code performance (greener code) trade-offs by dis-
covering Pareto-optimal agent hyperparameters and prompt templates.
Evaluation on the SWE-Perf benchmark demonstrates up to 135-fold
hypervolume improvement, reducing agent runtime by 37.7% while im-
proving correctness. Baseline comparisons and influence analysis confirm
the effectiveness of GA4GC, identify temperature as the most influential
hyperparameter, and provide actionable strategies to balance agent and
code sustainability in industrial deployment.

Keywords: SBSE · GenAI · Coding Agents · Green SE · AI4SE

1 Introduction

Code performance optimization is fundamental to software development, directly
impacting system scalability, resource consumption, and user experience [15].
While Large Language Models (LLMs) show promise in automating this pro-
cess [10], current approaches focus on simple benchmarks like HumanEval [6]
that do not capture real-world software engineering complexity [12].

To address this limitation, researchers and practitioners have increasingly
turned to agentic workflows, where LLMs operate as autonomous agents ca-
pable of iterative reasoning, tool use, and complex decision-making [3]. These
approaches have shown promising results in realistic software engineering (SE)
benchmarks such as SWE-Perf [13], which provides code optimization tasks re-
flecting the complexity that agents face in industry deployments.

https://orcid.org/0000-0003-4551-0701
https://orcid.org/0000-0001-8569-7107
https://orcid.org/0000-0002-1798-8743
https://orcid.org/0000-0001-8268-3447
https://orcid.org/0009-0000-8036-2367
https://orcid.org/0009-0004-9828-2639
https://orcid.org/0000-0002-8872-4876
https://orcid.org/0000-0002-3099-1189
https://orcid.org/0000-0002-6388-4160
https://orcid.org/0000-0002-6314-3725
https://orcid.org/0000-0002-9146-442X

2 J. Gong et al.

SWE-Perf

Dataset

Configuration

𝜃𝐿𝐿𝑀, 𝜃𝐴𝑔𝑒𝑛𝑡, 𝜏

Coding Agent

mini-SWE-agent

Patch

Generation

Code

Execution

Resource

Consumption

Pareto-Optimal

Configurations

(Greener Agent)NSGA-II

Optimizer

Correctness

Code Perf

(Greener Code)

Fig. 1. GA4GC workflow of multi-objective configuration optimization.

Unlike single-shot code LLMs, coding agents operate through iterative rea-
soning processes that require multiple LLM calls, each consuming significant
computational resources [4]. Although these agents can successfully solve com-
plex real-world coding tasks, a single agent running on real-world SE problems
can consume over 100,000 tokens [1]. Moreover, without careful tuning, the en-
ergy consumed by an optimization agent can require hundreds of thousands of
code executions to reach an energetic “break-even” point, making some opti-
mizations a net energy loss [7]. As organizations scale deployments, this creates
prohibitive costs and threatens environmental sustainability, directly conflicting
with Green Software Engineering principles and Net Zero targets [8]. 1

We address these challenges by proposing GA4GC (Greener Agent for Greener
Code), which optimizes the trade-off between resource consumption of the coding
agent and performance of the generated code. Our key insight is that the vast
configuration space of coding agents, including prompt templates, LLM- and
agent-specific hyperparameters, is too complex for manual exploration. Therefore
GA4GC uses NSGA-II Multi-Objective Genetic Algorithm (MOGA) optimization
to discover Pareto-optimal agent configurations. Our contributions are:

– GA4GC, a MOGA framework that discovers Pareto-optimal coding agent con-
figurations that are up to 37.7% faster (943 vs 1513 seconds) while improving
correctness, with up to 135 times improved hypervolume over the default.

– Configuration influence analysis via Random Forest reveals that temperature
has the highest overall influence. LLM hyperparameters primarily impact
task effectiveness, while agent constraints affect resource consumption.

– Actionable suggestions for coding agent practitioners across three scenar-
ios: runtime-critical (low temperature with restrictive top_p), performance-
critical (moderate temperature with balanced top_p), and context-specific
optimization via GA4GC.

Related Work. Recent green GenAI research has applied reinforcement learn-
ing for energy-efficient code generation [14], compared energy efficiency of LLM
versus human-written code [2], and optimized GenAI hyperparameters for do-
main modeling [5] and text-to-image generation [11,9]. These approaches, how-
ever, focus on single-shot generative tasks. By contrast, we address the challenges
of complex, multi-turn agentic workflows, mitigating the substantial computa-
tional costs of deploying coding agents in real-world software engineering.

1 https://www.un.org/en/climatechange/net-zero-coalition

https://www.un.org/en/climatechange/net-zero-coalition

GA4GC: Greener Agent for Greener Code 3

Table 1. Configuration search space. Decimal range = any value within the range;
integer range = only integer values; {set} = only specified values.

Category Hyperparameter Abbr. Range/Values Description

LLM
Temperature Temp [0.0, 1.0] Controls randomness in token selection
Top_p TopP [0.1, 1.0] Limits sampled token vocabulary size
Max_tokens Token [512, 4096] Constrains maximum response length

Agent

Step_limit Step [10, 40] Limits number of LLM calls
Cost_limit ($) Cost [3.0, 10.0] Constrains total cost of LLM usage
Env_timeout (s) ETi [40, 60] Timeout for environment operations
LLM_timeout (s) LTi [40, 60] Timeout for individual LLM calls

Prompt Template Variant Pr {1,2,3} Different template configurations

2 Methodology and Experimental Setup

MOGA Optimization. Figure 1 illustrates GA4GC’s workflow, where we employ
NSGA-II to explore the agent configuration space defined by C = (θLLM , θagent, τ),
where θLLM represents LLM-specific hyperparameters, θagent represents agent-
specific operational constraints, and τ represents the prompt template variant2.
Table 1 details the configuration search space.

We define three fitness functions: f1(C) = correctness (passes all test
cases), f2(C) = performance gain (code speedup), and f3(C) = agent
runtime (minimize). For each candidate configuration, the agent receives a
code optimization task and generates patches through iterative reasoning, dur-
ing which we measure f3. Generated patches are executed in isolated Docker
environments to measure f1 and f2, and the output is a Pareto front of non-
dominated configurations.

Research Questions. We address three research questions (RQs):
➤ RQ1. To what extent can GA4GC improve the resource consumption and per-

formance trade-offs of coding agents compared to default configurations?
➤ RQ2. How do different hyperparameters influence agent resource consump-

tion and task performance in the optimization process?
➤ RQ3. What actionable strategies can be derived from the Pareto-optimal

configurations for sustainable coding agent deployment?

Experimental Setup. We implement mini-SWE-agent3 with Gemini 2.5 Pro
as the base LLM. Our evaluation uses SWE-Perf [13], a benchmark for code
optimization tasks in real-world repositories where the goal is to improve code
runtime while maintaining functionality. Given the extensive evaluation time
required for each candidate configuration, we focus on the astropy project4,
using 9 instances for training and 3 instances for validation.

We use pymoo’s default NSGA-II setup5 with a population of 5 and 5 gener-
ations, giving 25 configurations. Each configuration is evaluated by running the
2 Details on the prompt templates we used can be found on GA4GC’s GitHub page.
3 https://github.com/pppyb/mini-swe-agent
4 https://github.com/astropy/astropy
5 Detailed NSGA-II setup and complete methodology can be found on GitHub.

https://github.com/gjz78910/GA4GC?tab=readme-ov-file#prompt-templates
https://github.com/pppyb/mini-swe-agent
https://github.com/astropy/astropy
https://github.com/gjz78910/GA4GC?tab=readme-ov-file#methodology

4 J. Gong et al.

Table 2. Default vs. GA4GC-optimized configurations. Corr=Correctness, Perf= perfor-
mance gain (%), Runt=runtime (s), HV=hypervolume, VHV=validation hypervolume.
See Table 1 for other definitions. Green cells indicate improvements over default.

Config Temp TopP Token Step Cost ETi LTi Pr Corr Perf Runt HV (%) VHV (%)

Default 0.000 1.000 4096 240 3.00 60 60 - 2/9 0.00 1513.3 0.52 1.1
#4 0.085 0.135 1120 36 9.26 41 57 2 4/9 0.00 943.1 5.82 4.1
#5 0.692 0.384 2972 38 6.73 40 56 3 8/9 6.43 984.8 70.28 14.9
#9 0.725 0.412 2972 22 6.73 43 41 3 7/9 0.00 958.1 9.25 21.6
#15 0.657 0.384 2972 38 6.73 40 56 2 7/9 10.67 1400.1 33.42 2.7
#16 0.085 0.131 1120 36 6.91 41 57 2 0/9 0.00 853.3 1.10 21.6

agent on all 9 training instances and measuring the three objectives (f1, f2, f3).
After optimization, we extract the Pareto-optimal configurations and, to assess
generalization, validate them on 3 held-out instances. In total, each run took
between 25 and 35 hours and cost $50 to $150 for LLM API calls.

All experiments are conducted on an isolated Google Cloud Platform server
with 4 CPUs, 16 GB RAM, running Ubuntu 25.04. Performance gains for each
SWE-Perf instance are measured 20 times, and statistical significance is evalu-
ated using the Mann-Whitney U test with p < 0.1 [13].

3 Results and Analysis
RQ1 Results. Table 2 shows the results of RQ1, where NSGA-II identifies
five Pareto-optimal configurations: Config#4 achieves 37.7% runtime reduction
(943.1s vs 1513.3s) while doubling correctness, Config#15 achieves 10.67% code
performance gain with similar runtime overhead, and Config#5 delivers 4 times
better correctness (8/9 vs 2/9) while simultaneously improving performance by
6.43%. Notably, 4 out of 5 configurations dominate default in multiple
objectives, addressing both greener agent and greener code requirements.

We computed the hypervolume indicator using pymoo with objectives nor-
malized to [0,1] and reference point [-0.1, -0.1, -0.1] (runtime inverted). Each op-
timized configuration substantially outperforms the default: Config#5
achieves 135× higher hypervolume (70.28% vs 0.52%), Config#15 achieves 64×
improvement (33.42% vs 0.52%), and even the lowest-performing Config#16
achieves 2× improvement (1.10% vs 0.52%). Validation on three held-out in-
stances confirms generalization, with all optimized configurations maintaining
superior hypervolume. Moreover, NSGA-II outperforms the random search base-
line (83.0% vs 53.1% cumulative hypervolume, 5 vs 3 Pareto solutions), confirm-
ing directed optimization rather than random exploration6.

RQ1: GA4GC achieves 135 times higher hypervolume, 37.7% faster runtime
while improving correctness, and 4/5 Pareto front configurations dominating
the default while all maintaining superior hypervolume on unseen tasks.

RQ2 Results. Table 3 shows the hyperparameter influence analysis. We train
a Random Forest for each objective using all 25 evaluated configurations to
measure influence magnitudes [11]. Among others, temperature emerges as
6 Complete baseline comparison and Pareto front visualizations are available here.

https://github.com/gjz78910/GA4GC?tab=readme-ov-file#optimization-visualizations

GA4GC: Greener Agent for Greener Code 5

Table 3. Random Forest feature importance for hyperparameters on optimization ob-
jectives. Colors indicate importance: Low (0.0-0.1) , Medium (0.1-0.2) , High (>0.2) .

Category Hyperparameter Correctness Impact Performance Impact Runtime Impact

LLM
Temperature 0.152 0.392 0.199
Top_p 0.199 0.051 0.097
Max_tokens 0.057 0.090 0.089

Agent

Step_limit 0.140 0.119 0.049
Cost_limit 0.199 0.076 0.128
Env_timeout 0.060 0.034 0.298
LLM_timeout 0.120 0.109 0.102

Prompt Template Variant 0.072 0.130 0.038

the most critical hyperparameter, with high-performing Config#5 and #15
using moderate temperatures (0.66–0.69) while low-temperature Config#4 and
#16 achieve faster runtime but no performance gain, indicating its role in bal-
ancing exploration versus exploitation during token generation.

Top_p shows correctness influence (0.199) with successful configurations us-
ing mid-range values (0.38–0.41), indicating that balanced vocabulary sampling
avoids both overly restrictive and chaotic token selection. Cost_limit exhibits
influence across correctness (0.199) and runtime (0.128), with Pareto-optimal
configurations using higher budgets ($6.73–$9.26 vs $3.0 default) to enable more
thorough exploration without timeout constraints. Prompt template variants
show moderate performance influence (0.130), with templates 2 and 3 dominat-
ing the Pareto front, suggesting that task-specific prompt engineering signifi-
cantly impacts optimization effectiveness.

RQ2: Temperature shows highest overall influence, LLM hyperparameters
primarily impact task effectiveness while agent constraints affect resource con-
sumption, confirming the need for MOGA in green coding agent deployment.

RQ3 Results. Based on the hyperparameter influence analysis, we derive three
actionable strategies for green SBSE practitioners across different optimiza-
tion scenarios: For runtime-critical scenarios: Use low temperature (0–0.1)
with restrictive top_p (0.13–0.14) to minimize exploration overhead, combined
with moderate max_tokens (1120–2000) and step limits (20–36). Performance-
critical scenarios: Use moderate temperature (0.65–0.70) with balanced top_p
(0.38–0.41) to enable creative optimization strategies, combined with higher cost
budgets ($6.5–$9.5) and prompt templates optimized for performance tasks. For
most accurate optimization: For practitioners with specific requirements, we
recommend applying GA4GC to discover context-specific Pareto-optimal configu-
rations tailored to their deployment priorities.

RQ3: We provide scenario-specific actionable suggestions for greener coding
agent deployment. For more accurate optimization, practitioners can apply
GA4GC to discover context-specific Pareto-optimal configurations.

Threats to Validity. Our evaluation focuses on the astropy project (12 in-
stances) from SWE-Perf and is specific to mini-SWE-agent with Gemini 2.5 Pro

6 J. Gong et al.

due to computational constraints, which may limit generalizability. The limited
search budget may prevent full Pareto front convergence. The stochastic na-
ture of NSGA-II and LLM inference means results may vary across runs. All
limitations reveal opportunities for future studies.

4 Conclusion
We introduced GA4GC, a framework to optimize coding agent resource-performance
trade-offs via multi-objective optimization. On SWE-Perf, it achieves 135-fold
hypervolume improvement and 37.7% runtime reduction while improving cor-
rectness. Our analysis reveals temperature is the most important LLM parame-
ter and other insights and actionable guidelines to address both green concerns
and use by industry.
Availability. Code and results are available at GitHub & DOIDOI 10.5281/zenodo.1717769310.5281/zenodo.17177693 .

References

1. Anthropic: Raising the bar on SWE-bench Verified with Claude 3.5 Sonnet. https:
//www.anthropic.com/research/swe-bench-sonnet (Jan 2025)

2. Apsan, R., et al.: Generating energy-efficient code via large-language models–where
are we now? arXiv preprint arXiv:2509.10099 (2025)

3. Ashiga, M., et al.: Industrial llm-based code optimization under regulation: A
mixture-of-agents approach. arXiv preprint arXiv:2508.03329 (2025)

4. Belcak, P., et al.: Small language models are the future of Agentic AI (2025),
https://arxiv.org/abs/2506.02153

5. Bulhakov, V., et al.: Investigating the role of LLMs hyperparameter tuning and
prompt engineering to support domain modeling. In: SEAA 2025. pp. 349–366

6. Chen, M., Tworek, J., et al.: Evaluating large language models trained on code
(2021), https://arxiv.org/abs/2107.03374

7. Coignion, T., Quinton, C., Rouvoy, R.: When faster isn’t greener: The hidden costs
of LLM-based code optimization. In: ASE 2025

8. Cruz, L.e.a.: Greening AI-enabled systems with software engineering: A research
agenda for environmentally sustainable AI practices. ACM SIGSOFT Software
Eng. Notes 50(3), 14–23 (Jul 2025). https://doi.org/10.1145/3743095.3743099

9. d’Aloisio, G., Fadahunsi, T., Choy, J., Moussa, R., Sarro, F.: SustainDiffusion:
Optimising the social and environmental sustainability of Stable Diffusion models.
In: 2025 IEEE/ACM ICSE (2025), https://arxiv.org/abs/2507.15663

10. Gong, J., Giavrimis, R., Brookes, P., et al.: Tuning llm-based code optimization
via meta-prompting: An industrial perspective. arXiv:2508.01443 (2025)

11. Gong, J., Li, S., d’Aloisio, G., Ding, Z., Ye, Y., Langdon, W.B., Sarro, F.: Green-
StableYolo: Optimizing inference time and image quality of text-to-image genera-
tion. In: SSBSE. pp. 70–76. Springer (2024)

12. Gong, J., et al.: Language models for code optimization: Survey, challenges and
future directions (2025), https://arxiv.org/abs/2501.01277

13. He, X., et al.: SWE-Perf: can language models optimize code performance on real-
world repositories? (2025), https://arxiv.org/abs/2507.12415

14. Ilager, S., Briem, L.F., Brandic, I.: Green-Code: Learning to optimize energy effi-
ciency in LLM-based code generation. In: CCGrid 2025. pp. 559–569. IEEE

15. Shypula, A.G., et al.: Learning performance-improving code edits. In: ICLR (2024)

https://github.com/gjz78910/GA4GC
https://doi.org/10.5281/zenodo.17177692
https://www.anthropic.com/research/swe-bench-sonnet
https://www.anthropic.com/research/swe-bench-sonnet
https://arxiv.org/abs/2506.02153
https://arxiv.org/abs/2107.03374
https://doi.org/10.1145/3743095.3743099
https://doi.org/10.1145/3743095.3743099
https://arxiv.org/abs/2507.15663
https://arxiv.org/abs/2501.01277
https://arxiv.org/abs/2507.12415

	GA4GC: Greener Agent for Greener Code via Multi-Objective Configuration Optimization

