Modelling Exchange Using the Prisoner’s
Dilemma and Genetic Programming

Laurie Hirsch Masoud Saeedi

Sheffield Hallam University
Sheffield S1 1WB
UK
Email: L.hirsch@shu.ac.uk m.h.saeedi@shu.ac.uk

Abstract

In this paper we show how exchange, co-operatiah@her complex strategies found in nature can be
modelled using the prisoner’'s dilemma game and tiemeogramming. We are able to produce and
evolve different strategies represented by compptegrams that can play the prisoner's dilemma
against a set of predefined strategies or agairtsteio programs in the population (co-evolution).

Although the game is simple the number of possillategies for playing it is huge. Genetic

programming provides an efficient search mechargapable of identifying and propagating strategies
that do well in a particular environment. Our ireptentation provides a distinct advantage over
previous investigations into the prisoner’s dilemasing genetic algorithms. In particular strategiean

be based upon the entire history of a game at amiptprather than on recent moves only. We
incorporate the use of list data structures as feais and provide list-searching capability in the

function set so that potentially large volumes athdcan be utilised by the evolved programs.

Keywords : Prisoner’s Dilemma, Genetic Programming, co-atioh, large terminal sets.

2 Genetic Programming

1 Introduction Genetic programming (GP) is an automatic
Analysis of the prisoner’'s dilemma game has proveprogramming technique developed by John Koza in
useful in many fields of study including biology, 1992. GP is a variant of the genetic algorithm JGA
sociology, psychology, political science andand is similarly inspired by evolutionary processes
economics.[Poundstone 1992]. It has also beatcurring in nature, in particular by the excharmnde
applied to the modelling of a form of animalstrands of DNA occurring in sexually reproducing
behaviour know as ‘reciprocal altruism’. This isorganisms. Whereas GA'’s use fixed length character
where unrelated organisms co-operate with eaclr othetrings as the genetic material GP uses executable
even when it would appear that such action is natiSP-like program trees. A fixed size and structafe
advantageous in terms of inclusive genetic fithess. evolved programs in a GP system does not need to be
specified in advance. These trees serve as both the
Useful research in modelling this behaviour in a@enetic material of an individual and as the sohin
software environment using genetic algorithms typl program code; there is no intermediate representati
the prisoner’'s dilemma has been developed [Alexrod
1987]. Here we build on this research using theemoA population of computer programs is initially creg
recently developed genetic programming systery randomly combining functions and terminals from
[Koza 1992] a predefined set relevant to the problem domain. A
fitness function that can take an arbitrary GP
individual from the population and return an assdss

fithess for that individual must also be providethe It is the ranking of the outcomes that defines mea

fitness value returned is used to favour the selecf as a prisoner’s dilemma. Wherever we find we have
programs with higher fitness that will be useddond choice to cooperate (C) or defect (D) in a gamé wit
the next generation. another player and the outcomes are ranked suth tha

GP’s genetic operators are customised to deal wibhC > CC >DD >CD
GPs tree structured individuals. The three most
common operators are subtree crossover, poititen we are playing the prisoner's dilemma. The
mutation and reproduction. The mutation operatanoves are simultaneous and each player is unable to
takes a single individual and replaces an arbitrayetermine the others move until after the move.
subtree in this individual with a new, randomly
generated subtree. The crossover operation swaphere there is one move in a game of prisoner's
sub-trees between two selected fit individuals tdilemma there are only 2 possible strategies: (F, D
produced two new programs for the next generatioihere is no incentive to cooperate in this game i.e
The reproduction operation takes a fit individuatia whatever move the other player makes it is best to
copies it into the next generation. defect. When the game is iterated so that 2 player
repeat the game over many moves we find that there
The process of measuring and creating neware a large number of strategies and that co-aparat
generations of programs is repeated. Differenoes ¢an be advantageous provided that it can in sonye wa
measured fitness are exploited such that in gemeral secure co-operation from the other player.
will see an improvement in the fitness of the
programs. Unspecified programs of variable sized distinction can be made between ‘blind stratégies
structure and complexity are likely to evolve.such as always co-operate (ALLC), always defect
Termination occurs after a predefined fithness feenb (ALLD) and play a random move (RANDOM) and
achieved by one or more programs or after a pre-dhibse that took some account of what had occurred i
number of generations has been completed. In thise previous moves. For example ALLC would get a
case the best individual occurring in the entire rugood score when matched with itself but a O score
represents the candidate solution to the particularhen matched with ALLD.
problem.
One of the most successful strategies is knowTias
3 The Prisoner’s Dilemma For Tat (TFT). This specifieso-operation on the first

_ o _ move and then always copy the other players last
The prisoner's dilemma is a game for 2 players @hefnoye TFT will do well against itself or against

both players are frying to achieve a maximum sCoigrategies like ALLC but is ‘provocable’ in thatvill
but where their interests are not necessarily ogthos yefect in response to defection, and thus get &t b

, possible score of 1 against ALLD. Tit-for-Tat
Each player has a choice of two moves usuallgpresents a simple way to gain co-operation in a

referred to as co-operate(C) or defect (D). TBis icompetitive situation without risking heavy losesr
because the original version of the game was basggher individuals who will not co-operate.

upon a hypothetical situation in which two indivadsi
are detained after a crime. Confessing to the&sn TET || start to co-operate at any time its partne
seen as a defection and co-operation is equividedt yoes TFT as a strategy based on reciprocity bes d

refusal to admit to the crime. They are kept ®1la ot take advantage of the blind strategies such as
from each other but both offered a series of mare o\| | c where it is always best to defect.

less appealing sentences and rewards, which are

dependent upon the actions of both individuals. 4 Using Genetic Algorithms
The various outcomes can be given scores as in the With the Iterated Prisoner’s

table below (score for A first). DiIemma(IPD)
B B Alexrod has used a genetic algorithm to evolve
Co-operates(C) | Defects(D) stratggi_es for prisoner’s dilemma. This was doye b
A Co- 2.2 (CO) 0,3 (CD) specifying each allowable strategy as a stringesfeg .
operates(C) on a chrompsome. Each game hgs 4 possible
A 3.0 (DC) 1.1 (DD) outcomes giving a total o_f 64 possble historiestie
Defects(D) ’ ' last 3 moves. To determine its choice of co-opeoat

defect a strategy would only need to determine wdat
do in each of the possible situations that couldear

Alexrod used binary strings (chromosomes) to encodg 2 Terminal Set

strategies based upon the last three moves inPthe |]]]
[Alexrod 1987] The terminal set consists of only 2 variables.

Strategies represented by chromosomes were thien {0PPOnents-move-list, players-move-list}

evolved using crossover and mutation over a number))

of generations. Alexrod found that most strategiekh® variables are lists that record the moves ohea
that evolved in the simulation resembled TFT havin§layer. After a move in a game of prisoner’s dileanm
many of the properties that make TEccessful such theé move of each player is added to the front efrth
as ‘continue to co-operate after mutual co-openaito lists. '!'hus_ the first element of the termimddyers-
established’, ‘be provocable e.g. defect afteratier Move-listwill be the players own last move. After
player defects’ ‘accept an ‘apology’ i.e. continee MOVE S in a game of IPD the opponents-move list

co-operate after co-operation has been restored” ~ Vvariable might look like (DDDDC) which indicates
co-operation on the first move followed by defestio

on the following 4 moves.

5 Implementing the IPD using _
Genetic Programming 5.3 Function Set

The objective of the application was to repeat andll the functions in the implementation will return
develop the work done by Alexrod on the iteratedists and will accept lists as arguments. Thisl wil
prisoner's dilemma (IPD) problem using geneticnsure that all programs produced, either randamly
programming. It was also hoped that this mor@eneration O, or via genetic operators will be dali
flexible approach would enable further investigatio programs that will run and return a result, whicifl w
of co-evolution and co-operation. be the programs next move (closure property).

The following table represents the scoring systeMOT-LIST(a) : this function is similar to the Boale

used in our implementation. function NOT. It takes one argument of type listla
will return the complement of the first elementtioat
B B Defects list and return it as a one element list contairjung
Co-operates that value e.g. if the argument a = (CCCDCD) then
A Co- 3.3 0.5 NOT-LST(a) will return (D)
operates . S
A Defects 5.0 11 ANDC(a b) : this function is similar to the Boolean

function AND. It takes two arguments of type kstd
will return the one element list (C) if both FIRSJ(

While the ranking is the same the values are chhnggnd FIRSTK) are equal to ‘C’ else will return (D)

slightly. This is to meet a second requiremenfb,
which is that, the average of co-operation an
defection is less than that of continuous co-ojmmat
Thus if two players are alternately co-operatinglevh
the other is defecting their average score will2b&
which would be less than the average of 3 for tawo c
operating players.

6RC(a b) : this function is similar to the Boolean
function OR. It takes two arguments of type lintla
will return the list (C) if either FIRST(a) OR
FIRST(b) are equal to ‘C’ else will return (D)

REST-LST@) : this function is a modified version of

the LISP function REST and is used to return a list

51 List Implementation minus its first element. If RES&)is a list then this is
returned else is returned. This is to ensure that an

Although the search space in the genetic algorith@om, which would not be an acceptable argument for

implementation described above is huge we havgher functions, is never returned e.g. REST(CE}; (

developed an implementation using genetiREST(CDDCD) = (DDCD)

programming that is not constrained to examining

only the last 3 moves of the game. Because we afEMBERD(a) will return the list (D) if the list a

evolving computer programs we can include powerfidontains a ‘D’ in any position else (C)

list-searching functions that allow for the devetemnt

of strategies based on the entire history of theegat REVERSE®) this is the common LISP function and

any point. This implementation also allows Us tqujll simply return the list in reverse order.
examine the problem of large terminal sets in i@tat

to genetic programming.

5.4 Wrapper

) . } (REST-LST (REST-LST (REST-LST players-move-list)
At the end of evaluating a program (i.e. executiag)

the program being evaluated we extract the first
element of the list produced.

5.5 Initial conditions 6 Experiments

Because the functions must have non-empty lists d§'€ genetic programming system for the iterated
arguments the 2 terminals were initialised to fise | Prisoner's dilemma (IPD) was used to implement a
‘(C). This does introduce a bias into the envirenin number of experiments. These are described togethe

but this is somewhat reduced by not scoring thet fir With graphs summarising the results below. Some of
10 moves of any game. the best and worst programs are listed to illustthe

type of evolution occurring at this level. All IPD
games were 150 moves long and the fitness of a

5.6 Example program was the average score obtained.

For the examples we assume that:

opponents-move-list = (CCDCC) 6.1 Playing Blind Strategies

and Blind strategies are those which take no accoutief
players-move-list = (DCCDC) history of the game at any point. The best stsateg

against any blind strategy is simply to always defe

An example program that might be produce(ﬁi-e- ALLD) as there is no .hope of changing the
randomly in generation O or via genetic operators ~ OPPonents move by co-operating.

(n(])ol?/g_lci)g))onents—move—list (REST-LST opponents- 6.1.1 Experiment 1: playing ALLC
ALLC is the first of the ‘blind’ strategies to beed as
(REST-LST opponents-move-listpaluates to (CDCC) an opponent. ALLC will always return ‘C’ i.e. will

always ‘co-operate’. When playing ALLC the worst

the entire program evaluates to possible average score is 3 and this is obtainezhwh
ALLC plays itself. The best possible score is hjok

(ORC (CCDCC) (CDCQ)) is obtained by ALLD.

and will return (C) to the wrapper which in turnllwi IPD 1

return ‘C’ i.e. that will be the programs move fadtt PE:;HaﬁiI:)I;]CSIJ

point.

I

_W ———
1 Forera

The program

)

Score
(5

(ORC opponents-move-list opponents-move-list)

[RS R]

o

is the strategy TIT-FOR-TAT since the initial stafe
each list is (C). N S S

generstion

o

An example of the strategy ALLC would be the
program With a population this size it is highly likely that
least one individual will be playing the best st
(ORC opponents-move-list (NOT-LST opponents- (ALLD) in generation O as is shown on this run.
move-list))
Example program scoring 5 (best score):
An example of ALLD would be the program
(ANDC (REST-LST(REST-LST (NOT-LST
(ANDC opponents-move-list (NOT-LST opponent©PPONENTS-MOVE-LIST)))
move-list)) (REST-LST (NOT-LST (REVERSE PLAYERS-
MOVE-LIST))))
By repeating the functioREST-LSThe program can
look back at previous moves e.g. the program

This program appeared by chance alone in generatidhis program is a version of the TFT strategy afitl w
0. The function ANDC takes 2 arguments. Wherscore 3 against TFT

both arguments contain ‘C’ at the front of the tistn

(C) will be returned by the function else (D). this . . .

case the opponents move is always ‘C’. (REST-LS®-3 Playlng.a combination of

(NOT-LST OPPONENTS-MOVE-LIST) will Strategies

therefore return (D) so the entire program willoals
always return ‘D’ i.e. ALLD which is the best steaty
against ALLC.

Evolving strategies that produce good solutions
against a combination of other strategies is faremo
demanding as a program may need to identify the
strategy of its opponent in order to play the lgeshe.

6.2 Playing More Complex Strategies

based on previous moves. 6.3.1 Experiment 3: Playing ALLC,
The game of IPD become more interesting where ALLD and TFT

strategies are used which take into account therfis fA‘ good program must be able to identify the kind of

of the game. This opens the possibility ostrategy being played (by provocation if necessary)

communication via the moves and of developing C%nd to respond in the best way to the information

operation. received about the opponent. TFT does well against
this combination but does not exploit the weakrafss
6.2.1 Experiment 2: Playing Tit-For- ALLC_i.e. TFT vinI co-operate wiFh ALL.C when
Tat (TFT) defecting (ALLD) is the highest scoring option.
TFT is the simple strategy, which specifies co PD 3
operation on move 1 and then repeating th ey

opponents’ previous move. Co-operation is the be
strategy when playing this opponent. Defectiof _ _
against TFT will achieve the maximum score of 5 fo| ,; |
one move but will ‘provoke’ TFT into subsequent : ;
defection resulting in the low score of 1 for both * 7 —n
players. To return to mutual co-operation afte| .~ | x
defection a player must accept a 0 score for oneemo| ~, \’_—'——'L/’ :
before TFT will begin to co-operate again. Notetthg = |
the blind strategy ALLC will do as well against TFT| ' 1
as TFT playing itself or some other strategy based I
similar principles.

O 0B E PP R PP REESD LS E PP

genaration

In this run evolution to the optimum strategy ocedr
very quickly so that all individuals were playing a

version of TFT or ALLC by generation 8. Individuals achieved better than TFT by being able
L identify exploitable individuals such as ALLCThis
S Py TET was not achieved by any human programmer or
opulation

strategist in the tournaments held by Alexrod ia th
1980's. We should note that to achieve this an

= individual must be able to do three things:

a — + to be able to discriminate between one individual
: ::S‘ and another based upon only the behaviour the
- b other player shows or is provoked into showing

o e to adjust its own behaviour to exploit an

) hErEEEEREREE R R individual that is identified as exploitable

6 0% & @ A B B g P

e to be able to achieve this discrimination and
exploitation without producing poor results with
other individuals

generstion

Example Program:
If the opponent was identified as unexploitableay.(e.
(REST-LST OPPONENTS-MOVE-LIST) TFT) an ‘apology’ is made and mutual co-operation
was established whilst exploitable individuals (e.g
ALL C) were effectively exploited.

co-operate if your opponent has ever defected AND
Notice that there are two distinct stages of rapitlas recently co-operated ELSE defect
growth in average fitness the first occurring ia fhist
few generations and the second at about gener@ion A shorter version of the program would be:
Analysis of the programs reveals that the firstiquer
of evolution stabilised at a strategy of TFT orieam (ANDC(NOT-LST (MEMBERD OPPONENTS-
which scores an average 2.3 against the thrédOVE-LIST)) OPPONENTS-MOVE-LIST))
opponents.

A new strategy was discovered which was able t@-4 Co-evolution

exploit ALLC while co-operating with TFT and These experiments involve evaluating each programs
defecting against ALLD after 30 generations. Thigitness by taking the average score when played

then spread rapidly throughout the population. sThiggainst a number of other opponents from the
may be an example of what evolutionary biologistgopylation of programs

term punctuated equilibrium.
Example Program:))
6.4.1 Experiment 4: Playing a sample

(ANDC (ANDC of the population
(NOT-LST (REST-LST (REST-LST (MEMBERD _ i
OPPONENTS-MOVE-LIST)))) In this experiment each program plays a sampledof 2

(REST-LST (REST-LST (REVERSE (REST-LST programs selected randomly from the population.
OPPONENTS-MOVE-LIST)))))

K;D(DR\S:E(TlES_/ri)RSE (REST-LST OPPONENTS- Flaya random sample ofPZD %%I;?aggointhe current generation
- opulation

(REVERSE (ANDC (REST-LST OPPONENTS- L

MOVE-LIST) ol

(REST-LST OPPONENTS-MOVE-LIST))))))

35 T

This program appeared in generation 34 and scor & K/* :
3.0 (significantly better than TFT: score 2.3).eTkey s)
element of the program is the branch

05 +

(NOT-LST (REST-LST (REST-LST (MEMBERD Srrcrcassss ooy
OPPONENTS-MOVE-LIST)))

The average fithess reduces dramatically in they ear

The function REST-LST has no effect heregenerations before rising to stabilise at a co-aiper
MEMBERD will return (D) if there is a ‘D’ anywhere Strategy.

in opponents previous moves else ‘(C)’ and NOT-LST

will complement the move. In pseudo English wd=xample program:

might specify this strategy asd-operate if your
opponent has ever defected else defemtd so (ANDC (REST-LST (REST-LST (ORC PLAYERS-

effectively identifies strategies similar to theinol MOVE-LIST PLAYERS-MOVE-LIST)))
strategy ALLC that are open to exploitation. (REST-LST (NOT-LST (REVERSE PLAYERS-
MOVE-LIST))))

On its own this strategy would not be successful))
against strategies like ALLD since it would co-ogter 1his was the best of run program occurring in
with them. However the strategy conjuncts (via th@eneration 0 and scoring 4.2. The program is¢hda
ANDC function) with other branches which Version of the blind strategy ALLD and did so well
effectively implement TFT. In the above prograra thbecause a large proportion of its random sample of
branch below must also evaluate to (C) before tHgPPonents were playing a strategy similar to ALLC.
move ‘C’ is played.

7 Results

In all cases the average fitness eventually imptove
oyer its initial value i.e. evolution occurred ihet
gystem.

(REST-LST (REST-LST (OPPONENTS-MOVE-
LIST)))

To summarise the key features of this successf
strategy we might say

When playing fixed strategies or a combination ofonger term. This is of course only true were
fixed strategies, the average, best and worstsfitneindividuals are able to identify ‘cheating’ behawio
improves from generation 0 toward some maximurand react by withdrawing future co-operation.
value.

Software inspired from features of biological syste
In the co-evolutionary example the average, bedt amas proved powerful in problems involving searct an
worst fitness values all decrease initially befor@ptimisation. It is possible to view the evolutioh
improving and stabilising at a point where allorganisms also as a problem of searching for or
individuals are co-operating (score 3.0). Thisiahit optimising organisms reproductive success in r@hati
decline occurred as co-operating individuals wert their environment (which includes other evolving
exploited by defectors who could achieve high e organisms). Modelling the natural situation via
and therefore proliferate. The point at which theoftware simulation may greatly enhance our
fitness of the population began to increase coétid understanding of the process of natural selectsmifi
with the ‘discovery’ of the Tit-For-Tat strategydiits and allows us to view the biological world from the
subsequent spread through the population. greatly advantageous standpoint of having numerous

examples both natural and artificial to investigate
Where the environment is co-evolving co-operative
behaviour becomes the dominant strategy even though
in the early generations strategies which refuseoto
operate achieve higher scores

Experiment 4 revealed two distinct areas of evotuti

8 CONCLUSIONS

The prisoner's dilemma is a simple non-zero-sum
game that has proved useful in modelling many
different kinds of exchange. In many biological
settings, where two organism are regularly inténgct
and can remember some aspects of the prior exchange
then the strategic situation may become an iterated
prisoner’'s dilemma. Artificial models of animal
behaviour are created via the IPD application and
these may prove useful to understanding the often-
complex strategic situation occurring between
interacting animals.

Genetic programming provides a powerful and
flexible tool for the evolution of strategies folaping

the game in different environments. Using computer
programs rather than character strings to encode
strategies provides a more readable and naturalamed
for representing strategies. Co-operative behaviou
was easily evolved and novel strategies produced in
the experiments. Strategies were based on theeenti
game at any point rather than on recent moves asly

in previous work using the genetic algorithm. Ugsin
data structures (lists in this case) as terminaks GP
system and providing functions that are able toctea
these structures provides a way for GP systems to
incorporate memory and large sets of data.

The experiments described above show how co-
operative behaviour might evolve through a systém o
communication based on previous interaction. Short
term benefits can be gained by the exploitationaf

operative behaviour but can lead to the loss ofemor
significant reward achieved by co-operating in the

faculty.stanford.edu/~kozd/ Koza, D Goldberg, D
Biblioaraph Fogel, R Riolo , Genetic Programming 1996:
grapny Proceedings of the First Annual Conferencpages

[Alexrod 1980] Alexrod R, 1980 Effective Choice in 150-156, Stanford University, CA, USA, 28-31 July
the Prisoner’s DilemmaJournal of Conflict (24) 1996. MIT Press

[Alexrod 1984] Alexrod R 1984 The Evolution of Co-1 ke 1997] Luke, S. et al. 1997. Co-evolving Sacce
operationNew York: Basic Books. Softbot Team Coordination with Genetic

_ Programming In Proceedings of the RoboCup-97
[Alexrod 1987] Alexrod R. 1987 The Evolution of \yorkshop at the 15th International Joint Conference

Strategies in_the lterated Prisoner's Dilemimal. o, Artificial Intelligence (IJCAI97). H. Kitano, ed
Davies(ed.), Genetic Algorithms and Simulatedi15..118. |JCAI

Annealing, London : Pitman

i [Poundstone 1992] Poundstone W 1992 Prisoner’'s
[Altenberg 1994] Altenberg L 1994 The Evolution °fDiIemma,Oxford University Press

Evolability in Kinnear K, Advances in Genetic
Programming [KI94]

[Badcock 89] Badcock C, 1989 The Problem of
Altruism Harper Collins

[Haynes 1995] Haynes T, Wainwright S February
1995, A Simulation of Adaptive Agents in a Hostile
Environment Proceedings of the 1995 ACM/SIGAPP
Symposium on Applied Computing, ACM Press

[Haynes 1995b] Haynes T, Wainwright S, Shoenefeld
D + S, July 1995 Strongly Typed Genetic

Programming in Evolving Co-operation Strategies

Proceedings of the Sixth International Conference o
Genetic Algorithms, Morgan Kaufnann

[Holland 1992] Hollandl. 1992 ,Adaptation in Natural
and Artificial Systems second editionMIT Press

[Kinnear 1994] Kinnear K E 1994 editor Advances in
Genetic ProgrammindVIT

[Koza 1992] Koza J_Genetic Evolution and Co-
Evolution of Computer Programgé Langton G.,
Taylor C., Farmer J., Rasmussen S 1992 Artificial
Life 11, Addison-Wesley[LA92]

[Koza 1992] Koza John R.1992 _ Genetic
Programming: On the Programming of Computers by
means of Natural SelectipMIT

[Koza 1994] Koza J 1994 Introduction to Genetic
Programmingin Kinnear K, Advances in Genetic
Programming [KI94]

[Lindgren 1992] Lindgren Evolutionary Phenomena in
Simple Dynamicsn Langton G., Taylor C., Farmer J.,
Rasmussen S 1992 Artificial Life I, Addison-Wesley

[Luke 1996] Sean Luke and Lee Spector, Evolving
teamwork and coordination with genetic

programming In http://www-cs-

