
CERTAIN PATTERN RECOGNITION TASKS

USING GENETIC PROGRAMMING

Durga Prasad Muni

Electronics and Communication Sciences Unit

Indian Statistical Institute

Kolkata - 700108

India.

A thesis submitted to the Indian Statistical Institute

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

April 2008

ACKNOWLEDGEMENTS

This work would not have been possible without the active co-operation of my supervisor

Prof. J.Das. I would also like to extend my heartfelt thanks to Prof. Nikhil R.Pal who had

been not only my valued guide but also a source of inspiration. Like a true mentor, they

have guided me in my effort to do the research work and develop the thesis and no word is

enough to acknowledge their co-operation and help. I am grateful to them for the time they

have spent in discussing our research and scrutinizing it critically and with painstaking care.

They have also been kind enough to allow our joint works to be included in this thesis.

I would also like to thank the members of the Research Fellow Advisory Committee of

the Computer and Communication Sciences Division for their critical comments during my

annual reviews without which this herculian task could not have been possible.

I would also take this opportunity to thank the faculties of Electronics and Communication

Sciences Unit for their constant encouragement to speed up the research work.

I would like to thank Mr. Dibyendu Banerjee and my wife Sagarika for giving me the coveted

support in time of need.

I also extend my sincere gratitude to Prof. P. K. Nanda, Mr. P.P. Mohanta and my seniors

Dr. Debrup Chakraborty and Dr. Arijit Laha who have extended to me their incessant and

unconditional support to help me go ahead with my research work. I would never forget

the company I had from my friends such as Lingaraj, Kanhu, Sarif, Sanjaya, BLN, Pradip,

Bibhas, Sitansu, Arindam, Brojeshwar, and Samrat.

I am very much grateful to my family especially to my parents for providing me the op-

portunity to continue my research work unhampered and for being a source of continuous

mental support and encouragement. Without them, this enormous work wouldn’t have seen

the light.

The Institute’s library staff and everyone in the Electronics and Communication Sciences

Unit (ECSU) have always been co-operative and friendly, which helped a lot. The Indian

Statistical Institute has been like a mother tree to me helping a scapling as like me to thrive

and prosper to my present self by giving me support in every sphere.

ISI, Kolkata

April 2008. (Durga Prasad Muni)

i

Contents

1 Introduction and scope of the thesis 1

1.1 Introduction . 1

1.2 Motivation . 5

1.3 Scope of the thesis . 7

1.3.1 An Introduction to Pattern Recognition and Evolutionary Algo-

rithms . 7

1.3.2 Classifier Design using GP . 8

1.3.3 Simultaneous Feature Selection and Classifier Design using GP . 8

1.3.4 Evolution of Fuzzy Classifier Rules using GP 9

1.3.5 Texture Generation and Classification using GP 9

1.3.6 Conclusion and Scope of the future works 11

2 An Introduction to Pattern Recognition and Evolutionary Algorithms 12

2.1 An Introduction to Pattern Recognition 12

2.1.1 Data Acquisition and/or Preprocessing 14

2.1.2 Feature Analysis . 15

2.1.3 Classification and/or clustering 15

2.2 An Introduction to Evolutionary Algorithms 17

2.2.1 Genetic Algorithms . 18

2.2.2 Evolutionary Programming . 19

ii

2.2.3 Evolutionary Strategies . 20

2.2.4 Genetic Programming . 21

2.3 Relevance of EA in Pattern Recognition 32

3 Classifier Design using Genetic Programming [A1, A7] 34

3.1 Introduction . 34

3.2 Proposed Multi-tree GP based classifier 36

3.2.1 Initialization . 37

3.2.2 Training and Fitness measure 37

3.2.3 Unfitness of trees . 40

3.2.4 A modified Crossover operation 40

3.2.5 A modified point mutation operation 42

3.2.6 Termination of GP . 44

3.2.7 Improving performance of classifier with OR-ing 45

3.2.8 Conflict Resolution . 46

3.2.9 Validation of classifier . 51

3.3 Experimental Results . 52

3.3.1 Data Sets . 52

3.3.2 Results . 53

3.4 Conclusions . 62

4 Simultaneous feature selection and Classifier Design using Genetic

Programming [A2] 64

4.1 Introduction . 64

4.2 Designing Classifiers without Feature Selection 67

4.2.1 Modified Fitness Function . 67

4.3 Designing classifiers with on-line feature selection 70

iii

4.3.1 Selection of a feature subset for each chromosome 70

4.3.2 Fitness Function . 70

4.3.3 Crossover Operation . 71

4.4 Experimental Results . 75

4.4.1 Data Sets . 76

4.4.2 GP Parameters . 77

4.4.3 Results . 79

4.4.4 Effect of noise features . 86

4.5 Conclusions . 88

5 Evolution of Fuzzy classifiers Using Genetic Programming [A3] 90

5.1 Introduction . 90

5.2 Procedure . 92

5.2.1 Initialization . 93

5.2.2 Fitness Measure . 96

5.2.3 Crossover . 96

5.2.4 Mutation . 99

5.2.5 Cleaning of poor Rules . 101

5.2.6 Termination of GP and Validation 102

5.3 Experimental Results . 102

5.3.1 GP parameters . 103

5.3.2 Results . 104

5.4 Conclusion . 113

6 Texture Generation and Classification using Genetic Programming

[A4, A5, A6] 115

6.1 Introduction . 115

iv

6.2 Proposed Texture Generation using GP 118

6.2.1 Initialization . 118

6.2.2 Filtering of Textures . 119

6.2.3 Computation of feature vector 120

6.2.4 Fitness . 121

6.2.5 Performance of Texture Generation Method 123

6.3 Texture Classification using Genetic Programming 126

6.3.1 Preparation of Data Sets . 127

6.3.2 Classification Results . 129

6.4 Conclusion . 130

7 Conclusion and Scope of further work 131

7.1 Conclusion . 131

7.2 Scope of the further work . 134

Bibliography 136

Publications of the Author Related to the Thesis 145

v

List of Figures

2.1 (a) Division by 0 and (b) square root of a negative number 23

2.2 A tree generated by Full Method . 24

2.3 A multi-tree representation of an individual 25

2.4 Roulette wheel representation for the selection scheme 28

2.5 Two parents for Crossover Operation 29

2.6 Two Offspring after the Crossover Operation 30

2.7 A typical Mutation Operation . 30

2.8 Flow Chart of Genetic Programming 31

3.1 (a) and (b) Chromosomes C1 and C2 before Crossover operation; (c)

and (d) Chromosomes C1 and C2 after Crossover operation 42

3.2 Variation of training and test error rates for the vehicle data : (a) No

post-processing is used, (b) Only OR-ing is used, (c) OR-ing and heuris-

tic rules are used, and (d) OR-ing, heuristic rules and weighting scheme

are used . 59

3.3 (a) performance of the eight trees for RS data up to 20 generations and

(b) performance of the same eight trees from generations 20 to 520. . . 60

4.1 Decrease of fitness(fsg) value with increase in r for af =0.1 and n = 10

in Eq. 6 . 68

4.2 Iris Data using 3rd and 4th feature . 83

5.1 Representation of a fuzzy classifier . 93

vi

5.2 A typical tree representation of fuzzy rule 94

5.3 Parent 1 for crossover . 97

5.4 Parent 2 for crossover . 97

5.5 Offspring 1 after crossover . 98

5.6 Offspring 2 after crossover . 98

5.7 Best fitness and Mean fitness over generation for IRIS: all FKM proto-

types . 108

5.8 Best fitness and Mean fitness over generation for IRIS: all Random pro-

totypes . 109

5.9 Best fitness and Mean fitness over generation for WBC: all FKM pro-

totypes . 110

5.10 Best fitness and Mean fitness over generation for WBC: all Random

prototypes . 111

6.1 Block diagram of the GP system . 123

6.2 Evaluation of procedures on the basis of their produced image/texture . 123

6.3 Generated Textures by our GP system 125

6.4 Generated Textures by our GP system 125

6.5 Generated Textures by our GP system 126

6.6 Textures produced by the given procedures 1 and 2 126

6.7 Textures produced by the given procedures 3 and 4 127

6.8 Textures for Experiment 1 . 128

6.9 Textures for Experiment 2 . 128

6.10 Textures for Experiment 3 . 129

vii

List of Tables

3.1 Different Classes and their frequencies for RS data 53

3.2 The Five Data sets . 54

3.3 Common Parameters for all Data sets 54

3.4 Different parameters used for different data sets 55

3.5 Performance Evaluation for IRIS, WBC and BUPA Data 57

3.6 Performance Evaluation for Vehicle and RS Data 58

3.7 Comparison of mean error rate merr with other approaches 61

3.8 Mean GP Run Time . 61

3.9 Average number of heuristic rules obtained for each Data set 61

4.1 Data sets . 76

4.2 Common Parameters for all Data sets 78

4.3 Population Size . 78

4.4 Average Performance . 81

4.5 Mean Run Time . 81

4.6 Comparison with other methods for IRIS data 82

4.7 Comparison with other methods for WBC data 83

4.8 Comparison for Wine and Vehicle data 84

4.9 Weights of features for Iris, WBC and Wine data 85

4.10 Weights of features for Vehicle data 85

viii

4.11 Comparison with other methods for Sonar data 86

4.12 Average Performance for noisy data 87

4.13 t̃ Statistic for the noisy data sets . 88

5.1 Data sets . 102

5.2 Common GP Parameters for all Data sets 103

5.3 Other GP Parameters . 103

5.4 Test Accuracy with initial 10 Rules per class 104

5.5 Average number of Rules with initial 10 rules per class 105

5.6 Test Accuracy with initial 5 Rules per class 106

5.7 Average number of Rules with initial 5 rules per class 106

5.8 Test Error for WBC for comparison 113

5.9 Test Error for Diabetes for comparison 113

5.10 Reported test error in other GP work [116] 113

ix

List of Important Abbreviations

ANN Artificial Neural Networks

CI Computational Intelligence

EAs Evolutionary Algorithms

EC Evolutionary Computation

EP Evolutionary Programming

ES Evolutionary Strategies

FCM Fuzzy K Means

FS Feature Selection

GAs Genetic Algorithm

GP Genetic Programming

x

Chapter 1

Introduction and scope of the thesis

1.1 Introduction

In this thesis, we focus on developing methodologies to solve certain pattern recognition

tasks using evolutionary algorithms. Before explaining our methodologies, we give a

very brief introduction to pattern recognition and evolutionary algorithms for a better

understanding of the thesis.

Modern man is over flooded with myriad of information each distinct and complex

in its own nature. Extraction of useful information from such data often reduces to

recognition of various patterns present in the data. Thus, one needs to do pattern

recognition. But what is pattern recognition (PR)?

According to Duda and Hart [36], pattern recognition is a field concerned with machine

recognition of meaningful regularities in noisy or complex environments. In [115],

pattern recognition is defined as the categorization of input data into identifiable classes

via extraction of significant features or attributes of the data from a background of

irrelevant detail.

Recognition is a basic feature of every living organism and pattern is the “description”

of an object that affords its recognition from amongst other objects. For example,

when we spot a known person among a host of people or recognize a voice among a ca-

cophony, we are using our pattern recognition capability. We can read handwriting and

recognize music. A human being is a very sophisticated information processing system,

partly because he possesses a superior pattern recognition capability [115]. Though

human beings have very good pattern recognition ability, human sensory system has

1

certain limitations. Some undetectable patterns or otherwise patterns which are more

complex in nature become difficult for human beings to recognize unaided. For in-

stance, detecting the sound of a submarine, in the presence of other marine signals

and noise. There are also some monotonous routine pattern recognition jobs. These

tedious tasks require huge manpower. One such case is detection of defects in objects

in factory outlet. Information can be the most valuable asset to the human being only

if he can extract potential or valuable knowledge from it. Human analysts can no

longer keep track of or make sense of the enormous volume of information in this era of

rapidly growing and advanced technology. Thus, it becomes essential to automatically

process this plethora of information efficiently and automatically. Information may be

in the form of text, image, voice and raw data. To store, manage and process oodles of

information in real time, and accurately we need automatic techniques like automatic

pattern recognition. Speech recognition, fingerprint identification, optical character

recognition, DNA sequence identification, medical diagnosis, and remote sensing data

classification are some examples of pattern recognition.

A typical Pattern Recognition system (PRS) consists of three tasks namely, data acqui-

sition and/or preprocessing, feature analysis, classification and/or clustering. In the

first step, data are collected by using some sensors or other means. And then these raw

data may be preprocessed. Preprocessing may involve noise reduction, normalization

and conversion of raw data into suitable form for pattern recognition. After obtaining

the data, good features are extracted by mapping data to other domain or a subset of

good features is selected from the available features. This process finds useful features

to obtain an efficient and improved solution to a given problem. Success of pattern

recognition depends on the features used. Finally, in the classification and/or clus-

tering phase, the actual task of PRS is performed. Classification involves assigning a

class label to a given pattern while clustering finds homogeneous subgroups in data.

However, all these components may not be essential in a PRS. Also, consecutive phases

may be combined together. The design of PRS depends on the problem at hand. If

data are available for pattern recognition, then we may require schemes for feature

extraction/selection and for classification/clustering. The tool that performs classifi-

cation is called classifier. In this thesis, we have primarily focused on two important

tasks: classifier design and feature selection.

Since the very beginning, statistical approaches [44] have been used for pattern recog-

2

nition. However, the classical statistical methods are not always well suited for diffi-

cult pattern recognition problems. Many alternative approaches have been introduced

which can address these complex pattern recognition problems. A collective approach

called Computational Intelligence [70] is one of them. These methods are quite useful

and popular to build ”intelligent” systems.

Computational intelligence includes mainly three tools: Artificial Neural Networks

(ANNs), Fuzzy logic and Evolutionary algorithms (EAs). ANNs [57] are most popular

among computational intelligence methods. They have good learning and generaliza-

tion abilities but sometimes lack interpretability and may work as a black box.

It is desired to have decision-making systems with reasoning ability as human beings.

It would be also better if linguistic rules can be used to describe a decision making

system. Fuzzy logic [68, 12] can fulfill these requirements up to a great extent. It can

handle uncertainty and vagueness in the real-world problems.

Evolutionary algorithms (EAs) [6, 46, 72] evolve desired solution to a given problem

using biologically inspired operations like crossover, mutation and the Darwinian Prin-

ciple of the Survival of the Fittest. At first, typically a ”population” of representation

of possible solutions is (randomly) generated. Each representation is called a chromo-

some. Then, variation (genetic operation(s)) and selection operations are implemented

on the current population to create the next population. This is motivated by the hope

that new generation will be better than previous generation. The process of evolution

is continued till the desired solution is obtained or till the termination criteria are

satisfied. The computation using Evolutionary algorithms is called Evolutionary Com-

putation.

Like pattern recognition, an urge to find an appropriate/optimal solution is a basic

feature of human being. Optimization is a process to find the optimal solution for

a given problem. We can search the solution space to find the optimal/appropriate

solution. Many pattern recognition tasks can be viewed as search and optimization

problems. For example, in case of classifier design, we search the feature space to obtain

the appropriate classifier(s). In most cases, we assume a structure of the classifier and

try to optimize the parameters involved in the classifier. During optimization process,

we either minimize or maximize a performance index. So, when we design classifier, we

may attempt to minimize the classification error of the classifier over a set of known

3

samples called training set.

EAs are basically randomized search and optimization techniques [46, 18]. Most tra-

ditional search and optimization techniques are appropriate only for certain types

of problems. For example, Calculus-based optimization methods are suitable for the

problems having smooth, continuous, unimodal and differentiable (search) space. Enu-

merate search techniques are used when the number of possible solutions is finite and

small. But EAs are robust, efficient and adaptive. They have ability to find near-

optima solutions in acceptable time for a wide range of optimization problems. EAs

are in great demand where traditional methods fail. EAs do not require that the search

surface should have continuous, unimodal and differentiable. EAs can be used for the

problems where search space is vast. Moreover, unlike traditional methods, these are

population based search techniques. This helps to reach to or near to global optima by

avoiding local optima. This is a great advantage of EAs. Due to all these advantages,

EAs are widely used to solve complex real-world optimization problems.

Genetic Algorithms (GAs) [46, 18] are most popular EAs. In GAs, each solution is

represented by a finite-length string. GAs are usually used to optimize the parameters

of a model such as classifier or to find configuration (subset) of certain set of variables.

Genetic Programming (GP) [72, 7] is another EA. GP is a variation of GAs. In GP,

each solution is typically represented by a tree or a program. This difference makes it a

tool suitable for structural optimization in addition to inherent parameter optimization

of a model. And hence, we don’t require assuming a particular structure of the model if

we use GP. It can find both (near-optimal) structure and values of parameters involved

of the model and it provides the expression of the model. We can not only employ

the model of the system to solve the problem but also can analyze the expression of

the model. For this reason, GP is rapidly becoming popular. This distinct advantage

of GP also motivated us to adopt it for different pattern recognition tasks. Before

describing the scope of the thesis, we will attempt to describe motivation for each of

my proposed methods in the next section.

4

1.2 Motivation

Classifier design is an important pattern recognition task. GP can learn the hidden

relationship in the data and can provide the desired classifier including its expression.

This helps to analyze the classifier in addition to employing it to classify unknown

data points. This feature of GP has attracted many researchers to use GP for clas-

sifier design. Most available GP based classifier design methods deal with two class

classification problems. Only few researchers have developed classifiers for multi-class

problems using GP [81, 24, 84, 67, 123]. These methods are interesting but usually

require more than one GP run to develop classifiers for multi-class problems. So, that

motivated me to propose an algorithm that can develop classifier in a single GP run.

Success of a Pattern Recognition Systems depends on features we use. In literature,

very few works are available where GP has been used for feature selection/extraction.

The suitability of a feature subset depends not only on the problem being solved

but also on the solution (classifier) that is used to solve the problem. So, if we design

classifier and select features for that classifier simultaneously, then we can obtain better

classifier. As the available GP based feature selection methods do not select features

and design classifiers at the same time, we propose an algorithm for it. We have

explained the previous line as follow. Typically when GP is used to design classifiers,

different classifiers may use different sets of features and they may not use all features.

Hence, one can argue that a GP- based scheme for classifier design does an implicit

feature selection. However, since such a design does not explicitly consider the task of

feature selection, in the worst case some classifier may even use all features, and some

may involve derogatory features. Such a design process does not penalize the use of

larger feature set because it considers only the classification accuracy. For example,

if a classifier using all features performs slightly better (may be either on the training

data or on a validation set) than another classifier that uses a very small number of

features then we consider the former one better as our objective is to improve the

classification accuracy. However, a better objective would be to obtain good accuracy

using a small number of features. Such a classifier can lead to better interpretability

and usually since such a system will have less degrees of freedom, it is likely to yield

better generalization. So, classifier design should be formulated as a multi objective

task giving explicit importance on the cardinality of the used feature set. Our approach

5

considers both classification accuracy and size of the used feature subset explicitly while

evaluating a classifier.

While designing models, we may incorporate fuzzy logic concept to address vagueness

and uncertainty in data. So, instead of evolving crisp classifiers, we can evolve fuzzy

classifier rules using GP. In this case too, few attempts have been made to generate

fuzzy classifier rules using GP. We propose a simple but effective scheme to evolve

fuzzy classier rules for multi class classification problem. It optimizes both structure

and values of involved parameters of the rules.

So far we have considered development of general methodologies. Next we consider a

specific application area. Art is being considered as the most creative and innovative

discipline. Computer is being used in artistic application too. Generation of interest-

ing images and textures using computer for various purposes including fashion/textile

design, animation is a recent trend. Texture [113] is a property of the surface or struc-

ture of an object. A texture produced by an algorithm or a procedure is called a

procedural texture [37]. For each point of the procedural texture, the procedure gives

the corresponding gray level or color value. Although the procedural representation is

extremely compact compared to the image representation, it is difficult to find/write

procedures that will generate textures for some target application. Evolutionary al-

gorithm [46, 72] is a possible solution to this major problem. For evolution towards

better solutions (textures), we need to evaluate each solution (texture) that indicates

how good the solution is. Despite its wide use, texture has no precise definition. So an

automatic evaluation of textures is not an easy task. In comparison, a human being

can easily identify and assess a texture. If we allow computer to generate textures and

user to determine which textures are good according to his/her choice in the process

of generation, then interesting textures can be created. Generation of textures based

on this principle is called interactive texture generation. However, interactive texture

generation could be a tedious process if a user needs to assign a fitness value to every

generated texture. Consequently some methods generate textures similar to a (or a

set of) given reference texture(s). This type of GP based schemes are presented in

[120] which evolve procedures to produce textures similar to a given reference texture.

This is an interesting approach but requires reference texture(s) and also produces only

similar textures with respect to the given reference texture(s). But, the most optimal

texture will be identical to the given reference texture.

6

Both of these approaches have their limitations. Hence, we need to device a hybrid

approach that can combine the advantages of both approaches. This motivated us to

propose a new approach using GP to generate textures. GP can generate procedures

to produce interesting textures. The proposed GP system acts as a sort of pattern

recognition system.

Texture Classification is another pattern recognition task. We have already devised

GP classifier systems. Hence, we were curious to implement our GP classifier schemes

for texture classification.

1.3 Scope of the thesis

In this thesis, I address certain pattern recognition tasks using Genetic Programming.

These tasks are classifier design, simultaneous feature selection and classifier design,

fuzzy rule based classifier evolution, and texture generation and classification. In this

context, we have proposed various methodologies. The proposed schemes are validated

on a set of benchmark real data sets. The performances of the methods have been

compared with some existing ones.

Chapter 1 and Chapter 2 act as the prologue to the thesis where we have introduced the

reader briefly to the scope and nature of the work. The following chapters, however, are

the heart of the thesis that contain the detail studies of our research and methodologies.

The introductory sections of these chapters begin with a brief literature survey of the

works that are to follow. Contents and contribution of the chapters are summarized

in the subsequent sections.

1.3.1 An Introduction to Pattern Recognition and Evolution-

ary Algorithms

In Chapter 2, we provide an introduction to Evolutionary algorithms (EAs) and pattern

recognition. We especially emphasis on Genetic Programming, the tool we use for

solving the tasks. Also how EAs excel in optimization has been briefed.

7

1.3.2 Classifier Design using GP

In Chapter 3, we begin with a short survey of previous works on classifier design us-

ing GP and then we present our proposed GP based scheme for classifier design for

multi-category classification problems. The proposed approach takes an integrated

view of all classes when the GP evolves. A multi-tree representation of chromosomes

is used. For c-class problem, a chromosome (possible classifier) consists of c trees, each

representing a classifier for a particular class. In this context, we propose a modified

crossover operation and a new mutation operation that reduces the destructive nature

of conventional genetic operations. We use a new concept of unfitness of a tree to select

trees for genetic operations. This gives more opportunity to unfit trees to become fit.

Further a new concept of OR-ing chromosomes in the terminal population is also intro-

duced, which enables us to get a classifier with better performance. Finally, a weight

based scheme and some heuristic rules characterizing typical ambiguous situations are

used for conflict resolution. The classifier is capable of saying “don’t know” when faced

with unfamiliar examples. The effectiveness of our scheme is demonstrated on several

real data sets.

1.3.3 Simultaneous Feature Selection and Classifier Design

using GP

In Chapter 4, we propose a GP system that performs feature selection and classifier

design simultaneously. Although, one can view that GP does an implicit feature anal-

ysis, as explained earlier, if we do not explicitly add a penalty to the fitness function

when more features are used, then the classifiers can use more features than what is

required. Some features may be redundant or irrelevant, even some may be deroga-

tory. Therefore, we should consider both classification accuracy and the number of

features used while evaluating a classifier. The goal is to design a better classifier

using small number of features. Here we propose this multi-objective approach that

can simultaneously select features and design a classifier.

At the beginning of the chapter, we give a brief literature survey on feature selection.

Our GP scheme selects a good subset of features and constructs a classifier using the

selected features simultaneously. For a c-class problem, it provides a classifier having

8

c trees. In this context, we introduce two new crossover operations to suit the feature

selection process. As a byproduct, our algorithm produces a feature-ranking scheme.

We tested our method on several data sets having dimensions varying from 4 to 7129.

We compared the performance of our method with results available in the literature and

found that the proposed method produces consistently good results. To demonstrate

the robustness of the scheme, we studied its effectiveness on data sets with known

(synthetically added) redundant/bad features.

1.3.4 Evolution of Fuzzy Classifier Rules using GP

In Chapter 5, we propose a Genetic Programming (GP) based approach to evolve fuzzy

rule based classifiers. For a c-class problem, a classifier consists of c trees. Each tree, Ti,

of the multi-tree classifier comprised a set of rules for class i. During the evolutionary

process, the inaccurate/inactive rules of the initial set of rules are removed by a cleaning

scheme. This allows good rules to sustain and that eventually determines the number

of rules. In stead of using all features in a rule, in the beginning, our GP scheme uses

only a randomly selected subset of features and then evolves the features to be used

in each rule. The initial rules are constructed using prototypes. The prototypes are

generated randomly as well as by the fuzzy K-means (FKM) algorithm. Experiments

are conducted in three different ways: using only randomly generated rules, using

a mixture of randomly generated rules and FKM prototype based rules, and with

exclusively FKM prototype based rules. Contrary to expectation, randomly generated

rules work better than FKM based rules in most cases and this emphasizes the novelty

of the proposed scheme. In this context, we propose a new mutation operation to

alter the rule parameters. Hence, the GP scheme not only optimizes the structure of

rules but also optimizes the parameters involved. This results in good fuzzy rule based

classifiers. Moreover, the resultant fuzzy rules can be analyzed. The performance of

the proposed scheme is quite satisfactory.

1.3.5 Texture Generation and Classification using GP

So far, we have developed general methodologies. In Chapter 6, we consider a specific

application area. We present a new method to generate textures using GP and also

9

we use our GP classifier schemes for texture classification. Genetic Programming can

evolve suitable procedures or mathematical functions to solve a problem. This ad-

vantage has been utilized to generate procedures that can produce interesting/desired

textures. Our GP based texture generation scheme acts as a sort of a pattern recogni-

tion system.

The initialization process of GP generates tree representation of procedures. Each

generated procedure Ti is activated to produce an image Si (2-dimensional gray value

matrix). We use contrast of the generated images/textures to filter out poor textures.

This phase resembles Data acquisition/Preprocessing phase.

If Si could able to pass through the filtering process, a vector of statistical features vi

is extracted from Si to represent it.

Then the pattern is passed through the classification/clustering phase. Similarity of the

texture Si with respect to the already generated textures is computed using the feature

vector vi. If the texture is more similar to a cluster of already generated textures then

the texture is placed in that cluster and the fitness value of that cluster is assigned

to the procedure Si. Otherwise, if the generated texture is quite dissimilar with the

existing textures then it is displayed for the user. The user according to his/her choice

assigns a fitness value by visually inspecting it. The texture is placed in a new cluster

and the fitness value of the texture is assigned to that cluster.

After assigning fitness value to each procedure Ti, genetic operations are applied and

the evolutionary process is carried on. This produces many interesting textures ac-

cording to the user’s choice by occasionally seeking user’s discretion.

For texture classification, we extract statistical features to represent them. These

features are carefully chosen because success of the process (pattern classification)

depends on the features we use. After representing textures by the corresponding

statistical feature vectors, we use our GP classifier schemes to design classifier for

texture classification. We have experimented the texture classification task on a set of

natural textures.

10

1.3.6 Conclusion and Scope of the future works

We conclude the thesis in chapter 7. The hitherto detailed discussion is represented

in a nutshell with comments on its respective merits and drawbacks. The chapter also

includes a discussion on the future scope of the research work.

11

Chapter 2

An Introduction to Pattern Recognition and

Evolutionary Algorithms

2.1 An Introduction to Pattern Recognition

According to Duda and Hart [36], pattern recognition is a field concerned with machine

recognition of meaningful regularities in noisy or complex environments. As mentioned

earlier typical Pattern Recognition system consists of three components namely, data

acquisition and/or preprocessing, feature analysis, classification and/or clustering. Be-

fore going into detail about different pattern recognition tasks, I am giving the following

example to explain pattern recognition.

Suppose a girl has never seen a cow or a goat. She also does not know how cows and

goats look like. Now a teacher takes the girl to a playground where a host of cows and

goats are grazing. Next, the teacher points to each animal and tells whether that is a

cow or a goat. In this case each appearance of cow or goat is called a pattern, or more

particularly a training sample. The girl tries to learn the characteristics of cows and

goats and may make the following observations on each animal.

1. Approximate height

2. Approximate length

3. Approximate length of tail

4. Shape of the head

12

5. Number of legs

6. Number of eyes

7. Number of ears

Such observations are called attributes or features. A pattern is represented by a set of

features or attributes. Collection of data by sensing or measuring the features is called

data acquisition.

Now the girl has been told that she may have to recognize cows and goats later. Then

the girl analyzes the above mentioned observations and finds that:

(i) Typically the height of a cow is larger then the height of a goat.

(ii) Length of a cow is usually larger than the length of a goat.

(iii) Tail of a cow is longer than the tail of a goat.

(iv) Shapes of heads of cow and goat are different, usually the head of a cow is bigger

than that of a goat.

(v) Both cow and goat have the same number of legs.

(vi) Both cow and goat have the same number of eyes.

(vii) Both cow and goat have the same number of ears.

Now, the girl gets an idea that for discrimination between a cow and a goat, the first

four observations are important to classify an animal whether it is a cow or a goat and

the last three features are not useful. The above analysis of observations/features to

find the good features (for classification) is called feature analysis. The selection of

good features from a given set of features is called feature selection. In this case, the

first four good features are being selected from the set of seven features.

On the way back, the teacher notices an animal (cow/goat) and asks the girl to identify

whether it is a cow or a goat. With her previous experience, the girl only takes interest

to observe the above four important features. Then she tries to estimate how close are

the given features of the shown animal to the corresponding features of a cow and a

13

goat. That means, she may observe how big is the animal is, the length of its tail, and

the shape of its head. With her previous learning, she might be able to say whether the

animal is a cow or a goat. Here cow and goat are called the classes to which the pattern

may belong to. This task of categorization of a given pattern to a known class is called

classification. This is also called supervised classification because there is a need to

supervise or to teach the learning algorithm(girl) prior to classification of unknown

patterns. If c stands for the number of classes then classification can be defined as

follows: Classification is the partition of the feature space into c subsets, one for each

class and mapping a given unknown pattern (belongs to one of these classes) or point

to one of the subsets of the feature space.

In case of clustering, there is no need of a supervisor (or a teacher). To explain

clustering the above example can be modified as follow. A boy who has never seen a

cow or a goat is taken to a playground where the cows and goats are grazing. The boy

is asked to group the similar animals. He may observe the above mentioned features

of the animals and may analyze the features to find good features to discriminate the

two types of animals. Further, he may choose the above mentioned four good features.

Using these four features of animals, he may be able to cluster the cows into one group

and goats into another group. This task is called clustering. Clustering may be defined

as the grouping of similar given patterns into groups- it is a partitioning of a given

data set.

In the following subsections, different phases of a typical pattern recognition system

are described.

2.1.1 Data Acquisition and/or Preprocessing

In this phase data is collected by a set of sensors or by other means. Data may be

numerical, linguistic, pictorial, signal/waveform, or any combination of them. After

obtaining, the raw data is preprocessed. It may involve noise reduction, normalization

and conversion of raw data suitable for the task i.e. for pattern recognition. It typically

represents a pattern by a vector of features. This type of data representation is called

object data type and it is most common in pattern recognition. There is another type

of data structure that is rarely used in pattern recognition. It is called relational data

and consists of the pairwise relations (similarities or dissimilarities) between each pair

14

of objects.

2.1.2 Feature Analysis

Feature analysis (FA) is a process to find useful features to obtain an efficient and

improved solution to a given problem. All available features are not useful for the

task at hand. Some of the features may be redundant while some others may bad

too. These features may cause confusion during the process of model(e.g. classifier)

development. These features unnecessarily increase the complexity of the feature space

which in turn demands more computation time to find a solution to the given problem.

FA is a process of finding a map Φ : Rp →Rq using a criterion J on the given (training)

data set. Typically, q < p and it is called dimensionality reduction.

Depending upon the type of process, it may be categorized into two basic types: feature

extraction (FE) and feature selection (FS). Feature extraction is a method to generate

a q dimensional feature vector from a given p dimensional input vector. Although, it is

not necessary that q < p; however, for pattern recognition q < p is preferred. In other

words, the original features are projected in a different space of lower dimensionality by

using some criteria. The extracted features are the linear/nonlinear combination of the

given set of features that may not bear the meanings of the original ones. Principal

component Analysis (PCA) [44] is a popular feature extraction method for pattern

recognition.

Feature selection(FS) selects a subset of good features from the set of available features.

Ideally, the feature selection process should select an optimum subset of features from

the set of available features which is necessary and sufficient for solving the problem.

2.1.3 Classification and/or clustering

Classification and/or clustering is the actual task of a pattern recognition system. In

pattern classification task, we assume that there exist c groups or classes, denoted by

ω1, ω2, ..., ωc. For a given pattern x, we assign a class label i ∈ {1, 2, ..., c} denoting x

belongs to class ωi. The abstract space that represent all possible data points is called

feature space. Basically, for c-class classification task, the feature space is partitioned

into c partitions, each representing a particular class. The model that defines the

15

partition is called classifier. Unfortunately, in real world we don’t have all possible

data points to obtain the exact partition or classifier. In stead, we have a finite

and usually a small set of data points that provides partial information for optimal

design of models such as classifier, feature selector/extractor. Hence, it is assumed

that these data points are representative of (distribution of) the classes. This data

set is typically called training set. Each data point of the training set is associated

with its corresponding class label. On the basis of the training set, we extract/select

features and design the classifier. The algorithm or the methodology learns from

the information including class membership available in the training set and provides

the model. Here, the algorithm is supervised by providing the class membership of

training samples while learning. This type of learning is called supervised learning.

After obtaining the classifier, it is used to classify unknown data points i.e. patterns

without knowing their class labels. In practice, before classifying unknown patterns,

the classifier is tested on a set of data points called test set. Although class label is

associated to each data point of test set, while classifying the test point by the classifier

we don’t use the class label. After classification of test point, the estimated class label

of the test point by the classifier and its actual class label is compared. On the basis

of the comparison, the error/accuracy of the designed classifier is estimated. If the

performance is satisfactory, then it is used to classify unknown data points.

A classifier can be defined as follow. A classifier D is a mapping, D : Rp → Nhc,

where Rp is the p-dimensional real space and Nhc is the set of label vectors for a c-

class problem and is defined as Nhc = {y ∈ Rc : yi ∈ {0, 1}∀i,
∑c

i=1 yi = 1}. For any

vector x ∈ Rp, D(x) is a vector in c-dimension with only one component as 1 and all

others as 0. In other words, a classifier is a function which takes a feature vector in p

dimension as input and assigns a class label to it.

In clustering, we cluster the given data points into homogeneous subgroups. The

difference between classification and clustering is that in classification we partition the

feature space while in clustering we partition the given data points into groups. Unlike

classification, we do not require the class label of the data points in clustering. And

hence the process is also called unsupervised learning.

These are the three basic components of a typical pattern recognition system. However,

all these above mentioned processes may not be required for a pattern recognition

system. For example, we can directly provide the measurements or values of required

16

features to the classifier. Here, the user intuitively decide the features and hence acts as

a feature selector. Also, some phases may be combined together. In the above example,

data acquisition and feature analysis are considered together. A pattern recognition

system may have both classification and clustering schemes. In some cases, feature

analysis and classification/clustering are performed simultaneously. We have proposed

an algorithm where feature selection and classifier design are simultaneously performed.

With the introduction to pattern recognition, we now discuss the main tool, EA, that

we have used in this thesis to solve different pattern recognition tasks.

2.2 An Introduction to Evolutionary Algorithms

Evolution is the natural developmental process by which different kinds of living or-

ganism develop from the earlier forms. From the very dawn of human civilization man

has been engaged incessantly in his onward quest for perfection by closely observing

the various traits of nature and consequently analyzing and deducing the logic behind

such natural occurances. He has observed the flights of birds and with an urge to defy

gravity like them, he developed the flying machine but without being self complace-

ment, he has been constantly improving on it till now. Fascinated by the way the brain

neurons function, he developed artificial neural networks (ANNs). With this similar

urge, he developed algorithms which mimic the principle of natural evolution. These

algorithms are called evolutionary algorithms.

Evolutionary algorithms(EAs) evolve desired solution to a given problem using biolog-

ically inspired operations like crossover, mutation and the Darwinian principle of the

survival of the fittest. Typically, initially a ”population” of possible solutions is taken.

Then, variation (genetic operation(s)) and selection operations are implemented on the

the current population to create the next population. This is motivated by the hope

that new generation will be better then previous generation. The computation using

Evolutionary algorithms is called Evolutionary Computation. Although the origin of

evolutionary computation can be traced back to the late 1950’s, it slowly became pop-

ular during the 1970’s with major contributions from pioneer researchers like Holland,

Rechenberg, Schwefel and Fogel [5]. Now, with powerful computers, use of EAs is

increasing rapidly.

17

Genetic Algorithms [46], Genetic Programming [72], Evolutionary Programming [6]

and Evolutionary Strategies [6] are four major Evolutionary Algorithms. These algo-

rithms have been discussed in the following sections.

2.2.1 Genetic Algorithms

Genetic Algorithms(GAs) [46, 18], introduced by Holland and subsequently studied by

researchers like De Jong and Goldberg are most popular evolutionary algorithms. GAs

are mainly used for optimization problems.

In GAs, the solutions are encoded into finite-length strings of alphabets of certain

cardinality. These strings are called chromosomes, the alphabets are referred to as

genes and the values of genes are called alleles. In most cases, chromosomes are binary

strings consisting of alphabets ”1” and ”0”. In a problem such as the traveling sales

man problem, a chromosome represents a route, and a gene may represent a city.

Initially, a population (set) of solutions are randomly generated for evolution. In the

process of evolution and natural selection, the good solutions survive and produce

offspring while the bad solutions die out (removed). To determine the goodness of the

solution, each solution is evaluated using an objective function. The evaluated value

is assigned as the fitness value to that solution. Instead of using an objective function,

a subjective function may be considered where the user choose better solutions over

worse one.

The following steps are carried out in Genetic Algorithm.

1. Initialization: A population of solutions are randomly generated across the search

space. However, if domain-specific knowledge is available, then it can be incorporated.

2.Evaluation: Each solution of the population is evaluated and the evaluated fitness

value is assigned to the solution.

3. Based on the fitness values, better solutions are selected for genetic operations.

4. Usually two chromosomes are taken for crossover with probability pc. That means,

a random number r ∈ [0, 1] is generated. If r ≤ pc, then these two chromosomes

are allowed for crossover. In crossover operation, sub-strings of both chromosomes

(parents) are randomly taken and swapped among them. Usually, pc is very high

18

(≈ 0.95).

5. After crossover operation, each alphabet of each chromosome is allowed for muta-

tion with mutation probability pm. Usually, pm is very low (≈ 0.001). In mutation

operation, the alphabet is altered. In binary string, ”1” is inverted to ”0” and vice

versa.

6. During evolution, there is chance that the best chromosome of the GP popula-

tion may be destructed by genetic operations. Hence to avoid this, a copy of best

chromosome is always preserved during evolution.

7. Continue steps 2-6 till the termination criteria are not satisfied.

2.2.2 Evolutionary Programming

Evolutionary Programming(EP) [5, 63] was introduced by Fogel in 1961. The purpose

was to create artificial intelligence in the sense of developing ability to predict changes

in an environment. EP uses the concepts of natural evolution, selection and stochastic

mutation. It does not use crossover operation. EP was originally meant for evolving

finite state machine(FSM) to predict events on the basis of former observations. An

FSM transforms a sequence of input symbols into a sequence of output symbols based

on a finite set of states and state transition rules.

Now-a-days EP methodologies are implemented in many discrete and continuous pa-

rameter optimization problems [6]. Like other EAs to evolve the desired (optimum)

solution (parameter), a population of µ possible solutions are generated. Depending

on the problem domain, the representation of solutions varies. Each solution of the

population was evaluated. Mutation operation is then implemented on the solutions

to produce µ offspring. In case of FSM, there are five possible mutation operators:

change of an output symbol, change of a state transition, addition of a state, dele-

tion of a state, and change of the initial state. After evaluating the µ offspring, a

selection of the µ best out of parents and offspring, i.e. a (µ + µ)-selection, was per-

formed. EP implements a probabilistically selection method to select individuals from

the (µ+µ) individuals for the next generation: Each individual is compared with q > 1

other randomly chosen individuals from the union of parents and offspring. For each

comparison, a ”win” is assigned if the individual’s score is better or equal to that of

19

opponent. Then µ individuals with the greatest number of wins are retained to be

parents of the next generation [6].

2.2.3 Evolutionary Strategies

Evolutionary Strategies (ES) [98, 6, 63] were proposed by Rechenberg and Schwefel in

1960s as a method to solve parameter optimization problems.

Initially ESs was based on population consisting of only one individual and only one

genetic operator: mutation. The individual was represented by a pair of float-valued

vectors,i.e., ~v = (~x, ~σ). ~x represents a point in the search space and ~σ is a vector of

standard deviations. Mutation is implemented by replacing ~x by

~xt+1 = ~xt + N(0, ~σ)

where N(0, ~σ) is a vector of independent random Gaussian numbers with a mean of

zero and standard deviations ~σ. If the offspring (mutated individual) is better (higher

fitness) than parent, then it replaces the parent. Otherwise, parent is retained and the

offspring is discarded.

Later on, population (multi membered) based ESs were introduced. Here µ parents

produce λ offspring. In (µ, λ)-ESs, µ individuals are selected from the λ offspring for

the next generation. This method is not elitist and we may get worse individuals in

the next generation. It has been given in [6] that this may help to leave the region of

attraction of a local optimum and reach a better optimum. In contrast, the (µ+λ)-ESs

select µ offspring from the combined (µ + λ) individuals for the next generation. This

retains best individuals of the previous generation and hence it does not loose the best

individuals during the process of evolution (variation).

In these population based ESs, the strategy parameter ~σ is no longer constant. Rather,

it is incorporated in the structure of the individual itself and undergoes the evolutionary

process. This facilitates the self-adaptation of the parameters. To produce an offspring,

usually two parents are selected and crossover operation is applied on them. Suppose

two selected parents are:

(~x1, ~σ1) = ((x1
1,, xn

1), (σ1
1, ..., σn

1)) and

(~x2, ~σ2) = ((x1
2,, xn

2), (σ1
2, ..., σn

2)).

The crossover operation blends the two parents. The crossover operation may be

20

different types. In one type, components from the first or second parent are selected

to produce the offspring (~x, ~σ) as below:

(~x, ~σ) = ((x1
l1,, xn

ln), (σ1
l1 , ..., σn

ln)),

where l1 = 1 or 2.

In other type, average of components of parents are taken:

(~x, ~σ) = (((x1
1 + x1

2)/2,, (xn
1 + xn

2)/2), ((σ1
1 + σ1

2)/2, ..., (σn
1 + σn

2)/2))

After producing offspring (~x, ~σ) by crossover operation, mutation operation is applied

on it. The resultant offspring is (~́x, ~́σ) where

~́σ = ~σ.eN(0,∆~σ)

~́x = ~x + N(0, ~́σ)

where ∆~σ is a parameter of the method.

2.2.4 Genetic Programming

In 1980s, researchers like S.F. Smith (in 1980) and N. Cramer (in 1985) proposed

variation of genetic algorithms that can evolve computer codes. However, with Koza’s

contribution in 1990s, it become rapidly popular. This algorithm has been given name

Genetic Programming.

Since the thesis is mainly based on GP, we provide a detailed discussion on it.

Genetic Programming [72, 7, 73] evolves a population of computer programs, which

are possible solutions to a given optimization problem, using the Darwinian principle

of Survival of the Fittest. It uses biologically inspired operations like reproduction,

crossover and mutation. This is a variation of Genetic Algorithm (GA). The main

difference between GP and GA is representation. In GP, each solution is typically rep-

resented by a tree. In few research papers, different structures such as linear structure

and graph structure are also used. I focus on tree representation of GP solution for

three reasons: 1. It is the standard representation 2. It is most popular 3. I use this

representation in my thesis.

However, the concept of GP is same for all representations.

I give a schematic overview of GP algorithm in the next section and details of GP in

subsequent sections.

21

Steps of GP:

A typical implementation of GP involves the following steps.

Step 1) Initialization: GP begins with a randomly generated population of solutions

of size P.

Step 2) Termination: GP is terminated when termination criteria are satisfied. Unlike

GA , GP will not converge. So, GP is terminated when a desired solution (may be

with fitness value 1) is achieved. Otherwise, it is terminated after a predefined number

of generations.

Step 3) Evaluation: A fitness value is assigned to each solution of the population.

Step 4) Next Generation: The current population is replaced by a new population by

means of applying genetic operations probabilistically.

Step 5) This completes one generation. Go to step 2 and repeat if termination criteria

are not satisfied.

Initialization:

Each individual or solution in the GP population is generally represented by a hi-

erarchically structured program or a tree composed of functions and data/terminals

appropriate to the problem domain. The function set may contain

• standard arithmetic operators: +,-,*,/,...

• mathematical functions: Sin,Cos,Exp,Log,...

• Boolean Operators: AND,OR,NOT,...

• Conditional: If-Then-Else,...

• Relations: <, =, >, ...

• Iterations and Loops: Do-Until, While-Do,For-Do

• Control Transfer Statements: Go To, Call, Jump

• Domain specific functions: Move-Random,If-Food-Ahead,...

22

/

5 0 −7
(a) (b)

Figure 2.1: (a) Division by 0 and (b) square root of a negative number

The terminal set usually consists of arguments and constants for the functions. The set

of functions F and set of terminals/inputs S must satisfy the closure and sufficiency

properties.

Closure Property: The closure property demands that the function set is well defined

and closed for any combination of arguments that it may encounter. As a tree (or ex-

pression) is generated randomly and afterward it is also randomly changed, a function

(parent node) of a tree or expression may encounter different types of arguments (chil-

dren nodes). For example, when we use division function to generate tree in random

manner, then division by 0 situation may occur (e.g. Fig. 2.1 (a)). To cope up with this

type of undefined case, we have to define the division function properly. Similarly, the

square root can encounter a negative argument (e.g. Fig. 2.1 (b)) and the logarithm

function can encounter non-positive argument (in a randomly generated expression or

tree). In these cases, we must satisfy the closure property by using protected functions

which can handle these type of situations.

Sufficiency Property: The sufficiency property requires that the set of functions in F

and the set of terminals in S be able to express a solution to the problem [72]. For

example, the function set F = {AND, OR, NOT} is sufficient to represent any boolean

expression. However, F = { AND, OR} is not sufficient to build all possible boolean

expressions.

After determining function set F and terminal set S, a set of tree structures are

(randomly) generated as an initial population. To prevent generation of large tree

structures, restriction in size of tree is imposed. That means, depth of tree is restricted

23

x 1
x 1x 2

+

* −

4.7

Figure 2.2: A tree generated by Full Method

to a maximum depth mh and number of nodes of an individual is not allowed to exceed

a limit mn.

There are basically two approaches used to generate trees, namely, Full method and

grow method.

Full method: Trees are generated by randomly choosing nodes only from function set

till the last level(maximum depth). At the last level (level mh), nodes are chosen

randomly only from terminal set. This produces trees of same height mh. Fig. 2.2

shows a typical tree generated by the Full method.

Grow method: It generates trees of irregular shapes. The root node is randomly chosen

from the function set F . After that, for each node at depths less than the maximum

depth, each node is randomly selected from the union of function set and terminal set

(F ∪ S). As the growth of a tree is restricted to maximum height mh, so if a branch

goes up to the maximum depth (mh), then it is terminated by selecting a node only

from the terminal set S.

Although grow method generates a variety of tree structures, but still it is preferred

to have diverse tree structures of different heights and shapes using both the above

mentioned methods. To facilitate this a mixed approach called ramped half-and-half is

widely used.

Ramped half-and-half method: It incorporates both full method and grow method with

equal importance. It generates equal number of trees of each height from 2 to maximum

height mrh. For example, if mrh = 5, then 25% of the trees will have depth 2, 25% will

24

TnT1 T2
T
3

Figure 2.3: A multi-tree representation of an individual

have depth 3, 25% will have depth 4 and 25% will have depth 5. Then, for each depth,

50% of the trees are generated using Full method and remaining 50% of the trees are

created using Grow method. This ramped half-and-half produces trees of wide variety

having various sizes and shapes.

Please note that, in all the above three mentioned methods, if number of nodes of the

tree exceeds the maximum number of allowed nodes mn then the tree is abandoned

and it is regenerated.

Multi-tree Representation

Instead of representing a solution by a single tree, it can be represented by a set of trees.

For example, consider the classifier design task for multi-class classification problem.

If c(≥ 2) is the number of classes, then the classifier can be represented by c number

of trees T1, T2, ..., Tc. Tree Ti will represent a classifier for the ith class. Fig 2.3 shows

a multi-tree representation of a chromosome or an individual. I have used this multi-

tree representation to represent classifiers in my thesis. However, as I am discussing

standard Genetic Programming in this introduction section, so I am considering single

tree representation here.

25

Evaluation

Each individual in the population is assigned a fitness value, which quantifies how

well it performs in the problem environment. The fitness value is computed by a

problem-dependent fitness function.

We can consider the raw fitness value [72] of the solution. However, it is helpful [72]

to have fitness value in the range 0 to 1, where 0 denotes fitness value of possible

worst solution and 1 denotes fitness of best solution. For example, in classifier design

problem, the raw fitness of a lth individual is the total number of correctly classified

training samples (nc
l) by the classifier. This fitness value can be adjusted to have a

fitness value in the range 0 to 1 as follow:

fitness, f l =
nc

l

Ntr

(2.1)

where Ntr is the total number of training samples.

In my thesis, I use the adjusted fitness that lies in [0,1].

There is a recent paper [28] to improve the GP. In addition to the evaluation of the

individual for its fitness value, the authors evaluate individual’s relative strengths and

weakness and represent these in the form of Binary String Fitness Characterization.

Then they use this characterization for both population evaluation and for a pairwise

mate selection strategy.

Next Generation

The current GP population is passed through the selection and genetic operations to

create a new population as the next generation. There are mainly three genetic oper-

ations: Reproduction, Crossover and Mutation. The genetic operators reproduction,

crossover and mutation are chosen probabilistically with pre-defined probability values

pr, pc and pm respectively. Usually pc, is high (say, 0.8) and pr, pm are low (say, 0.1

each). The algorithm to create new population is given below:

Algorithm:

Step 1. P ′ = 0.

26

Step 2. A genetic operator is selected probabilistically.

1. If it is the reproduction operator, then an individual is selected from the

current population and it is copied into the new population. P ′ = P ′ + 1.

2. If it is the crossover operator, then two individuals are selected. After

crossover these two individuals the resultant two offspring are included in

the new population. P ′ = P ′ + 2.

3. If the selected operator is mutation, then a solution or individual is se-

lected for mutation. This mutated solution is allowed to survive in the new

population. P ′ = P ′ + 1.

Step 3. Continue Step 2, until P ′ = P .

Selection

The individuals of the current population are selected for the genetic operations to pro-

duce a new population. Now, question arises how we will select the individuals. There

are many selection methods such as Roulette wheel selection, tournament selection,

rank selection, steady state selection, random selection. I present only three selection

methods that I have used in my thesis.

Roulette Wheel Selection: It is the fitness-proportional selection method. The

chance of an individual to be selected is proportional to its fitness value. The

better the individual is, the more chance it possesses to be selected. This is syn-

onymous to a biased roulette wheel where each individual of the population has

a roulette wheel slot sized in proportion to its fitness. Fig. 2.4 shows a roulette

wheel representation for individual selection. When we give a force to rotate,

the wheel rotates and then stops. When it stops, the individual corresponding

to the slot that touches the marker becomes the winner. The winner individual

or solution is selected for genetic operation. There is high chance that the wheel

will stop with a slot of larger area (individual with larger fitness value) touching

the marker. If we repeat the rotating of the wheel, then the slots with larger

areas will touch marker more often and hence the individuals with higher fitness

values will be selected more number of times.

27

1

2

34

5

6 7

Figure 2.4: Roulette wheel representation for the selection scheme

Tournament Selection: A tournament of τ chromosomes are randomly taken from

the population. The best chromosome(s) among the tournament is(are) selected

for the genetic operation.

Random Selection: A solution is randomly taken from the population.

Genetic Operations

The three main genetic operations have been discussed below:

Reproduction This copies good solutions of the GP population to the next genera-

tion. This allows us to retain few good solutions of the current GP population

in the next generation and hence prevents losing of them in the variation pro-

cess (e.g. crossover, mutation). It replicates the principle of natural selection

and survival of the fittest. We may use roulette wheel or rank selection methods

to select good solutions for this copying operation. In our thesis, we have used

roulette wheel selection.

This operation has one more advantage. As it does not alter the solutions, we

do not require to evaluate the solutions in the new population. Evaluation of

solutions consumes almost all of the time of GP evolution. Hence, it saves a

considerable amount of computational time.

28

x 1
x 1x 2 4.7 x2

x1

+

*

*

+

3.9

−

Figure 2.5: Two parents for Crossover Operation

Crossover The good solutions are recombined to produce new solutions. It is ex-

pected that the new solutions will drive toward better and desired solutions.

This recombination or crossover operation plays a vital role in the evolutionary

process. Two individuals are selected for this operation. We use tournament

selection method to select individuals for this operation. Then a subtree is ran-

domly selected from each of the selected individuals and these two subtrees are

interchanged. Figs. 2.5 and 2.6 show two individuals before and after crossover

operation respectively. If the offspring exceed size limit, then the crossover op-

eration is usually abandoned and it is repeated with different randomly chosen

subtrees. This is the important genetic operation among all genetic operations.

Mutation Mutation is a process to alter a single solution. After choosing a solution

for the mutation, a subtree of the selected individual is randomly selected and is

replaced by a new randomly generated subtree. If the mutated tree exceeds the

size limit, then it is rejected and the operation is repeated. Mutation maintains

diversity and can provide significant variation. Fig. 2.7 illustrates a mutation

operation.

Both crossover and mutation are not always constructive. They can be destructive

too [7]. That means, the resultant solutions after genetic operations may be worse

than parents. To reduce the destructive nature of these genetic operations, special

approaches can be considered.

29

x1

x 1 x 2
x 2 x1

+

*

*

+

3.9

−

4.7

Figure 2.6: Two Offspring after the Crossover Operation

x 1
x 1x 2 4.7

+

*

x 1 x 2 x 1

x 1

− +

+

*

/

6.3

Figure 2.7: A typical Mutation Operation

30

Create Initial Random Population

Evaluate fitness of each
individual in population

i = 0

i = M?

Select Genetic operation probabilistically

Select one
individual based
on fitness

Select two
individuals
based on fitness

individual
Select one

perform
Reproduction

Perform
Mutation

Perform
Crossover

Copy into
new population

Insert two offspring
into new population

Insert mutated individual
into new population

i = i + 1i = i + 1 i = i + 1

Gen = Gen + 1

p
r

p
c

p
m

Get the best
individual (s)

Termination Criteria Satisfied?

End

Gen = 0

i = i + 2

No

Yes

No

No
Yes

Figure 2.8: Flow Chart of Genetic Programming

31

The entire procedure is summarized in Fig. 2.8 [72].

2.3 Relevance of EA in Pattern Recognition

Most pattern recognition tasks can be viewed as optimization problems. There are

many tools available that can be used for optimization. The suitability of the tech-

niques depend on the objective function, the constraints and the control variables.

If the objective and the constraints are linear functions of the variables, then such a

problem is called a linear programming problem and it can be solved using methods

like Simplex Method.

Calculus-based optimization methods are suitable for problems having smooth, con-

tinuous, and differentiable (search) surfaces. These methods use gradient information

to find the optimal solution. Hill climbing is a popular calculus-based method. It

climbs the surface in the steepest permissible direction to find local optima. These

methods fail to give global optima which is desired. Unfortunately, many real world

problems are complex having discontinuous, multi modal surfaces without existence of

derivatives.

If the search space is small, then enumerate search techniques can be used to find the

optimal solution. In this approach, the objective function at every point of the search

space is evaluated to determine the optimal one. This is only suitable for very small

(search space) problems. Even for moderate size, the computational cost is so high

that it is not practically possible to be implemented. To reduce computational time,

we may implement techniques like ”branch and bound” and ”Dynamic Programming”.

These repeatedly partition the problem into a set of smaller sub-problems to reduce

search time. But these too fail when search space increases. Consider popular traveling

salesman problem (TSP). In this problem, we attempt to minimize the distance taken

by a traveling salesman who has to visit a certain number of cities exactly once and

return home. When the number of cities is very small, then the number of possible

solutions is relatively small and hence we can easily find the optimal solution using

exhaustive search. For example, with 5 cities, all possible routes can be easily checked.

However, for a 50-city problem, the number of solutions rises to 1060. This is very vast

search space where it is almost impossible to find the optimal solution.

32

EAs are randomized techniques that are mainly used for optimization problems. Evolu-

tionary algorithms can be used to solve optimization problems where the search surface

is discontinuous, uni-/multi- modal and without derivative and the search space is vast.

These are typically population based search algorithms. Such randomized search tech-

niques operate on multiple solutions at a time hence can reach (near-to) global optima

without getting stuck in a local optima. These can be used to solve complex real-world

optimization problems. They can find global or near-to-global optima solutions. Ge-

netic Programming, particularly, can find the model and its structure that are good

enough to solve a given problem.

Classifier design is an optimization problem. Unlike many methods, GP doesn’t assume

the structure of the classifier (model). Rather it attempts to find an appropriate

structure of the classifier in addition to appropriate values of involved parameters.

In the following chapters, we have proposed methodologies for different pattern recog-

nition tasks using Genetic Programming. At the beginning of each chapter, we have

provided a brief summary of the state of the art in the respective pattern recognition

tasks. In addition to other techniques, we have discussed the use of GP for the pattern

recognition under consideration.

33

Chapter 3

Classifier Design using Genetic Programming

[A1, A7]

3.1 Introduction

Classifier design is a major pattern recognition task. GP has been used by many au-

thors [102, 1, 114, 39, 35, 16] to design classifiers or to generate rules for two class

problems. Rauss [102] et al. used GP to evolve binary trees (equations) involving sim-

ple arithmetic operators and feature variables for hyper-spectral image classification. A

data point is assigned a class if the response for that class is positive and responses for

all other classes are negative. Agnelli et al. [1] also applied GP for image classification

problems. In addition to simple arithmetic operations, they considered exponential

function, conditional function and constants to construct binary trees. The generation

of rules using GP for two class problems has been addressed by Stanhope and Daida

[114] and Falco et al. [39]. Binary trees consisting of logical functions, comparators,

feature variables and constants have been generated to represent possible classification

rules. During the construction of binary trees, some restrictions are imposed to enforce

a particular structure, so that they can represent logical statements or rules. Dounias

et al. [35] implemented GP to generate both crisp and fuzzy rules for classification of

medical data. Day and Nandi used GP for speaker verification [29]. In [122], GP is

used to detect faults in rotating machinery. GP is used to classify breast masses in

mammograms in [89].

Multicategory pattern classification using GP has been attempted by a few researchers

[81, 24, 84, 67, 123]. Loveard et al. [81] proposed five methodologies for multi-category

34

classification problems. Of these five methodologies, they have shown that dynamic

range selection method is more suitable for multi-class problems. In this dynamic range

selection scheme, they record the real valued output returned by a classifier (tree or

program) for a subset of training samples. The range of the recorded values is then

segmented into c regions (R1, R2,Rc) to represent c class boundaries. If the output

of the classifier for a pattern x falls in the region Ri, then the ith class is assigned to x.

Once the segmentation of the output range has been performed, the remaining training

samples can then be used to determine the fitness of an individual (or classifier). Chien

et al. [24] used GP to generate discriminant functions using arithmetic operations with

fuzzy attributes for a classification problem. In [84] Mendes et al. used GP to evolve

a population of fuzzy rule sets and a simple evolutionary algorithm to evolve the

membership function definitions. These two populations are allowed to co-evolve so

that both rule sets and membership functions can adapt to each other. For a c-class

problem, the system is run c times. Kishore et al. [67] proposed an interesting method

which considers a c class problem as a set of c two-class problems. When a GP classifier

expression (GPCE) is designed for a particular class, that class is viewed as the desired

class and the remaining classes taken together are treated as a single undesired class.

So, with c GP runs, all GPCEs are evolved and can be used together to get the final

classifier for the c-class problem. They have experimented with different function sets

and incremental learning. For conflict resolution (where a pattern is classified by more

than one GPCE) each GPCE is assigned a “strength of association” (SA). In case of

a conflicting situation, a pattern is assigned the class of the GPCE having the largest

SA. They have also used heuristic rules to further reduce the misclassification. Zhang

and Nandi has used GP for muli-class classification problems in roller bearing fault

detection [123].

Lim et al. presented an excellent comparison of thirty-three classification algorithms

in [80]. They used a large number of benchmark data sets for comparison. None

of these 33 algorithms use GP. The set of algorithms includes twenty-two decision

tree/rule based algorithms, nine statistical algorithms and two neural network based

algorithms. We shall use the results reported in [80] for comparison of our results.

We have proposed a method to design classifiers for a c-class pattern classification

problem using a single run of GP. For a c class problem, a multi-tree classifier consisting

of c trees is evolved where each tree represents a classifier for a particular class. The

35

performance of a multi-tree classifier depends on the performance of its constituent

trees. A new concept of unfitness of a tree is exploited in order to improve genetic

evolution. Weak trees having poor performance are given more chance to participate

in the genetic operations so that they get more chance to improve themselves.

In this context, a new mutation operation called non-destructive directed point muta-

tion is proposed which reduces the destructive nature of mutation operation. During

crossover, not only is swapping of subtrees among partners performed but also swap-

ping of trees is allowed. As a result, more fit trees may replace the corresponding

less fit trees in the classifier. Multiple classifiers from the terminal population are

then combined together by a suitable OR-ing operation in order to further improve

the classification result. A conflict situation occurs when a pattern x is recognized by

more than one tree to their respective classes. Each tree of the classifier is assigned a

weight to help conflict resolution. In addition, heuristic rules, that characterize typical

situations when the classifier fails to make unambiguous decisions, are used to further

enhance the classifier performance. For a reasonably large number of training points,

if the classifier fails to make unambiguous decision, and the response of the classifier

for each such data point is the same, then it is likely that those training points come

from some particular area of the input space. Heuristic rules exploit this information

and try to resolve situations when more than one tree of the classifier produce positive

responses. Combination of all these results in a good classifier.

3.2 Proposed Multi-tree GP based classifier

A classifier D is a mapping, D : Rp → Nhc, where Rp is the p-dimensional real

space and Nhc is the set of label vectors for a c- class problem and is defined as

Nhc = {y ∈ Rc : yi ∈ {0, 1}∀i,
∑c

i=1 yi = 1}. For any vector x ∈ Rp, D(x) is a vector

in c-dimension with only one component as 1 and all others as 0. In other words, a

classifier is a function which takes a feature vector in p dimension as input and assigns

a class label to it.

In this paper our objective is to find a D using GP. We shall use a multi-tree concept

for designing classifiers. The beauty of using this concept is that we can get a classifier

for the multi-class problem in a single run of GP.

36

Given a set of training data X = {x1,x2, ...,xN} ⊂ R
p and its associated set of label

vectors Y = {y1,y2,...,yN} ⊂ Nhc, our objective is to find a “good” D using GP.

For a two class problem, a possible classifier or an individual is generally represented

by a single tree(T). For a pattern x,

if T (x) ≥ 0, x ∈ class 1

else x ∈ class 2.

The single tree representation of the classifier is sufficient for a two-class problem. This

scheme can be extended to a multi-category classification problem. In our design every

chromosome or individual will have a tree for every class. So the lth chromosome will

have c trees, and these will be denoted by Tk
l, k = 1, 2, ..., c. If the identity of the

chromosome is not important, then for clarity we will ignore the superscript and use

only the class index, i.e., the subscript. So a possible solution or an individual for the

GP is represented by c trees (T1, T2, ..., Tc). For a pattern x,

if Ti(x) ≥ 0 and Tj(x) < 0 for all j 6= i , i, j ∈ {1, 2, ..., c} then x ∈ class i.

If more than one tree show positive responses for the pattern x then we require addi-

tional methodologies for assigning a class to x. The steps followed to achieve our goal

are summarized in the following sections.

3.2.1 Initialization

Each of the c trees for each individual is initialized randomly using the function set

F which consists of arithmetic functions and the terminal set S containing feature

variables and constants. The function set F and terminal set S used here are:

F = {+,-,*,/} and S = {feature variables, R}, where R contains randomly generated

constants in [0.0,10.0]. We have initialized trees using the ramped half-and-half method

[72].

3.2.2 Training and Fitness measure

The GP is trained with a set of N training samples, X = {x1,x2, ...,xN}. Instead of

training the GP with all training samples at a time, it is accomplished in a step-wise

37

manner increasing the number of training samples in steps. The step-wise increment

of training samples is accomplished by a preset number of generations Ms. The step-

wise learning can reduce the computational overhead significantly [41], [32] and also

can improve the performance [67]. If we use s1 steps, then each step size will be Ms

s1

generations. And the incremental change in the size of training subset in each step

will be Nsub = N
s1

. Let Xs be the set of the training samples at step s, |Xs| = Ns.

At the first step |Xs| = N
s1

and at the last step, Xs = Xtr. After step-wise learning

GP is continued with all N training samples up to the maximum number of generation

M, where M ≥ Ms. Note that, we have not used any validation set as many GP

approaches have not used it [67, 16, 24, 35, 39, 41, 50].

While training, the response of a tree Ti for a pattern x is expected to be as follows:

Ti(x) ≥ 0 if x ∈ class i

Ti(x) < 0 if x /∈ class i

In other words, a classifier with c trees is said to correctly classify a sample x, if

and only if all of its trees correctly classify that sample. We emphasize that if a

training sample x ∈ Rp is from class k, then we say that tree Tk correctly classifies

x, if Tk(x) ≥ 0. On the other hand, the tree Tj,j 6=k is said to correctly classify x, if

Tj(x) < 0. For each correct classification of a training sample by a classifier, its raw

fitness is increased by 1.

At the initial stage of learning (evolution), if some but not all of the trees of a classifier

are able to do a good job, then that should not necessarily be considered a bad clas-

sifier. Because by giving more chance to unfit trees to take part in subsequent genetic

operations, unfit trees may be made to converge to more fit trees and hence may result

in a better overall classifier. We will take into account this factor while computing the

fitness value. Let gi trees correctly classify a training sample xi. Then we increase the

raw fitness by gi

c
irrespective of the class label of xi. In other words, we give equal

importance to all trees. So if all trees correctly classify a data point, then the raw

fitness is increased by 1 as mentioned above. This partial increment of raw fitness

function by gi

c
(for gi < c) is considered only during the stepwise learning, i.e., only up

to Ms generations. This helps to refine the initial population. After completion of the

step-wise learning, the fitness function considers only the correctly classified samples.

We again emphasize the definition of correct classification by a tree. If xi ∈ Rp is from

38

class k, then for a chromosome, if Tk(xi) ≥ 0, then Tk’s classification is correct and

also if Tj 6=k(xi) < 0, then Tj also classifies xi correctly.

Let gi be the number of trees that correctly classify xi ∈ Xs. So the fitness function

fs at step s of the step-wise learning task is defined as,

fs =

∑

xi∈Xs

gi

c

Ns

(3.1)

In (1), Ns = |Xs| = Number of training samples used at step s.

After step-wise learning we consider the samples which are correctly classified by all

trees(gi = c) of the classifier. So, the fitness function after step-wise learning is defined

as,

f =
Number of training samples correctly classified (for which gi = c)

N
. (3.2)

Thus, during initial evolution, individuals with potential (partially good) trees are

given some extra importance in the fitness calculation. Note that, fitness function (1)

or (2) can be used for selection of individuals. Algorithm fitness shows the procedure

for evaluating the fitness of an individual during the step-wise learning process.

Algorithm fitness

BEGIN

fraw = 0;

for all i = 1,2,...,Ns

for all j = 1,2,...,c

count = 0;

if((xi ∈ class j) AND (Tj(xi) ≥ 0)) count = count + 1;

end if /∗ if Tj classifies xi correctly ∗/

if((xi /∈ class j) AND (Tj(xi) < 0)) count = count + 1;

end if /∗ if Tj classifies xi correctly ∗/

/∗ For other cases the trees make wrong decisions and hence count is not

incremented ∗/

end for

39

fraw = fraw + count
c

;

end for

fs = fraw

Ns
;

END

3.2.3 Unfitness of trees

When all trees are able to classify a pattern correctly then the said classifier will

recognize the pattern correctly. On the other hand, if there are some unfit trees in

the classifier, they should be given more chance to evolve through genetic operations

in order to improve their performance. In addition to the fitness functions, we need

another unfitness function, to select a tree after an individual is selected (using (1) or

(2)) for genetic operations.

So after an individual is selected for genetic operation, we compute the degree of

unfitness of its each constituent tree Ti, i = 1, 2, ..., c. The total number of training

samples for which Ti is unable to classify correctly is counted. Let qi be the total

number of training samples not correctly classified by Ti. To compute qi, i = 1, 2, · · · , c,

we proceed as follow: If a training sample x is from class k and Tk(x) < 0, then qk is

increased by 1 and also if Tj(x) > 0, j 6= k, then qj is increased by 1.

If qj > qk, then Tj is more unfit then Tk.

Let pi =
qi

∑c
j=1 qj

. (3.3)

This pi is used as the probability of selection of the ith tree by the Roulette wheel

selection as an unfit tree for genetic operations (crossover and mutation). In this way,

the unfit trees are given more chance to take part in the genetic operations to rectify

themselves.

3.2.4 A modified Crossover operation

Crossover plays a vital role in GP for evolution. To select trees (within a chromosome)

for crossover we use pi as the probability of selection and this gives more preference

40

to unfit trees for the crossover operation. We use the tournament selection scheme for

selecting chromosomes for the crossover operation. The fitness function defined in (1)

or (2) is used for the selection of a pair of chromosomes. Let the selected chromosomes

be C1 and C2. Each of C1 and C2 has c trees Ti
1, Ti

2, i = 1, 2, · · · , c.

Now we select a tree Tk
1 from chromosome C1 using Roulette wheel selection based on

the probability pi
1, i = 1, 2,, c. pi

1 is computed using Eq. (3.3). We now randomly

select a node from each of Tk
1 and Tk

2 where the probability of selecting a function

node type is qf and that of a terminal node type is pt , pf + pt = 1. After selecting one

node from each of the two trees Tk
1 and Tk

2, we swap the subtrees rooted at the selected

nodes. In addition to this, we also swap the trees Tj
1 and Tj

2 for all j = k + 1,, c.

That means we swap trees Tj
1 of chromosome C1 with Tj

2 of chromosome C2 for all

j > k.

This crossover operation has three interesting aspects. First, we swap subtrees between

classifiers from the same class. The motivation is that, good features from one classifier

(for a particular class) may get combined with good features of another classifier of

the same class. Note that, a subtree of the good classifier for class k, may not be very

useful for a class j, j 6= k of a different classifier. The second interesting aspect of this

crossover operation is that it also exchanges classifier trees as a whole between two

chromosomes. The third point is that, by selecting trees for the crossover operation

according to their unfitness, the chance of unwanted disruption of already fit trees is

reduced and the chance of evolution of weak trees is increased. Thus, we not only try

to change weak trees but also try to protect good trees from the destructive nature of

the crossover operation.

Figure 1 illustrates the crossover operation. Figures 1(a) and 1(b) are two chromosomes

selected for crossover. Suppose T2
1 of C1 is selected using Eq.(3.3). A node of T2

1 and a

node of T2
2 (shown by the dotted circles) are then randomly selected (the probability

of selecting a function node is pf and that of a terminal node is pt) for crossover

operation. Now the subtrees rooted at the selected nodes are swapped. And also

T3
1, · · · , Tc

1 are swapped respectively with T3
2, · · · , Tc

2. The resultant chromosomes

obtained after crossover are shown in panels (c) and (d) in Fig. 1.

A schematic description of the crossover operation is given next.

Algorithm Crossover

41

T
1

1 T2

1 T
3

1
T

1

c T
2

cT
2

3T
2

2T1

2

(a) (b)

1T1
1

T
2

1T3
1Tc T

2
1 T

2
2 T

2
3 T

2
c

(c) (d)

Figure 3.1: (a) and (b) Chromosomes C1 and C2 before Crossover operation; (c) and

(d) Chromosomes C1 and C2 after Crossover operation

Step 1. Randomly select τ (tournament size) individuals from the population for tour-

nament selection.

Step 2. Select the best two individuals (C1 and C2 , say) of the tournament for the

crossover operation.

Step 3. Compute pi
1, i = 1, 2, · · · , c of C1 using Eq. (3.3).

Step 4. Select a tree Tk
1 of C1, by the Roulette-wheel selection using the unfitness prob-

ability, pi
1.

Step 5. Choose a node type - a function (internal) node type is chosen with probability

pf and a terminal (leaf) node type is selected with probability pt. Randomly

select a node of the chosen type from each of the trees Tk
1 and Tk

2.

Step 6. Swap the subtrees rooted at the selected nodes of Tk
1 and Tk

2.

Step 7. Swap Tj
1 with Tj

2, for all j = k + 1, ..., c.

3.2.5 A modified point mutation operation

The conventional GP mutation mostly is a destructive process, because it swaps a

subtree for a randomly generated tree. For this reason, we have utilized point mutation

with some additional precautions. It is just like the fine-tuning of a solution.

42

In case of point mutation, a node is randomly picked. If it is a function (terminal)

node then it is replaced by a randomly chosen new function (terminal) node (having

the same arity). Thus, it causes a very small change. To make a considerable change,

it is repeated a number of times. Although, usually it is not expected to severely

affect the tree, sometimes its effect could be significant. So we introduce a kind of

directed mutation, which always accepts mutations that improve the solution, but also

occasionally, with some probability, accepts a mutation that does not improve the

solution. This involves comparison of the fitness of the mutated tree with that of the

original tree. To reduce computation time, we evaluate fitness fm of the mutated tree

Ti(m) and fitness fo of original tree Ti using only 50% of the training samples of the ith

class. If fm equals fo, then we use the remaining 50% of training samples of the ith

class to find fm. If the mutated tree is equal or more fit than the original tree, then

the mutated tree is retained. Otherwise, it is ignored with probability pth. We have

taken pth = 0.5.

Mutation causes random variation and unfit trees need such variation more than fit

ones. Consequently, after selecting an individual for mutation, the more unfit trees are

given more chances to mutate. In other words, more fit trees are given more opportu-

nities to protect themselves from the destructive nature of mutation. To achieve this

we proceed as follow:

We randomly select a chromosome and then select a tree Ti from the chromosome.

The tree is selected using Roulette wheel selection criterion with pi in (3.3). This is

tree selection with a probability proportional to the unfitness of the tree. And then

we select m% of nodes from the selected tree for point mutation. A function node

is selected with probability pmf and a terminal node is selected with probability pmt,

pmf + pmt = 1.

After mutation, a decision is made as to whether the mutated tree will be retained

or ignored. This procedure is repeated c times for the selected individual. The basic

steps of the point mutation are schematized in Algorithm Mutation.

Algorithm Mutation

Step 1. Randomly pick an individual(C) for mutation (from the old population).

Step 2. Compute unfitness probability pi, i = 1, 2, · · · , c of C using (3.3).

43

Step 3. Select a tree (Ti) of C with Roulette wheel selection using pi, i = 1, 2, ..c.

Step 4. Randomly select a node from Ti with probability of selecting a function node pmf

and that of a terminal node pmt for point mutation.

Step 5. If the selected node is a function node, replace it with a randomly chosen function

node (having the same arity). Otherwise, replace it with a randomly chosen

terminal node.

Step 6. Repeat Step 4 and Step 5 for m% of the total nodes in Ti.

Step 7. Evaluate the fitness fm of the mutated tree and fitness fo of the original tree

using 50% of training samples of the ith class.

Step 8. If fm = fo then evaluate again fm and fo using the remaining 50% of training

samples of the ith class.

Step 9. If fm ≥ fo then accept the mutated tree, else retain it with probability 0.5.

Step 10. Repeat Step 3 through Step 9 c times.

3.2.6 Termination of GP

The GP is terminated when all N training samples are classified correctly by a classifier

(an individual of the GP population) or a predefined number, M, of generations are

completed. If all of the N training samples are correctly classified by the GP, the best

individual (BCF) of the population is the required optimum classifier, CF. Otherwise,

when the GP is terminated after completion of M generations, the best individual

(BCF) of the population is passed through an OR-ing operation to obtain the optimal

classifier CF.

The best individual (BCF) is selected as follows,

Let hit(I) = Number of correctly classified training samples by the classifier I. The

individual which scores the maximum hit is considered the best classifier BCF. If more

than one individual score the same hit (maximum), then the individual which has the

smallest number of nodes is chosen as the best individual BCF.

44

3.2.7 Improving performance of classifier with OR-ing

It is possible that the terminal GP population contains two chromosomes C1 = {T 1
1 , T 1

2 ,

· · · , T 1
k , · · · , T 1

c } and C2 = {T 2
1 , T 2

2 , · · · , T 2
k , · · · , T 2

c } such that Tk
1 is good for a particu-

lar segment of the feature space; while Tk
2 models well another segment of the feature

space. The overall performance, in terms of misclassification, of C1 and C2 could be

comparable or different. In this case, combining Tk
1 and Tk

2 by OR-ing may result in

a much better classification tree. This is the principle behind this OR-ing operation.

The best individual BCF of the GP run, which is unable to classify correctly all train-

ing samples is further strengthened by this operation. BCF is OR-ed in a consistent

fashion with every individual of the terminal population. From this set of (OR-ed)

pairs, the best performing (in terms of number of misclassification) pair is taken as the

optimum classifier CF. However, OR-ing is to be done carefully. Next we explain how

the OR-ing is done. We introduce a set of indicator variables bi, i = 1, 2, .., c for the

best chromosome BCF as

bi = 1 if Ti
BCF (x) ≥ 0

= 0, otherwise, where i ∈ {1, 2, ..., c}.

In other words, if the ith tree of BCF shows a positive response for a sample x, then

bi for that sample is 1; otherwise, it is 0. Now to combine the BCF with any other

chromosome Cl, we define another set of indicators di
l, i = 1, 2, .., c as

di
l = 1 if Ti

l(x) ≥ 0

= 0, otherwise.

For notational clarity we consider a set of indicators ai
l to represent the combined

classifier CFl using BCF and Cl:

a1
l = (b1 ∧ b̄2 ∧ b̄3.... ∧ b̄c) ∨ (d1

l ∧ d̄l
2 ∧ d̄l

3.... ∧ d̄l
c) ∨ (b1 ∧ d1

l)

a2
l = (b̄1 ∧ b2 ∧ b̄3.... ∧ b̄c) ∨ (d̄1 ∧ d2

l ∧ d̄3.... ∧ d̄l
c) ∨ (b2 ∧ d2

l)

...

ai
l = (b̄1∧ b̄2...∧ b̄i−1∧bi∧ b̄i+1...∧ b̄c) ∨ (d̄l

1∧ d̄l
2...∧ d̄l

i−1∧di
l∧ d̄l

i+1...∧ d̄l
c) ∨ (bi∧di

l)

i = 1, 2, · · · , c

45

The combined classifier CF l is, thus, defined by (a1
l, a2

l, · · · , ac
l). Given a data point

x, CF l assigns a class label to x as follows:

If ai
l = 1 and aj

l = 0, for all j 6= i and i,j ∈ {1,2,...,c} then x ∈ class i.

In this way, if the population has Nc chromosomes then we will get CFl, l = 1, 2, ...,

(Nc − 1) combined classifiers. The combined classifier which correctly classifies the

maximum number of training samples, is taken as the resultant classifier CF.

3.2.8 Conflict Resolution

The resultant classifier CF, thus obtained, is now ready for validation with the test

data set. For a test data point x, to make an unambiguous decision, we need Tk(x) ≥ 0

and Tj 6=k(x) < 0 (or ak = 1 and aj 6=k = 0), j = 1, 2, · · · , c for some k, k ∈ {1, 2, · · · , c}.

But it can happen that more than one tree of CF show positive responses. In this case

we face a conflicting situation. To resolve it, we use a set of heuristic rules followed

by a weighting scheme. The heuristic rule based scheme described next is a slightly

modified version of the rule proposed by Kishore et al. [67].

Extraction of the rules

The classifier CF is used to classify all N training samples. The objective of the

heuristic rules is to identify the typical situations when the classifier cannot make

unambiguous decisions and exploit that information to make decisions. Let nj be the

number of unclassified training samples of class j for which either two or more trees

or none of the trees of CF show positive response. For each such unclassified sample

zij, i = 1, 2, · · · , nj , we compute a response vector vij in c dimension as follows:

vijk = 1, if Tk(zij) ≥ 0

= 0, otherwise; k = 1, 2,, c.

As an illustration, consider a 4-class problem, where a training sample z11 from class 1

is not classified by CF, because more than one tree show positive responses. Suppose

T1, T3 and T4 show positive responses and T2 shows a negative response for the training

example . Then, the corresponding response vector v11 will be (1 0 1 1)T . Similarly, if

a training sample z21 of class 1 is unclassified because all trees show negative responses,

i.e., Ti(z21) < 0 ∀i = 1, 2, · · · , c, then the response vector v21 is (0 0 0 0)T .

46

If there are c classes then there can be at most L = (2c− c) possible distinct response

vectors when the classifier fails to make a decision. Let these vectors be V = {vi, i =

1, 2, · · · , L}. Clearly vij ∈ V . The classifier may produce a particular vector vl for

several data points from class j. If this is so, then vm represents a typical conflicting or

ambiguous situation for class j when the classifier cannot make a decision. Since several

training data points generated the same response vector, vm, it is likely that those

training points came from some particular area of the input space and the classifier

failed to model that area correctly. These points are expected (but not necessarily)

to form a cluster in the input space. Therefore, for a test data point x, if CF fails to

classify unambiguously and the response vector corresponding to x matches vm, then it

may be reasonable to classify x to the jth class. We call vm a rule for conflict resolution.

We emphasis that unless vm is supported by a sufficient number of instances, we should

not use vm as a rule for conflict resolution for class j. In other words, the number

of cases from class j for which the response vector vm is produced should be large.

Suppose, of the nj unclassified samples, vm is obtained for rmj times. We may use a

threshold h on rmj to decide on the acceptance of vm as a rule. Using such a threshold,

vm may also become a rule for a different class. But, a particular vm should be used

as a rule for only one class.

So for a vm ∈ V , we find the class k for which rmk(>h) is the maximum. Then vm

is used to represent a rule only for class k. The difference of our rules from those of

Kishore et al. [67] is that authors in [67] used a threshold on the percentage of training

samples to pick up the rules, while we threshold on the number of samples. The reason

for such a choice, as explained earlier, is that if any vm is supported by a reasonable

number of points h, it should be considered a rule and thus h is independent of the

size of X.

The heuristic rules are derived from the behavior of the classifier when it fails. So

unless there are sufficient number of failure cases, the rules may not be useful. Based

on a few experiments with the training data we decided to use h = 20. A better

strategy would be to use a validation set to decide on the value of h.

If the classifier fails to classify a pattern unambiguously and that pattern produces a

response vector which matches a heuristic rule, then the class corresponding to that

rule is assigned to that pattern. If there is no heuristic rule for that response vector,

then the weight based scheme discussed next is used to assign a class to the pattern.

47

If there is no heuristic rule at all, then we directly use the weight based scheme.

The weighting scheme

The classifier CF is used to classify all training samples. Now we compute a matrix

A = [aij] of dimension c × c ,where aij is the total number of cases such that the

instance is from class j, but the ith tree of classifier CF shows a positive response,

i.e., Ti(x) ≥ 0,x ∈ class j. In other words, aij gives the number of data points from

class j for which the tree Ti gives a positive response. Consequently, diagonal elements

of A represent the number of cases correctly classified and the off-diagonal elements

represent the number of misclassified cases by the trees. For an ideal classifier, the sum

of all diagonal elements will be N and the sum of all off-diagonal elements will be zero.

Now Ai =
∑c

j=1j 6=i
aij gives the number of data points from all classes except class i

for which Ti(x) > 0. So, Ai gives the number of data points from other classes which

are wrongly classified to class i by tree Ti. Ai represents the false positive cases. The

classifier CF will make mistake for these Ai cases. If Ak = Maxi Ai, then the tree

Tk can be held most (or at least, significantly) responsible for the misclassification

reported by the classifier CF.

For a row i in A, the difference (mi) between the total number (Ni) of patterns of class

i and the diagonal element aii indicates the number of cases from class i for which tree

Ti did not predict the result correctly. In other words, mi is related to how tree Ti failed

to represent its own class. mi represents the false negative cases. Let mg = Maxi mi,

then the gth tree is also a determinant of the poor performance of classifier, CF.

Therefore, for a tree Ti, we define a weight wi that provides the relative importance of

the tree in making a correct prediction as follows:

For the ith tree Ti of the CF, we compute

wi = 1−w′
i where, w′

i =
Ai + mi

Total number of training samples(N) =
∑c

j=1 Nj

. (3.4)

wi ∈ [0, 1]. These weights {wi} can be used for resolution of conflict, when needed.

For a test data point x, if we find that CF identifies a conflict between classes g and

k (in other words, both Tg and Tk give positive responses), then x is assigned to class

k, if wk > wg; otherwise, x is assigned to class g. Note that, this weight scheme is

48

different from the one used by Kishore et al.[67].

We recommend using the heuristic rules first because each heuristic rule represents a

typical mistake, a scenario represented by an adequate number of data points. More-

over, as pointed out by Kishore et al. [67], the weight based scheme has some limi-

tations. It cannot assign a class label, if none of the Ti(x) ≥ 0, i = 1, 2, · · · , c. Also

in some cases, it may happen that for x ∈ class k, Tk(x) ≥ 0 and for another tree

Ti(x) ≥ 0, i 6= k with wi > wk. Then x will be misclassified to class i by the weight

scheme. So we suggest to use the heuristic rules first. If the heuristic rule cannot

resolve the conflict, the weight scheme should be used.

It is possible that neither the weight based scheme nor the heuristic rule is able to

assign a class label to a test data point. This must not be viewed as a disadvantage,

but rather a distinct advantage. The classifier is able to say “ don’t know ” when faced

with very unfamiliar examples. This is better than giving a wrong class. Moreover, if

there are too many such ‘ don’t know’ cases, then these indicate that either the training

set used was not a sufficient representative of the population that generated the data,

or the identified classifier is a poor one. So a redesign of the classifier is required.

Note that, the OR-ing operation, the heuristic rule generation and computation of

the weights are done only once after the GP terminates. Consequently, the additional

computation involved for the post-processing, as we shall see later, is much less than

the time required for the GP to evolve. The complete multi-tree classifier algorithm is

now schematized in Algorithm Classifier GPmtc.

Algorithm Classifier GPmtc

BEGIN

Let gen = 0, hitg = 0, hitr = 0 / ∗ hitg = highest hit of that generation and ∗/

Initialize population of size P for GP / ∗ hitr =highest hit till that generation ∗/

while (gen < M AND hitr < N) /∗ while the termination condition is not satisfied

∗/

if (gen < Ms)

Evaluate fitness of each individual using Eq.(3.1)

else

Evaluate fitness of each individual using Eq.(3.2).

end if

49

Find the best individual (Igen),

hitg = hit(Igen).

if(hitg > hitr) hitr = hitg and BCF = Igen.

end if

Perform Breeding /∗ perform all genetic operations ∗/

gen = gen + 1. /∗ go to the next generation ∗/

end while

if (hitr = N) CF = BCF /∗ if all training samples are classified correctly ∗/

else do OR-ing operation.

end if

Extract Heuristic rules and Compute weights {wi} using Eq.(3.4).

END

Algorithm Breeding [124]

BEGIN

Let Pn = 0 / ∗ Pn = Population size of the next population ∗/

while(Pn 6= P) / ∗ P= Population size ∗/

Select one of the operators from reproduction, crossover and mutation

with a probability pr, pc and pµc respectively.

If (operator = reproduction)

select an individual using fitness-proportion selection method

and perform the reproduction operation. Now Pn = Pn + 1.

end if

If (operator = crossover)

select two individuals using tournament selection method

and perform crossover . Now Pn = Pn + 2.

end if

/∗ Note that, if Pn becomes P + 1, then reject the second offspring

after crossover operation. ∗/

If (operator = mutation)

select an individual randomly and

perform mutation . Now Pn = Pn + 1.

end if

50

end while

END

3.2.9 Validation of classifier

After obtaining the classifier CF, it is necessary to validate it against test data sets.

Each test data point x is classified by the classifier CF. For a pattern x, there are three

possible cases:

Case 1: For only one tree Ti(x) ≥ 0 and for all other trees Tj(x) < 0 ,j 6= i.

Or in case of the combined classifier after OR-ing operation, only one ai = 1 and all

other aj = 0, j 6= i. In this case, class i is assigned to the pattern x. This is the

simplest case that does not require further operations.

Case 2: For more than one tree Ti(x) ≥ 0 or more than one ais are 1. Each tree for

which Ti(x) ≥ 0 or ai = 1 is called a competitive tree. To resolve this conflict or to

assign only one class to the pattern x, we first try to use the heuristic rules. If it cannot

assign a class then we apply the weight based scheme. Also if there is no heuristic rule

available, then we directly use the weight based scheme. As an illustration, in a 4-class

problem, let T1(x) < 0, T2(x) < 0, T3(x) ≥ 0 and T4(x) ≥ 0. In this case T3 and T4

are the competitive trees and hence the vector v will be (0 0 1 1)T . If there exists a

heuristic rule (0 0 1 1)T which assigns class j, j ∈ {1,2,3,4}, then that class is assigned

to the pattern x. Otherwise, the weight based method will be tried. If w3 ≥ w4 then

class 3 will be assigned to x, else class 4 will be assigned. Note that, weights and rules

will be computed only when the classifier CF makes mistakes on the training data set.

So if CF makes 100% correct classification of the training data then weights and rules

will not be available.

Case 3: For all trees Ti(x) < 0 or all ai = 0.

In this case none of the trees can recognize the pattern x. So only the heuristic rules

may resolve this situation. Here all components of the vector v are zero. If there is a

Null (vector whose all components are zero) heuristic rule that maps to class j, then

class j is assigned to the pattern x. Otherwise, no class will be assigned to x and it

becomes a “don’t know” case.

51

3.3 Experimental Results

We have used five data sets for training and validating our methodology. These are

all real data sets, named, IRIS [4], WBC [14], BUPA [14], Vehicle [14] and RS-DATA

[75]. WBC, BUPA and Vehicle data sets are extensively studied in [80]. We shall use

these data sets in other chapters.

3.3.1 Data Sets

IRIS Data

This is the well-known Anderson’s Iris data set [4]. It contains a set of 150 measure-

ments in four dimensions taken on Iris flowers of 3 different species or classes. The

four features are sepal length, sepal width, petal length and petal width. The data set

contains 50 instances of each of the three classes. We used ten fold cross validation to

estimate the misclassification error.

Wisconsin Breast Cancer (WBC)

It has 2 classes with 699 instances. Sixteen of the instances have missing values and

hence we removed them. All reported results are computed on the remaining 683 data

points. Each data point is represented by 10 attributes. Misclassification error rates

were estimated using ten fold cross validation.

BUPA Liver Disorders (BUPA)

It consists of 345 data points in 6 dimensions distributed into 2 classes on liver disor-

ders. Performance of our methodology on this data is determined using ten fold cross

validation.

Vehicle data

This data set has 846 data points distributed in 4 classes. Each data point is repre-

sented by 18 attributes. Here also we used ten fold cross validation.

52

RS-DATA

It is a Landsat-TM3 satellite image of size 512 × 512 (= 262144 pixels) captured by

seven sensors operating in different spectral bands [75]. With each spectral band/channel

we get an image with intensities varying between 0 to 255. The 512 x 512 ground truth

data provide the actual distribution of classes of objects captured in the image. From

these images we produced the labeled data set with each pixel represented by a 7-

dimensional feature vector and a class label. Each dimension of a feature vector comes

from one channel and the class label comes from the ground truth value. The class

distribution of the samples is given in Table 3.1. We used only 200 random points

from each of the eight classes as training samples. In other words, out of 262144 data

points, we considered only 1600 instances for training.

The five data sets are summarized in Table 3.2.

Table 3.1: Different Classes and their frequencies for RS data

Classes Frequencies

Forest 176987

Water 23070

Agriculture 26986

Bare ground 7400

Grass 12518

Urban area 11636

Shadow 3197

Clouds 350

Total 262144

3.3.2 Results

The experiments have been performed using lilgp [124] on Alpha server DS10. The

computational protocols which are common to all data sets are given in Table 3.3 and

the data specific parameters are listed in Table 3.4.

In Table 3.4,

53

Table 3.2: The Five Data sets

Name of No of No of Size of the data set and

Data Set classes Features classwise distribution

IRIS 3 4 150 (= 50 + 50 + 50)

WBC 2 9 683 (= 444 + 239)

BUPA 2 6 345 (= 145 + 200)

Vehicle 4 18 846 (= 212+ 217+ 218+ 199)

RS-DATA 8 7 262144 (see Table 3.1)

Table 3.3: Common Parameters for all Data sets

Parameters Values

Probability of crossover operation, pc 0.75

Probability of reproduction operation, pr 0.1

Probability of mutation operation, pm 0.15

Probability of selecting a function node during

crossover operation, pf 0.8

Probability of selecting a terminal node during

crossover operation, pt 0.2

Probability of selecting a function node during

mutation operation, pmf 0.9

Probability of selecting a terminal node during

mutation operation, pmt 0.1

% of the total nodes of a tree used for point mutation, m 2%

Tournament size, τ 7

Threshold for defining heuristic rules, h 20

54

Table 3.4: Different parameters used for different data sets

Data set P s1 Ms M ml mn

IRIS 400 5 10 10 10 1200

WBC 300 5 100 120 10 1000

BUPA 500 5 100 120 10 1500

Vehicle 700 5 100 120 12 2500

RS 700 25 500 520 13 5000

P = Population size,

s1 = Number of steps for step-wise learning,

Ms = Total number of generations for step-wise learning,

M = Total number of generations the GP is evolved,

mh = Maximum allowed depth of a tree and

mn = Maximum allowed number of nodes for an individual.

We use following notations to describe the performance:

Pts = Average percentage of correctly classified test samples over 10 runs

merr = Average percentage of misclassification including unclassified points on the test

set over 10 runs

For each of the first four data sets we used the following computational protocol: We

make a ten-fold random partitioning of the data and make two GP runs on each fold

with a different initial population but keeping all other GP parameters the same. This

process is then repeated 5 times, each with a different 10-fold partitioning of the data.

In this way, we make ten GP runs, each involving a 10-fold validation. (Note that,

here each GP run essentially involves 10 runs, each with one of the 10 folds). This

helps to compare our results with other reported results.

In the case of the RS data set we do not use 10 fold validation to keep the results

consistent with other results reported in the literature [75]. For this data set, as

used by other authors, we generate a training-test partition with 200 points from each

class for the training set and rest for the test set. Here also we make 5 such random

training-test partitions and for each partition we make 2 GP runs.

The average classification accuracy on the test data Pts, average misclassification error

55

merr and standard deviation sd of errors over 10 runs for IRIS,WBC and BUPA data

sets are given in Table 3.5 and for vehicle and RS data these are shown in Table 3.6.

Table 3.5 has four rows R1 to R4, where R1 = without any post-processing method,

R2 = with only OR-ing operation, R3 = with OR-ing and (then) weighting scheme

and R4 = with only weighting scheme.

Table 3.6 has six Rows, where Rw1 = without any post-processing method, Rw2 =

with only OR-ing operation, Rw3 = with OR-ing and then applying heuristic rules,

Rw4 = with OR-ing, heuristic rules and then weighting scheme, Rw5 = with only

heuristic rules and Rw6 = with only weight based scheme.

The results after each post-processing operation (like OR-ing, heuristic rules and

weighting scheme) are given in order to provide a clear understanding of the per-

formance of each post-processing method. The mean GP run time for each data set is

given in Table 3.8. The GP run time in Table 3.8 includes time taken for partitioning

the data sets, evolving the GP, input/output file handling, post processing and vali-

dation. As discussed earlier, the post-processing time is insignificant compared to the

evolution time of GP. Later we shall report some illustrative values for the vehicle data

set.

For IRIS, 96.9% of the test data are classified correctly without using any post-

processing methods. After OR-ing operation, we achieved 98% test accuracy. As

there was no heuristic rule, we used only the weight based scheme. Combination of

both OR-ing and (then) weight based scheme could provided 98.7% test accuracy as

shown in Table 3.5. Without OR-ing, the weight based scheme alone could provided

the result to 97.3%. In average, a GP run required 8.4 seconds to complete (Table

3.8).

As an illustration, the (preorder) expressions of a classifier (three trees) for the IRIS

data are shown below:

TREE 1: (- x2 x3)

TREE 2: (/ (- x3 x2) (- (/ (- (/ 9.86082 x4)(- x4 x2)) x3) x4))

TREE 3: (- (* (- x3 5.15982) (+ x1 3.36042))(- (- x3 5.15982)(* x4 x4)))

x1, x2, x3 and x4 represent four features or attributes of IRIS data.

56

After simplifying the above expressions, we can write the following rules: For a pattern

x = (x1, x2, x3, x4)
T ,

if x2 − x3 ≥ 0 ⇒ x ∈ class 1

if (x2−x3)x3x4

(x3+1)x4
2−x2x4−9.86082

≥ 0 ⇒ x ∈ class 2

if x4
2 + x1x3 + 2.36042x3 − 5.15982x1 − 12.17934 ≥ 0 ⇒ x ∈ class 3

Table 3.5: Performance Evaluation for IRIS, WBC and BUPA Data

Methods IRIS W.B.C. BUPA

Pts(%) merr sd Pts(%) merr sd Pts(%) merr sd

R1 96.7 3.3 0.6 95.2 4.8 4.1 60.9 39.1 3.6

R2 98.0 2.0 0.5 96.7 3.3 0.2 69.0 31.0 2.3

R3 97.3 2.7 0.5 97.2 2.8 0.3 70.0 30.0 2.1

R4 98.7 1.3 0.4 96.4 3.6 0.5 69.9 30.1 1.9

In case of WBC data, 95.2% of the test data are classified correctly without using any

post-processing method. After OR-ing operation, we achieved 96.7%. As there was no

heuristic rule available, we used only the weight based scheme. Table 3.5 shows that

with both OR-ing and (then) weighting schemes, we achieved 97.2% test accuracy

(2.8% error). Without OR-ing operation, the weighting scheme could provided the

result to 96.4%. This data set has been extensively studied in [80] where 33 non-

GP classifiers are compared. Table 3.7 summarizes the errors reported in [80]. For

consistency, we have rounded off the errors to one digit after decimal. For this data set

the error for the 22 tree/rule based classifiers and 9 statistical classifiers varied between

3.1 - 8.5 and 3.4 - 4.8 respectively [80]. For the two neural networks, the error rates

are 2.8 and 3.4. For the 5 GP methods given in [81], the errors for this data set varied

between 3.2 to 3.6. For the proposed classifier the error rate is 2.8. Thus, performance

of our method is good. The comparisons are summarized in Table 3.7.

For the BUPA data, 60.9% test points are classified correctly without using any post-

processing method. After OR-ing operation, we achieved 69% test accuracy. Since we

do not get any heuristic rule, we used only the weighting scheme. The weighting scheme

along with the OR-ing operation, provided a test accuracy of 69.9%. In this case the

weighting scheme alone could provided 69.9% recognition accuracy. The BUPA data

set is also tested against 33 classifiers in [80] and against 5 GP classifiers in [81].

57

Table 3.6: Performance Evaluation for Vehicle and RS Data
Methods Vehicle RS data

Pts(%) merr sd Pts(%) merr sd

Rw1 48.6 51.4 3.8 70.9 28.6 5.3

Rw2 58.2 41.8 2.8 73.9 25.7 5.2

Rw3 58.9 41.1 2.5 75.5 24.0 5.5

Rw4 61.8 38.3 2.3 80.0 19.5 2.9

Rw5 58.6 41.4 2.2 76.1 23.4 5.4

Rw6 56.9 43.1 2.0 76.0 23.4 5.1

In case of the vehicle data set, we achieved only 48.6% classification accuracy without

using any post-processing scheme (Table 3.6). Using OR-ing operation we obtained

58.2% test accuracy. The average number of heuristic rules generated without using

OR-ing (nh) and after using OR-ing (nhor) for the vehicle and RS data sets are shown

in Table 3.9. Using the heuristic rules after OR-ing operation, we got 58.9% test

accuracy. Combination of OR-ing, heuristic and weighting schemes could provided

61.8% test accuracy. These results demonstrate the usefulness of all post-processing

schemes. With only heuristic scheme and weighting method we get 58.6% and 56.9%

test accuracies respectively. The errors produced by our method are also compared

in Table 3.7 with other 38 approaches. Our method is quite comparable with the five

GP based methods and the neural network based classifiers. As shown in Table 3.8,

the mean GP run time for the vehicle data is 9 minutes 12 seconds. Without any

post-processing, the mean GP run time is 9 minutes 6 seconds. So the computational

overhead for post-processing operation is negligible (less than 2%) compared to the

mean GP run time.

Table 3.6 also includes the results for the RS data set. For this data set 70.9% test data

are classified correctly without using any post-processing method. Table 3.6 reveals

that OR-ing operation increases the result by 3%. For the RS data set we obtained on

average 3.7 heuristic rules, if we do not use ORing and 3.0 heuristic rules after OR-

ing (Table 3.9). OR-ing and heuristic rules can increase the recognition accuracy by

4.6%. Combination of all three operations (OR-ing, heuristic rules and then weighting

method) could increase the accuracy by 9.1%. Thus we achieved 80% recognition

accuracy with all three operations. In Table 3.6 we also included the results with only

58

20 40 60 80 100 120
0.35

0.4

0.45

0.5

0.55

0.6

generation −−−−−>

er
ro

r
−

−
−

−
−

>

20 40 60 80 100 120
0.35

0.4

0.45

0.5

0.55

0.6

generation −−−−−>

er
ro

r
−

−
−

−
−

>

(a) (b)

20 40 60 80 100 120
0.35

0.4

0.45

0.5

0.55

0.6

generation −−−−−>

er
ro

r
−

−
−

−
−

>

20 40 60 80 100 120
0.35

0.4

0.45

0.5

0.55

0.6

generation −−−−−>

er
ro

r
−

−
−

−
−

>

(c) (d)

Figure 3.2: Variation of training and test error rates for the vehicle data : (a) No

post-processing is used, (b) Only OR-ing is used, (c) OR-ing and heuristic rules are

used, and (d) OR-ing, heuristic rules and weighting scheme are used

59

0 5 10 15 20
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

generation −−−−−>

P
er

fo
rm

an
ce

 −
−

−
−

−
>

100 200 300 400 500
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

generation −−−−−>

P
er

fo
rm

an
ce

 −
−

−
−

−
>

20

(a) (b)

Figure 3.3: (a) performance of the eight trees for RS data up to 20 generations and

(b) performance of the same eight trees from generations 20 to 520.

weighting scheme and only heuristic scheme just for understanding of the effectiveness

of each post processing scheme. Using the maximum likelihood (ML) method and

artificial neural networks, 79.0% and 79.6% test accuracies are attained for this data

set as reported in [75].

In any learning scheme, when the training error attains the minimum value, the gen-

eralization (test error) may not be the best. In order to investigate this, the misclas-

sification (error rate) for the training and test sets in a typical run for the Vehicle

data are noted after every 20 generations and displayed in Fig. 3.2. Figure 3.2 has

four panels: (a) shows the error rates without using any post-processing scheme, (b)

shows the error rates after OR-ing, (c) depicts the error rates after using OR-ing and

heuristic rules and (d) shows the error rates after using OR-ing, heuristic rules and

weighting scheme. The solid lines with triangular marks show the error rates for the

training data. The dotted lines display the error rates for the test data. For panels

(a) and (b) we find that both training and test error rates decrease with generations,

but for panels (c) and (d) we observe that the best training and test error rates occur

around generation number 100. We have analyzed such plots for other data sets also.

In most cases we found that training error and test error follow a consistent pattern

and the training and test errors decrease with generations. However, panels (c) and

(d) of Fig. 3.2 suggest that use of a validation set may further improve the classifier

60

performance.

Table 3.7: Comparison of mean error rate merr with other approaches

Data sets WBC BUPA Vehicle

Our method 2.8 30.1 38.3

Five other GP approaches [81] 3.2 - 3.6 30.8 - 34.3 37.6 - 46.6

Twenty-two Tree/rule based methods [80] 3.1 - 8.5 27.9 - 43.2 20.6 - 48.7

Nine Statistical approaches [80] 3.4 - 4.8 28.0 - 40.1 14.5 - 22.4

Two NN classifiers [80] 2.8,3.4 32.9,33.0 37.2,37.4

Table 3.8: Mean GP Run Time
Data Sets IRIS WBC BUPA Vehicle RS-DATA

Time (hour:min:sec) 0:0:8 0:3:28 0:3:05 0:9:12 2:50:00

So far we have not investigated how different trees evolve with generations. As an

illustration, in Fig. 3.3 we show the performance of the 8 trees of a typical GP run

for RS data. Fig. 3.3(a) shows the performance of the trees in the first 20 generations

and Fig. 3.3(b) shows the performance of trees from 20 generations to 520 generations.

The performance has been measured as the ratio of number of training samples cor-

rectly classified by a tree and the total number of training samples. Figure 3.3 reveals

that some trees start exhibiting very poor performance initially but improve faster

than the trees which start with relatively better performance. This demonstrates the

effectiveness of the concept of unfitness of the tree. It also shows that the performance

of trees improve with generations.

Table 3.9: Average number of heuristic rules obtained for each Data set

Data Set IRIS WBC BUPA Vehicle RS Data

nh 0 0 0 3.2 3.7

nhor 0 0 0 2.6 3.0

61

3.4 Conclusions

We have proposed a GP approach to design classifiers. It needs only a single GP run to

evolve an optimal classifier for a multi-class problem. For a c-class problem, a multi-tree

classifier consists of c trees where each tree represents a classifier for a particular class.

Unlike other approaches, we take an integrated view where GP evolves considering

performance over all classes at a time.

Each tree recognizes patterns of a particular class and rejects patterns of other classes.

Trees are independent of each other and each has an equal responsibility for classifica-

tion, but all trees are tied together through fitness evaluation of chromosomes which

governs the evolution of GP. An individual is selected according to its fitness value for

genetic operation. However, its trees are selected according to their degree of unfit-

ness. In this way, we give more opportunities to unfit trees to rectify themselves by

genetic operations (crossover and mutation). At the same time, we reduce the chance

of unwanted disruption of already fit trees by the genetic operations. In the case of

crossover operation, we not only allow exchange of subtrees between trees meant for

same class, but also complete exchange of some trees designated for the same class.

Our mutation operation is designed to reduce the destructive nature of conventional

mutation.

To obtain a better classifier we have proposed a new scheme for OR-ing two individuals.

We have used a heuristic rule based scheme followed by a weight based scheme to

resolve conflicting situations. The heuristic rules model typical situations where the

classifier indicates ambiguous decisions and try to resolve them. The weight based

scheme assigns a higher weight to a tree which is less responsible for making mistakes.

Our contributions in this paper are summarized as follows: (i) We Proposed a com-

prehensive scheme for classifier design for multi-category problems using a multi-tree

concept of GP. It is an integrated evolutionary approach where classifier trees for all

classes are evolved simultaneously.

(ii) For genetic operations, trees are selected on the basis of their unfitness.

(iii) We proposed a modified crossover operation.

(iv) We used a new mutation operation called non-destructive directed point mutation.

(v) An OR-ing operation is introduced to optimize the classifier - this can be applied

with any GP based classifier.

62

(vi) We proposed a weight based scheme for conflict resolution. This is a modified

version of the scheme suggested in [67].

(vii) The heuristic rule in [67] is also modified.

We tested our classifier with several data sets and obtained quite satisfactory results.

Our future work will focus on reducing the size of the trees and feature analysis simul-

taneously with designing the classifier.

63

Chapter 4

Simultaneous feature selection and Classifier

Design using Genetic Programming [A2]

4.1 Introduction

In the last chapter, we presented our Genetic Programming based classifier design

scheme. There we did not consider feature selection which is also an important pattern

recognition task. In this chapter, we propose a GP system that simultaneously selects

useful features and designs the classifier.

Feature selection is a process to select useful features to obtain an efficient and improved

solution to a given problem. Ideally, the feature selection process should select an

optimum subset of features from the set of available features which is necessary and

sufficient for solving the problem. Feature selection is important because all available

features may not be useful. Some of the features may be redundant while some others

may cause confusion during the learning phase. These features unnecessarily increase

the complexity of the feature space which in turn demands more computation time for

learning or finding a solution to the given problem.

Feature selection(FS) algorithms can be grouped [26] based on characteristics of search-

ing: exhaustive, heuristic and random. Alternatively, they can also be categorized [26]

into five groups based on the evaluation function that is used for evaluating the utility

of the features: distance [66, 90], information [78, 76, 109], dependence [86], consistency

[27, 77] and classifier error rate. The FS techniques which use classifier error rate as

the criterion are called wrapper type algorithms [69]. In wrapper approach, the classi-

fier for which features are being selected, itself is used as the evaluation function. Since

64

the suitability of features depends upon the concerned learning algorithm or classifier,

the wrapper type algorithms usually perform better(in terms of accuracy) compared

to other type called filter type techniques. However, wrapper approaches require more

computation time than filter approaches. In a filter type method the selection is done

independent of the learning algorithms. In this case, the relevant features are filtered

out from the irrelevant ones prior to the learning. Good surveys on feature selection

include [26, 15]. Analysis and discussion of various feature selection techniques are

available in [74, 94, 54, 64, 30, 42, 69]. The Sequential Forward Selection (SFS) [31]

methods start from an empty set and gradually add features selected by some evalu-

ation function while the Sequential Backward Selection (SBS) [31] schemes start with

the complete feature set and discard features one by one till an optimum feature subset

is retained. However, in SFS once a feature is selected, it cannot be rejected later and

reverse is true for SBS. Sequential forward floating selection(SFFS) [101] avoids this

drawback. In [64, 74], it has been shown that SFFS performs better over many con-

ventional FS techniques. In [90], branch and bound method is used to find an optimal

feature subset with an assumption of a monotonic evaluation function. Relief [66] is a

feature weight-based statistical approach whereas in [121], tabu search is used to find

useful features. Some neural network based feature selection schemes are discussed in

[95, 107], and [118]. Support vector machines(SVMs) have also been used for feature

selection. In [83] a feature selection technique based on pruning analysis for SVMs is

proposed. It enjoys characteristics of both filter and wrapper approaches. Filter ap-

proach reduces computational time whereas wrapper approach improves classification

accuracy. Authors in [13] discuss feature selection and feature ranking using SVMs.

Evolutionary algorithms have also been used for feature selection [110, 111, 21, 97,

2, 108, 62]. Evolutionary algorithms are random search techniques. Typically, in a

genetic algorithm (GA) based feature selection approach [110], [111], each individual

(chromosome) of the population represents a feature subset. For an n-dimensional

feature space, each chromosome is encoded by an n-bit binary string {b1, b2, ..., bn},

bi = 1 if the ith feature is present in the feature subset represented by the chromosome

and bi = 0, otherwise. A classifier is used to evaluate each chromosome(or feature

subset). Typically each chromosome is evaluated based on the classification accuracy

and the dimension of the feature subset(number of 1’s). In [74], it has been shown that

GA based feature selection performs better than many conventional FS techniques

65

for high-dimensional data. In an evolutionary paradigm, a population of candidate

solutions to the problem is allowed to evolve to achieve the desired optimal or sub-

optimal solution using a set of genetically motivated operations.

Foroutan and Sklansky [110] used branch and bound technique for feature selection

using GA. Casillas et al. [21] devised a genetic feature selection scheme for fuzzy rule

based classification systems. In [103], ADHOC is a genetic algorithm based feature

selection scheme with C4.5 induction learning. Pal et al. [97] proposed a new genetic

operator called self-crossover for feature selection. Jack and Nandi [62] used GA for

feature selection in machine condition monitoring contexts.

Unlike GA, there have been only a few attempts to use Genetic Programming(GP)

[72, 7] for feature selection. Gray et al. [50] analyzed GP classifiers designed for two-

class problems and decided on the features to be selected. They have not considered

any special step for feature selection during the GP evolution. Ahluwalia and Bull

[2] proposed a coevolutionary approach for feature extraction and selection using au-

tomatic defined function (ADFs) of GP. Each ADF is assigned its own independent

sub-population which co-evolves with other ADF sub-populations and a population

of main program trees. They used the k-nearest neighborhood(K-NN) algorithm for

classification. Sherrah et al. [108] used GP for feature extraction/selection. They used

a generalized linear machine as the classifier. In [52], a GP-based feature extraction

scheme is proposed for the classification of bearing faults. The craeted features are then

used as the inputs to a neural classifier for the identification of six bearing conditions.

In [53], GP is used to generate features for breast cancer diagnosis.

In [95] authors proposed a novel scheme of selecting the relevant features on-line while

training a neural network. In the on-line approach, selection of features and construc-

tion of the classifier are done simultaneously producing a good system for a given

problem. Chakraborty and Pal also introduced neuro-fuzzy schemes for on-line feature

selection [22], [23].

This chapter presents an on-line feature selection algorithm using Genetic Program-

ming (GP), named, GPmtfs (multi-tree genetic programming based feature selection).

For a c-class problem, a population of classifiers, each having c trees is constructed

using a randomly chosen feature subset. The size of the feature subset is determined

probabilistically by assigning higher probabilities to smaller sizes. The classifiers which

66

are more accurate using a small number of features are given higher probability to pass

through the GP evolutionary operations. As a result, we can achieve a good classifier

using a small feature subset. We introduce two new crossover operations to suit the

feature selection process.

Use of GP for on-line feature selection has some advantages. GP provides a mathemat-

ical representation of the classifier. As the classifier uses only a few selected features,

the mathematical representation of the classifier can be easily analyzed to know more

about the underlying system.

In this chapter, we conduct simultaneously feature selection and classifier design using

GP. We have combined some additional steps in classifier design method to do feature

selection. The classifier design method GPmtc given in Chapter 3 can be upgraded

for feature selection. Before combining additional components to GPmtc for feature

selection, we have attempted to simplify the classifier design approach. This reduces the

computational time and complexity GPmtc. Moreover, we have considered a modified

fitness function in this classifier design approach GPmt. In the following section, we

present the changes made in GPmtc approach to obtain the simplified algorithm, GPmt.

After designing the GPmt approach, we include the additional steps given in section

4.3 for simultaneously feature selection. This algorithm with feature selection ability

is called GPmtfs.

4.2 Designing Classifiers without Feature Selection

We consider the following changes in GPmtc to get GPmt.

4.2.1 Modified Fitness Function

A tree Tk of the GP classifier act as a classifier for a two-class problem. It considers

class k as the desired class and remaining classes together as the other class. This two-

class data is typically an unbalanced data set. Let us illustrate it with an example.

Consider a 4-class problem in which the number of training samples belonging to each

class is 50. Thus, for the kth class, Nk = 50 and N − Nk = 150. That means, tree

T l
k is trained to discriminate between 50 training samples of kth class and 150 training

67

1 2 3 4 5 6 7 8 9 10
0.82

0.83

0.84

0.85

0.86

0.87

r −−−−−>

fs
g−

−
−

−
−

>

Figure 4.1: Decrease of fitness(fsg) value with increase in r for af =0.1 and n = 10 in

Eq. 6

samples of the remaining classes. For this two class problem, we have more samples

from the second class. To reduce the effect of the unbalanced sample size, we assign

more weight to the correct classification of training samples xi ∈ class k by the tree

Tk.

The population of classifiers is allowed to learn using a set of training samples, X =

X1 ∪X2 ∪ · · ·Xk · · · ∪Xc, Xi ∩Xj 6=i = φ, | Xk | = Nk and | X | = N. Each classifier

classifies all training samples, xi ∈ Xk, ∀i = 1, 2, · · · , Nk and k = 1, 2 · · · , c. The fitness

function measures how well it performs the classification task.

We consider the following fitness function to compute the fitness of the lth classifier of

the population-

f l =
c

∑

k=1

Nk
∑

i=1

c
∑

j=1

hl
k,i,j. (4.1)

The two outer summations in (4.1) are used to consider all data points in X to compute

the fitness of a classifier. hl
k,i,j is the contribution of jth tree of lth classifier (T l

j) for

68

the ith data point(xi) of Xk. So for a training point xi ∈ Xk we expect T l
k(xi) ≥ 0

and T l
j 6=k(xi) < 0. Consequently both T l

k(xi) ≥ 0 and T l
j 6=k(xi) < 0 should increase

the fitness function. To achieve this we define,

hl
k,i,k = N−Nk

Nk
if T l

k(xi) ≥ 0

= 0 if T l
k(xi) < 0

hl
k,i,j 6=k = 0 if T l

j 6=k(xi) ≥ 0

= 1 if T l
j 6=k(xi) < 0.

Usually, the number of training samples in the kth class, Nk, is smaller than the total

number of training samples of classes other than the kth class, N − Nk. The tree T l
k

learns to discriminate between two classes, class k and all other classes taken together.

Since the sizes of these two classes are highly unbalanced and the GP attempts to

minimize the number of misclassifications, we give more importance to correct classi-

fication to class k. Let us illustrate it with an example. Consider a 4-class problem

in which the number of training samples belonging to each class is 50. Thus, for the

kth class, Nk = 50 and N −Nk = 150. That means, tree T l
k is trained to discriminate

between 50 training samples of kth class and 150 training samples of the remaining

classes. For this two class problem, we have more samples from the second class. To

reduce the effect of the unbalanced sample size, we assign more weight to the correct

classification of training samples xi ∈ class k by the tree Tk. This is equivalent to

copying each point in the training set of class k by N−Nk

Nk
times [67]. Thus in the stated

4-class problem, if a data point from class k is correctly classified by tree T l
k, then the

fitness is increased by 3 (= 150
50

).

If the identity of the classifier is not important, then for clarity we will ignore the

superscript. So, a sample x ∈ Xk is correctly classified by the tree Tk, if Tk(x) ≥ 0

and it is correctly classified by tree Tj(6=k), if Tj(x) < 0. A classifier correctly classifies

a sample x if and only if all of its constituent trees correctly classify x.

In GPmt, we are not considering post-processing methods involving heuristic rules and

OR-ing operation discussed in Chapter 3. This simplifies the scheme. We are also not

utilizing step-wise learning as it will affect the feature selection. We use weight based

scheme for conflict resolution.

69

4.3 Designing classifiers with on-line feature selection

For simultaneous feature selection and classifier design, we use the following additional

steps in the proposed GPmtfs scheme.

4.3.1 Selection of a feature subset for each chromosome

Let P be the population size. Before initializing each individual(classifier) C l, l ∈

{1, 2, ..., P} , a feature subset Gl is randomly chosen from the set of all n available

features. The size of the feature subset Gl for each classifier C l is determined proba-

bilistically. The probability to select a feature subset of size r(≤ n) is taken as,

ps
r =

n− r
∑c

j=1 (n− j)
=

2

n− 1
−

2r

n(n− 1)
. (4.2)

ps
r decreases linearly with increase in r. Note that

∑n
r=1 ps

r = 1. We use Roulette

wheel selection to determine the size of the feature subset,r, with probability ps
r.

After, deciding the number of features r, we randomly select r features to construct

the feature subset Gl. The classifier is now initialized as discussed earlier with the

chosen feature subset Gl instead of all n features. The chosen feature subset Gl may

be represented by a vector vl whose jth element vlj = 1, if the jth feature is present

in the selected feature subset, otherwise vlj = 0. For example, if the total number of

features is 5 and out of these 5 features {x1, x2, x3, x4, x5}, if r = 2 features, x1 ,x3, are

selected to construct a classifier, then vl will be (1,0,1,0,0).

4.3.2 Fitness Function

The fitness function is required to assign higher fitness value to the classifier which

can classify correctly more samples using fewer features. Thus the fitness function is

a multi-objective one, which needs to consider both correct classification and number

of features used. We use the following fitness function:

fs = f × (1 + ae−
r
n). (4.3)

70

In (4.3), f is the fitness value obtained by Eq(4.1), r is the cardinality of the feature

subset used, n is the total number of features and a is a parameter which determines

the relative importance that we want to assign for correct classification and the size of

the feature subset.

The factor e−
r
n decreases exponentially with increase in r and so is the fitness function.

Thus, if two classifiers make correct decision on the same number of training points,

then the one using fewer features is assigned a higher fitness. We decrease the penalty

for using larger feature subset with generations to improve the classification accuracy.

So initially we use fewer features, but as learning progresses we give more importance

to better classification performance. To achieve this, we decrease a as:

a = 2af

(

1−
gen

M

)

. (4.4)

where af is a constant. M is the number of generations GP is evolved, gen is the

current generation number. We have taken af = 0.1.

After each generation, to select the best chromosome, we use the fitness function fsg:

fsg = f × (1 + afe
− r

n). (4.5)

It is similar to fs in (4.3), except that here af does not change with generation. It

is because the best chromosome of each generation should be compared with the best

chromosome of the previous generation to get the best chromosome of the run.

Figure 4.1 displays the fitness function(4.5) with f = 0.8, n = 10 and af = 0.1. It

shows the effect of r, the size of the feature subset, on the fitness value.

After initialization, the population evolves using genetic operations iteratively.

4.3.3 Crossover Operation

We use two crossover operations to suit feature selection. These are:

(1) Homogeneous crossover called Crossover hg

(2) Heterogeneous crossover called Crossover ht. The heterogeneous crossover depends

on the degree of similarity between two parents.

71

The probability of using homogeneous crossover is computed as

Phg =
gen

M
. (4.6)

Thus, the probability of using homogeneous crossover increases linearly with genera-

tions (gen) from 0 to 1. The Crossover ht is used with probability Pht = 1− Phg. So,

Pht decreases linearly from 1 to 0 with increase in gen.

Crossover hg restricts the crossover operation between classifiers which use the same

feature subset. This crossover operation completely avoids gradual use of more and

more features by the classifiers. Crossover ht allows crossover between classifiers using

different feature subsets. However, we shall see later it is biased towards crossover

between classifiers which use more common features. Consequently, this will check

the gradual use of more and more features with generations. As a result of this, with

generations the classifiers are not expected to use all features.

Homogeneous Crossover, Crossover hg

This crossover operation restricts the crossover between classifiers which use the same

feature subset. After selecting a chromosome as the first parent C1, we select the

second parent C2 from the group of chromosome that uses the same feature subset as

used by C1. If there is no such chromosome, then we use heterogeneous crossover. The

algorithm, Crossover hg, is given in this section.

Heterogeneous crossover, Crossover ht

This is a biased crossover between two classifiers which use more common features.

At first, we randomly select a set of τ classifiers. The classifier which has the highest

fitness value fs among this set of classifiers is taken as the first parent C1 for crossover.

After that we randomly select another set of τ classifiers to select the second parent

C2. The degree of similarity sj of the jth, j = 1, 2, ..., τ , classifier of this second set

with C1 is calculated as

sj =

∑n
k=1 v0kvjk

Max(
∑n

k=1 v0k,
∑n

k=1 vjk)
=

v0
Tvj

Max{||v0||, ||vj||}
. (4.7)

72

Algorithm 1 Crossover hg (Population)

mτ = 0, m1 = 1, Max1 = 0, Max2 = 0

2: for j = 1 to τ do

Randomly take a classifier C l ∈ Population

4: if fs(C
l) ≥Max1 then

Max1 = fs(C
l), k = l

6: end if

end for

8: P1 = Ck {first parent for crossover}

Ci = Ck+1 { now for second parent P2}

10: while ((m1 < P) and (mτ < τ)) do

if v(Ci) = v(P1) then

12: if fs(Ci) ≥Max2 then

Max2 = fs(Ci), P2 = Ci {if both use same feature subset}

14: end if

mτ = mτ + 1

16: else

Ci = Ci+1 {if i = P, then i + 1 = 1}

18: end if

m1 = m1 + 1

20: end while

if mτ > 0 then

22: Compute pi
1, i = 1, 2, · · · , c of P1

Select a tree Tj
1 of P1, by the Roulette-wheel selection using pi

1

24: Select a node type ntype {with probability qfc to select function node type and

qtc to select terminal node type}

Randomly select a node of the ntype type from Tj
1 and Tj

2 (of P2) independently

26: Swap the subtrees rooted at the selected nodes of Tj
1 and Tj

2

Swap Tg
1 with Tg

2, ∀ g = j + 1, ..., c

28: else

Do heterogeneous crossover

30: end if

73

In Eq(4.7), v0k = 1, if C1 uses the kth feature

= 0, otherwise.

Similarly, vjk = 1, if jth chromosome of the second set uses the kth feature

= 0, otherwise.

Clearly, sj lies in [0,1]. sj = 0 means jth classifier uses a completely different feature

subset than that by C1 and sj = 1 implies that the jth classifier uses the same subset

of features as that by C1. The jth classifier of the second set is selected as C2 with

probability proportional to mj:

mj = fsj + βsj. (4.8)

Here, fsj = fitness of the jth classifier, β = a constant that controls the effect of

similarity. We have taken β = 0.2. In (4.8), the factor βsj is responsible for crossover

operation between classifiers using more common features.

To start with, since we randomly generate classifiers using different(randomly taken)

feature subsets, the population uses a number of different feature subsets. If we start

with homogeneous crossover, then for large dimensional data, the computation cost

to search homogeneous group of classifiers will be more. Also, as discussed earlier,

there is a chance that after selecting a classifier(C1) for homogeneous crossover, we

may not get another classifier (C2) which uses the same feature subset as used by

C1. Moreover, since there are (2n − 1) possible feature subsets, for large n it is not

possible to take all feature subsets to construct classifiers. So during the initial period

of learning, we use Crossover ht which may change some feature subsets and there

by allowing GP to examine some new feature subsets. As the learning progresses, we

decrease the probability of using Crossover ht (and hence increase the probability of

using Crossover hg). As a result, with generations the good feature subsets should

dominate and the population is expected to use a small number of feature subsets. In

our scheme, usually feature selection is accomplished in the first few generations, so we

do not use step-wise learning as done in [87]. Because step-wise learning uses a small

subset of training samples at the beginning of the evolution and with a small subset

of training samples the feature selection process may not be very fruitful.

Mutation, Termination criteria, conflict resolution, validation of classifier CF remain

74

the same as discussed earlier. The complete algorithm, Classifier, is given below for a

better understanding.

Algorithm 2 Classifier

gen = 0, fitg = 0, fitr = 0 { fitg = highest fitness value(fsg) of that generation

and fitr =highest fitness(fsg) till that generation}

Initialize population of classifiers {Cl}, ∀l = 1, 2, · · · , P {max. possible fitness

fmax = 1 + af × exp(−1/n)}

3: while gen < M and fitr < fmax do

for l = 1 to P do

Evaluate fitness fs and fsg of each classifier Cl

6: fitg = max fsg(Cl)

k = arg maxl fsg(Cl)

end for

9: if fitg > fitr then

fitr = fitg

CF = Ck

12: end if

Perform Breeding {all genetic operations}

gen = gen + 1 {go to the next generation}

15: end while

Compute weights {wi} {of the best classifier CF}

4.4 Experimental Results

We have used seven data sets for validating our methodology. These data sets, named,

Iris [4], WBC [14], Wine [14], Vehicle [14], WDBC [82], Sonar [49, 14] and GENE [25,

47] cover examples of small, medium and large dimensional data. Table 4.1 summarizes

these data sets. The five data sets used in chapter 3 are not sufficient to validate the

feature selection method. Hence we have introduced four new higher dimensional data

sets and dropped two low dimensional data sets.

75

4.4.1 Data Sets

Description of Iris, WBC and Vehicle data sets have been given in Chapter 3. The

other four data sets have been briefly described below.

Wine

Wine data set [14] consists of 178 points in 13 dimension distributed in 3 classes. These

data are the results of chemical analysis of wines grown in a particular region of Italy

but derived from three different cultivators. The analysis determined the quantities of

13 constituents found in each of the three types of wine.

Table 4.1: Data sets

Name of No of No of Size of

Data Set classes Features Data set

Iris 3 4 150 (50+50+50)

WBC 2 9 683 (444+239)

Wine 3 13 178 (59+71+48)

Vehicle 4 18 846 (212 + 217 + 218 + 199)

WDBC 2 30 569 (357+212)

Sonar 2 60 208 (97+111)

GENE 2 7129 72 (47+25)

WDBC

This Wisconsin Diagnostic Breast Cancer (WDBC) [82] data set contains observations

on 569 patients with either Malignant or Benign breast tumor. Each data point consists

of 30 features, which are computed from a digitized image of a fine needle aspirate

(FNA) of a breast mass. These features describe characteristics of the cell nuclei

present in the digitized image. Out of 569 samples, 357 belong to Malignant and

remaining 212 samples belong to Benign classes.

76

Sonar

This data set [14, 49] contains 208 patterns obtained by bouncing sonar signals off a

metal cylinder and rocks at various angles and under various conditions. Each pattern

is represented by 60 attributes. Each attribute represents the energy within a particular

frequency band.

GENE

GENE [25, 47] is a set of DNA microarray gene expression levels of 72 persons having

either acute lymphoblastic leukemia (ALL) or acute myeloid leukemia (AML). Each

sample is represented by 7129 gene expressions. 38 samples are used for the training

and the remaining 34 samples are used for the testing. Out of 38 training samples, 27

belong to ALL (class 1) and remaining 11 samples belong to AML (class 2). The test

set consists of 20 ALL and 14 AML samples.

4.4.2 GP Parameters

The GP parameters which are common for all data sets are given in Table 4.2 and the

GP population size(P) which differs with data sets are listed in Table 4.3.

Note that, the parameters in Tables 4.2 and 4.3 are not specific to our algorithm.

These parameters are required for any GP based classifier design.

We consider larger populations for higher dimensional data because the number of

possible feature subsets increases with the number of features(dimension). Use of a

large population helps GP to explore more possibilities and hence one can expect GP

to evolve to a good solution without using many generations. If we allow large number

of generations and large size of the classifiers then the classifiers may overfit(memorize)

on training samples. Consequently, the classifiers may give better performance on the

training data but poor performance on the test data. Choosing the optimal population

size for a given problem is a difficult task and we do not study this problem here. The

optimal number of generations can be determined using a validation set. To achieve a

better generalization one should choose small values of M, mh and mn. Here we allow

GP to evolve only up to 30 generations for all data sets.

77

Table 4.2: Common Parameters for all Data sets

Parameters Values

Probability of crossover operation, pc 0.80

Probability of reproduction operation, pr 0.05

Probability of mutation operation, pm 0.15

Probability of selecting a function node during crossover operation, qfc 0.8

Probability of selecting a terminal node during crossover operation, qtc 0.2

Probability of selecting a function node during mutation operation, qfm 0.7

Probability of selecting a terminal node during mutation operation, qtm 0.3

Tournament size, τ 10

Total number of generations the GP is evolved, M 30

Initial height of a tree 2-6

Maximum allowed nodes for a tree, mn 350

Maximum allowed height of a tree, mh 12

Table 4.3: Population Size

Data set IRIS WBC Wine Vehicle WDBC Sonar GENE

P 1000 1000 1500 1500 2000 2000 5000

78

4.4.3 Results

We performed our experiments using lilgp [124] on Alpha server DS10. During classi-

fication by the classifier CF, we have used weight scheme (described in chapter 3) for

conflict resolution. We run GP 10 times for each data set. Except for the GENE data

set, we use the following computational protocol:

Each GP run involves a 10-fold cross-validation (Thus, each GP run consists 10 runs,

each with one of the 10 folds, so total 100 runs). We compare the average performance

of the classifiers obtained by the proposed method (GPmtfs)using a set of selected

features with the classifiers designed using all features (using GPmt) as described in

Section 4.2. To do this, we also run GP 10 times using GPmt method on each data set.

Here also we do a 10-fold cross-validation.

In case of GENE data, we do not use 10 fold validation to keep the results consistent

with other results reported in the literature on this data set. For this data set, as used

by other authors, we use a specific training and test partition as mentioned in Section

4.4.1. We use the following notations in the subsequent sections.

As is the average percentage of correctly classified test samples by the best classifiers

(CF of each run) using the selected feature subset over 10 GP runs, Aall is the average

percentage of correctly classified test samples by the best classifiers using all features

(without any feature selection) over 10 GP runs, n is the total number of features, ns

is the average number of selected features.

The average classification (test) accuracy Aall with all features and As with the selected

features, and the average number of selected features ns over 10 GP runs for six data

sets are given in Table 4.4. The mean run time for each data set is shown in Table

4.5. The mean run time includes time taken for partitioning the data set, evolving

GP for simultaneous classifier design and feature selection, input/output file handling,

post processing, and validation. Table 4.5 shows that run time does not necessarily

increase with increase in dimension of data sets. Because, the run time also depends

on factors like size of population P, number of generations M, size of classifiers, number

of training samples N and the distribution of the training samples in the feature space.

If all training samples are correctly classified by the best classifier during the GP run,

then the GP run terminates before completion of M generations and hence it reduces

the run time.

79

Since different feature subsets are selected in different runs, to give an idea about

the importance of the features, we count the frequency of the selected features. The

normalized values of those frequencies are given in Table 4.9 for Iris, WBC and Wine

data sets and in Table 4.10 for Vehicle data. These values may be (roughly) used for

ranking the features, although, that is not our objective.

In [34], results of 3 feature selection algorithms, Forward Sequential Selection (FSS),

Backward Sequential Selection (BSS) and relevance in context (RC), are available. RC

uses a clustering like approach to select sets of locally relevant features in the feature

space. In [78], results of another 3 feature selection algorithms called Information

theoretic algorithm (IFN), Relief and ABB are available. Relief is a feature weight

based statistical approach. ABB is a breadth first search, backward selection algorithm,

with some simple pruning abilities. For comparison, we included results of these 6

methods on Iris, WBC and Wine data. We use results of ADHOC [103] for comparison

of performance on Vehicle data. In addition, we use results of two neural network based

feature selection schemes NNFS1 and NNFS2 given in [107] and [118] respectively

and a Signal-to-Noise ratio based feature selection algorithm, SNRFS [9] to compare

our results on WBC data. NNFS1 uses cross-validation classification errors to select

features. NNFS2 uses a network pruning algorithm to remove redundant and irrelevant

attributes one by one. We compare the performance of our scheme on Sonar data with

results of 4 mutual information (MIF) based schemes [76], NNFS2 [118] and ADHOC

[103].

Many methods have been used to analyze the data set GENE. Golub et al. [47] pro-

posed a neighborhood analysis method to analyze it. Furey et al. [45] applied signal-to-

noise ratio (SNR) criteria for feature selection and used support vector machine (SVM)

for classification. Ben-Dor et al. [10] used a nearest neighbor method, support vector

machine with quadratic kernel, and AdaBoost for classification. Principal component

analysis was used by Nguyen et al. [92] to extract features. Then they used linear and

quadratic discriminant analysis for classification. Cho and Ryu [25] considered various

criteria for feature selection and applied multi-layer perceptron(MLP) network, k-NN,

SVM, self-organizing map(SOM) and decision tree to classify the samples. Cho and

Ryu [25] also used ensembles of these techniques for classification.

Rowland [104] used Genetic Programming to classify this gene expression data. Row-

land partitioned the training data into train and validation sets. GP was run 15 times

80

on the train set and the best classifier of each run was used to classify the validation

data. The three best classifiers which produced the minimum absolute difference be-

tween the errors on the train and validation sets, were combined by a voting scheme

to classify the test samples.

Table 4.4: Average Performance
Methods With all features With selected features

n Aall (%) ns As (%)

Iris 4 98.65 1.56 98.69

WBC 9 97.42 2.23 96.84

Wine 13 95.49 4.08 94.82

Vehicle 18 78.37 5.37 78.45

WDBC 30 97.26 6.72 96.31

Sonar 60 84.74 9.45 86.26

Table 4.5: Mean Run Time

Data Sets Iris WBC Wine Vehicle WDBC Sonar GENE

Time(min:sec) 0:30 2:20 1:10 7:30 4:10 2:30 15:40

Iris

From Table 4.4, we find that for Iris data, on average over 10 GP runs, the best

classifiers could correctly classify 98.69% test data using on average only 1.56 features.

This clearly indicates that the selected features have very good discriminating power.

Table 4.6 shows that our method performs better compared to several other methods.

In most cases (GP runs), we observed that our methodology selected feature subsets

{3}, {4} and {3,4}. Note that, {3,4} means 3rd and 4th features. From these obser-

vations, it can be concluded that the 3rd feature (i.e., Petal length) and 4th feature

(i.e., Petal width) have good discriminating power for classification. This finding is

consistent with feature analysis results represented by other researchers [22, 95]. The

weights of the features are given in Table 4.9.

As an illustration, we show the expressions corresponding to the three trees of the best

classifier of a typical run:

TREE1: x3 - 4.8

81

Table 4.6: Comparison with other methods for IRIS data

Methods FSS BSS RC IFN Relief ABB Fuzzy GPmtfs

As(%) 92.6 92.6 94.4 94.0 96.0 90.0 96.58 98.69

ns 2.2 2.6 4 1 2 1 3 1.56

TREE2: (x3 - 2)(4.9 - x3)

TREE3: 2.2 - x3

Where x3 is the 3rd feature. After analyzing the above expressions, for a pattern x, we

find the following decision rules for the three classes:

If x3 ≥ 4.8 then x ∈ Class 1

If x3 ∈ [2, 4.9] then x ∈ Class 2

If x3 < 2.2 then x ∈ Class 3

These rules suggest that we need techniques like weight based method to make decisions

in the overlapping regions [2.0,2.2] and [4.8,4.9]. Note that, the best GP classifier may

not always produce such simple rules.

Fig.4.2 shows the distribution of Iris data in feature space of 3rd (petal length) and 4th

(petal width) features.

WBC

For this data set, on average our method constructed classifiers, selecting only 2.23

features. Our method selected features 6, 2 and 3 in most of the runs. With these

selected features we could achieve 96.84% test accuracy. Table 4.4 shows the average

performance.

Table 4.7 compares our method with six other methods. In this case too, the proposed

method outperforms other methods. The weight (the normalized frequency with which

each feature is selected) computed for each feature is given in Table 4.9. Table 4.9

reveals that features 2,3 and 6 are very important.

To demonstrate the decision rules for WBC we show one of the best outputs (best in

terms of simplicity of expressions) corresponding to a GP run:

TREE1: 3.84− x2

82

1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

petal length (x3) −−>

pe
ta

l w
id

th
 (

x4
)

−
−

>

Figure 4.2: Iris Data using 3rd and 4th feature

Table 4.7: Comparison with other methods for WBC data

Methods IFN Relief ABB SNR NNFS1 NNFS2 GPmtfs

As(%) 94.0 93.6 93.6 92.53 94.15 95.77 96.84

ns 3 2 3 1 2.7 2 2.23

83

TREE2: x2 − 3.47

where x2 is the second feature. We know that for the WBC data set x2 is an integer

valued feature. So, after analyzing the above expressions, we can write the following

simple decision rule:

If x2 ≤ 3 then

x ∈ Class 1

else

x ∈ Class 2.

This is probably one of the simplest rule that can do the classification task with a

reasonably good accuracy of 92.39%.

Wine

For wine data set also the average number of selected features and the classifier per-

formance over all runs are given in Table 4.4. It shows that on average with only

4.08 selected features, GP is able to construct classifiers with 94.82% accuracy. The

computed importance (weights) of the features are included in Table 4.10. Table 4.8

compares our method with three other methods [78]. In this case GPmtfs outperforms

IFN and ABB but Relief is marginally better than GPmtfs.

Table 4.8: Comparison for Wine and Vehicle data
Data Wine Vehicle

Methods IFN Relief ABB GPmtfs ADHOC GPmtfs

As 91.7 95.0 79.0 94.82 69.6 78.45

ns 3 3 2 4.08 7 5.37

Vehicle

For Vehicle data, on average, 5.37 features are selected (used) by the classifier. With

about 5 features 78.45% test points are classified correctly as given in Table 4.4. The

ADHOC [103] method reported a test accuracy of 69.6% using 7 features while our

method could achieve 78.45% test accuracy using a lesser number of features as shown

in Table 4.8. The classifier designed with all features classifies 78.37% of test data.

84

The weights of some of the features are listed in the Table 4.10, the rest are not included

as they have negligible weights.

Table 4.9: Weights of features for Iris, WBC and Wine data

Features 1 2 3 4 5 6 7 8 9 10 11 12 13

Iris 0.15 0.07 0.42 0.36

WBC 0.031 0.232 0.182 0.050 0.052 0.260 0.061 0.110 0.022

Wine 0.108 0.044 0.063 0.056 0.054 0.092 0.103 0.043 0.066 0.118 0.043 0.091 0.119

Table 4.10: Weights of features for Vehicle data

Features 7 13 10 11 8 12 16 9 14

Weights 0.142 0.112 0.108 0.104 0.101 0.098 0.094 0.077 0.073

WDBC

The average performance of the best classifiers over all 10 runs shows that with only

6-7 features, 96.31% test data can be classified correctly (Table 4.4). We do not include

the feature weights for WDBC in Table 4.9 because the number of features is too large

to accommodate in Table 4.9. However, the most important 7 features are 28, 8, 21,

10, 13, 15, and 23.

Sonar

On average, we achieved 86.26% accuracy with about 9-10 features (Table 4.4). While

using all 60 features, the average performance is 84.74%. This again emphasizes that

more features are not necessarily good. Table 4.11 shows that GPmtfs performs much

better than ADHOC and the 4 mutual information based selection schemes [76]. For

this data set NNFS1 outperforms our method both in terms of accuracy and number

of features used.

85

Table 4.11: Comparison with other methods for Sonar data

Methods ADHOC 4 MIF schemes NNFS1 GPmtfs

As(%) 76 76.45-81.70 93.81 86.26

ns 16 9 3.87 9.45

GENE

For this data set, the average accuracy on the test data achieved by our method is

92.55% using on average 10.45 features out of 7129 features. In one of the GP runs, the

best classifier could classify correctly 33 of the 34 test samples (97.1% accuracy) using

13 features. Note that, during the generation of the initial population, the algorithm

may select a large number of features for some classifiers, but since the depth of initial

trees are restricted to 2-6, most of the selected features will not be used. Consequently,

GP will evolve using only a small number of features, which is further moderated by

our crossover operations. In [47], Golub et al. reported correct classification of 29

test samples with high confidence. Nguyen et al. [92], [25] achieved 97.1% (best test)

accuracy using the logistic discriminant classifier. On the other hand, the test accuracy

of the classifiers studied by Cho and Ryu [25] varied from 58.8% to 100%. Rowland

[104] obtained 91.1% test accuracy using Genetic Programming.

Our experiments on Sonar and GENE suggest that the proposed method can easily do

a good job for moderately, large and very large dimensional data sets also.

4.4.4 Effect of noise features

Here we study the sensitivity of our method on bad (noise) features that are synthet-

ically injected to a few real data sets. To produce noisy data, we add 4 randomly

generated values, xn1, xn2, xn3 and xn4, to each data point of WBC, Wine and Vehicle

data. We generate the values of xn1 and xn2 in [0,1] and [-1,1] respectively. To decide

on the domains of xn3 and xn4, we randomly select two features of the data set and use

their domains. Once the domains are decided we randomly generate values of xn3 and

xn4 from their respective domains. For example, if the domain of a selected feature

is [15.5,30.0], then for each data point we use a random number generator to obtain

a value in [15.5,30.0] and add it as a noisy feature value. To see the effect of the

86

noise features we run our scheme with feature selection (GPmtfs) and without feature

selection (GPmt) on the augmented noisy data sets. We run GP 5 times with 2-fold

cross-validation using both the schemes. The average accuracies for WBC, Wine and

Vehicle data are given in Table 4.12. The performance of our scheme on data sets with

noise features almost remains the same as that on data sets without noise.

We have observed that the proposed feature selection scheme GPmtfs only occasionally

chooses any noise feature, but on average there is a marginal increase in the number of

features used. Addition of noise features causes confusion in feature space. This may

lead the classifier to select more non-noise features to counter balance the complexity

in feature space caused by noise features. Moreover, if a noise feature gets selected,

the system may need a few good features to balance its influence. Hence, there is a

marginal increase in the number of selected features. An interesting observation is

that even without feature selection, our scheme can find reasonably good classifiers

from the noisy data. This is a very good attribute of the proposed GP based classifier

design scheme.

In addition to this comparison of average performances, we also compare the perfor-

mance of these two methods over noisy data using 5× 2 cross validation paired t test

[33]. Let µ1 and µ2 be the means of the test errors using GPmt and GPmtfs respectively.

Let the null hypothesis be H0 : µ1 = µ2 and the alternative hypothesis be H1 : µ1 > µ2.

The computed t values, t̃ for WBC, Wine and Vehicle data are given in Table 4.13.

The cut-off value for rejecting the null hypothesis at 95% confidence level for t with 5

degrees of freedom [33] is 2.015. Table 4.13 shows that the t̃ value for each of these 3

data sets is greater than this critical value of t. So the null hypothesis is rejected at

95% confidence level.

Table 4.12: Average Performance for noisy data
Methods With all features With selected features

n Aall (%) ns As (%)

WBC 13 94.54 3.46 95.92

Wine 17 93.86 5.27 94.33

Vehicle 22 76.32 6.12 78.16

87

Table 4.13: t̃ Statistic for the noisy data sets

Data set WBC Wine Vehicle

t̃ 2.022 2.038 2.104

4.5 Conclusions

We proposed a methodology for on-line feature selection and classifier design using

GP. In a single run of GP our method automatically selects the required features while

designing classifiers for a multicategory classification problem.

We generated the initial population in such a manner that the classifiers use different

feature subsets. The initialization process generates classifiers using smaller feature

subsets with higher probability. The fitness function assigns higher fitness values to

classifiers which classify more samples using fewer features. The multi-objective fitness

function helps to accomplish both feature selection and classifier design simultaneously.

In this regard, we proposed two modified crossover operations suitable for feature

selection. As a byproduct, we obtained a feature ranking method.

The effectiveness of our scheme is demonstrated on seven data sets having dimen-

sionality varying between 4 and 7129. Our experimental results established that the

proposed scheme is very effective in selecting a small set of features and finding useful

classifiers. The obtained results (Table 4.4) reveal that the proposed method can

achieve almost the same performance using a small set of features as that with all

features. We have also demonstrated the effectiveness of our scheme on data sets with

known redundant or bad features added synthetically. We have compared the per-

formance of our methodology with results available in the literature with both filter

and wrapper type approaches. Wrapper (and on-line) FS algorithms perform better

than filter approaches, at the cost of computational time. Our proposed algorithm

performed better for both two class and multi-class problems.

Some of the important characteristics of the proposed algorithm are:

• It provides a mathematical description of the classifier which is easy to analyze

and interpret.

88

• The feature selection process is integrated into classifier design in such a manner

that the algorithm can pick up the required features and obtain the classifier

using them.

• The fitness function prevents the use of more features and hence helps to achieve

more readability of the trees extracted by the system.

• Since the number of features to be used is not predefined, the algorithm has more

flexibility.

• Using the output of the algorithm, we can obtain a ranking of the features.

• It can deal with a c-class (c ≥ 2) problem in a single run of GP.

We have used arithmetic functions to design classifiers. So, our methodology is ap-

plicable to numerical attributes only. For data with nominal attributes, the logical

functions like AND, OR , NOT may be considered instead of arithmetic functions.

89

Chapter 5

Evolution of Fuzzy classifiers Using Genetic

Programming [A3]

5.1 Introduction

In the previous chapters, we have discussed GP based methods for classifier design

and feature selection. In this chapter, we propose a GP based classifier design scheme

that incorporates fuzzy logic. The GP system provides fuzzy rule based classifiers for

a multi-class problem.

While designing models, we may incorporate fuzzy logic concepts to address vagueness

and uncertainty in data. In the literature, several works are available, where Artificial

Neural Networks(ANNs) are combined with fuzzy logic to design models (e.g. classi-

fiers) [91, 22, 93]. Many authors have already used genetic algorithms to design fuzzy

rules [19, 105, 79, 20, 65, 58] including fuzzy classifier rules [60, 61]. A few attempts

have been made to evolve fuzzy classifier rules using GP. In this case, a classifier con-

stitutes a set of fuzzy rules (or a rule base). Evolution (or design) of fuzzy rules using

a technique like GP does not need the help of domain experts.

Tsakonas has employed GP in [116] to develop four different types of classifiers. The

author has used four context-free grammars to describe decision trees, fuzzy rule-based

systems, feed forward neural networks and fuzzy Petri-nets with GP. To evolve fuzzy

rule-based classifiers using GP, the author has initialized a population of rule bases

where each rule base represents a possible classifier. In [99], GP has been used to

find suitable structure of fuzzy neural networks for classification. After developing

the structure, authors have optimized parameters using gradient-based technique. GP

90

operators have been incorporated with Simulated annealing to obtain fuzzy rule based

classifiers in [106]. In [84], a co-evolutionary approach has been used to discover fuzzy

classification rules. A GP population involving fuzzy rules and a simple evolution-

ary algorithm involving membership function definitions are co-evolved to seek a well

adapted fuzzy rule set and a set of membership function definitions. GP has been used

in [35] for the generation of fuzzy rule bases in classification and diagnosis of medical

data.

A solution (individual) of the GP population can represent an individual fuzzy rule or

a rule base (the classifier). In the former case, the individuals (rules) are evolved in a

co-operative manner and the rules of the population act together as a classifier. In the

later case, each individual is a rule base representing a classifier. These rule bases or

classifiers are evolved in a competitive manner and the best classifier(s) is considered

as the final desired classifier. We have adopted this later approach.

The performance of a fuzzy classifier depends on both its structure and parameters.

In most approaches, the structure is assumed a-priori. GP has the ability not only to

find the structure of the model (fuzzy classifier) but also the parameters it involves.

In this study, we consider fuzzy classifier rules [96] of the form:

Ri: If x1 is Ai1 AND x2 is Ai2 AND....AND xp is Aip then class is j. Here Aij is a

fuzzy set used in the i-th rule and defined on the domain of attribute xj.

For classification of a pattern x ∈ Rp, the antecedent (if-clause) of the fuzzy rules are

evaluated using some T-norm. The degree to which the antecedent of a rule is satisfied

is called the firing strength of the rule. These firing strengths are used to determine

the class membership of x. Usually the class corresponding to the rule with the largest

firing strength is assigned to x.

Generally, all features are used to design a fuzzy rule. However, a rule may not need

all features. In fact, some features may be redundant/irrelevant and some may even

be derogatory. So, a rule may be created using a subset (q ≤ p) of features.

We have used Genetic Programming (GP) to evolve fuzzy classifier rules for multi-

class problems. Our GP methodology generates the required fuzzy classifier by deter-

mining: (i) number of rules, (ii) features(clauses) used in a rule, and (iii) values of

the parameters involved. For a c class problem, an individual Cl consists of c trees

91

{T l
1, T

l
2, ..., T

l
c}. Each tree Tk

l contains a set of bk
l rules representing class k.

5.2 Procedure

The fuzzy sets Aik of a fuzzy rule can be determined based on prototypes [96]. A

prototype represents a cluster of patterns. If mi ∈ R
p represents a prototype and if

x ∈ Rp represents an arbitrary pattern then a fuzzy rule can be written as:

Ri: If x is CLOSE TO mi then class is k.

This rule can further be written in a more understandable form as below:

Ri: If x1 is CLOSE TO mi1 AND ... AND xp is CLOSE TO mip then class is k.

Note that, the two forms of the rules are not necessarily the same. We can model

fuzzy set ’CLOSE TO mij’ using different functions such as triangular, trapezoidal and

Gaussian membership functions. Here, we have used Gaussian membership function

to represent a fuzzy set. The Gausssian membership function is given by:

µCLOSETO(xj, mij) = exp
−

[xj−mij]2

σij
2

(5.1)

In (1), mij is the jth component of prototype mi and σij is the spread of the membership

function. As membership value depends on values of mij and σij, so it is necessary to

find appropriate values of these parameters for better performance. At first, we take

some initial values for these parameters to initialize the population of classifiers. The

evolutionary process then evolves the classifiers including the parameters and provides

suitable classifiers (and hence suitable values of the parameters).

To compute firing strength of the rule, in this investigation, the MIN operator is used

as the T-norm. So, the minimum of all membership values in a rule gives the firing

strength of the rule.

As mentioned earlier, in our GP methodology, for a c-class problem, a classifier consists

of c trees. Fig 5.1 represents a classifier. Each tree Tk has an ”OR” node as the root

and a set of bk rules, {Ri
k}, i = 1, 2, ..., bk as children to the root. The set of rules {Ri

k}

of tree Tk represents the class k. So, we do not include consequent part (then-clause)

in the rules.

92

R
ul

e
b 1

OR

R
ul

e
1

R
ul

e
2

T 1 T 2

R
ul

e
b 2

OR

R
ul

e
1

R
ul

e
2

T c

R
ul

e
b c

OR

R
ul

e
1

R
ul

e
2

Figure 5.1: Representation of a fuzzy classifier

A typical rule Ri
k (using features x1, x3, x4 and x5) may be written as:

Ri
k: x1 is CLOSE TO mi1 AND x3 is CLOSE TO mi3 AND x4 is CLOSE TO mi4

AND x5 is CLOSE TO mi5.

where CLOSE TO mij is defined by a Gaussian function with two parameters mij and

σij.

In our GP approach, the above rule is represented as a tree as shown in Fig 5.2.

The root node of a rule Ri
k is an ”AND” node. The right children of ”AND” node is

a ”CLOSETO” node and the left children is either an ”AND” node or a ”CLOSETO”

node. CLOSETO node has three children: a feature xj, mij and σij.

Let us call this methodology as GPfc. The procedure, GPfc, for evolution of the

GP-fuzzy classifier is discussed in the following sections.

5.2.1 Initialization

To start the evolution, at first a population of P classifiers is randomly generated. For

a c class classification problem, a classifier C l consists of c trees. To create a tree Tk
l

an ”OR” node with bk arity (children) is taken. Each children to the ”OR” node is a

rule Ri
k, i ∈ {1, 2, ..., bk}. To determine the depth of the rule Ri

k, a randomly selected

value di in the range of initial height of tree is taken. Then the tree structure of the

rule Ri
k is generated with height di − 1 (excluding the OR node) using a randomly

chosen feature subset, Si, of size di − 2 and a prototype (mi, σi).

93

AND

mi5x5 i5σ

CLOSETOAND

AND

CLOSETO

mi1 i1 3 m i3

i4

1x σ

CLOSETO

x i3 σ

CLOSETO

x4 mi4 σ

Figure 5.2: A typical tree representation of fuzzy rule

94

We produce the prototypes (mi, σi) either randomly or by using a clustering algo-

rithm; here we use the popular fuzzy K-means (FKM) clustering algorithm [12]. Both

procedures are given below:

Random

We randomly take a value in the jth feature domain as the value of µij, i.e., µij ∈

[f j
min, f j

max]. f j
min and f j

max are the minimum and maximum values of the jth feature

in the training set. To obtain a value for σij, we randomly take a value r ∈ [β1, β2].

Then we multiply r by the range of the jth feature, Wj. Instead of taking β1 = 0, we

have taken a small value β1 = 10−4 for it. This prevents generation of almost zero

value of σij. Similarly, we have taken β2 = 0.25 that prevents to produce large σij.

Note that, our goal is to represent a cluster of points by a rule so that membership

value of patterns near to the prototype is high and away to prototype is low. But if we

take very large value of σij, then the Gaussian function will cover a large area and the

difference between membership value of a near point and far point (w.r.t. prototype)

may not be strong enough to discriminate.

Fuzzy K-means

We run fuzzy K-means algorithm to find K prototypes from the training data for each

class. Then each training pattern is assigned to the prototype for which it has highest

membership value. It may happen that no pattern is assigned to a prototype. In this

case, the prototype is discarded. This provides gh ≤ K prototypes for a particular class

h. The mean vector (m) and the vector of standard deviations (σ) of patterns to each

cluster (associate with a prototype) are computed to obtain the set of initial values

{mi, σi}. Note that, the jth component of σi is computed as the standard deviation of

the the jth component of all training patterns falling in the ith class.

The type of the prototype to use in a rule Ri
k is decided with probability. Probability

to select a random prototype is prp and the probability to select an FKM prototype is

1−prp. The structure as given in Fig. 5.2 is maintained while generating the rule. The

CLOSE TO nodes, each having a feature xj of the chosen feature subset Si and the

corresponding parameters (mij, σij), are used to generate the rule in the descending

95

order of index j from right top most to left bottom (as shown in Fig. 5.2). This makes

it easy to maintain the validity of rules during the genetic operations.

In the example shown in Fig 5.2, the chosen feature subset is {x1, x3, x4, x5}. The

right top most children (to the root node AND) is a CLOSETO node having x5 and

prototype (mi5, σi5) as children. The left children to the root is an AND node. Again

the right children to this AND node is the CLOSETO node having the next feature (in

decreasing order) x4 of the feature subset and the corresponding prototype (mi4, σi4).

The left children to this second AND node is also an AND node. This process is

repeated till all but one feature is left in the feature subset. At this step, instead of

taking an AND node, a CLOSETO node is created using the last feature (having the

lowest index) of the feature subset and the corresponding prototype. Here the last

feature is x1.

5.2.2 Fitness Measure

In the evolutionary process, good solutions are evolved toward better solutions. To

access how good a solution, each solution is evaluated and a fitness value is assigned

to it. We evaluate a classifier (solution),C l, of the GP population by allowing it to

classify all training samples. For a training sample x, the firing strength of each rule

Ri
k of tree Tk

l is computed. The maximum firing strength is considered as the output

(µk
l) of the tree Tk

l. If output µg
l is the highest among outputs {µk

l} of all trees and

x ∈ class g, then we say that x is correctly classified by the classifier C l. The number

of correctly classified training samples nl
rc by the classifier C l is computed. If Ntr is

the total number of training samples, then the fitness value of the classifier is defined

as

f l =
nl

rc

Ntr

. (5.2)

5.2.3 Crossover

The good solutions are recombined to produce new solutions. It is expected that the

new solutions will drive toward better and desired solutions. This recombination or

crossover operation plays a vital role in the evolutionary process. For the crossover

96

R
ul

e
b 1

OR

R
ul

e
1

R
ul

e
2

T 1 T 2

R
ul

e
b 2

OR

R
ul

e
1

R
ul

e
2

T c

R
ul

e
b c

OR

R
ul

e
1

R
ul

e
2

Figure 5.3: Parent 1 for crossover

T 1 T 2
OROR

T c
OR

R
ul

e
1

R
ul

e
2

R
ul

e
1

R
ul

e
2

R
ul

e
1

R
ul

e
2

R
ul

e
b 1

R
ul

e
b 2

R
ul

e
b c

Figure 5.4: Parent 2 for crossover

operation, we select two classifiers Cp1 and Cp2 of the GP population based on the

fitness value. A tree Tg
p1 of the first parent is randomly selected. Then an AND node

of this tree Tg
p1 is randomly chosen. After that, an AND node of Tg

p2 of the second

parent is randomly chosen in such a way that after swapping the subtrees with these

AND nodes as root nodes will produce valid rules. Now the subtrees under these two

AND nodes are swapped. In addition to this, we swap trees Tk
p1 of Cp1 with Tk

p2 of Cp2

for all k > g. This above mentioned crossover operation is repeated with probability

pc. Note that, such a crossover produces one new rule in each of the two classifiers

involved and also swaps a set of rules between two classifiers. Figs. 5.3 - 5.6 illustrate

the crossover operation. In the example, a subtree of rule 2 in tree T1 of first parent

is selected for swapping with a subtree of rule 1 in tree T1 of second parent. After

swapping subtrees, the trees following tree T1 of both parents are swapped.

97

T
 1

T
 2

O
R

O
R

T
 c

O
R

Rule b

Rule 1

Rule 2

Rule 1

Rule 2

Rule 1

Rule 2

Rule b2

Rule b1

c

F
igu

re
5.5:

O
ff
sp

rin
g

1
after

crossover

T
 1

T
 2

Rule b2

O
R

O
R

T
 c

Rule bc
O

R

Rule 1

Rule 2

Rule 1

Rule 2

Rule 1

Rule 2

Rule b1

F
igu

re
5.6:

O
ff
sp

rin
g

2
after

crossover

98

5.2.4 Mutation

Mutation is a process to alter a single solution. To obtain the desired model (fuzzy

classifier), we need to alter both the structure and parameters. To facilitate this, we

use two mutation operations: Sub-tree mutation and parameter mutation. At first

a classifier of the GP population is randomly chosen. Then a tree of the classifier

is randomly selected for the mutation operation. After that, the type of mutation

operation is decided with probability. Both mutation operations are given below:

1. Sub-tree Mutation: This alters the structure including the parameters of a rule.

This subtree mutation is the standard GP mutation operation. First, we have tried

the standard GP mutation operation by randomly selecting a subtree for mutation.

However, we have observed that it is no more effective than mutation restricted to

choosing only subtrees with AND node as the root. So, instead of randomly selecting

a subtree, we select a subtree with an AND node as root for mutation. After selecting

a subtree with an AND node as the root, we find the lowest index, LI and the highest

index HI of the features used by the subtree. Then a valid rule is randomly generated

using a randomly selected subset of the features {xLI
, xLi+1, ..., xHI

}. The chosen

subtree of the tree is replaced with the generated rule. For example, in Fig. 2, if the

left child of the root node is selected for sub-tree mutation, then LI = 1 and HI = 4.

So a randomly generated subtree using a subset of {x1, x2, x3, x4} is used to replace

the subtree rooted at the left child of the root node.

2. Parameter Mutation: We have introduced this mutation operation to alter values of

parameters (mij, σij). We randomly select a rule (of the selected tree) for the mutation.

Then value of each (mij and σij) of this rule is altered as follows:

Variation of mij: Let aj and bj be the smallest and highest values of the jth feature,

respectively. Then, define Wj = bj − aj . Now generate a random value δ ∈ [0, Wj/100]

and another random value r ∈ [0, 1]. If r < 0.5, then we add δ to mij. Otherwise, we

subtract δ from it. We do not accept the variation, if the altered value falls outside

the domain of the feature.

Variation of σij: A random value ρ ∈ [0, 0.1× σij] is generated. Now another random

value r ∈ [0, 1] is generated. If r < 0.5, then we add ρ to σij. Otherwise, we subtract

ρ from it. However, if the altered value is very small (< Wj ∗ 10−3), then we do not

accept the variation.

99

We do sub-tree mutation with probability 0.8 and parameter mutation with probabil-

ity 0.2. Before choosing these values, we have experimented on three sets of values:

(0.9,0.1),(0.8,0.2) and (0.7,0.3). Out of these three cases, the performance was the best

for (0.8,0.2) case.

After mutating the classifier, we evaluate it. If the fitness of the mutated classifier is

higher or equal to that of original classifier then we accept the mutation. Otherwise,

we accept the mutated classifier with probability 0.5.

After every generation, we expect the new best classifier to have a higher fitness than

that of previous best classifier. But sometimes the increase in fitness is negligible or

zero. If the variation is not sufficient, then we need to give sufficient perturbation to

the GP population. This is accomplished by using mutation operation with a higher

probability. Mutation may improve, degrade or may not even affect the performance.

Since we use a directed mutation operation which accepts poor mutated solution with

a probability, the chance of obtaining poor solutions is comparatively low. Thus, if

the improvement in fitness over a set of successive generations is not satisfactory, we

increase the probability of mutation. To do this, we maintain the so far best classifier

and proceed as follows. Let Bt be the best classifier evolved in generation t with fitness

fBt
and SBt−1 is the so far best classifier with fitness fSBt−1 up to generation t − 1.

Now, if fBt
> fSBt−1, then SBt ← Bt; if fBt

= fSBt−1 and the total number of nodes

in Bt is smaller than that in SBt−1, then SBt ← Bt. Otherwise, SBt ← SBt−1. In

this way, we maintain the so-far best classifier. Now, we sum the absolute difference

in fitness of the so far best classifiers in 10 consecutive generations. If this sum is less

than a predefined value, dth, then we increase the probability of mutation operation

pm by γm. Now the question arises, what would be the values of these parameters?

Crossover operation plays a vital role to transfer good characteristics of the current

individuals to the next generation by (sexually) combining two or more good solutions.

Hence, a very high probability (say, 0.8) is given to crossover operation and low proba-

bility to mutation and reproduction operations. Let pc, pm and pr be the probabilities

of crossover, mutation and reproduction operations respectively. We have taken pc =

0.75, pm = 0.15 and pr = 0.1 at the beginning. However, as mentioned above, we

increase pm during the evolutionary process when required. In our experiments, we

have observed that the initial fitness value (f b
ini) of the best classifier for different

data sets varied from about 0.5 to 0.98. Thus, on average, we assume f b
ini = 0.75.

100

We need to continue the evolution till a classifier could classify all training samples

(f b
fin = 1) or a pre-defined number of generations, generation = 50 (= M), is reached.

This means that if f b
ini = 0.75 and f b

fin = 1, then we have to increase the fitness (of

the best classifier) by 0.25 in at most 50 generations. This indicates that in every 10

generations, the increment in fitness value of the best classifier is expected to be δf b =

0.05. So, we use dth = 0.05. The increment in pm should be small such that at the

end of the evolution, pm is not very high. Let us assume the maximum allowed value

of pm is 0.25. In other words, we may increase pm at most by 0.1 in 50 generations.

If we divide this increment over five steps (10 generations each), then the increment

for each step is 0.02. Hence we use γm = 0.02. These choices seem plausible, but not

necessarily the best choices. The most desirable values for these parameters may be

chosen using a validation data.

5.2.5 Cleaning of poor Rules

All rules of a tree may not be useful. Some of them may be poor/inaccurate and

some may be inactive (not used in decision making). Inaccurate rules are primarily

responsible for misclassification. So, we need to remove them. Also we should drop

inactive rules. By keeping only few good rules, we can give more chance to these good

rules to participate in genetic operations. This increases the chance of obtaining better

rules in lesser time. Removing poor rules not only can improve the performance but

also can reduce computational time to a great extent. Hence, during evolution, we

remove the inaccurate and inactive fuzzy rules. In this experiment, we evolve GP up

to 50 generations. Note that, an attempt to remove poor rules at an early (premature)

stage of evolution may have derogatory effect on the final rule base. Hence, the first

round of cleaning is done if and when the average fitness of the population reaches 0.7

(i.e. 70 % accuracy) during the first 25 generations. Then at gen=25, we again apply

our rule cleaning scheme. After gen=25, we allow the population to evolve without

any further pruning.

To decide on the rules to be removed, we evaluate each rule Ri
k and assign a fitness

value hik to it as described below:

If rule Ri
k has the highest firing strength among all rules of tree Tk for a training

sample x, then increase hik by 1 if x ∈ class k; otherwise, decrease hik by 1 if x /∈

101

class k. If hik > 0 then we keep the rule Ri
k; otherwise we remove it. In this pruning

scheme, if a rule makes more misclassification than correct classification, we remove

it. However, we make sure that pruning process will retain at least two rules for every

class.

5.2.6 Termination of GP and Validation

The GP is terminated when all N training samples are classified correctly by a classifier

of the GP population or a predefined number, M, of generations are completed. The

best classifier of the population is the required classifier, CF. The classifier CF is

validated by allowing it to classify test samples. The test accuracies are discussed in

the following section.

5.3 Experimental Results

We have used the same set of data sets that have been used in chapter 3. These data

sets are IRIS, BUPA, WBC, Vehicle and RS-data. In addition to these five bench mark

data sets, we have considered Diabetes data [14] for comparison with the result of an

existing GP based method. Table 5.1 summarizes all six data sets. A brief summary

of Diabetes data has been given below:

Table 5.1: Data sets

Name of No of No of Size of

Data Set classes Features Data set

Iris 3 4 150 (50+50+50)

BUPA 2 6 345 (145+200)

Diabetes 2 8 768 (500+268)

WBC 2 9 683 (444+239)

RS 8 7 262144 (see chapter 3)

Vehicle 4 18 846 (212 + 217 + 218 + 199)

Diabetes: This two-class Pima Indians Diabetes data set has 768 instances in 8-

102

dimension. Out of 768 cases 500 belong to class 1 and remaining 268 belong to class

2.

5.3.1 GP parameters

The GP parameters that are common for all data sets are given in Table 5.2 and those

that differ are given in Table 5.3.

Table 5.2: Common GP Parameters for all Data sets

Parameters Values

Probability of crossover operation, pc 0.75

Probability of reproduction operation, pr 0.10

Probability of mutation operation, pµ 0.15

Tournament size, τ 5

Total number of generations the GP is evolved, M 50

Table 5.3: Other GP Parameters

Data set IRIS BUPA Diabetes WBC RS Vehicle

Population Size 200 200 200 200 300 300

Initial height of a tree 4-6 4-8 4-8 4-8 4-8 6-12

Maximum height of a tree 6 8 10 11 9 17

The vehicle data is in a larger dimension than the other studied data sets and also it

is a difficult data set. Also, RS data has many classes and it is a complex data. Hence

we have taken a larger population for the vehicle and RS data. The height of a tree

depends on the number of features. If there are F features then the height of the tree

will be F +2. So, in case of Iris data, if a rule consists of all 4 features then the height

of the tree will be 6. Similarly, for Diabetes and WBC, the maximum possible heights

of the trees are 10 (8+2) and 11 (9+2) respectively. As the dimension (number of

features) increases, the chances of redundant features also increase, hence, we restrict

rules not to use all features. Thus, for Vehicle data a rule is allowed to use up to

103

15 features. Note that, these numbers are heuristically chosen - our objective in this

paper is not to do feature analysis. For Iris and BUPA data sets, the initial height

of a tree is 4-6. This means, we generate rules containing 2 (= 4 − 2) to 4 (= 6− 2)

features. We have kept the same initial height for Diabetes, WBC and RS data sets

as they have almost the same dimension.

5.3.2 Results

We have used the (modified) lilgp [124] to conduct the experiments. We conducted

three experiments. In the first and second experiments, except for RS and Diabetes

data, we used 10-fold cross-validation to estimate the accuracy. For RS data, as men-

tioned in chapter 3, we run GP 10 times using 200 points from each class for training

and remain points for test. Diabetes data has been used in third experiment to com-

pare with an existing GP based method. For other data sets, in both experiments,

GP was run 10 times each time involving a 10-fold cross-validation (total 10 × 10 =

100 runs). Here, performance of the fuzzy rules using 5 different proportions of FKM

prototypes and Random prototypes is studied. In the first case(1:0), i.e., rules use

only the FKM prototypes and in the last case (0:1) rules use only random prototypes.

In the intermediate cases (1 − prp : prp), rules use FKM prototypes with probability

1− prp and random prototypes with probability prp.

Table 5.4: Test Accuracy with initial 10 Rules per class

FKM:Rand Iris BUPA WBC RS Vehicle

1:0 93.45 ± 0.79 67.38 ± 1.79 97.34± 0.38 75.23 ± 0.89 68.48 ± 0.76

0.75:0.25 94.10 ± 0.69 65.96 ± 1.43 97.40 ± 0.52 79.41 ± 0.72 70.02 ± 0.89

0.50:0.50 94.43 ± 0.53 65.14 ± 1.68 97.47 ± 0.31 81.33 ± 0.58 70.34 ± 0.85

0.25:0.75 96.53±0.49 65.09 ± 1.46 97.59 ± 0.41 80.09 ± 0.64 71.56 ± 0.68

0:1 96.33 ± 1.08 68.83 ± 1.98 96.88 ± 0.55 76.57 ± 0.78 69.08 ± 0.79

In the first and second experiments, we have initialized classifiers with bk = 10 and

bk = 5 rules per tree Tk respectively. For the first case (1:0), when we use only FKM

prototypes, we try to find bk FKM prototypes. But for some data sets, the FKM

104

Table 5.5: Average number of Rules with initial 10 rules per class

FKM:Rand Iris BUPA WBC RS vehicle

1:0 7.2 7.4 6.8 8.7 8.9

0.75:0.25 6.2 6.8 5.4 7.3 6.6

0.50:0.50 4.3 4.9 5.1 6.4 5.0

0.25:0.75 3.3 3.7 4.1 4.8 3.4

0:1 2.3 2.8 2.7 2.9 2.5

resulted in fewer prototypes. If the total number of FKM prototypes, gk, is less than

bk for class k, then some FKM prototypes will be used more then once in tree Tk. In

the intermediate cases (when both FKM and random prototypes are used), the FKM

algorithm is used to obtain (1− prp) ∗ bk prototypes. For example, in case 2 of the first

experiment, 0.75 * 10 ≈ 8 FKM prototypes are attempted to obtain.

Tables 5.4 and 5.6 show the average (test) accuracies along with standard deviation

for Iris, BUPA, WBC, RS and Vehicle data sets. The performance of the classifiers

that use both types of prototypes is found to be better than the performance using

either type. Also, it is observed that the performance of classifiers using only random

prototypes is quite good. It is interesting to note that for Iris data in Table 5.4 the

accuracy is 96.33% using only random prototypes while the accuracy is 93.45% using

only the FKM prototypes. And in Table 5.6, it is 95.80% using only random prototypes

as against 93.30% using only FKM prototypes. Similarrly, for BUPA data, random

generated rules outperform FKM prototype based rules. In Table 5.6, the average test

accuracy is 69.20% using only random prototypes.

Tables 5.5 and 5.7 show the average number of rules of a tree over all trees in the

final GP population. When we use only random prototypes we obtain trees with few

rules. The reason is that as the prototypes are generated randomly, the proportion of

bad prototypes is high. Our pruning scheme removes the unwanted rules arising from

bad prototypes. This results in trees with fewer rules. On the other hand, when only

FKM prototypes are used, almost all rules become important because the associated

prototypes are placed in dense areas of the data. Since, we do not try to optimize the

number of rules, we may end up with more rules to model some areas of the input

105

space. As shown in the Table 5.5, we obtained only 2-3 rules although we start with

10 rules using only random prototypes.

Table 5.6: Test Accuracy with initial 5 Rules per class

FKM:Rand IRIS BUPA WBC RS Vehicle

1:0 93.30 ± 0.71 64.68 ± 1.36 97.22 ± 0.40 78.14 ± 0.74 70.38 ±1.14

0.75:0.25 95.65 ± 0.68 66.13 ± 1.17 97.18 ± 0.24 77.37 ± 0.82 69.83±1.23

0.50:0.50 95.93 ± 0.70 69.32 ± 1.24 97.26 ± 0.36 80.47 ± 0.68 70.61± 0.97

0.25:0.75 97.13 ± 0.65 68.22 ± 1.65 97.58± 0.45 78.93 ± 0.59 69.08± 1.31

0:1 95.80 ± 0.63 69.20 ± 1.36 97.50 ± 0.29 76.82 ± 0.92 65.22± 1.53

Table 5.7: Average number of Rules with initial 5 rules per class

FKM:Rand IRIS BUPA WBC RS Veh

1:0 3.3 3.9 2.3 4.4 4.2

0.75:0.25 3.1 3.0 2.7 3.4 3.8

0.50:0.50 2.8 2.9 2.3 3.6 3.3

0.25:0.75 2.3 2.2 2.3 2.7 2.8

0:1 2.1 2.2 2.4 2.1 2.3

It can be observed that the overall performance of classifiers with 5 initial rules per

class is slightly better than that using initial 10 rules per class. Two possible reasons

for these are: More rules per class increases the chance of having more poor rules and

hence more chance for poor rules to get involved in genetic operation. As a result,

useful rules may get less chance to evolve. Also more rules may lead to memorization

of the training data resulting in poor test performance.

In the second experiment, for Iris data we have obtained 97.13% accuracy when the

composition of FKM and random prototypes is 0.25:0.75. Again, for WBC data the

average test accuracy is 97.58% with 0.25:0.75 composition of the two types of proto-

totypes. In [84], the GP was used to evolve fuzzy classification rules. The reported

accuracy for Iris data using 10-fold validation is 95.3%.

106

In first experiment, with RS data, when the proportion is 0.50:0.50, we obtain the

average accuracy of 81.33%. In case of Vehicle data, the average accuracy is 71.56%

when the composition is 0.25:0.75.

To visualize how the learning (evolution) converges toward better solutions, we have

plotted the best fitness and the average fitness of the solutions with generation for

two data sets: Iris and WBC. For each data set we consider two extreme cases, using

only FKM prototypes and using only random prototypes. Figure 5.7 and Figure 5.8

depict variation of the best and average fitness of a typical run for IRIS data when

only FKM and only random prototypes are used, respectively. Although the variation

of average fitness is similar in the two cases, the change in the best fitness is more

smooth in case of random prototype. Similarly, Figure 5.9 and Figure 5.10 display the

variation of the best fitness and average fitness of a typical run for WBC when only

FKM and only random prototypes are used, respectively. The characteristic of Figs.

5.7 and 5.8 are also present here. This demonstrates the consistency of our algorithm.

As the FKM prototypes quantize the data much better than the random prototypes,

we obtain better classifiers with higher fitness value at the beginning in the former

case. Figures 5.7 - 5.10 correspond to the cases with initially 5 rules per class.

As an illustration, we show the expressions corresponding to the three trees of the best

classifier for Iris in a typical run:

TREE1: (OR (AND (Ct x2 0.18770 1.42674) (Ct x3 0.05320 0.20993)) (AND (Ct

x1 0.27560 3.69521) (Ct x3 0.12370 0.27334)))

TREE2: (OR (AND (Ct x1 0.26417 2.59364) (Ct x3 0.14816 1.19223)) (AND (AND

(AND (Ct x0 0.35443 6.33675) (Ct x1 0.28237 2.93938)) (Ct x2 0.22653 4.59761))

(Ct x3 0.13607 1.44758)) (AND (AND (Ct x0 0.87542 4.58146) (Ct x1 0.27787

3.46339)) (Ct x2 0.47887 4.53061)))

TREE3: (OR (AND (Ct x1 0.26858 3.13959) (Ct x3 0.14736 2.03583)) (AND (Ct

x2 0.51499 5.96831) (Ct x3 0.54374 1.20857)))

The above expressions can be simplified as follows:

Class 1:

R1: If x3 CLOSE TOσi3=0.19 1.43 AND x4 CLOSE TOσi4=0.05 0.21 then Class 1

107

0 10 20 30 40 50 60
0.88

0.9

0.92

0.94

0.96

0.98

1

generation −−>

fit
ne

ss
 −

−
>

Mean
Best

Figure 5.7: Best fitness and Mean fitness over generation for IRIS: all FKM prototypes

108

0 10 20 30 40 50 60

0.4

0.5

0.6

0.7

0.8

0.9

1

generation −−>

fit
ne

ss
 −

−
>

Mean
Best

Figure 5.8: Best fitness and Mean fitness over generation for IRIS: all Random proto-

types

109

0 10 20 30 40 50 60
0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

generation −−>

fit
ne

ss
 −

−
>

Mean
Best

Figure 5.9: Best fitness and Mean fitness over generation for WBC: all FKM prototypes

110

0 10 20 30 40 50 60

0.4

0.5

0.6

0.7

0.8

0.9

1

generation −−>

fit
ne

ss
 −

−
>

Mean
Best

Figure 5.10: Best fitness and Mean fitness over generation for WBC: all Random

prototypes

111

R2: If x2 CLOSE TOσi2=0.28 3.70 AND x4 CLOSE TOσi4=0.12 0.27 then Class 1

Class 2:

R1: If x2 CLOSE TOσi2=0.26 2.59 AND x4 CLOSE TOσi4=0.15 1.19 then Class 2

R2: If x1 CLOSE TOσi1=0.35 6.34 AND x2 CLOSE TOσi2=0.28 2.94 AND x3 CLOSE

TOσi3=0.23 4.60 AND x4 CLOSE TOσi4=0.14 1.45 then Class 2

R3: If x1 CLOSE TOσi1=0.87 4.58 AND x2 CLOSE TOσi2=0.28 3.46 AND x3 CLOSE

TOσi3=0.48 4.53 then Class 2

Class 3:

R1: If x2 CLOSE TOσi2=0.27 3.14 AND x4 CLOSE TOσi4=0.15 2.04 then Class 3

R2: If x3 CLOSE TOσi3=0.52 5.97 AND x4 CLOSE TOσi4=0.54 1.21 then Class 3

In the above rules, the parameters are rounded to 2 digits. When we apply the above

classifier on all points of Iris data set, it could correctly classify all but one point.

In [116], GP was used to develop fuzzy classifier rules. For comparison with this

available GP method, named G3P , we have conducted the third experiment. For

G3P , authors have partitioned the data sets including Diabetes and WBC into 3 sets:

training set with 50% samples, validation set with 25% samples and test set with 25%

samples. Since we have not used validation set, we have considered 75% samples for

training and 25% samples for test. We selected the samples for test in the same maner

as described in [116]. Then we run GP with different number of rules using different

types of prototypes. For each case, GP was run 20 times and the test errors were

calculated. Tables 5.8 and 5.9 show the best test error, average and standard deviation

of errors over 20 GP runs for WBC and Diabetes data sets respectively. In the first

case, trees were generated with 2 rules per class using only FKM prototypes. In the

second case, a tree is initialized with 5 rules using FKM prototypes with probability

0.25 and random prototypes with probability 0.75. In the third case, GP evolution

was started with 10 rules per tree with only random prototypes. For the WBC data,

with different combinations of FKM and random prototypes, we have obtained the

best error rates in the range 1.17 %-1.75% and average error rates in 2.3% - 3.66%.

112

The reported best and average error rates obtained using G3P were 2.29% and 4.39%

respectively. For the diabetes data, the best error varied between 19.27% to 20.83%

and average error was in 23.16% - 23.30% as shown in Table 5.9. In [116], the best

error reported using G3P is 21.98% and average error is 26.47%. For both data sets,

our GP method performed better than the G3P method.

Table 5.8: Test Error for WBC for comparison

FKM:Rand Max Rules Best Avr SD

1:0 2 1.75 2.81 0.438

0.25:0.75 5 1.17 2.3 0.45

0:1 10 1.75 3.66 0.89

Table 5.9: Test Error for Diabetes for comparison

FKM:Rand max Rules Best Avr SD

1:0 2 19.27 23.16 1.71

0.25:0.75 5 20.83 23.30 1.71

0:1 10 19.79 23.23 1.72

Table 5.10: Reported test error in other GP work [116]

Data Sets Best Avr SD

WBC 2.29 4.39 1.42

Diabetes 21.98 26.47 3.40

5.4 Conclusion

We have used Genetic Programming to develop fuzzy classifier rules. For a c-class

problems, a classifier was represented by c trees. Each tree Tk constituted a set of

rules for class k. Our GP methodology, GPfc, provided the required fuzzy classifier by

113

determining: 1) number of rules, 2) features(antecedent clauses) used in a rule, and 3)

values of the parameters involved.

The initial rule base was generated using randomly generated prototypes, FKM pro-

totypes and a mixture of the two. In this context, we have proposed a new mutation

operation to alter the parameters. We have also introduced a scheme to remove inac-

curate and inactive rules. The method was validated on five benchmark data sets. It is

observed that the performance of the evolved classifiers is better when we use a mixture

of FKM and random prototypes to initialize the rule base, over the two extreme cases

with only FKM and only random prototypes. It is interesting to note that of the two

extreme cases, use of only random prototypes is found to work better than the use of

only FKM prototypes in most cases. Performance of the fuzzy rule based classifier is

as good as the performance of our proposed classifier scheme proposed in chapter 3 in

addition to the interpretability of fuzzy rules.

There are many avenues where further investigation is needed. For example, such a

method can be used for system identification task. For a few parameters required by

the method either we have used fixed values or chosen some values based on a few

trials. All these parameters can be chosen using a validation set.

114

Chapter 6

Texture Generation and Classification using

Genetic Programming [A4, A5, A6]

6.1 Introduction

In the previous chapters, we studied the role of Genetic Programming for classifier

design and feature selection. There we have developed general purpose methodologies.

In this classifier we focus on a specific application area, texture generation and classi-

fication. In particular, in this chapter, we have used GP to generate textures and we

have applied our GP based classifier schemes (developed in the previous chapters) to

classify textures.

Texture [113] is a property of the surface or structure of an object. Despite wide

use of texture, there is no well accepted definition of texture. Texture describes the

appearance and feel of a surface which consists of somewhat mutually related ele-

ments(primitives). It may be described by two components: primitives (local prop-

erties), out of which the texture is composed of and the mutual relationship among

the primitives [113]. Textures may be natural or synthetic. Images of grass, dog fur,

pebbles are some examples of natural texture. Computer or human generated textures

are called synthetic textures. Computer generated textures are in great demand in

fields like art, fashion and textile designing, animation, and so on.

A texture produced by an algorithm or a procedure is called a procedural texture [37].

For each point of the procedural texture, the procedure gives the corresponding gray

level or color value. Although the procedural representation is extremely compact

compared to the image representation, it is difficult to find/write procedures that will

115

generate textures for some target application. Evolutionary algorithm [46, 72] is a

possible solution to this major problem. We can easily generate interesting textures

using evolutionary algorithms. Typically, each solution of the EA population is a

procedure to produce a texture. A fitness value is assigned to each solution indicating

how the solution is fit for the problem. In texture generation problem, a higher fitness

value is assigned to a procedure that produce better texture. However, As there is

no precise definition of texture, so an automatic evaluation of textures is not an easy

task. In comparison, a human being can easily identify and assess a texture. If we

allow computer to generate textures and user to determine which textures are good

according to his/her choice in the process of generation, then interesting textures can

be created. Generation of textures based on this principle is called interactive texture

generation.

Sims [112] has used evolutionary algorithms to evolve lisp expressions of procedures

to produce interesting images, textures and animation. An interactive (procedural)

texture generation scheme called Genshade is available in [59]. However, interactive

texture generation could be a tedious process if a user needs to assign a fitness value to

every generated texture. Consequently some methods generate textures similar to a(or

a set of) given reference texture(s). This type of GP based schemes are presented in

[120] which evolve procedures to produce textures similar to a given reference texture.

This is an interesting approach but requires reference texture(s) and also produces only

similar textures with respect to the given reference texture(s). But, the most optimal

texture will be identical to the given reference texture. A review of evolutionary design

by computer is available in [11].

From the above discussion, we may realize that interactive approach can generate very

interesting textures according to user’s choice as compared to the second approach.

But it will be a tedious job if the user has to assign fitness value to each procedure.

Hence, we need to device a hybrid approach that can combine the advantages of both

approaches. This motivated us to propose a new approach to generate textures. Our

proposed approach integrates features of both interactive and automatic approaches.

This produces a variety of interesting textures according to user’s choice in an inter-

active approach but with much reduced burden on user.

Our scheme occasionally seeks user’s intervention to evaluate the generated textures

during the evolutionary process. To reduce burden over the user, the generated textures

116

are passed through a filtering process and then through a clustering scheme. We use

contrast of each generated image/texture to filter out very poor textures such as images

with not much variation in intensities. After this, a generated texture is placed in a

cluster of existing generated textures which is more similar to the generated texture and

a fitness value related to the cluster is assigned to the new texture. If the new generated

texture is quite dissimilar from the existing textures, then our scheme displays the new

texture to the user to assign a fitness value by visually examining the goodness of the

texture. We use statistical features to compute the similarity between two textures.

In addition to texture generation, we have also used our GP based classifier systems

of the previous chapters to classify textures. In texture classification, a given im-

age/texture is assigned to its predefined texture category. Texture classification is

used in fields like remote sensing image analysis, medical image analysis, and docu-

ment processing. As we have already proposed methods for classifier design using GP,

so we have not introduced any new classifier design approach for texture classification.

However, before applying our GP classifiers, it is required to represent each texture

by a vector of features. The simplest approach to represent a (grey) texture by its

two dimensional grey value matrix. But it will merely represent the texture as an

image and a large dimensional feature vector containing the gray value of pixels will

represent the texture. Thus, we need to extract such features from a texture that can

represent the property of the texture. For texture classification/segmentation, using

such features we can classify or group similar textures into one class or group and

discriminant dissimilar textures into different classes/groups. Laws [?] observed the

following properties that play crucial roles in describing texture: uniformity, density,

coarseness, roughness, regularity, linearity, directionality, frequency and phase. Some

of these qualities are interrelated. There are different approaches to represent a texture

[117]. We have considered statistical approach to extract features that can capture im-

portant characteristic of texture and it is comparatively easy to use. We have used our

classifier system GPmt and fuzzy rule based classifier scheme GPfc to classify natural

textures.

We have presented our texture generation and classification schemes in section 5.2 and

5.3 respectively.

117

6.2 Proposed Texture Generation using GP

For each point of the procedural texture, the procedure gives the corresponding grey

value or color value. In this work, we use GP to generate tree representation of pro-

cedures to produce greyscale (procedural) textures. The steps of our modus operandi

are described in subsequent sections.

6.2.1 Initialization

A population of P trees is generated randomly using a set of functions F = {+,−, ∗, /,

Log, Sin, Cos} and a set of terminals S = {i, j, R}, where i, j are co-ordinate variables

in 2-dimensional space and R contains randomly generated constants in [0.0, 100.0].

The sinusoidal functions Sin and Cos are useful to generate repeated patterns in a

texture. Variations in images are desired to create interesting textures. However, the

high frequency components of an image cause aliasing [37]. Aliasing creates flaws and

unpleasant artifacts in the image. One such example is the staircase-like patterns in the

image. High frequency components may be reduced to a certain extent using smoother

functions like logarithm. However, we should be discreet in using logarithmic function

as the function itself creates high frequency components. We define the functions as

follow:

Sin(x)

{

return 255 × sin(x)

}

Cos(x)

{

return 255 × cos(x)

}

Log(x)

{

118

if x greater than 0 return loge (x).

else if x less than 0 return loge (−x).

else return -15.

}

Each tree Tl(i, j), l = 1, 2, ..., P of the population represents a procedure to generate a

texture. Let mr×mc be the size of the textures we are intending to generate. For each

point z(i, j) of an mr×mc matrix Al, the tree Tl returns a real value al
ij. We associate

an mr×mc matrix Bl to each Al, such that each coefficient bl
ij is a grey-label, that is,

bl
ij ∈ {0, 1, 2, ..., G} and is defined as,

bl
ij =

al
ij −minl

maxl −minl

×G (6.1)

Where G is the maximum grey-label (say G = 255) and maxl and minl are the maxi-

mum and minimum co-efficients of the matrix Al respectively.

Note that, a grey image is nothing but a 2-dimensional (grey-label) matrix and a

color image is a set of three 2-dimensional matrices. Thus, this matrix Bl is simply a

greyscale image produced by the tree Tl. We expect the generated image Bl to be a

texture. In terms of genetic systems, a tree Tl is a genotype (or chromosome) and the

image/texture Bl is its corresponding phenotype.

If we will consider the entire texture generation system as a pattern recognition system

(PRS), then this phase resembles data acquisition/preprocessing phase of the PRS.

6.2.2 Filtering of Textures

Some of the generated images/textures may be very poor due to very limited intensity

variation. For example, images with constant grey label. Of course, we do not desire

to have these images. So if we assign negligible fitness values to procedures that

have generated images with very low intensity variation then these procedures will not

survive the process of evolution. This motivated us to calculate (normalized) contrast

cl of the image Bl and assign this value to procedure(tree) Tl as its fitness, if cl is less

than a minimum contrast value cmin. If cl ≥ cmin, then we assign a user defined fitness

value to Tl as described in the following sections. The normalized value of contrast

119

[48], cl is computed as follow:

Contrast =
1

G2

∑

i

∑

j

(i− j)2Pφ,d(i, j) (6.2)

Where G is the maximum grey label and Pφ,d is the co-occurrence matrix with dis-

placement d and direction φ [48]. The matrix describes how frequently two pixels with

gray-levels i and j appear in the image separated by a distance d in direction φ.

6.2.3 Computation of feature vector

We compute a vector of features vl for each generated texture Bl whose contrast is

higher or equal to the minimum desired contrast value cmin. There are many methods

to extract features from a texture [117]. Statistical methods compute different proper-

ties and are suitable if texture primitive sizes are comparable with the pixel sizes [113].

Our GP system uses mathematical functions that usually generate texture of small

primitives. Moreover, it is comparatively easy to extract a feature vector using sta-

tistical approach. So, we use statistical approach to extract features. Two important

categories of statistical features are co-occurrence based features and auto-correlation

coefficients. We compute four co-occurrence based features [113] and auto-correlation

coefficients [113] with different displacements and directions. The four co-occurrence

based features are contrast, entropy, inverse difference moment and correlation with dis-

placements d = 2,4,6 and 8 along directions φ = 0 and 90 degrees. The autocorrelation

coefficients are computed with displacements (0,2),(0,4),(0,6),(0,8), (2,0),(4,0),(6,0)

and (8,0). The above computed 32 co-occurrence based features and 8 autocorre-

lation coefficients(features) of the image Bl together produce the feature vector vk

with n = 40 components. Let Pφ,d be the (normalized) co-occurrence matrix. Then

the Co-occurrence matrix based features are computed as follows [113]:

Entropy =
∑

i

∑

j

Pφ,d(i, j)log2Pφ,d(i, j) (6.3)

Contrast(normalized) =
1

G2

∑

i

∑

j

(i− j)2Pφ,d(i, j) (6.4)

120

Inverse difference moment =
∑

i

∑

j(6=i)

Pφ,d(i, j)

(i− j)2
(6.5)

Correlation =

∑

i

∑

j[ij Pφ,d(i, j)]− µxµy

σxσy

(6.6)

where µx, µy are means and σx, σy are standard deviations:

µx =
∑

i

i
∑

j

Pφ,d(i, j)

µy =
∑

j

j
∑

i

Pφ,d(i, j)

σx =
∑

i

(i− µx)
2

∑

j

Pφ,d(i, j)

σy =
∑

j

(j − µy)
2

∑

i

Pφ,d(i, j)

The autocorrelation coefficient ac(p, q) is computed as follow [113]:

ac(p, q) =
mrmc

(mr − p)(mc − q)

∑mr−p
i=1

∑mc−q
j=1 f(i, j)f(i + p, j + q)

∑mr

i=1

∑mc

j=1 f 2(i, j)
(6.7)

where p,q is the position difference in the i, j direction, mr, mc are the image dimen-

sions, and f(i, j) is the function value (gray value) at (pixel) position (i, j). This can

be considered as the feature extraction/analysis phase of the PRS.

6.2.4 Fitness

If Bl is the first generated texture whose contrast value cl ≥ cmin, then we display Bl

for the user to assign a fitness value fl(a non-negative real value) according to his/her

assessment. Now we assume Bl to constitute a single element cluster. The feature

vector vl will represent the center,O1, of this first cluster U1. And, the user defined

fitness value f l is considered the fitness f1
u (say) of the first cluster U1.

However, for subsequent generated textures we use the following steps. If contrast cl

of a generated texture Bl is higher or equal to cmin, then we calculate the distances

between the feature vector vl (of the texture Bl) and center of each existing cluster.

121

Let c be the number of existing clusters. Let Dk
l, k ∈ {1, 2, · · · , c} be the distance

between feature vector vl and center Ok of the existing cluster Uk, k = {1, 2, · · · , c}.

We compute the distance as follow:

Dk
l =

√

√

√

√

√

∑n
g=1 wg

(

Okg−vlg

Okg+vlg

)2

∑n
g=1 wg

. (6.8)

Where n is the total number of features and wg is a weight assigned to the gth feature.

We have considered wg = 1 for co-occurrence based features and wg = 4 (32/8) for

autocorrelation features. The weights are chosen to realize as if we are using equal

number of features from both categories.

Let Dh
l be the minimum distance among all c distances Dk

l, k ∈ {1, 2, · · · , c}. If the

minimum distance Dh
l is less than a maximum allowed distance Dmax, then we include

Bl into the hth cluster Uh and assign the fitness fh
u of the hth cluster to the procedure

Tl. After this, we update the cluster center of hth cluster center as follow:

Oh
new =

nhOh
old + vl

nh + 1
. (6.9)

Here nh is the number of textures in the hth cluster. However, if the minimum distance

Dh
l ≥ Dmax, then the texture Bl is considered as a new texture which is different from

the other existing textures. So we create a new cluster Uc+1 with the texture Bl. This

new texture Bl is displayed to the user to decide a fitness fl (≥ 0.0) for Bl. Then

fl is assigned as the fitness to the procedure Tl and also as the fitness fu
c+1 to the

new cluster Uc+1. As the new cluster Uc+1 now contains only one texture Bl, vl will

represent the cluster center Oc+1.

The process of fitness assignment and clustering is continued for each procedure Tl(i, j)

of the population. After this process of evaluation, we apply genetic operations (repro-

duction, crossover and mutation) on the population as described in chapter 2. As there

is no target to stop the evolution, we continue this process up to a predefined number of

iterations, M. This clustering process can be considered as the classification/clustering

phase of the PRS. During this process of evolution, our scheme generates a large num-

ber of procedures and their corresponding (procedural) textures.

The block diagram of the GP system is given in Figure 6.1. The (phenotype) steps

122

Generate initial
population of
procedures

Apply
Genetic
Operations

Evaluate
Procedures

New Population

Figure 6.1: Block diagram of the GP system

Produce
Textures Filter

Feature
Extraction

Clustering

Figure 6.2: Evaluation of procedures on the basis of their produced image/texture

to evaluate procedures are given in Figure 6.2 that resembles a pattern recognition

system.

6.2.5 Performance of Texture Generation Method

We have used lilgp [124] to perform our experiment. The GP parameters used are

listed below:

Population size = P = 100

Maximum number of generations = M = 5

Probability of reproduction operation = pr = 0.1

Probability of crossover operation = pc = 0.7

Probability of mutation operation = pm = 0.2

Maximum allowed height of a tree = 8

Maximum allowed number of nodes for a tree = 200

The Problem dependent parameters are:

Minimum Contrast value = cmin = 0.03

Maximum allowed distance = Dmax = 0.25

123

Values of both problem dependent parameters are determined after conducting a couple

of experiments. If value of Dmax is large, then fewer clusters are created. This reduces

burden on the user for repeatedly assigning fitness values to newly generated textures.

However, it may allow dissimilar textures to be in the same cluster. On the other hand,

if value of Dmax is small then many clusters containing similar textures will be created.

This will assign the same fitness value to only almost identical textures. However, the

user will be asked repeatedly to assign fitness values to newly generated textures. So

the choice of Dmax is very important. We have made a few trial runs with different

choices of Dmax and based on the results we decided on Dmax = 0.25.

Based on our experiments, we observed that, typically in the first generation of GP

run, many generated procedures produced images with almost constant gray label.

Our filtering scheme assigned very small fitness values to these procedures so that

these did not survive the process of evolution. After that, many interesting textures

were produced. The proposed clustering scheme was able to assign fitness values to

many procedures. Occasionally user’s input was sought to assign fitness values to some

new procedures. Almost all textures in a cluster were similar. Only in a few cases,

fewer textures in a cluster were not very similar. We noticed that instead of running

GP for large number of iterations, if it is run for fewer iterations but for many times

with different initial GP populations, then many more interesting textures could be

produced.

We obtained many interesting textures (and corresponding procedures). We have in-

cluded only 54 textures produced by our GP system in Figures 6.3 - 6.5. Each figure

consists of 9 textures.

As an illustration, we show four evolved procedures and their corresponding textures

in Figs. 6.6 and 6.7.

Procedure 1 (Figure 6.6(a))

Cos(j) ∗ Cos(i ∗ j)

Procedure 2 (Figure 6.6(b))

Sin
(

i∗j
2.5

)

Procedure 3 (Figure 6.7(a))

Cos(14.765 i ∗ j)

124

Figure 6.3: Generated Textures by our GP system

Figure 6.4: Generated Textures by our GP system

125

Figure 6.5: Generated Textures by our GP system

(1) (2)

Figure 6.6: Textures produced by the given procedures 1 and 2

Procedure 4 (Figure 6.7(b))

Cos(93.5 + j) + Cos(Sin(i))

These textures are example candidates that can be used for textile and fashion design.

6.3 Texture Classification using Genetic Programming

In this section, we have used our proposed GP based classifier schemes GPmt and GPfc

(fuzzy rule based classifier)to classify textures.

Texture classification is one of the problem domains in the field of texture analysis.

126

(3) (4)

Figure 6.7: Textures produced by the given procedures 3 and 4

Texture has no precise (mathematical) definition. It also depends on orientation, scale

and other visual appearances. So texture analysis is a challenging task. Tuceryan and

jain [117] have categorized the various texture analysis methods into four categories:

statistical, geometrical, model-based and signal processing. In this investigation, we

have considered statistical approach to represent textures. Please note that a success-

ful classification requires an efficient description of image texture. Among statistical

approaches to represent texture, co-occurrence features [55] are widely used. So, we

have considered co-occurrence matrix based features in addition to auto-correlation

and edge frequency features to represent texture.

We have taken 3 sets of natural textures [17] to conduct 3 texture classification exper-

iments. Each natural texture represents a class. Experiment 1 is a 3-class problem.

Figure 6.8 shows three textures (types) representing 3 classes. Figure 6.9 shows tex-

tures considered for experiment 2. Four classes of textures are considered for the third

experiment and the corresponding textures are shown in Figure 6.10.

6.3.1 Preparation of Data Sets

Each given natural texture is partitioned into small textures to generate a set of texture

patterns for training set and test set. The natural textures for the experiments have

dimension equal to or more then 640 × 640. Hundred textures of dimension 64 × 64

are created by partitioning each given natural texture. Then a vector of statistical

features(x) is extracted from each 64× 64 texture. Now each texture is represented by

the corresponding statistical feature vector x. In this manner, 100 patterns for each

class (given natural texture type) are created to develop and validate the classifier. We

extract following statistical features [113].

127

(Class 1) (Class 2) (Class 3)

Figure 6.8: Textures for Experiment 1

(Class 1) (Class 2) (Class 3)

Figure 6.9: Textures for Experiment 2

1. Co-occurrence based features: These are based on repeated occurrence of same gray-

level configuration in the texture. We compute co-occurrence matrices in direction 0

and 90 with displacements 2 and 4. Each of these 4 matrices is used to calculate

contrast, entropy and correlation features. This creates 4×3 = 12 co-occurrence based

features.

2. Autocorrelation coefficients: These pertain to spatial frequencies in an image/texture.

For each texture, autocorrelation coefficients with displacements (0,2), (0,4), (2,0) and

(4,0) are computed. This provides 4 autocorrelation coefficients.

3. Edge Frequency: Comparison of edge frequencies in texture can be used to dis-

criminate textures. We compute edge frequency of each texture to include as another

feature. The above 17 features are used to represent each texture. A subset of 100 pat-

terns from each class is kept to test the classifier and the remaining patterns (training

set) are used to train the algorithm.

128

(Class 1) (Class 2) (Class 3) (Class 4)

Figure 6.10: Textures for Experiment 3

6.3.2 Classification Results

We run both GP based schemes GPmt and GPfc ten times for each experiment. Each

GP run involves a 10-fold cross-validation (Thus, each GP run consists of 10 runs, each

with one of the 10 folds, so total 100 runs). In each GP run, the test accuracy (the

percentage of correctly classified test patterns) is computed. The average and standard

deviation of test accuracies over all 10 GP runs are calculated in each experiment. For

comparison, we applied the 1-nn (nearest neighbor) classifier on the texture data sets.

Here also we used the 10-fold cross validation. In the first experiment, the average

test accuracies are 99.6% (sd = 0.16) and 99.1% (sd = 0.13) using GPmt and GPfc

respectively. That means the developed GP classifiers could correctly classified almost

all test patterns. In average, 1-nn classifier classified 98.3% (sd = 0.08) test patterns

correctly. In the second experiment, we obtained 92.2% (sd = 0.41) and 91.6% (sd

= 0.20) average test accuracies respectively by GPmt and GPfc. This degradation

of performance may be due to similarity of patterns in class 2 and class 3. For this

experiment, we obtained only 81% (sd = 0.14) average test accuracy using the 1-nn

classifier. In the third experiment, there is the similarity between classes is much

stronger. In this cases, it is difficult to discriminate between classes. But, our non-

fuzzy and fuzzy GP classifier systems are able to correctly classify 84% (sd = 1.22)

and 85.4% (sd = 0.45) test samples (in average) respectively. For this difficult data

set, the average test accuracy using 1-nn is 61% (sd = 0.34) only.

129

6.4 Conclusion

We have presented a Genetic Programming based scheme to generate procedural tex-

tures. The ability of genetic programming to evolve procedures to generate textures

and the human ability to judge texturedness are blended in a judicious manner. To

reduce the burden over the user drastically, the generated textures are passed through

a filtering process and then through a clustering scheme. We use contrast of each gen-

erated texture to facilitate the filtering process. The textures that survive the filtering

are placed in the clusters of existing generated textures based on their similarity with

existing clusters. If a new generated texture is significantly dissimilar from the exist-

ing textures, then our scheme displays the new texture to the user to assign a fitness

value by visual inspection. We use statistical features to find the similarity between

two textures. Our GP system provides grey label textures. To generate color textures,

we need to produce three matrices one for each of red, green and blue components of

the texture. For this, each tree is required to return a vector (of 3 color values) for

each texture point or combination of three trees may be used to produce a single color

texture.

We have also used our GP based classifier schemes to evolve multi-tree classifiers for

texture classification problems. We conducted experiments on 3 sets of well-known

Brodatz natural textures. Statistical features of textures were extracted to represent

them. Performance of GP classifier schemes were good in all 3 experiments. In ex-

periment 1, the data set was comparatively easy as compared to experiment 3. In

experiment 3, there was more similarity among classes and hence the accuracy was not

very high. In this chapter, we found that the performance of fuzzy rule based classifier

GPfc is as good as that of GPmt. In this investigation, we have considered statistical

features. However, other features may be used to represent textures.

130

Chapter 7

Conclusion and Scope of further work

7.1 Conclusion

In this thesis, we proposed Genetic Programming based methodologies to solve certain

pattern recognition tasks. These tasks were classifier design, on-line feature selection,

texture generation and classification, and rule based fuzzy classifier design. The beauty

of GP is that it provides the (mathematical) expression of the model (classifier) that

can be analyzed. Except texture generation task, in all other works, a GP population

of multi-tree chromosomes was evolved where each chromosome represented a classi-

fier. For a c-class problem, a multi-tree classifier consists of c trees where each tree

represents a classifier for a particular class. Our approach needs only a single GP run

to evolve a classifier for a multi-class problem. Each tree of the multi-tree classifier

recognizes patterns of a particular class and rejects patterns of other classes. Trees are

independent of each other and each has an equal responsibility for classification, but

all trees are tied together through fitness evaluation of chromosomes which governs

the evolution of GP. In the case of crossover operation, we not only allow exchange of

subtrees between trees meant for the same class, but also complete exchange of some

trees designated for the same class. Our mutation operation is designed to reduce the

destructive nature of conventional mutation.

In Chapter 1, we briefed about pattern recognition (PR), Evolutionary algorithms

(EAs), motivation and scope of the thesis. In Chapter 2, we elaborated PR and EAs

to provide necessary background to understand the thesis.

In Chapter 3, the GP based multi-tree classifier design method was proposed. The basic

131

concept of classifier design, presented in this chapter, has been used in other chapters

except the texture generation scheme. An individual is selected according to its fitness

value for genetic operation. However, its trees are selected according to their degree of

unfitness. In this way, we give more opportunities to unfit trees to rectify themselves by

genetic operations (crossover and mutation). At the same time, we reduce the chance

of unwanted disruption of already fit trees by the genetic operations. To obtain a better

classifier we have proposed a new scheme for OR-ing two classifiers. We have used a

heuristic rule based scheme followed by a weight based scheme to resolve conflicting

situations. The heuristic rules model typical situations where the classifier indicates

ambiguous decisions and try to resolve them. The weight based scheme assigns a higher

weight to a tree which is less responsible for making mistakes. We tested our classifier

with several data sets and obtained quite satisfactory results.

In Chapter 4, the proposed classifier design method in the previous chapter was refined

and modified so that we can do both feature selection and classifier design simulta-

neously. The initialization process generates classifiers using smaller feature subsets

with higher probability. The fitness function assigns higher fitness values to classifiers

which classify more samples using fewer features. The multi-objective fitness function

helps to accomplish both feature selection and classifier design simultaneously. In this

regard, we proposed two modified crossover operations suitable for feature selection.

As a byproduct, we obtained a feature ranking method. The fitness function prevents

the use of more features and hence helps to achieve more readability of the trees ex-

tracted by the system. Since the number of features to be used is not predefined, the

algorithm has more flexibility.

The effectiveness of our scheme is demonstrated on seven data sets having dimensional-

ity varying between 4 and 7129. Our experimental results established that the proposed

scheme is very effective in selecting a small set of good features and finding useful clas-

sifiers. The obtained results reveal that the proposed method can achieve almost the

same performance using a small set of features as that with all features. We have

also demonstrated the effectiveness of our scheme on data sets with redundant or bad

features added synthetically. We have compared the performance of our methodology

with results available in the literature with both filter and wrapper type approaches.

Wrapper (and on-line) FS algorithms perform better than filter approaches, at the cost

of computational time. Our proposed algorithm performed better for both two class

132

and multi-class problems.

In Chapter 5, fuzzy rule based classifiers were evolved using GP. Each tree Tk of the

multi-tree classifier constitutes a set of rules for class k. During evolutionary process,

the inaccurate/inactive rules of the initial set of rules were removed by a cleaning

scheme. This allowed only good rules to sustain and that eventually determined the

number of rules. In stead of using all features in a rule, our GP scheme used only a

subset of features and thereby determined the features used in a rule. The rules were

constructed using prototypes. The prototypes were obtained by randomly generating

the values and by using fuzzy K-means algorithm. We proposed a new mutation

operation to alter the rule parameters. Hence, the GP scheme not only optimized the

structure of rules but also optimized the parameters involved. This resulted in good

fuzzy rule based classifiers. Moreover, the resultant fuzzy rules can be analyzed. The

method was validated on six benchmark data sets. The performance of the GP Scheme

was quite satisfactory. We observed that using both types of prototypes causes better

performance as compared to using only one type of prototype. It is interesting to note

that of the two extreme cases, use of only random prototypes works better than the use

of only FKM prototypes in most cases. This emphasizes the novelty of the proposed

scheme.

In Chapter 6, we presented Genetic Programming based schemes to generate and

classify textures.The textures generated by procedures are called procedural textures.

GP can evolve procedures to produce ”good” textures. There is no well accepted

definition of texture. So, it is not easy to assess a texture and assign a fitness value to

it automatically. On the other hand, human can easily evaluate a texture. The ability

of genetic programming to evolve procedures to generate textures and the human

ability to judge textureness are blended in a judicious manner. If the user evaluate

each produced texture during evolution, then it would be a very tedious/ boring job

for the user. To reduce the burden over the user drastically, the generated textures

are passed through a filtering process and then through a clustering scheme. We use

contrast of each generated texture to facilitate the filtering process. The textures that

survive the filtering are placed in the clusters of existing generated textures based

on their similarity with existing clusters. If a new generated texture is significantly

dissimilar from the existing textures, then our scheme displays the new texture to the

user to assign a fitness value by visual inspection. We use statistical features to find

133

the similarity between two textures.

We used our both GP based classifier schemes GPmt and GPfc (fuzzy) to evolve multi-

tree classifiers for texture classification problems. We conducted experiments on 3 sets

of well-known Brodatz natural textures. Statistical features of textures were extracted

to represent them. Performance of GP classifier scheme on textures was good in all 3

experiments.

The integrated approach to feature selection and classifier design can be easily adapted

to regression/ function approximation/ forecasting problems. The concept of unfitness

of trees can be used in case of multiple-input-multiple-output function approximate

type systems.

7.2 Scope of the further work

In this thesis, we have addressed mainly two pattern recognition tasks: classification

and feature selection. It would be interesting to use GP for clustering because GP can

provide description of the clusters. In our methodologies, we have primarily focused

on accuracy of the classifiers. Size of the tree too can be considered while evaluating

solutions.

In Chapters 3 and 4, We have used arithmetic functions to design classifiers. So,

our methodology is applicable to numerical attributes only. For data with nominal

attributes, the logical functions like AND, OR , NOT may be considered instead of

arithmetic functions.

In Chapter 5, we have proposed a GP scheme that evolves fuzzy rule based classifiers.

Although our scheme does not use all features in each rule, we did not try to do

feature selection along with rule generation. In this scheme, we may incorporate feature

selection as we have done in Chapter 4. We may use validation set to find the values

of the parameters.

Our GP system in chapter 6 generates provides grey label textures. This may be ex-

tended to color texture. To generate color textures, we need to produce three matrices

one for each of red, green and blue components of the texture. For this, each tree is

required to return a vector (of 3 color values) for each texture point or combination of

134

three trees may be used to produce a single color texture.

Different algorithms required selection of different parameters. Although, we have

usually selected them by some intuitively plausible schemes, a better approach would

be to use validation data for this.

135

Bibliography

[1] D.Agnelli, A.Bollini and L.Lombardi, “ Image Classification: an evolutionary approach”,
Pattern Recognition Letters, vol. 23 pp. 303-309, 2002.

[2] M. Ahluwalia and L. Bull, “Coevolving functions in genetic programming”, journal of
systems architecture, vol. 47, no. 7, pp. 573-585, July 2001.

[3] R.Aler, D.Borrajo and P.Isasi,“ Using Genetic Programming to learn and improve con-
trol knowledge”, Artificial Intelligence, vol. 141, pp. 29-56, October 2002.

[4] E. Anderson, “The Irises of the Gaspe peninsula”, Bulletin of the American IRIS Soci-
ety, vol. 59, pp. 2-5, 1935.

[5] T. Back, U. Hammel, and H.-P. Schwefel, ” Evolutionary Computation: Comments on
the History and Current State”, IEEE Transactions on Evolutionary Computation, vol
1, no 1, pp 3 - 17, April 1997.

[6] T. Back and H.-P. Schwefel, ” Evolutionary Computation: An overview”, Proceedings
of IEEE International conference on Evolutionary Computation, 1996.

[7] W.Banzhaf, P.Nordin, R.E.Keller and F.D.Francone,Genetic Programming: an intro-
duction, Morgan Kaufmann Publishers,1998.

[8] A. Bastian, “ Identifying fuzzy models utilizing Genetic Programming”, Fuzzy sets and
systems, vol 113, no 3, pp 333-350, 2000.

[9] K.W. Bauer, S.G. Alsing, and K.A. Greene, “Feature screening using signal-to-noise
ratios”,Neurocomputing, vol. 31, pp. 29-44, 2000.

[10] A. Ben-Dor, L. Bruhn, N. Friedman, I. Nachman, M. Schummer, and N. Yakhini, “Tis-
sue classification with gene expression profiles”,J. Comput. Biol., vol. 7, pp. 559-584,
2000.

[11] P. Bentley, ” Aspects of Evolutionary Design by Computers”, Advances in Soft Comput-
ing - Engineering Design and Manufacturing, Springer-Verlag, London, pp 99-118,1999.

[12] J.C.Bezdek, J.Keller, R.Krisnapuram, and N.R. Pal, Fuzzy Models and Algorithms for
pattern recognition and Image Processing, Kluwer Academic Publishers, 1999.

136

[13] J. Bi, K.P. Bennett, M. Embrechts, C.M. Breneman and M. Song, “Dimensionality
reduction via sparse support vector machines”, Journal of Machine Learning Research,
vol. 1, pp. 1-48, 2002.

[14] C.L. Blake and C.J. Merz,UCI Repository of machine learning databases, Uni-
versity of California, Department of Information and Computer Science, 1998.
http://www.ics.uci.edu/ mlearn/MLRepository.html

[15] A. L. Blum and P. Langley, “Selection of relevant features and examples in machine
learning”, Special issue of Artificial Intelligence on ‘Relevance’, vol. 97, pp. 245-271,
1997.

[16] C.C.Bojarczuk, H.S.Lopes and A.A.Freitas, “Genetic Programming for knowledge Dis-
covery in Chest Pain Diagnosis”, IEEE Engineering in Medicine and Magazine, vol 19,
no.4, pp 38- 44, 2000.

[17] P. Brodatz, Textures: A Photographic Album for Artists and Designers, Dover, New
York, 1996.

[18] E. K. Burke and G. Kendall (Ed.), Search Methodologies: Introductory Tutorials in
Optimization and Decision Support Techniques, Springer,2005.

[19] B. Carse, T. C. Fogarty, and A. Munro, “Evolving fuzzy rule based controllers using
genetic algorithms”, Fuzzy Sets Syst., vol. 80, pp. 273 293, June 1996.

[20] J. Casillas, B. Carse, L. Bull, ”Fuzzy-XCS: A Michigan Genetic Fuzzy System”, IEEE
Trans. Fuzzy System, vol. 15, Issue 4, pp 536 - 550, Aug 2007.

[21] J.Casillas, O.Cordon, M.J.Del Jesus and F.Herrera, “ Genetic feature selection in a
fuzzy rule-based classification system learning process for high-dimensional problems”,
Information Sciences, vol. 136, pp. 135-157, 2001.

[22] D. Chakraborty and N.R. Pal, “ A Neuro-fuzzy scheme for simultaneous feature selection
and fuzzy rule-based classification”,IEEE Transactions on Neural Networks, vol. 15, No.
1, pp. 110-123, 2004.

[23] D. Chakraborty and N.R. Pal, “Integrated feature analysis and fuzzy rule-based system
identification in a neuro-fuzzy paradigm”, IEEE Transactions on Systems, Man and
Cybernetics - Part B: Cybernetics, vol. 31, No. 3, pp. 391-400, 2001.

[24] B.-C. Chien, J.Y. Lin and T.-P. Hong, “ Learning discriminant functions with fuzzy at-
tributes for classification using genetic programming”, Expert Systems with Applications
vol. 23, pp 31-37, 2002.

[25] S-B Cho, and j. Ryu, “Classifying gene expression data of Cancer using classifier en-
semble with mutually exclusive features”, Proceedings of IEEE, vol. 19, No. 11, pp.
1744-1753, 2002.

137

[26] M. Dash and H.Liu, “Feature selection for classification”, Intelligent Data Analysis, vol.
1, no. 3, pp. 131-156, 1997.

[27] M. Dash, and H. Liu, “Consistency-based search in feature selection”, Artificial Intelli-
gence, vol. 151, pp. 155-176, 2003.

[28] P. Day and A.K. Nandi,“Binary String Fitness Characterization and Comparative Part-
ner Selection in Genetic Programming”, IEEE Trans. on Evolutionary Computation, vol.
12, no. 6, pp. 724-735, 2008.

[29] P. Day and A.K. Nandi, “Robust Text-Independent Speaker Verification Using Genetic
Programming”, IEEE Trans. on Audio, Speech, and Language Processing, vol. 15, no.
1, pp. 285-295, 2007.

[30] R. K. De, N. R. Pal and S. K. Pal, “ Feature analysis: Neural network and fuzzy set
theoretic approaches”,Pattern Recognition, vol. 30, pp. 1579-1590, 1997.

[31] P.A. Devijver and J.Kittler, Pattern Recognition: a statistical approach, Prentice Hall,
1982.

[32] J.M.Diada, T.F.Bersano-Begey, S.J.Ross and J.F.Vesecky ,“ Computer-Assisted Design
of Image Classification Algorithms: dynamic and Static Fitness Evaluations in a Scaf-
folded Genetic Programming Environment”, Genetic Programming 1996:Proceedings of
the First Annual Conference, The MIT press, pp 279-284.

[33] T.G. Dietterich, “Approximate statistical tests for comparing supervised classification
learning algorithms”, Neural Computation, vol. 10, No. 7, pp. 1895-1923, 1998.

[34] P. Domingos, “Context-sensitive feature selection for lazy learners”, Artificial Intelli-
gence Review, vol. 11, pp. 227-253, 1997.

[35] G. Dounias, A. Tsakonas, J. Jantzen, H. Axer, B. Bjerregaard, and D. Keyserlingk, “Ge-
netic programming for the generation of crisp and fuzzy rule bases in classification and
diagnosis of medical data”, in Proc. 1st Int. NAISO Congr. Neuro Fuzzy Technologies,
Canada, 2002, Academic Press, [CD-ROM].

[36] R. Duda and P. Hart. Patern Classification and Scene Analysis, Wiley Interscience, NY,
New York, 1973.

[37] D. Ebert, F.K. Musgrave, D. Peachey, K. Perlin, and S. Worley, Texturing and Mod-
elling: a procedural approach, Toronto: Academic Press, 1994.

[38] A.I. Esparcia-Alcazar and Ken Sharman,“ Evolving Recurrent Neural Network Architec-
tures by Genetic Programming”, Genetic Programming 1997: Proceedings of the Second
Annual Conference, pp 89-94

[39] I.De Falco, A.Della Cioppa, E. Tarantino,“Discovering interesting Classification rules
with Genetic Programming”, Applied Soft Computing vol. 23, pp. 1-13, 2002.

138

[40] G. Folino, C. Pizzuti, G. Spezzano, ”GP ensembles for large-scale data classification”,
IEEE Trans. on Evolutionary Computation, vol. 10, Issue 5, pp 604 - 616, Oct 2006.

[41] C.Fonlupt,“ Solving the Ocean Color Problem using a Genetic Programming Approach”,
Applied Soft Computing, Vol 1, pp 63-72,June 2001.

[42] G. Forman, “An extensive empirical study of feature selection metrics for text classifi-
cation”, Journal of Machine Research, vol. 3, pp. 1289-1305, 2003.

[43] H.Forrest, J.R.Koza, Y.Jessen and M.William,“ Automatic Synthesis, placement and
routing of an amplifier circuit by means of genetic programming”, Evolvable systems:
From Biology to Hardware, Proc. of the third international conference, ICES 2000,
LNCS, vol 1801, pp 1-10,

[44] K. Fukunaga, Introduction to statistical pattern recognition, Academic Press, 1972.

[45] T.S. Furey, N. Cristianini, N. Duffy, D. W.Bednarski, M.Schummer, and D. Haussler,
“Support vector machine classification and validation of cancer tissue samples using
microarray expression data”,Bioinformatics, vol. 16, no. 10, pp. 906-914, 2000.

[46] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning,
Pearson Education, 1989.

[47] T.R. Golub, D.K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J.P. Mesirov, H. Coller,
M. L. Loh, J.R. Downing, M.A. Caligiuri, C.D. Bloomfield, E.S. Lander,“Molecular
classification of Cancer: Class discovery and class prediction by gene expression moni-
toring”, Science, vol. 286, pp. 531-537, 1999.

[48] R. C. Gonzalez and R.E. Woods, Digital Image Processing, 2nd edition, pearson Educa-
tion.

[49] R. P. Gorman, and T. J. Sejnowski, “Analysis of Hidden Units in a Layered Network
Trained to Classify Sonar Targets”, Neural Networks, vol. 1, pp. 75-89, 1988.

[50] H.F.Gray, R.J.Maxwell, I.Martinez-Perez, C.Arus and S.Cerdan, “ Genetic program-
ming for classification and feature selection: analysis of 1H nuclear magnetic resonance
spectra from human brain tumor biopsies”, NMR IN BIOMEDICINE, vol. 11, pp. 217-
224, 1998.

[51] L.Gritz and J.K.Hahn,“ Genetic Programming for Articulated Figure Motion”, Journal
of Visualization and computer Animation,vol 6, no 3,pp 129-142,1995.

[52] H.Guo, L.B.Jack and A.K. Nandi, “Feature generation using genetic programming with
application to fault classification”, IEEE Trans. on Systems, Man and Cybernetics -
Part B: Cybernetics, vol. 35, No. 1, pp. 89-99, 2005.

[53] H. Guo and A.K. Nandi, “Breast cancer diagnosis using genetic programming generated
features”, Pattern Recognition, vol. 39, no. 5, pp. 980-987, 2006.

139

[54] I. Guyon and A. Elisseeff, “An introduction to variables and feature Selection”, Journal
of Machine Learning Research, vol. 3, pp. 1157-1182, 2003.

[55] R.M. Harlick, ”Statistical and Structural approaches to Texture”, Proceedings of the
IEEE, vol. 67, pp 786 - 804, 1979.

[56] N.R.Harvey, S.P.Brumby, S.Perkins, J.Theiler, J.J.Szymanski, J.J.Bloch, R.B.Porter,
M.Galassi and A.C.Young,“Image Feature Extraction: GENIE Vs Conventional Super-
vised Classification techniques”, IEEE Transactions on Geoscience and Remote Sens-
ing,vol. 4, no 2, pp 393-404, 2002.

[57] S. Haykin, Neural networks: a comprehensive foundation, Prentice Hall, 1994.

[58] F. Hoffmann, D. Schauten, S. Holemann, ”Incremental Evolutionary Design of TSK
Fuzzy Controllers”, IEEE Trans. Fuzzy Systems, vol. 15, issue 4, Aug 2007, pp 563 -
577.

[59] A E. Ibrahim, “Genshade: an evolutionary approach to automatic and interactive pro-
cedural texture generation”, Doctoral thesis, College of Architecture, A&M University,
Texas, 1998.

[60] H. Ishibuchi, T. Nakashima, and T. Murata, ”Performance Evaluation of Fuzzy Classifier
Systems for multidimensional pattern classification problems”, IEEE Trans. on SMC-B,
vol. 29, pp 601-618, Oct. 1999.

[61] H. Ishibuchi, K. Nozaki, N. Yamamoto, and H. Tanaka, ” Selecting fuzzy if-then rules
for classification problems using genetic algorithms”, IEEE Trans. Fuzzy Syst., vol. 3,
no. 3, pp 260 - 270, 1995.

[62] L.B. Jack and A.K. Nandi, “Genetic algorithms for feature selection in machine condi-
tion monitoring with vibration signals”,IEE Proceedings- Part VIS, vol. 147, no. 3, pp.
205-212, 2000.

[63] C. Jacob, Illustrating Evolutionary Computation with Mathematica, Morgan Kaufmann
Publishers, 2001.

[64] A. Jain and D. Zongker, “Feature selection: evaluation, application, and Small sample
performance”, IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 19, no.
2, pp. 153-158, Feb. 1997.

[65] R. W. Johnson, M.E. Melich, Z. Michalewicz, M. Schmidt, ”Coevolutionary optimization
of fuzzy logic intelligence for strategic decision support”, IEEE Trans. on Evol. Compt.,
vol. 9, Issue 6, pp 682 - 694, Dec 2005.

[66] K.Kira and L.A.Rendell, “The feature selection problem: Traditional methods and a
new algorithms”, Proceedings of ninth national conference on artificial intelligence, pp.
129-134, 1992.

140

[67] J.K. Kishore, L.M.Patnaik, V.Mani and V.K.Agrawal,“ Application of Genetic Pro-
gramming for Multicategory Pattern Classification”, IEEE Transactions on Evolution-
ary Computation, vol.4, no.3, pp 242-258, 2000.

[68] G. J. Klir and Y. Bo, Fuzzy sets and fuzzy logic: theory and applications, Prentice Hall,
1995.

[69] R. Kohavi and G.H. John, “Wrappers for feature subset selection”, Artificial Intelli-
gence, vol. 97, pp. 273-324, 1997.

[70] A. Konar, Computational intelligence: principles, techniques and applications, Springer-
Verlag, 2005.

[71] M.Koppen and B.Nickolay,“ Genetic Programming based Texture Filtering Frame-
work”,Pattern recognition in soft computing Paradigm, chapter 12, (Edited by Nikhil
R. Pal), World Scientific.

[72] J.R.Koza,Genetic Programming: On the programming of computers by means of natural
selection. Cambridge, MA, M.I.T.press 1992

[73] J.R.Koza, Genetic Programming II: Automatic Discovery of Reusable Programs. MIT
Press, Cambridge, MA, 1994.

[74] M. Kudo and J. Sklansky, “Comparison of algorithms that select features for pattern
classifiers”, Pattern Recognition, vol. 33, pp. 25-41, 2000.

[75] A.S. Kumar, S. Chowdhury and K.L. Mazumder, “Combination of neural and statisti-
cal approaches for classifying space-borne multispectral data”, Proc. of ICAPRDT99,
Calcutta, India, pp. 87-91, 1999.

[76] N. Kwak and C.-Ho Choi, “Input feature selection for classification problems”, IEEE
Transactions on Neural Networks, vol. 13, no. 1, pp. 143-159, Jan. 2002.

[77] G.V. Lashkia, and L. Anthony, “Relevant, irredundant feature selection and noisy
example elimination”, IEEE Transactions on Systems, Man, and Cybernetics-Part
B:Cybernetics, vol. 34, Issue 2, pp. 888-897, April 2004.

[78] M. Last, A. Kandel, and O. Maimon, “Information-theoretic algorithm for feature se-
lection”, Pattern Recognition Letters, vol. 22, pp. 799-811, 2001.

[79] Gwo-Ching Liao, Ta-Peng Tsao, ”Application of a fuzzy neural network combined with a
chaos genetic algorithm and simulated annealing to short-term load forecasting”, IEEE
Trans. on Evol. Compt., vol 10, Issue 3, pp 330 - 340, June 2006.

[80] T.-S. Lim, W.-Y. Loh and Y.-S. Shih, “ A Comparison of Prediction Accuracy, Com-
plexity and Training Time of Thirty-three Old and New Classification Algorithms”,
Machine Learning Journal, Vol 40, pp 203-228, 2000.

141

[81] T.Loveard and V.Ciesielski, “Representing Classification Problems in Genetic Program-
ming”, Proceedings of the Congress on Evolutionary Computation, pp 1070-1077, IEEE
Press, May 2001.

[82] O.L. Mangasarian, W.N. Street and W.H. Wolberg, “Breast Cancer diagnosis and prog-
nosis via linear programming”, Operation Research, vol. 43, No. 4, pp. 570-577, 1995.

[83] K.Z. Mao, “Feature subset selection for support vector machines through discriminative
function pruning analysis”, IEEE Transactions on Systems, Man, and Cybernetics-Part
B:Cybernetics, vol. 34, no. 1, Feb. 2004.

[84] R.R.F.Mendes, F.B.Voznika, A.A.Freitas and J.C.Nievola, “ Discovering Fuzzy Classifi-
cation Rules with Genetic Programming and Co-Evolution”, Proceedings of fifth Euro-
pean Conference PKDD 2001, Lecture Notes in Artificial Intelligence, 2168, pp 314-325.

[85] Z. Michalewicz and M. Michalewicz, ” Evolutionary Computation Techniques and Their
Applications”, 1997 IEEE Conference on Intelligent Processing Systems.

[86] A.N. Mucciardi and E.E. Gose, “A Comparison of seven techniques for choosing subsets
of pattern recognition”, IEEE Transactions on Computers, C-20, pp. 1023-1031, Sep.
1971.

[87] D. P. Muni, N. R. Pal, and J. Das, “A novel approach for designing classifiers using
genetic programming”, IEEE Trans. Evolut. Comput., vol. 8, no. 2, pp. 183 196, April
2004.

[88] D. P. Muni, N. R. Pal, and J. Das, “Genetic Programming for Simultaneous Feature
Selection and Classifier Design”, IEEE Trans. SMC - B, vol. 36, no. 1, pp. 106 - 117,
Feb 2006.

[89] R.J. Nandi, A.K. Nandi, R.M. Rangayyan and D. Scutt, “Classification of breast masses
in mammograms using genetic programming”,Medical and Biological Engineering and
Computing, vol. 44, no. 8, pp. 683-694, 2006.

[90] P.M. Narendra and K.Fukunaga, “A branch and bound algorithm for feature selection”,
IEEE Transactions on Computers, C-26(9), pp. 917-922, Sept. 1977.

[91] D. Nauck and R. Kruse, “A neuro-fuzzy method to learn fuzzy classification rules from
data”, Fuzzy Sets Syst., vol. 89, pp. 277 288, 1997.

[92] D.V. Nguyen and D.M. Rocke, “Tumor classification by partial least squares using
microarray gene expression data”, Bioinformatics, vol. 18, No. 1, pp. 39-50, 2002.

[93] K. Pal, N. R. Pal and J. M. Keller, ”Some neural net realizations of fuzzy reasoning”,
Int. Journal of Intell. Systems, vol. 13, pp 859-886, 1998.

[94] N.R. Pal,“ Soft computing for feature analysis”, Fuzzy Sets and Systems, vol. 103, pp.
201-221, 1999.

142

[95] N.R. Pal and K. Chintalapudi, “A connectionist system for feature selection”, Neural,
parallel and Scientific Computations, vol. 5, pp. 359-381, 1997.

[96] N.R. Pal, V. Kumar, and G.K. Mandal, ” Fuzzy Logic Approaches to structure preserv-
ing dimensionality reduction”, IEEE Trans. on Fuzzy Systems, vol. 10, pp 277 - 286,
June 2002.

[97] N.R. Pal, S. Nandi and M.K. Kundu, “Self-crossover: a new genetic operator and its
application to feature selection”, International Journal of systems and science, vol. 29,
No. 2, pp. 207-212, 1998.

[98] W. Pedrycz (Ed.), Fuzzy Evolutionary Computation, Kluwer Academic Publishers, 1997.

[99] W. Pedrycz and M. Reformat, ” Evolutionary Fuzzy Modeling”, IEEE Trans. on Fuzzy
Systems, vol. 11, pp. 652 - 665, Oct. 2003.

[100] R.Poli,“Genetic Programming for image analysis”,proceedings of the first international
conference on Genetic Programming, Stanford, pp 363 - 368, July 1996.

[101] P. Pudil, J. Novovicova and J. Kittler, “Floating search methods in feature selection”,
Pattern Recognition Letter, vol. 15, pp. 1119 - 1125, 1994.

[102] P.J. Rauss, J.M.Daida and S.Chaudhary, “Classification of Spectral Imagery Using
Genetic Programming”, Proceeding of the Genetic and Evolutionary computation con-
ference, GECCO-2000.

[103] M.Richeldi and P.Lanzi, “Performing effective feature selection by investigating the
deep structure of the data”,Proceedings of second international conference on knowledge
discovery and data mining, AAAI Press, CA, pp 379-383, 1996.

[104] J.J. Rowland, “Model selection methodology in supervised learning with evolutionary
computation”, Biosystems, vol. 72, pp. 187-196, 2003.

[105] M. Russo, ”Genetic Fuzzy learning”, IEEE Trans. on Evolutionary Computation, vol.
4, Iss 3, pp 259 - 273, Sept 2000.

[106] L. Sanchez, I. Couso, J.A. Corrales, ”Combining GP operators with SA search to evolve
fuzzy rule based classifiers”, Information Sciences, vol. 136, pp. 175 - 191, 2001.

[107] R. Setiono and H. Liu, “Neural-network feature selector”,IEEE Transactions on Neural
Networks, vol. 8, no. 3, May 1997.

[108] J. Sherrah, R.E. Bogner and A. Bouzerdoum, “Automatic selection of features for clas-
sification using genetic programming”, Proceedings of the 1996 Australian New Zealand
Conference on Intelligent information systems, pp. 284-287,IEEE.

[109] S.Y.M. Shi, and P.N. Suganthan, “Feature Analysis and classification of Protein Sec-
ondary Structure Data”, Lecture Notes in Computer Science, vol. 2714, pp. 1151-1158,
Springer, 2003.

143

[110] W. Siedlecki and J. Sklansky, “A Note on genetic algorithms for large-scale feature
selection”, Pattern Recognition Letters, vol. 10, pp. 335-347, 1989.

[111] W. Siedlecki and J. Sklansky, “ On automatic feature selection”, International Journal
of Pattern recognition and Artificial Intelligence, vol. 2, No. 2, pp. 197-220, 1988.

[112] K. Sims, “Artificial Evolution for Computer Graphics”, Computer Graphics, vol. 25,no.
4, pp 319-328, July 1991.

[113] M. Sonka, V. Hlavac and R. Boyle, Image Processing, Analysis, and Machine Vision,
2nd edition, PWS publication.

[114] S.A.Stanhope, J.M. Daida , “Genetic Programming for Automatic Target Classification
and Recognition in Synthetic Aperture Radar Imagery”, Evolutionary Programming
VII: Proceedings of the Seventh Annual Conference on Evolutionary Programming, pp
735-744.

[115] J. T. Tou and R. C. Gonzalez, Pattern Recognition Principles, Addison-Wesley Pub-
lishing Company, 1974.

[116] A. Tsakonas, ”A Comparison of classification accuracy of four genetic programming-
evolved intelligent structures”, Information Sciences vol. 176, pp. 691 - 724, 2006.

[117] M. Tuceryan and A.K. Jain, ”Texture Analysis”, The Handbook of Pattern Recognition
and Computer Vision (2nd Edition), pp 207-248, World Scientific Publishing Co., 1998.

[118] A. Verikas, M. Bacauskiene, “Feature selection with neural networks”, Pattern Recog-
nition Letters, vol. 23, pp. 1323-1335, 2002.

[119] P.A. Whigham and P.F. Crapper,“ Modelling Rainfall-Runoff using Genetic Program-
ming”,Mathematical and Computer Modeling, vol. 33, pp. 707-721, 2001.

[120] A. L. Wiens and B.J. Ross, “Gentropy: evolving 2D textures”, Computers and Graph-
ics, vol. 26, pp. 75- 88, 2002.

[121] H.Zhang and G.Sun. “Feature selection using tabu search method”, Pattern Recogni-
tion, vol. 35, pp. 701-711, 2002.

[122] L. Zhang, L.B. Jack and A.K. Nandi,“Fault detection using Genetic Program-
ming”,Mechanical Systems and Signal Processing, vol. 19, no. 2, pp. 271-289, 2005.

[123] L. Zhang and A.K. Nandi, “Fault Classification using Genetic Programming”, Mechan-
ical Systems and Signal Processing, vol. 21, no. 3, pp. 1273-1284, 2007.

[124] D. Zongker, W.F. Punch,lilgp 1.0 User’s Manual, Technical Report, MSU Genetic
Algorithms and Research Application Group (GARAGe),http://garage.cps.msu.edu

144

Publications of the Author Related to the Thesis

A1. Durga Prasad Muni, Nikhil R. Pal and J. Das, “ A Novel Approach for Designing Clas-

sifiers Using Genetic Programming”, IEEE Transaction on Evolutionary Computation,

vol 8, No. 2, April 2004, pp 183-196.

A2. Durga Prasad Muni, Nikhil R. Pal and J. Das, “Genetic Programming for Simultane-

ous Feature Selection and Classifier design”, IEEE Transaction on Systems, Man and

Cybernetics-B, vol 36, No. 1, Feb 2006, pp 106-117.

A3. Durga Prasad Muni, Nikhil R. Pal and J. Das, “Evolution of Fuzzy Classifiers using

Genetic Programming”, IEEE Transaction on Evolutionary Computation, (Communi-

cated).

A4. Durga Prasad Muni, Nikhil R. Pal and J. Das, “Texture Generation for Fashion Design

using Genetic Programming”, Proceedings of 9th International Conference on Control,

Automation, Robotics and Vision, ICARCV 2006, Singapore, IEEE Xplore.

A5. D.P. Muni and J. Das, “ Interactive Texture Generation Using Genetic Programming”,

Proceedings of National Conference on Recent Advances in Power, Signal Processing

and Control, 2004, Rourkela, pp 151-154.

A6. D.P. Muni and J. Das, “Texture Classification using Genetic Programming”, Proceed-

ings of International Conference on Information Technology, Haldia,2007, pp. 525-527.

A7. D. P. Muni, N. R. Pal and J. Das, “Multicategory Classifier design using Genetic

Programming”, Proceedings of international conference on Communications, Devices

and Intelligent Systems, CODIS-2004, pp 597-599.

145

