
GreenMalloc: Allocator Optimisation for
Industrial Workloads

Aidan Dakhama1[0009−0002−7318−7964], W.B. Langdon2[0000−0002−6388−4160],
Hector D. Menendez1[0000−0002−6314−3725], and

Karine Even-Mendoza1[0000−0002−3099−1189]

1 King’s College London, London, UK. {aidan.dakhama, karine.even_mendoza,
hector.menendez}@kcl.ac.uk

2 University College London, London, UK. w.langdon@ucl.ac.uk

Abstract. We present GreenMalloc, a multi-objective search-based
framework for automatically configuring memory allocators. Our ap-
proach uses NSGA-II and rand_malloc as a lightweight proxy bench-
marking tool, we efficiently explore allocator parameters from execution
traces and transfer the best configurations to gem5, a large system sim-
ulator, in a case study on two allocators: the GNU C/C++ compiler’s
glibc malloc and Google’s TCMalloc. Across diverse workloads, our
empirical results show up to 4.1% reduction in average heap usage with-
out loss of runtime efficiency, indeed we get a 0.25% reduction.

1 Introduction

Efficient memory management remains a challenge in modern computing, with
empirical studies showing that allocator choice and configuration significantly
affect performance and resource use [3,12], and consequently influence energy
consumption [11]. Memory allocators such as the GNU allocator (glibc mal-
loc) [9] and Google’s TCMalloc [6] are widely deployed, but tuning their run-
time parameters, which allows fine-grained control of their operation, is difficult
since optimal settings vary substantially with workload and system behaviour.
As a result, production systems often rely on default configurations, which can
waste memory, increase energy use, and degrade performance.

The gem5 simulator has become a de facto standard for hardware–software
co-design evaluation in academia and industry [1]. gem5 is a large, complex
codebase with unusual allocation patterns. Simulations are notoriously slow, of-
ten lasting minutes to days, magnifying the impact of allocator efficiency while
making manual parameter tuning infeasible. Even modest improvements in heap
usage or allocation overhead can shorten runtimes, reduce computational costs,
and lower the energy footprint of repeated experiments. Among the many poten-
tial optimisation targets, allocator parameters represent a promising but under-
explored opportunity to improve runtime and memory consumption in gem5.
Yet, allocator optimisation in realistic workloads is challenging: exploration is
costly due to long execution times and high memory demands, and results shall
be relevant to system behaviour in the wild.



2 Aidan Dakhama et al.

RAND-malloc (glibc/tcmalloc) Allocator Parameters NSGA-II Opt.

Eval. (Valgrind + Perf)Pareto Solsgem5 Val.Final Results

Fig. 1: General GreenMalloc workflow: starting with rand_malloc optimi-
sation to identify efficient allocation parameters, ended by validation on gem5
to assess improvements in memory usage and runtime.

We show it is possible to automatically tune memory allocator parameters to
reduce heap usage and energy consumption in industrial workloads. By targeting
both memory and runtime, we identify allocator configurations that yield prac-
tical improvements across different contexts. We employ a search-based optimi-
sation approach to tune allocator parameters and evaluate their impact on heap
usage and runtime in gem5’s System Emulation (SE) mode [1]. To avoid the pro-
hibitive cost of optimising directly on full simulations, we use rand_malloc [8]
as a lightweight proxy benchmark, enabling efficient exploration of the parameter
space before deploying promising configurations in gem5.

Experimental results demonstrate that while peak heap usage remained largely
unchanged, glibc malloc tuning yields consistent reductions in average mem-
ory (≈4% improvement), a big improvement in free rate (≈2.4× faster release of
memory), and a small but measurable reduction in instructions (≈0.25% less).
TCMalloc shows more modest improvements in stability and predictability,
with small gains in memory free rate and instruction count. These findings sug-
gest that automated allocator tuning significantly reduces computational and
energy footprints of long-running industrial simulations keeping reliability and
performance. This paper makes the following key contributions:
– A novel search-based optimisation methodology for configuring memory allo-

cators to improve performance and energy efficiency.
– GreenMalloc, a prototype implementation of this approach, designed to be

generalisable beyond the allocators studied in this paper.
– A systematic study of allocator tuning using GreenMalloc, applied to two

widely used allocators, glibc malloc and TCMalloc, in the context of
gem5, a complex and industrially relevant system.

Availability. GreenMalloc and all artifacts are at DOIDOI 10.5281/zenodo.1718284710.5281/zenodo.17182847 .

2 Methodology

Figure 1 shows the whole system workflow. First, we optimise over a synthetic
benchmark rand_malloc [8] to explore the parameter search space efficiently;
next, we run the resulting optimal parameters on gem5 simulator to evaluate
the transferability to the real system under complex running conditions.

https://zenodo.org/records/17182847#:~:text=Files-,README,-.pdf


GreenMalloc: Allocator Optimisation for Industrial Workloads 3

2.1 Heap Memory Allocator Parameters

Both allocators expose several tunable parameters that govern allocation be-
haviour. For glibc malloc, parameters including thresholds for switching be-
tween mmap and sbrk allocation, trimming and padding behaviour, and arena
limits, all of which were extracted from the glibc malloc manual [9]. For TC-
Malloc, there is a range of tunable parameters, such as release rates, thread
cache size, page size overrides, and heap limits and were extracted from Google’s
TCMalloc documentation [5]. These parameters form a high-dimensional, mixed
discrete-continuous search space with non-trivial interactions, making manual
tuning impractical. A summary of these parameters is in our artifact [7].

2.2 Genetic Algorithm Optimisation with pymoo

We employ the genetic algorithm (GA), NSGA-II, implemented using pymoo,
selected for its effectiveness in multi-objective optimisation. Each candidate en-
codes a configuration of allocator parameters, which are passed as environment
variables to the allocator implementation (glibc malloc or tcmalloc). Stan-
dard GA operators (mutation, crossover, and elitism) are applied to evolve the
population towards better-performing configurations.
We formulate the optimisation as a multi-objective problem, jointly targeting
peak heap usage and execution time to balance sustainability and performance:
– Green Allocation. Peak heap usage, measured using valgrind’s massif tool to

minimise the total memory consumed by gem5 at any given point. Lowering
peak memory has two sustainability benefits: it reduces hardware require-
ments, and enables better workload co-location. Whilst average heap usage
may correlate with runtime energy consumption, peak heap determines the
minimal system configuration required. Our evaluation measures both metrics.

– Performance. Execution time, measured with the time utility to balance mem-
ory efficiency against performance. This ensures that improvements do not
come at the cost of excessively slow executions.

For each generation, NSGA-II evaluates candidate parameter vectors by execut-
ing rand_malloc and recording the two optimisation objectives. This yields a
Pareto front of non-dominated solutions balancing memory usage and runtime.
From this front, we select representative candidates: the one minimising run-
time, the one minimising memory, and a balanced solution near the centre of
the trade-off curve.

2.3 Case Study: Allocator Optimisation for gem5

Allocator optimisation in realistic workloads is challenging: exploration is expen-
sive, and results must align with system behaviour in the wild. We investigate
the potential of memory allocator optimisation through a case study on gem5,
a large and complex system simulator.
Synthetic Benchmarking with rand_malloc. Direct optimisation against the
full gem5 system would be prohibitively expensive, as a single run may take



4 Aidan Dakhama et al.

hours or days. We therefore employ rand_malloc [8] as a proxy benchmark
to effectively explore the allocator parameter space. rand_malloc provides a
synthetic workload, generated from a seed trace of the real system, to exercise
the memory allocation behaviour while remaining representative of the memory
behaviour observed in gem5. This can also be used to measure and emulate the
workload patterns of other systems, in order to provide a proxy to optimise over.
Evaluation on gem5. To assess the effectiveness of our approach, we transfer
the best-performing parameter configurations to gem5. We evaluated gem5’s
system emulation (SE) mode. For the SE mode, we rely on benchmark programs
from previous work on fuzz testing of gem5 [2,4].

3 Evaluation

We evaluated GreenMalloc on gem5 using 50 C test programs from Search-
SYS’s datasets [2,4]. The study analyses GreenMalloc’s impact on peak and
average heap size, memory release rate, and instruction counts under four con-
figurations:
– (1) Def glibc: unmodified glibc malloc (baseline)
– (2) Opt glibc: glibc malloc tuned with GreenMalloc
– (3) Def tcmalloc: unmodified TCMalloc (baseline)
– (4) Opt tcmalloc: TCMalloc tuned with GreenMalloc
We then ask the following research questions (RQ):
RQ1: What are the trade-offs between runtime performance and memory effi-
ciency along the Pareto front of configurations discovered by GreenMalloc?
RQ2: How effective is GreenMalloc’s optimisation in reducing memory
consumption and execution time in industrial simulation workloads?

For each case study, we compiled our generated C test inputs for use in gem5’s SE
mode, executed them under the four configurations, and measured memory usage
with Valgrind [10] and instruction counts with perf. We use a population size of
24, and run for 500 generations before stopping across all repetitions. We used
Valgrind 3.18.1 and perf 5.15.184, running on an Intel Xeon D-1548 (2.0 GHz,
8 cores) with 64GB RAM, 8 GB swap, and Ubuntu 22.04.5 LTS (x86_64).
Results: RQ1. The hypervolume and Pareto front reveal trade-offs between
the two allocators. For glibc, we achieve a mean hypervolume of 9.37×1016. The
Pareto fronts average 3 solutions per run, across 0.095% of the instruction space
and 0.162% of the peak-heap space relative to the best-performing configuration
on the front, with a trade-off slope of −0.216. While TCMalloc achieves a mean
hypervolume of 5.46×1016, with smaller Pareto fronts averaging 1.6 solutions per
run. While its instruction span is constrained to just 0.005%, it offers greater
potential with a 0.259% peak-heap span; however, it also has a much steeper
trade-off of −3.17. This demonstrates glibc malloc’s default configuration allows
for more gradual trade-offs, while TCMalloc operates closer to optimal perfor-
mance boundaries, constraining the search space but requiring more aggressive
trade-offs between objectives. Full RQ1 results are provided in the zip file at [7].

https://perfwiki.github.io/main


GreenMalloc: Allocator Optimisation for Industrial Workloads 5

Def 
glib

c

Opt g
lib

c

Def 
tcm

all
oc

Opt tc
mall

oc
1.69×108

1.71×108

1.73×108

1.75×108

1.77×108

1.79×108

1.81×108

1.83×108

1.85×108

1.87×108

1.89×108

1.91×108

1.93×108

Scheme

B
yt

es

Average Heap Size

Opt glibc

Def tcmalloc

Opt tcmalloc

Def glibc

Def 
glib

c

Opt g
lib

c

Def 
tcm

all
oc

Opt tc
mall

oc
2.18×108

2.20×108

2.22×108

2.24×108

2.26×108

2.28×108

2.30×108

2.32×108

2.34×108

2.36×108

2.38×108

Scheme

B
yt

es

Peak Heap Size 

Opt glibc

Def tcmalloc

Opt tcmalloc

Def glibc

Def 
glib

c

Opt g
lib

c

Def 
tcm

all
oc

Opt tc
mall

oc
-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Scheme

B
yt

es

Memory Release Rate

Opt glibc

Def tcmalloc

Opt tcmalloc

Def glibc

Def 
glib

c

Opt g
lib

c

Def 
tcm

all
oc

Opt tc
mall

oc
4.4×109

4.6×109

4.8×109

5.0×109

5.2×109

5.4×109

5.6×109

5.8×109

6.0×109

6.2×109

6.4×109

6.6×109

6.8×109

7.0×109

7.2×109

7.4×109

7.6×109

7.8×109

Scheme

#I
ns

tr
uc

tio
ns

Instruction counts (perf)

Opt glibc

Def glibc

Def tcmalloc

Opt tcmalloc

Fig. 2: Comparison of default and GreenMalloc-optimised configurations of
glibc malloc (glibc) and TCMalloc (tcmalloc). From left to right: aver-
age heap size, Memory release Rate, peak heap size, and instruction counts, as
measured with Valgrind, perf, and gem5. Values are all pareto optimal values.

Results: RQ2. For average heap usage, glibc shows a clear improvement:
Tuning reduced the mean from 180 428 315 to 173 293 862, with a tighter standard
deviation (2.2M to 1.6M). This indicates both greener execution – due to a lower
memory footprint – and greater performance stability. For tcmalloc, the mean
remains nearly unchanged, though the density distribution in Figure 2 shows
less variance around hotspots, improving predictability. Neither allocator shows
reductions in peak heap usage. glibc’s average slightly increases (220 104 049
to 220 523 190), while tcmalloc remains stable. This shows peak heap us-
age is close to its minimum. glibc benefits significantly in memory release
rate: The free rate rises from 0.0080 to 0.0196, reducing retention. tcmalloc
also improves, with both average release and minimum release increasing. For
instructions executed, glibc improves from 4.992× 109 to 4.990× 109, with
standard deviation tightened. tcmalloc shows a clearer benefit: reducing aver-
age instructions from 4.77 × 109 to 4.76 × 109, with variance shrinking as well.
These reductions translate into greener execution and improved efficiency.

In best-case runs, we found a single instance of TCMalloc achieved a signif-
icant improvement over the unoptimised baseline: specifically, a 4.65% reduction
in instruction count as well as a simultaneous 2.06% reduction in peak heap
usage. In contrast, the best case run for glibc demonstrated a tradeoff between
the two optimisation parameters, though it achieved a larger improvement in
each metric individually. This suggests that while the transferability from the
synthetic benchmark is sufficient, it could benefit from further tuning.



6 Aidan Dakhama et al.

Overall, allocator tuning reduces memory usage and instruction count in
glibc, while improving consistency in both glibc and tcmalloc, demonstrat-
ing tangible gains in both sustainability and performance. The improvements
found by the synthetic benchmark could effectively translate to real workloads.
In glibc, the tuned parameters reduced average memory and instructions and
increased release rate significantly – matching synthetic predictions of greener,
more efficient behaviour. In tcmalloc, while mean values remained largely sta-
ble, the improved consistency of both heap usage and instruction counts mirrors
the synthetic outcomes. Full RQ2 results are provided in the zip file at [7].

4 Conclusion

We introduced GreenMalloc, a search-based framework for memory allo-
cator parameter optimisation using lightweight benchmarking. With gem5 we
observed reductions in heap usage and instruction counts for both glibc and
TCMalloc, highlighting malloc parameter optimisation as a practical approach
for efficient and greener systems. The combination of search-based optimisation
with lightweight benchmarking opens the door to investigating other aspects of
complex software using this strategy, such as gem5’s full system (FS) mode, and
broader targets including VMs, simulators, emulators, and interpreters.

References

1. Binkert, N., et al.: The gem5 simulator. SIGARCH Comput. Archit. News 39(2),
1–7 (2011). https://doi.org/10.1145/2024716.2024718

2. Dakhama, A., et al.: Enhancing search-based testing with LLMs for finding bugs
in system simulators. Automated Software Engineering 32(2) (2025)

3. Durner, D., et al.: On the impact of memory allocation on high-performance query
processing. In: DaMoN 2019. https://doi.org/10.1145/3329785.3329918

4. Even-Mendoza, et al.: Search+LLM-based testing for ARM simulators. In: ICSE-
SEIP 2025. pp. 469–480. https://doi.org/10.1109/ICSE-SEIP66354.2025.00047

5. Ghemawat, S.: TCMalloc: Thread-caching malloc (2024), https://gperftools.
github.io/gperftools/tcmalloc.html, accessed: Sep. 2025

6. Google: TCMalloc. https://github.com/google/tcmalloc, accessed: Sep. 2025
7. GreenMalloc: This paper’s artifact (2025). https://doi.org/10.5281/zenodo.

17171047
8. Langdon, W.B.: A genetic improvement parameter benchmark: rand_malloc.c. In:

UKCI (2025), https://gpbib.cs.ucl.ac.uk/gp-html/Langdon_2025_UKCI.html
9. Loosemore, S., et al.: The GNU C Library Reference Manual. GNU Project, https:

//sourceware.org/glibc/manual/latest/pdf/libc.pdf, accessed: Sep. 2025
10. Nethercote, N., et al.: Valgrind: a framework for heavyweight dynamic binary in-

strumentation. In: PLDI 2007. p. 89–100
11. Pereira, R., et al.: Energy efficiency across programming languages: how do energy,

time, and memory relate? In: SLE 2017. p. 256–267. ACM
12. Zhou, Z., et al.: Characterizing a memory allocator at warehouse scale. In: ASPLOS

2024. p. 192–206. ACM. https://doi.org/10.1145/3620666.3651350

https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/3329785.3329918
https://doi.org/10.1145/3329785.3329918
https://doi.org/10.1109/ICSE-SEIP66354.2025.00047
https://doi.org/10.1109/ICSE-SEIP66354.2025.00047
https://gperftools.github.io/gperftools/tcmalloc.html
https://gperftools.github.io/gperftools/tcmalloc.html
https://github.com/google/tcmalloc
https://doi.org/10.5281/zenodo.17171047
https://doi.org/10.5281/zenodo.17171047
https://doi.org/10.5281/zenodo.17171047
https://doi.org/10.5281/zenodo.17171047
https://gpbib.cs.ucl.ac.uk/gp-html/Langdon_2025_UKCI.html
https://sourceware.org/glibc/manual/latest/pdf/libc.pdf
https://sourceware.org/glibc/manual/latest/pdf/libc.pdf
https://doi.org/10.1145/3620666.3651350
https://doi.org/10.1145/3620666.3651350

	GreenMalloc: Allocator Optimisation for Industrial Workloads

