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Abstract

Artificial Evolution is a powerful tool for generating realistic solutions to a

large range of computationally difficult problems. It has been applied with

great success to many optimisation problems in engineering and science, yet

its application is not restricted to problems specific to these fields. The power

of evolution can also be coupled with human supervision to tackle problems

whose solutions must be (wholly or partly) subjectively evaluated. This

thesis describes the design, implementation and use of Evolutionary-based

system used for the evolution of such entities whose “goodness” is commonly

only subjectively defined.

Additionally, this research investigates and tests formal models of sub-

jective notions for a specific problem: the Interactive Evolution of music. It

is demonstrated by this research how various evolutionary techniques can be

used to generate and evolve pleasing musical sequences. It is also shown how

similar techniques are used to build models of the subjective notions used by

human users, when evaluating the goodness of musical pieces. The research

presented here also makes it possible to understand what environmental con-

ditions lead to the construction of artificial models that have good predictive

power.

Finally, an investigation of the generalisation performance of a specific

Evolutionary technique, Genetic Programming, is presented in the context

of more recently developed improvement techniques. It is demonstrated that

any improvement must take generalisation performance into account in order

to be considered a worthy addition to the field. It is also shown how a

combination of recent improvement techniques make significant performance

improvements on both artificial and real-world symbolic regression problems.
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Chapter 1

Introduction

With advances in computer-aided musical composition and Artificial Evo-

lution, many systems have emerged that allow human users to guide the

evolution of melodies, drum patterns, harmonies and musical pieces. How-

ever, because of the subjective nature of the way that music is experienced by

humans, there is no universally acceptable formal function that can judge the

quality of an arbitrary musical phrase. Hence, Evolutionary music systems

need constant human guidance in order to progress from one generation to

the next.

The ultimate goal of the research presented in this thesis is to build a

system for generating pleasing music1 that has the extra ability to learn

users’ musical tastes from past experience – using historical data that is

collected as the users progressively evaluate and evolve musical phrases. In

this research, Evolutionary learning methods are also investigated for this

seemingly impossible modelling task.

To achieve the ability to model subjective taste, an artificial system must

be able to learn from the aesthetic judgements as made by humans in order

to effectively mimic their choices. This task is by no means trivial since the

quality metrics that people use when making aesthetic judgements are highly

subjective. For example, any two people can have entirely different opinions

1There are many different forms of music. In the context of this thesis, music refers to
note-based, tonal music, traditional European Western art music or popular music.
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about a given piece or art. Reasons for these differences may be obvious and

easy to quantify, for example, use of colour and perspective could feasibly

be the sole basis for a preference. Equally, another basis could be caused

by an emotional response to an aspect of an image or scene – such factors

are obviously much more difficult (and arguably impossible) to formalise.

Unlike the types of formal measurements that can be found elsewhere in

science and engineering, a vastly different set of criteria is applied for the

types of aesthetic judgements that are used in the creative arts.

The research presented in this thesis describes a process of extracting a

formal model of a subjective notion. In particular, the notions of musical

“pleasantness” are examined in the context of interactive musical evolution

with the goal being to computationally discover a model which is closely

correlated with a set of aesthetic judgements made by the human user of the

system.

1.1 Driving Force

Introducing a human decision maker into an automated, iterative process in-

troduces an obvious (however necessary) bottleneck. Any formalisation of the

subjective functions at work in the mind of the human decision maker offers a

distinct advantage in terms of alleviating this bottleneck. This ability would

be of significant value to the field Interactive Evolution. Countless exam-

ples can be found in academic literature reporting the success of a particular

Evolutionary system at solving a previously unsolved or difficult medical or

engineering problem. However, when human intervention becomes a neces-

sary part of the evaluation process, the conclusions almost without exception

point to the fact that Interactive Evolution is slow, humans can become tired

and inconsistent, often leading to “interesting” however not altogether use-

ful results. Having some way to speed up the interactive process without a

negative effect on solution quality would be a very desirable utility.
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1.1.1 Central Hypothesis

This thesis forwards the hypothesis that Artificial Evolution can play a fun-

damental role in modelling the subjective choices made by humans taking

part in interactive creative processes. Prediction of future behaviours can be

achieved using artificially created models built from past experiences.

In this way, the Evolutionary Algorithm is more than just the engine that

drives interactive systems, but can also be a mechanism for bootstrapping

fitness allocation.

1.2 Core Questions

To explore the central hypothesis, this research poses the following core ques-

tions:

• Can a system be constructed that displays the ability to learn subjective

notions from humans?

• How well do artificially created models perform on future (unseen)

choices?

• Can the causes of any inconsistent user behaviour be identified and

restricted?

Outside of the musical domain, this research also investigates the predic-

tive power of evolutionary learning and prediction methods. In particular,

this thesis investigates the generalisation abilities of Genetic Programming

and asks if recent advances in the theory have lead to practical improvements

on real-world problems.

1.3 Thesis Contributions

The central contribution of the research described in this thesis is that sub-

jective notions can be formalised in the context of Interactive Evolution. Two
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Evolutionary music systems, the DrumGA and the MelodyGA were created

with the latter used in the world’s first Evolutionary music song contest. Re-

sults produced from experimentation on human subjects show that artificial

models can be found with good predictive power.

The thesis also contributes valuable lessons learned from musical evolu-

tion experiments on human subjects; a condition termed here as fatigued

distraction is identified as a potential threat to consistent behaviour, which

can adversely affect the ability to construct accurate, artificial models. Meth-

ods to alleviate this condition are introduced including the use of a binary-

decision, tournament-style user-interface as opposed to a larger palette of

candidate solutions.

It is shown here that consistent user behaviour is the key to the construc-

tion of usable artificial models of that behaviour. When the historical data

of a human user is replaced with that of a more more controllable, consistent,

artificial agent, the resulting models created display good predictive power.

To address some of the drawbacks of preceding work it is shown how

the limitations of an artificial learner may be assessed, making it possible to

understand the conditions under which good predictive power is possible.

The final contribution of this thesis relates to the generalisation perfor-

mance of Genetic Programming. It is shown that the practice of producing

and reporting generalisation results in GP improvement techniques is not just

a desirable, but an absolutely necessary stage that is often omitted from GP

research. A combination of two new techniques is recommended for symbolic

regression problems based on a set of experiments on artificial problems. It is

further shown how the same combination of techniques leads to better results

when re-applied to a real-world problem in the musical domain.

1.4 Thesis Organisation

The rest of this thesis is organised as follows;

In Chapter 2, an introduction to Evolutionary Algorithms, together with
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details on their implementation and sub-divisions between them is given. The

methods are described and compared in the context of a simple problem that

involves making a model that best describes a set of data. A brief description

of a non-evolutionary method, related in terms of its application to modelling

from historical observations is also provided. All of the methods described

in Chapter 2 will make a reappearance in subsequent chapters of this work.

Existing research in the fields of Computer Music and Interactive Evolu-

tion is reviewed in Chapter 3. The chapter introduces key issues related to

the design of Evolutionary music systems and their associated fitness func-

tions.

In Chapter 4, the design and implementation of two systems for producing

pleasing rhythms and melodies is described, together with details of experi-

ments carried out on human subjects using these systems. In this chapter it

will be shown that in certain successful cases, Genetic Programming can be

used to construct models of the fitness functions of human users.

To try to address the less successful cases, Chapter 5 discusses some of the

limitations of previous work and outlines some new directions for research

in order to address them. A scaled-down re-implementation of a previous

system is provided together with a set of “bottom-up” experiments that

lead to a better understanding of the learning power of another Evolutionary

technique, Grammatical Evolution, for the task of fitness function modelling.

In Chapter 6, direct attention is diverted from the musical domain and

instead focused on the generalisation ability of Genetic Programming. Some

practical suggestions for improving the utility of Genetic Programming are

provided and demonstrated on a set of artificial symbolic regression problems

and then later re-applied to a real-world fitness function modelling problem

introduced earlier in the thesis.

Finally, some conclusions and some possible future research directions are

laid out in Chapter 7.
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Chapter 2

Evolutionary Algorithms and

Machine Learning

The work presented in this thesis relies heavily on both the use and the

application of the biologically inspired methods known as Evolutionary Al-

gorithms. This chapter will give an introduction to these methods, giving

an outline of their overall operation together with some worked examples

to illustrate their application. Additionally, a brief introduction to a non-

evolutionary learning method used later in this work is provided.

2.1 An Introduction to Evolution

Evolutionary Algorithms (Holland, 1975; Goldberg, 1989; Koza, 1992; Back

et al. , 1997; Ryan et al. , 1998) have been demonstrated to be powerful,

robust mechanisms for solving a multitude of problems in engineering and

science over the past three decades. Building on their successful application

to solving complex search and optimisation problems in the aforementioned

research fields, they have also found application in the creative arts. The

process of searching a vast array of candidate solutions to a problem using

biologically inspired methods can be just as useful for composing pleasing

musical pieces as it is for optimising the parameters for the design of aircraft
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wings or telescope lenses.

The following sections provide an outline of the operation of Evolutionary

Algorithms.

2.1.1 Evolutionary Algorithms

Evolutionary Algorithms (EAs) is an umbrella term that is used to describe a

set of search an optimisation techniques that have their basis in evolutionary

biology. These biologically inspired heuristics are often applied to problems

that have no known polynomial-time best solutions. To use an evolutionary

approach to solving a particular problem, it is necessary to know at least the

following:

1. How can a candidate solution be represented?

2. How can a candidate solution be evaluated?

With this much information at hand, an Evolutionary Algorithm proceeds

as follows:

• Step 0: An initial population of candidate solutions is created (typ-

ically at random)

• Step 1: Each candidate solution is evaluated using a fitness function

• Step 2: The best or fittest solutions are selected into a breeding pool

to reproduce

• Step 3: A generation of offspring is produced by combining candidates

from the previous step using genetic operators

• Step 4: If a termination criterion is met, the process stops, otherwise

go to Step 1.
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Operate

Evolution Loop

Figure 2.1: Depiction of an Evolutionary Algorithm. In the case of Interac-
tive EAs, the evaluation process is carried out by a human supervisor.

This process is depicted in Figure 2.1. A typical termination criterion

is a pre-specified number of iterations; alternatively, the process can be re-

peated until a threshold for the quality of the best solution produced has

been reached.

Assuming that a problem is suitable for the application of an Evolution-

ary Algorithm (for example, no known polynomial time algorithm exists for

solving it), what is typically observed over iterations of the evolution loop is

that the overall solution quality increases. The population of evolving solu-

tions is driven towards fitter states due to the repeated application of genetic

operators: firstly, the fittest members are selected according to a specific se-

lection scheme. The purpose of selection is to produce a breeding pool which

is made up from the best genetic material available in the population at each

generation. Selection mechanisms vary from one Evolutionary Algorithm to

another; two popular mechanisms are tournament and fitness proportionate

selection. In tournament selection, arbitrarily chosen individuals from the

population are compared to one another and the winner (fittest individual)

is placed into the breeding pool. Fitness-proportionate selection operates by

assigning a bias to each individual according to its fitness proportion (com-

pared to the fitness of the whole population). This mechanism is often called

roulette wheel selection since it can be described as assigning each individual

a slice of a roulette wheel and spinning it; since the slice of the wheel assigned

to each individual is proportional to the fitness, the wheel is more likely to

stop on fitter individuals (due to their fitness-proportionate bias).
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Although selection is a powerful mechanism for discovering the best so-

lutions in a population, an Evolutionary Algorithm needs more tools at its

disposal in order to produce new, genetically different individuals that can

lead to fitter individuals than those discovered in previous generations. This

is typically accomplished using the genetic operators crossover and mutation.

The purpose of crossover is to exchange genetic material between parent indi-

viduals in the hope that their offspring exhibit the best traits of the parents

and are therefore fitter as a result. The mutation operator is performed

to introduce minor changes to the genetic material of individuals and it is

often applied directly after crossover. Crossover can be thought of as an

exploration method since it provides a means to explore the search space of

possible solutions in new ways. Mutation, then, despite its random, undi-

rected implementation, acts as an exploitation mechanism by making minor

adjustments to individuals produced via crossover with the aim of bringing

out the best characteristics of the newly created individuals. An example

of the operation of crossover and mutation for two types of Evolutionary

Algorithm are shown in Figure 2.2.

Representations

The way in which candidate solutions are represented gives rise to the subdi-

visions underneath the Evolutionary Algorithms umbrella. If a solution can

be represented using a fixed-length binary string and all solutions fit the same

fixed-length schema, then the process may be better described as a Genetic

Algorithm (Holland, 1975; Goldberg, 1989) or GA. In a GA context, the

genetic makeup of a solution is referred to as the genotype, while the actual

solution to the problem at hand is called the phenotype. The fitness function

acts on the genotype and produces a numeric result indicative of the phe-

notype solution quality. Parameter search problems are good candidates for

this type of approach; for example, the optimisation of telescopic lenses can

be reformulated as a search for a fixed-length set of values that produce the

best focus when applied to a lens design. In contrast, some other problems
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need a variable length solution structure therefore a tree-based representa-

tion can be more appropriate. In this case, the process is often called Genetic

Programming (GP) (Cramer, 1985; Koza, 1992). A well known example of

this kind of problem is the search for mathematical functions that map a set

of input values to a set of outputs with minimum error (symbolic regression).

The differences between the operation of GA and GP as a result of the

differences in representation are outlined in Figure 2.2.

Grammatical Evolution

In addition to GAs and GP, there are many other evolutionary mechanisms

that fit the mould of an Evolutionary Algorithm as described in the previ-

ous sections. One such method is Grammatical Evolution (GE) (Ryan et al.

, 1998; O’Neill & Ryan, 2003). GE combines a genetic algorithm with a

grammar so that GP-like programs may be created and evolved. One of the

advantages of GE over GP is that programs / expressions can be generated in

any language, provided a grammar is specified. This makes GE quite flexible

and modular: researchers who wish to use a GP-like system need only be

concerned with the formulation of the grammar from which the individuals

are produced. One of the first implementations of GP involved the evolution

of s-expressions, which would then be interpreted using a Lisp interpreter.

Subsequent implementations have used prefix and postfix ordering of sym-

bols, which are parsed and interpreted using a custom-built interpreter. This

coupling of representation to interpreter is much looser with GE than with

GP – provided an existing compiler / interpreter exists for the language in

which the evolving expressions are written.

2.2 Illustration

To illustrate the operation of GA, GP and GE, the following sections describe

the application of each technique to a simple problem. The same problem is

used in all cases so that we can focus on the operation of each method.
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2.2.1 Problem Description

The problem that will be used in the following examples can be stated as

follows: find a function, f , which maps a set of input values onto a set of

target values, with minimum error. The problem supposes that we are given

a set of data which contains a list of independent observations, xi, about a

phenomenon that we wish to model, t. The task is to produce a function

which, when applied to the independent variables, produces the best “fit”

when overlaid with the target points. The independent variables and targets

are shown in Table 2.1.

Table 2.1: A set of inputs (x) and target values (t) that describe the func-
tion f .

x t
0.1 0.3192
0.2 0.7152
0.3 1.2492
0.4 1.9872
0.5 3.0000

It is worth noting at this point that this type of model discovery or func-

tion finding problem follows the same structure as the problems that will be

studied in more detail in later chapters.

2.2.2 Using a Genetic Algorithm

This example varies slightly from the next two in that it assumes the avail-

ability of a preprocessing step which provides the algorithm with one extra

piece of information about the problem, the functional form:

f = ax4 + bx3 + cx2 + dx (2.1)

The task for the GA, then, is to discover the parameters a, b, c and d (for

simplicity, we’ll assume that the coefficients a, b, c and d are integers in the
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range [0, 1023])1.

Choosing a representation

To apply a GA to this problem, we first need to define a way to represent

candidate solutions. This can be achieved in this scenario by using a 40-bit

binary string as follows:

0 39

0 0 1 0 1 0 1 0 0 0 0 1 1 0 1 0 1 1 1 0 0 0 0 1 1 0 1 0 1 1 0 1 0 0 0 1 0 0 1 0

Using the above representation, the bit-string indexed from 0-9 represents

parameter a, 10-19 represents b, 20-29 represents c and 30-39 represents d.

The example string shown above represents the values (168, 430, 107, 274)

for (a, b, c, d).

Evaluating an Individual

To see how well in individual has performed, we need some way to test how

close its predicted outcomes are to the target outcomes. For this type of

problem it is useful to use a statistical measure of the error as the fitness

function. One such measure is the Mean Square Error (MSE) which can be

defined as follows:

MSE(t, p) =
1

N

N
∑

i=1

(pi − ti)
2 (2.2)

where N is the number of input-target cases, ti is a target outcome and

pi is a predicted outcome. Using the example individual shown above, we

can compute the predicted outcomes by solving the problem described in

Equation 2.1 using the decoded integer values. This dataset is shown in

Table 2.2.

The mean square error in this instance evaluates to 18106, which is quite

unfit considering that the goal is to minimise the error value2.

1Even though this is never likely to be the case in a real-world problem, we can make
this assumption here for illustrative purposes.

2In other words, “fitter than” corresponds to “has smaller error than” for this problem.
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Table 2.2: Dataset of inputs, targets and predictions.
x t p
0.1 0.3192 29.9168
0.2 0.7152 62.7888
0.3 1.2492 104.8008
0.4 1.9872 158.5408
0.5 3.0000 288.0000

Applying Genetic Operators

To show how genetic material is exchanged and updated, the GA genetic

operators are now discussed. As mentioned in Section 2.1.1, the crossover

operation is employed to exchange genetic material between parent individ-

uals. There are many types of crossover implementation for GAs, and the

reader is referred to Goldberg’s seminal book (Goldberg, 1989) for a detailed

discussion of each. In this example, the application of single point crossover

is illustrated. Using two parent individuals P1 and P2, this method works by

choosing a random point cp along the length of the individual and creating

a new child individual by copying the genetic material from index 0 to cp in

P1 and index cp + 1 to the end of P2. Note that a second child may also be

produced using the opposite sections. In the example below the crossover

point cp = 8:

P1 0 0 1 0 1 0 1 0 0 0 0 1 1 0 1 0 1 1 1 0 0 0 0 1 1 0 1 0 1 1 0 1 0 0 0 1 0 0 1 0

P2 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 1 0 0 1 0 1 0 1 1 1 0 1 0 1 1 0 1 0 1 1 0 1 1

By taking copies of the genetic material as described, the following child

individual is produced.

C 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 0 1 1 1 0 0 0 0 1 1 0 1 0 1 1 0 1 0 0 0 1 0 0 1 0

If necessary, any such minimising problem may be reformulated as a maximising problem
by assigning fitness as follows:

f(x) =
1

1 + MSE

In this case, all fitness values fall between 0 and 1 with 1 being the maximum (i.e. perfect)
score.
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Before this individual is returned to the population, it is given the op-

portunity to undergo mutation. One implementation of this method iterates

over the length of the bit string, flipping each bit depending on the outcome

of a biased coin toss. This bias is usually set to be quite a low value, causing

mutations occur relatively infrequently. This way, the potentially disruptive

nature of the operation is minimised. After undergoing mutation, the child

individual is depicted below (mutated bits highlighted in bold):

Cm 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 1 1 0 0 0 0 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 1 0

Solving Equation 2.1 for the decoded values (2, 142, 51, 18), this individ-

ual has an error of 409.61, which is a clear step in the right direction since

the goal is to reduce the error to zero, thereby producing a perfect fit. This

individual will have a better chance of being selected to take part in the next

generation so that it may pass on its genetic material to eventually produce

better, fitter progeny.

2.2.3 Using Genetic Programming

In the GA example given in Section 2.2.2, we cheated somewhat by assuming

the existence of some pre-processing step that provides the algorithm with

the necessary functional form of the data-producing phenomenon. Unfortu-

nately, it is often the case that no such method is known for providing this

information, which means that the task of finding the functional form also

becomes part of the problem. The variable-length tree based representation

that is employed by GP makes this task possible. This type of problem is

often studied in the GP literature and is referred to as Symbolic Regres-

sion.

GP Representation

In GP, individuals are (often) represented as tree structures which vary in

shape and size over the duration of the algorithm. The structures are com-

posed of:
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• Terminals: variables, constants and

• Non-terminals: functions or operators

In order to create a valid population of individuals, information about the

number of variables, constants and the set of functions that are available must

be pre-determined. By examining the example dataset given in Section 2.2.1,

we can see that it contains one independent variable, so we add this to the

terminal set so that the information is available to the evolving trees. To

help with the discovery of coefficients, the ephemeral random constant, ℜ
(Koza, 1992) is also added to the terminal set. When trees are randomly

produced at initialisation, this value is used to generate a random constant

value. The choice of functions to employ is left entirely up to the user. For

the sake of this example we are going to use the arithmetic operators {+,

-, *, /}3 With this information at hand, a population of candidate solutions

may be randomly created and evolution proceeds using the process depicted

in Figure 2.1.

A Note on Initialisation

For the creation of individuals, Koza describes two methods, full and grow

(Koza, 1992). Building a GP-tree starts with the selection of a non-terminal.

Individuals generated using the full method have the property that the length

of every path between a leaf node and the root is equal to a pre-specified

maximum depth value. The full method chooses non-terminals for all nodes

at depths less than the maximum depth and completes the tree with terminals

at the maximum depth level. The grow method permits a larger variation

in tree sizes by selecting either terminals or non-terminals for every node

(except the root node) up to a maximum depth value.

Since the solution structure of the problem (or the shape of the target

function) is typically not known in advance, it is important that the initiali-

sation process provides the best platform for the algorithm to start searching

3Using a protected division operator, which returns one when asked to divide anything
by zero.
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from. An initialisation method that combines the full and grow methods

called ramped half-and-half initialisation permits the creation of an equal-

sized sets of trees with depth ranges (from two to the maximum depth) with

half of each set created using the grow method and the other half created

using the full method.

Evaluating an Individual

Let us assume that during the course of the algorithm, the individual G1, as

depicted in Figure 2.3 is produced:

Figure 2.3: A sample GP-tree.

*

* +

- * 2 x

3 x x 2

G 1

To evaluate G1, we first find the set of predicted outcomes by solving

G1 for the independent variables. The results of this operation are shown

in Table 2.3. Calculating the MSE using Equation 2.2 results in the value

5.9184.

Applying Genetic Operators

The application of the genetic operators crossover and mutation in this GP

context is slightly more complicated than the method described in the previ-

ous section and this is mostly due to the structural representation of the GP

individuals. To perform crossover in the GA example, it is sufficient to sim-

ply choose a random point along the length of the individual and exchange

genetic material from the parents about this point. In GP, the crossover
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Table 2.3: Solving G1 for the independent variables (x). The predictions p
are shown beside the actual targets (t).

x t p
0.1 0.3192 1.218
0.2 0.7152 2.464
0.3 1.2492 3.726
0.4 1.9872 4.992
0.5 3.0000 6.250

must respect the tree representation by ensuring that only valid individuals

are produced as a result of the exchange. This property of closure is equally

important for the mutation operator. Returning to the example, Figure 2.4

shows the genetic operators at work.

Note that Figure 2.4 also shows the application of the point-mutation

operator (double-circled node). Computing the MSE for this new tree results

in a value of 1.7720.

2.2.4 Using Grammatical Evolution

We now examine the workings of GE for this example problem. As was the

case with the GP example in Section 2.2.3, no pre-processing step exists for

this method to produce the functional form so the coefficients must also be

discovered. GE works by using a GA as a search engine and mapping binary

strings onto programs with the help of a Backus-Naur Form (BNF) grammar.

A BNF grammar is a syntax used to define the rules for constructing sen-

tences in a formal language. It comprises a set of production rules made from

terminals and non-terminals. Terminals refer top indivisible units of the lan-

guage that do not require further expansion. Non-terminals are symbols that

must be expanded to produce one or more terminals and non-terminals. More

formally, a BNF grammar can be represented as the tuple < N, T, P, S >,

where N is the set of non-terminals, T is the set of terminals, P is a set

of production rules for expanding elements of N and S is the start symbol
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Figure 2.4: Depiction of crossover in GP. The dashed lines show the chosen
crossover points. The child tree is produced by swapping out the subtree
below the dashed line in G1 and inserting the subtree taken from the section
below the dashed line in G2, producing the child tree C.

which must be used to initiate the mapping process.

Representation

Since GE uses a GA as a search engine, the representation used can also

be binary strings. These are converted to strings of integer values prior to

the mapping process. In the GA example of section 2.2.2, a representation

was chosen which is tailored to the problem. With GE, this tailoring is

performed by providing a BNF grammar which defines how solutions can be

constructed. Since the goal of this example is to produce a mathematical

function, we can construct the BNF grammar as follows:
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<expr> ::= <expr> <op> <expr> | <var>

<op> ::= + | - | * | /

<var> ::= x

Mapping Process

The process by which a binary string is converted into a candidate solution

with GE is now described. Assuming a resolution of 8-bits per integer, the

binary string is first converted into a string of integer values so that the pro-

duction rules of the grammar can be indexed. Using the following individual

(with values converted to integers) as an example:

index 0 1 2 3 4 5 6 7

48 29 32 60 33 28 15 46

GE uses modulo arithmetic to index the production options when mapping an

individual. The mapping is started by expanding <expr>, the start symbol.

As shown by the grammar, this symbol has two production options. The

production to use for the expansion is chosen by taking the first integer from

the string (48) and dividing it by the number of options (2 in this case).

The remainder (0) is used to index the chosen production4. This produces

the (unmapped) string <expr> <op> <expr>. To map the next symbol, the

next integer value is taken from the integer string (29). The remainder when

this divided by the production options (4) is 1, which means that the second

production option is chosen. This produces the string <var> <op> <expr>.

Since there is no production option for <var>, a straight substitution can

take place leaving the string x <op> <expr>. This process continues until

the individual is eventually mapped to the solution x + x * x. The whole

process is illustrated in Table 2.4.

The MSE for the mapped individual in this example evaluates to 1.6214.

Note that in this instance, the individual was successfully mapped without

the need to use all of the integers in the string. In the event that the indi-

vidual is still not completely mapped when the end of the integer string is

4Option indexes start at zero.
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Table 2.4: Overview of the GE mapping process.

Symbol Value Mod rule State
<expr> becomes <expr><op><expr> since 48 % 2 = 0 <expr><op><expr>

<expr> becomes x since 29 % 2 = 1 x <op><expr>

<op> becomes + since 32 % 4 = 0 x + <expr>

<expr> becomes <expr><op><expr> since 60 % 2 = 0 x + <expr><op><expr>

<expr> becomes x <op><expr> since 33 % 2 = 1 x + x <op><expr>

<op> becomes * since 28 % 4 = 2 x + x * <expr>

<expr> becomes x since 15 % 2 = 1 x + x * x

reached, the process continues by wrapping back to the start of the string.

If a maximum number of wrapping events has occurred and the individual

is still not mapped, it is assigned a minimal fitness value since it does not

contribute to the overall wellbeing of the population.

Genetic Operators

Since GE uses a GA as a search engine, the genetic operators that are applied

at the genotype level are very much the same as those used in a GA. GE

simply requires a set of integers, a grammar and some way to interpret /

evaluate the solutions that are produced by the mapping process. In a sense,

GE is not concerned about where these numbers come from, as long as they

can be used to produce a fitness improvement with successive generations

(O’Sullivan, 2003).

2.3 Alternative Learning Mechanisms

The ability to construct models from examples and make predictions from

unseen examples is not restricted to the Evolutionary methods described

earlier in this chapter. This section introduces another learner-predictor

method that is used later in this work; Artificial Neural Networks.
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2.3.1 Artificial Neural Networks

Evolutionary algorithms are not alone in borrowing fundamental ideas from

biology. An Artificial Neural Network (ANN) is a model that, at a high level,

simulates a network of nerve cells in an animal central nervous system. The

word “artificial” is important; these models are as far from exact replicas

of biological neural networks as Evolutionary algorithms are from accurate

models of human evolution. More importantly and of significant interest to

this work, is the ability of ANNs to learn, model and predict from observa-

tional data. As will be seen later in Chapter 4, a particular instance of ANN,

the multi-layer perceptron is used as a black-box learner / predictor. In order

to introduce the concepts and terminology that will be used later, a brief

introduction to this class of neural network is given here. Broader sources

of information on this and other classes of ANN can be found elsewhere

(Graupe, 1997; Fausett, 1994; Haykin, 1994).

An ANN can be described as a mathematical model defining an overall

function f(X) = Y where X corresponds so some input value(s) and Y the

output. The fundamental building block of an ANN is the neuron, a simple

computational element that produces a single output from a set of inputs as

shown in Figure 2.5.

A neuron can receive multiple input values, each with an associated weight

value. The neuron’s output is calculated by combining the inputs and the

weights and passing this net input value through an activation function as

shown:

y = f(
∑

xiwi)

A commonly used activation function is the S-shaped sigmoid function, which

has the property of transforming any input into a value between zero and

one.

f(x) = Sg(x) =
1

1 + e−x
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Figure 2.5: A neuron in an artificial neural network. A vector of input values,
X is combined with a vector of weights W , to produce a single output value,
y.

In a multi-layer perceptron network topology (see Figure 2.6), neurons are

grouped into distinct layers. With the exception of the final layer the output

of each layer is connected to input of neurons in the next layer. Inputs of

the first layer are the inputs to the network.

Multi-layer perceptrons are commonly used in classification problems,

whereby the approximation of a some function that maps an input vector X

to one or more classes C1, C2, ..., Cn is performed. An iterative optimisation

of the weights, supervised learning, occurs as training examples are presented

to the function. The weights are then adjusted by an amount proportional

to the error (distance from the network’s guessed value and the actual target

value). These adjustments are sent backwards into the preceding layers in a

process called back-propagation. Repeating this process produces a function

that maps the input vector to the target classes with minimum error and is

then (ideally) able to make accurate classifications of unseen data.

2.4 Summary

This chapter has provided a general introduction Evolutionary Algorithms

together with a set of examples which outline the operation of three sub-
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Figure 2.6: A multi-layer perceptron with one hidden layer used to classify
a four-valued input vector X into one of two classes, C1 or C2.

disciplines, Genetic Algorithms, Genetic Programming and Grammatical

Evolution. The sample problem chosen to illustrate the operation of these

mechanisms was deliberate as it involves the search through a set of potential

models for the best model which describes a set of observations.

Constructing models from observations is described as supervised learn-

ing and is a process also undertaken by alternate learning mechanisms such

Artificial Neural Networks. Since this technique will be employed later in

this work, a gentle introduction to its operation has also been provided.

As stated in Chapter 1, one of the central goals of the research presented

in this thesis is to find a function that best models a set of observations

of musical preferences expressed by a human. In later chapters we will see

how the methods described in this chapter are employed to in an effort to

accomplish this task.
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Chapter 3

Background and Motivation

In the previous chapter, Evolutionary Algorithms were introduced and then

described in the context context of a simple test problem. This chapter will

describe how Evolutionary Algorithms have found application in the creative

arts. It will also provide more details about the motivation for this work,

and give a summary of some related research and other relevant background

theory.

3.1 Genetic Music Composition

The marriage of Evolutionary Algorithms and music composition is by no

means new, and many examples can be found in the literature (Burton &

Vladimirova, 1999). The fundamental difference between the application of

EAs to an engineering problem and a music composition problem lies in how

the candidate solutions are evaluated. Typically, in the former case, an ob-

jective function exists that can help to guide the search for ideal solutions

towards fitter states. This function can be formally defined and integrated

into the evolutionary process. In the latter case, there does not exist a uni-

versally acceptable fitness function describing the “pleasantness” of a musical

piece: fitness allocation is a subjective task and must be left to the user of

the evolutionary system. Such systems are called Interactive Evolutionary
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Algorithms (IEAs), and suffer from what has been referred as a “fitness bot-

tleneck” (Biles, 1994): the evolutionary loop can only progress as fast as its

slowest component, which, in cases like this, is a human.

3.1.1 GenJam

GenJam (Biles, 1994), short for Genetic Jammer, is an evolutionary system

for the creation of jazz melodies. One of the aims of the system was to mimic

the learning process of a novice musician while sitting in on “jam sessions”,

improvising fitting musical phrases and taking the feedback of it’s peers as a

judgement of the quality of what was played.

The system evolves two populations of measures (short musical sequences)

and phrases (sequences of measures) guided by a user-allocated fitness score.

GenJam runs in three modes: learning, breeding and demo. The first two

modes are used as preparation for the third. In learning mode, phrases are

evaluated for fitness by a human mentor. In this mode, only tournament

selection is used, which allows the population to grow to a set of usable mea-

sures and phrases. Breeding mode then involves the use of genetic operators

to combine the musical ideas formed in learning mode. Finally, demo mode

is used for live performance of the system and simply employs tournament

selection on bred individuals.

Regarding the process of fitness assignment, Biles makes the point that a

fitness function clearly exists, although possibly not in an easily expressible

algorithmic form. For this reason, he chooses himself as the fitness function

since his brain contains the most qualified implementation of the ‘I know

what I like’ algorithm.

3.1.2 The GP-Music System

The GP-Music system (Johanson & Poli, 1998) allows the evolution of short

musical phrases using interactive GP. Musical phrases take the form of short
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melodic sequences without polyphony1. The sequences evolved by the system

consist of notes and pauses (rests).

The system used was an extension of the lil-gp (Zongker & Punch, 1996)

incorporating music-specific functions and terminals. Terminals used in-

cluded notes, pseudo-chords (sequences of notes belonging to a specific chord

played in sequence) and a ‘rest’ terminal for pauses. The function set included

functions for concatenating sequences, adding pauses to sequences and trans-

posing2 sequences among others. It is claimed that this GP approach is more

flexible than related GA approaches due to its ability to generate variable

length sequences.

Fitness evaluation is carried out by a human evaluator through the use

of a list interface displaying the current generation whereby individuals are

assigned a fitness value ranging from 1-100. An interesting feature of the

system is that the human-allocated fitness scores of sequences are “locked

in” if they pass unchanged from one generation to the next. It is fair to

assume that inconsistent scores for the same sequence could arise due to the

continuously changing context of that sequence. Hence, locking in fitness

scores forces consistency to be maintained.

To address the fitness bottleneck issue, the GP-Music system was ex-

tended using a neural network as a “automated fitness rater”. The idea is

that after a short run of user-rated sequences, a neural network trained on the

user’s data would then stand in as the fitness function for longer (yet faster)

runs of the system. Unfortunately, it was found that while the auto-rater did

pick up an ability to evolve “interesting, and pleasant” musical sequences, it

could not do so in a consistent manner.

1No notes are sounded simultaneously.
2Moving each note in the sequence to a new key.
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3.2 State of the Art

Burton and Vladimirova (Burton & Vladimirova, 1999) carried out an ex-

tensive survey of the state of the art in evolutionary music composition tech-

niques, the main points of which follow.

A general term for automatic music generation is “algorithmic composi-

tion”. Compositions constructed by computational means range from short

musical phrases to themes to whole pieces, and many artificial techniques

have been considered for this seemingly human-specific task. Examples in-

clude

• Artificial Neural Networks to generate musical fragments based on rep-

resentative training data.

• Expert Systems that employ rule bases from music theory for music

generation.

• Models of physical processes (Harley, 2004).

• Applications that deduce musical phrases from random events (for ex-

ample, fractals, DNA and cosmic noise).

It can be argued that the above methods have some in-built limitations

that can be overcome by the use of evolutionary techniques. One reason

for this argument is the blindness of Evolutionary Algorithms: no explicit

domain knowledge is needed for such systems to operate, unlike the methods

listed. All that is needed by an EA is a quality metric to assess the worth of

candidate solutions.

According to Burton and Vladimirova (Burton & Vladimirova, 1999),

three important considerations should be taken on before applying an EA to

a music composition task:

• The search space: For music composition problems, the potential

search space of possible solutions is unthinkably vast (we will examine
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this in more detail in section 5.2.1). In many cases it may be necessary

to limit the duration, polyphony or key of the potential musical pieces.

• The representation: The format of the genetic material making up

the evolving candidates can greatly affect the observed solutions. For

example, perhaps a fixed-length, fixed-polyphony model is more appro-

priate than a variable-length, variable-polyphony model depending on

the desired output. This is an important consideration for all EAs, not

just interactive EAs.

• The fitness function: As with any EA, the choice of appropriate

fitness function is critical. The fundamental difference between the

application of EAs to engineering problems and a music composition

problems lies in how the candidate solutions are evaluated. Typically,

in the former case, an objective function exists that can help to guide

the search for ideal solutions towards fitter states. This function can

be formally defined and integrated into the evolutionary process. In

the latter case, there is no such fitness function (due to the subjective

biases of humans) although many music-theoretic formalisms exist to

define structure (such as harmony). Typically, fitness allocation is a

subjective task and is therefore left to the user of the evolutionary

system. We will discuss this in more detail in the following sections.

In the work presented in this thesis, representation plays a crucial role

since it is used as the input to the model discovery process employed by

artificial methods. The choice of representation has an immediate bearing

on the size of the search space of possible solutions and therefore influences

the difficulty of the model discovery task.

Deterministic Fitness Functions

Deterministic fitness functions tend to use some mathematical relationship

to assign fitness to musical pieces. This relationship comprises a function

of the encoding of individuals representing the pieces, such as the degree of
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similarity to a pre-existing, desirable pattern. This can be viewed as a form

of improvisation on a theme, which is an important aspect of music creation

that can bring together small musical ideas to form larger musical compo-

sitions. Rally (Ralley, 1995) combined deterministic fitness functions with

user-allocated scores in his melodic development system. Previous work by

Horner and Goldberg (Horner & Goldberg, 1991) used deterministic fitness

functions for Thematic Bridging; this is the process by which one musical

segment is transformed into another over a period of time. Metrics used in

this system included a measure of similarity between a generated note pat-

tern and a desired pattern and a measure of similarity of duration between

two patterns.

A limitation of deterministic fitness functions is that they are very problem-

specific and therefore difficult to generalise to other classes of automated

music creation tasks. In the context of evolution this can be quite a serious

constraint as it has the potential to “lock out” individuals that are musically

valid (and may even contain some useful building blocks), but that do not

conform to the rules specified by the fitness function.

Formalistic Fitness Functions

Since music can be described using mathematical concepts, it seems only

natural to try to combine some of these concepts into a function for evalu-

ating solution quality. The rules of harmony, for example can quite simply

be encoded into a fitness function that is devoid of any subjectivity, which

is a desirable characteristic to have if we are interested in processing a large

amount of potential solutions within a suitable time-frame. McIntyre (McIn-

tyre, 1994) devised a system for the evolution of Baroque harmony using a

multi-tiered formalistic fitness function. Other researchers (Horowitz, 1994;

Ralley, 1995; Thywissen, 1999) created similar systems in terms of fitness

allocation: they employ a balance of user-defined measures of formalistic fit-

ness functions. In this way, the importance of certain characteristics can be

evolved to the user’s taste yet evolution can still proceed at a steady pace.
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Werner & Todd’s (co-evolution) system cuts (Werner & Todd, 1997) out the

user completely and considers two co-evolving populations: a (male) set of

singers and a (female) set of evaluators, likened to songbirds. Note that

this scheme used sexual selection as opposed to natural selection in that the

individuals evolve to suit each other rather than behave optimally in some

user-defined environment.

User-determined Fitness Functions

The most intuitive form of fitness function to use for this type of task is to use

a human evaluator. Human subjects don’t need to be able to judge musical

pieces based on formal or music-theoretical grounds; rather, they just need

to be able to allocate a score to a given musical piece. Biles’ GenJam system

(Biles, 1994) is probably one of the most famous examples of this type of

system. Obviously, the “fitness bottleneck” (as Biles coined it) is the most

significant drawback among systems using user-determined fitness functions

since the speed of human evaluation is by far the slowest component in the

overall process.

Neural Fitness Functions

In a similar manner to the Automated Fitness Rater described in section

3.1.2 other examples can be found in the literature which aim to to combat

the bottleneck. The idea is to train Artificial Neural Networks to participate

either in place of or as part of fitness functions. In work carried out by Gibson

and Byrne (Gibson & Byrne, 1991), the authors used an ANN to classify 4-

beat rhythms using examples from pre-classified training examples. Biles

(Biles et al. , 1996) later attempted an admittedly less successful system

using an ANN as a replacement for the user.

Conclusions

One of Burton and Vladimirova’s main conclusions (which remains valid to-

day) is that the fitness bottleneck involved with interactive, genetic music
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composition systems creates the most significant drawback, mostly due to

the sequential nature of fitness evaluation. The high degree of subjectiv-

ity involved with musical taste leads to difficulties with the realization of a

general-purpose, please-all music creation system. Bypassing the bottleneck

via neural networks appears to be only as effective as the training set used

is representative.

A Note on Training Data

In many of the examples that have been cited so far, most training sets used

come from what experts consider to be “good” and “bad” rather than what

an average person would consider to be good, bad or otherwise. One of the

contributions of the work presented in this research is a method for learning

users musical tastes from their own input, rather than assuming that they

reside in some training set of popular examples agreed upon by music domain

experts.

3.2.1 Artificial Art Critics

Recent work by Machado et al. (Machado et al. , 2004) has laid the claim that

artificial artists must first be able to perform simple aesthetic judgements (as

this is a fundamental task among human artists) before they can be used to

guide the evolutionary process. In earlier work (Machado et al. , 2003), a

general framework is proposed for the development of Artificial Art Critics

(AACs), the first stages of which involve author identification tasks. The

authors use a “bottom-up” methodology to give their overall system a solid

foundation based on a logical question: if AACs cannot learn to tell the

differences in styles between different artists, how could they then be used for

more sophisticated tasks? They therefore focus on this task for the musical

and visual arts (2D images) domain.

The AACs are made up from two modules, a feature extractor and an

evaluator. Depending on the domain, the feature extractor is used to reduce

the raw input data (MIDI for music, pixels for images) to a set of useful
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measures, which can then be used as input to the evaluator. The evaluator

is made up from a multi-layer perceptron (MLP), which, when trained on a

subset of input features, can learn to distinguish between authors (composers

/ artists) with a high success rate.

Feature Extraction

In work carried out by Manaris et al. (Manaris et al. , 2003), it was found that

a particular mathematical / socio-economical distribution described by Zipf’s

Law (Zipf, 1949) describes patterns that can be found in several phenomena

including music. By utilising these observations, the authors were able to

produce a feature extractor. For example, in the case of the musical domain,

a given musical piece can be analysed with a particular metric in mind (such

as pitch), which is plotted on a log-log, frequency-rank format. If the slope

of the plotted trendline produced is -1, then the pitch metric follows a Zipf

distribution. The R2 goodness-of-fit correlation of the trendline produced

can then also be used as an indication of how close the metric is to an actual

Zipf distribution. For the musical domain, the authors considered forty of

these metrics (with each producing two real-values, slope and goodness-of-

fit) and the number of notes in the musical piece being analysed, producing

81 features in total.

For the visual arts domain, the feature extractor used is based on the

idea that image complexity is important when assessing images aesthetically.

The authors use two types of complexity estimates for their feature extractor:

jpeg and fractal compression. The complexity of a given image is calculated

as the ratio between root mean square error resulting from its compression

and the compression rate. In total, 198 metrics are generated in this manner

by partitioning the image and splitting it into hue, saturation and lightness

channels. For each channel, they also calculate the average, standard devi-

ation, slope of the trendline of the Zipf distribution and the mean squared

error.
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Evaluation

The evaluator is the second module of the AAC, this takes the form of a multi-

layer perceptron trained on the features extracted from a body of artists and

subsequently tested to distinguish between them. The input layer of the

network contains as many neurons as there are outputs from the feature

extractor (normalised to values between -1 and 1). One hidden layer of

hidden neurons was used, with 6 and 12 neurons producing the best results.

The number of neurons in the output layer is equal to the number of authors

considered in the test (except for Bach vs. the rest). The network was trained

using standard backpropagation using a learning rate of 0.2 and the logistic

function as the activation function.

Results

Results from the musical domain showed that the evaluator could very suc-

cessfully distinguish between composers from the same and from different

musical periods. The study used a total of 741 scores from the composers

Bach, Chopin, Debussy, Purcell and Scarlatti. Interestingly, better results

were obtained when using lower values for the number of training cycles. An

attempt was also made to reduce the number of input neurons by assessing

the contribution of each input metric. This is achieved by calculating the

sum of the absolute values of the weights between each input neuron and

the neurons of the hidden layer. Experiments were then re-run using the

top 30 and 15 metrics as inputs. Results obtained indicated that 30 inputs

were sufficient for the discrimination between five composers and a further

reduction to 15 inputs still maintained a relatively high success rate.

The authors claim that analysis of the overall results from the musical

domain reveals their AAC to be coherent with the results that could be

expected from a human, although no empirical evidence is given to support

this claim.

Results from the visual arts domain were comparable to those from the

musical domain, even when the number of inputs was reduced. Interestingly,
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the authors observed some increases in testing performance when certain

input measures were removed. Overall, the experiments were successful,

although (as admitted by the authors) the task represents the first step on a

long road to the realisation of true artificial artists.

Subsequent work by the same team (Manaris et al. , 2005) involved the

incorporation of musical features extracted using Zipf’s law for as a basis

for the construction of fitness functions that describe pleasant music. Their

initial experiment indicates that the notions of pleasantness as expressed

by humans can be modelled to some degree using the extracted features.

The authors have also proposed the development of a fully automated music

creation system which incorporates this functionality.

3.2.2 Machine Learning Subjective Preferences

Although not directly applied to the musical domain (however directly re-

lated), some interesting research has been carried out by Machwe and Parmee

(Machwe & Parmee, 2006) on the use of machine learning techniques for

the discovery of design preferences. In an Interactive Evolutionary system

for exploring bridge designs, the authors examined the use of Case Based

Reasoning (CBR) for automatically ranking (a subset of) the population of

designs at each generation. To measure the effectiveness of the CBR system,

the authors measured the amount of adjustments that the (human) user

made to the machine-produced rankings. Results obtained from this study

showed that the number of user-adjustments decreased over the course of the

run, which is a good indication of how well the machine learning system is

performing its task.

These results show lots of promise. However it is unclear from the study

how many human users were used to produce the results. Also, if the goal is

to produce a model that can effectively stand in for the human user, it would

be instructive to attain a measure of the predictive power of the approach.

This could be achieved by halting learning at a specific generation and then

measuring the accuracy of the generated model on subsequent generations.
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3.3 Summary

This chapter has given an introduction to the application of Evolutionary

Algorithms in the musical domain. We have seen how the (mostly) neces-

sary human evaluator the biggest obstacle to the otherwise speedy process

of artificial evolution. In a recent paper by Jon McCormack (McCormack,

2005), this forms the basis for an open problem in evolutionary music and

art, namely “The Problem of Aesthetic Selection”. The problem is reprinted

here as follows:

To devise formalised fitness functions that are capable of measur-

ing human aesthetic properties of phenotypes. These functions

must be machine representable and practically computable.

This task of solving this problem remains the primary focus of the research

described in this thesis.
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Chapter 4

Proof of Concept

The previous chapters have introduced the concepts of Artificial Evolution

and also described relevant research combining these ideas with those of

algorithmic composition and other areas within the field of Computer Music

research. The problem of aesthetic selection (as described at the end of

Chapter 3) remains an important open question in the field of Evolutionary

Music and Art.

4.1 Hypothesis and Goals

The goal of the research described in this chapter is to show that the answer

to this question may also be found in Artificial Evolution. It is the intention

to show that the task of modelling the subjective fitness functions of human

users is achievable. Moreover, Genetic Programming is a suitable tool for

this task.

Automatically discovering subjective human fitness functions in an Inter-

active Evolutionary context first requires a suitable problem of study. To best

perform such a study, a system with the following components is necessary:

1. Candidate solutions suitable for subjective evaluation

2. A solution structure that can be accurately represented in an Evolu-

tionary Algorithm
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3. An interactive mechanism for human-allocated fitness assignment

4. A descriptive record of the decisions made by a human user

With these in place, the solution structures together with the choices

made over the course of an Interactive Evolutionary run may be retained for

subsequent analysis.

This chapter describes the implementation of two evolutionary systems

for producing pleasing musical compositions. In both cases, the systems

employ a Genetic Algorithm to produce the musical segment which undergoes

evaluation by a human user. Genetic Programming is then used to analyse

the preferences made by the human users, using data gathered during the

course of the evolutionary runs of the system.

As seen in Chapter 3, the use of GAs for musical composition is by no

means new (Biles, 1994; Johanson & Poli, 1998; Burton & Vladimirova,

1999). What is novel about the research described in this chapter is the fur-

ther use of artificial evolution (GP) to produce models of human preferences

used during the GA evolution.

4.2 Evolving Rhythms: The DrumGA

The problem of evolving pleasing drum rhythms was chosen due to the fact

that simple rhythms are relatively easy to represent using a Genetic Algo-

rithm, yet there can also exist a large amount of variety (and thus quality)

in the candidate solutions produced.

The DrumGA system, a java-based Interactive Evolutionary drum rhythm

generator was created to meet the requirements set out at the start of this

section (a screen-shot is shown in Figure 4.1).

The DrumGA breeds a population of simple drum patterns towards fitter

states through the use of a human-guided fitness function. An initial pop-

ulation of 12 drum patterns is created and presented to the user, who then

listens to each pattern and allocates a score, particular to his or her taste.
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Once all individuals have been rated, the user proceeds to the next genera-

tion and repeats the process with an evolved set of patterns. This process

continues until the user is satisfied with the quality of the patterns created.

Figure 4.1: A screen-shot of the DrumGA system, which was developed for
the user-guided evolution of simple drum rhythms. An evolving population
of 12 candidates is displayed as a palette on the screen, each with its own
playback and fitness allocation controls. A user listens to a candidate drum
rhythm by clicking the play button and allocates a fitness score using the
slider. Once all individuals have been evaluated, the user clicks the next
button to proceed to the next generation. Initialisation settings are also
shown on the right hand side of the screen.

4.2.1 Representation and Initialisation

The mechanism behind the DrumGA is a simple genetic algorithm (Goldberg,

1989) using fitness proportionate selection, 1-point crossover and bitwise mu-

tation. Each drum pattern is represented as an 80 bit binary string, which

is transformed into a sequence of MIDI events ((MMA), 1996) that can be

sounded using a drum machine or software synthesizer1. An example drum

pattern created from a bitstring is shown in Figure 4.2; each of the five 16-bit

segments making up an individual are transformed into 16 “ticks” of a drum

pattern for a specific instrument. Each set of 16 ticks can be thought of as

1The synthesizers used here were the deluxe soundbank provided with the Java Runtime
Environment, and a Roland TD8 Sound Percussion Module.
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a bar in musical terms; by default, four bars (iterations) of each pattern are

played back to the user for evaluation.

bass drum

snare drum

closed HH

open HH

ride

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

bass drum snare drum closed HH open HH ride

1000000010000000 0000100000001000 101010101010101000000000000000000000000000000000

0 79

Figure 4.2: Individuals are broken into five 16-bit segments and transformed
to midi events that can be sounded by the synthesizer. The lower part
of the figure shows a “piano-roll” representation of a simple drum pattern.
This representation shows how musical notes (or drum sounds, in this case)
are sounded over a time period. Users of the DrumGA have the option
to introduce their own changes to evolving patterns through a piano-roll
interface.

The initialisation process imposes a certain degree of order on each mem-

ber of the population. In the initial generation, each pattern has:

• either ride cymbals or closed hi-hats on every tick or every second tick

• open hi-hat cymbals only sounding before snare drum sounds

• all other events randomly created

With most drum patterns across a vast range of styles of popular music,

the defining characteristics tend to centre on the placement of the snare,

bass drum and (to a lesser extent) open hi-hat sounds, while the closed hi-

hat and ride cymbals are usually used to give patterns a continuous feel.

The purpose of the initialisation used here is to jump-start the evolutionary

process so that all patterns start out with this continuous feel built in. It can

also be viewed as a time saving measure; with all events created at random,

it can take a significantly larger number of evaluations to get patterns to

sound like actual drum beats. After initialisation, however, evolution is free
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to take patterns in any direction, guided by the user, so if irregular patterns

are preferred, they can easily come about.

Fatigued Distraction

With human users acting as fitness functions in an Interactive Evolutionary

system, over time, the process becomes increasingly tiresome. This makes

the task of judging individuals more and more difficult, which can then lead

to inconsistent decisions on fitness. We term this state “fatigued distraction”

and identify it as a potential barrier to the process of creating accurate models

of human decisions. Against this effect and in the context of experimentation

described later in this chapter, time is costly and the best possible use of

it must be made. Jump-starting the initialisation process in the manner

described above is therefore argued to be a worthwhile defence against this

seemingly inevitable human condition.

4.2.2 Clone Replacement

Early experiments with the DrumGA settings indicated that the system was

suffering from premature convergence, as the population quickly became sat-

urated with a single pattern, or a set of almost identical patterns. In an effort

to deter this from happening, and to give users more freedom to explore the

space of possible patterns, the DrumGA was extended to incorporate a clone-

replacement strategy. After selection, crossover and mutation, each pattern

in the population is assigned a checksum value based on the positions and

counts of the events it contains. Individuals with identical checksums are

then tested for equality and clones removed, for example if a group of n

identical individuals is found within the population, n − 1 of these are re-

placed with freshly created patterns (using the initialisation rules) before

being presented to the user as part of the next generation.
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4.2.3 Data Collection

As users proceed from one generation to the next, a record of the genetic

makeup of each pattern and the score allocated to it is kept in a history file.

Later we will see how the history data from users is used as input to a GP

system for symbolic regression.

4.3 Experimental Setup

This section describes how data from user runs of the DrumGA was collected

from human evaluators and subsequently analysed using GP.

4.3.1 Obtaining the data

Unlike many experiments involving Evolutionary Algorithms where a batch

of runs can be set off on a computer and left unsupervised until they are

completed with the results neatly tabulated, the experiments carried out here

relied on the input of human evaluators. Since no well established dataset

for this type of study was publicly available, it was necessary to gather a

dataset for experimental purposes. Nineteen subjects2 were each given one

hour in which to carry out three tasks: complete a questionnaire, perform a

Triangle (odd-one-out) test and finally, perform the DrumGA run. Note that

in many studies involving human subjects and computers, typical figures for

the number of participants are quite low and it is often acceptable to use four

or five subjects for experimental purposes (von Mayrhauser & Vans, 1995).

The questionnaire asked for the following details from the subjects:

• age and gender

• if they would consider their hearing to be normal

• if they are musicians, if so, what level (novice, intermediate, expert)

2All subjects were graduate students from either a Music Technology or Interactive
Media course, and paid for their time rather than the quantity and/or quality of data
they produced.
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Table 4.1: Summary of the Triangle test results and amount of DrumGA
history data gathered from 19 subjects.

Subject Triangle Test DrumGA

#evals, score #gens

1 6, 1.0 9
2 7, 0.86 7
3 7, 1.0 11
4 9, 1.0 13
5 10, 0.78 12
6 7, 1.0 13
7 7, 0.71 6
8 7, 0.71 9
9 6, 0.67 12
10 7, 0.71 12
11 8, 0.75 8
12 7, 0.57 12
13 7, 0.57 10
14 7, 0.57 12
15 0, ? 16
16 0, ? 12
17 8, 0.5 16
18 3, 0.67 19
19 6, 0.5 10
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• level of knowledge of music theory (on a scale of 1–5)

• favourite radio station

• preferred style of music

The purpose of the Triangle3 test was to establish each subject’s ability

to tell the difference between similar patterns. For each trial of the test,

the subject listened to three drum patterns, two identical and one slightly

different and was then asked to choose the odd-one-out. The odd-one-out in

each trial of this test differs to the other two by one bit in each 16-bit segment.

All subjects were given the same set of patterns for this test, although the

location of the odd-one-out was different for each user to prevent subjects

from collaborating on the answers. Subjects were given approximately 10

minutes to carry out a maximum of ten trials.

With the remaining time in the session, subjects were then presented

with the DrumGA and asked to perform one run of as many generations as

was comfortably possible. A summary of the data collected from the above

experiments is given in Table 4.1. It is worth noting that working with human

subjects almost always means that something unforeseen will happen. For

example, it was hoped that all subjects would carry out the Triangle test,

and evaluate fifteen generations worth of drum patterns at the very least,

but, unfortunately, two subjects were either unable or unwilling to do the

test, and very few managed to get past fifteen generations.

4.3.2 Analysing the data

The results from the Triangle test were used to split the subjects into four

groups as follows:

• Those that performed 6 or more evaluations and achieved a score

greater than 0.75 (Group 1)

3Similarly to that carried out in (Truong, 2002)
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• Those that performed 6 or more evaluations and scored between 0.55

and 0.75 (Group 2)

• Those whose results from the test were unknown (Group 3)

• Others, who either scored less than 0.55 or performed less than 6 eval-

uations (Group 4)

The following experiments will only deal with members of groups 1 and

2 as these are the subjects that it is felt are most likely to give consistent

results. Furthermore, we know the least about groups 3 and 4, making it

difficult to draw conclusions about how GP fares at learning their functions.

Analysis of the history data gathered from each subject focused on the

last four generations; of these four, the first three generations were used for

training with the final generation used for testing. Tests were performed on

both raw and filtered history data.

The raw data was created by taking each boolean value from the 80 bit

segment representing a pattern and converting each bit into a numerical value

(0.0 or 1.0). For training, 36 cases of 80 variables and 1 target were used.

Testing data (the final generation) consisted of 12 cases.

Domain-specific filters were designed and applied to the history files to

reduce the number of input variables to 7 using:

• Average distance between closed hi-hat events (x1).

• Average distance between ride cymbal events (x2)

• Number of bass drum events (x3)

• Distance between first and last bass drum events (x4)

• Number of snare drum events (x5)

• Distance between first and last snare drum events (x6)
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• Proportion of “correct” open hi-hat events4 (x7)

Variables x1 and x2 are used to give an indication of the level of continuity

within a pattern, while variables x3 through x6 focus the bass and snare drum

events, which we regard as the defining characteristics of the patterns. The

number of such events coupled with the distance between first and last events

helps to give an idea of the level of clutter within each pattern. The last

variable gives a measure of correctness of the open hi-hat cymbal events; in

general these events immediately precede snare drum events across a variety

of music styles.

As with the raw data, filtered training data consisted of 36 cases with 12

cases used for testing.

Symbolic Regression

Due to the subjective nature of human fitness functions, we can make no as-

sumptions about their functional form. Symbolic Regression with GP seems

an appropriate data-mining technique for the task, as it allows a flexible

interaction between the input variables.

The experiments carried out used a fast GP system for symbolic regression

that uses interval arithmetic and linear scaling (Keijzer, 2003). The system

employs a steady state algorithm, tournament selection, subtree crossover

and node and branch mutation. Replacement is carried out via an inverse

tournament. For each dataset, 30 runs were carried out using varying num-

bers of generations from 10 to 200. Training performance is calculated using

Mean Squared Error:

MSE(t, p) =
1

N

N
∑

i

(t − p)2 (4.1)

Where t and p are vectors of actual targets and predicted values respectively.

A summary of the experimental settings is given in Table 4.2.

4A correct open hi-hat event is judged (by this function) to be one which occurs one
tick before a snare drum event, as is commonly found in most drum patterns.
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Table 4.2: Experimental settings used for Symbolic Regression analysis of
the data gathered during the DrumGA experiments.

Generations 10 – 200
Crossover rate 1.0
Mutation rate 1.0 (either a single node or branch)
Tournament size 3
Function set 1 {+,−, ∗, /}
Function set 2 {+,−, ∗, /, x2,

√
x, exp(x), ln(x), sin(x), cos(x)}

Terminal set 1 Raw inputs and ERC, {x1, .. , x80, ℜ}
Terminal set 2 Filtered inputs and ERC, {x1, .. , x7, ℜ}
Raw fitness MSE(targets, predictions)

Testing Performance

After each run on the training data the best of run is applied to the testing

data. The actual fitness score, t is classified, as either bad (0 ≤ t < 3),

okay (3 ≤ t < 7) or good (7 ≤ t ≤ 10) as is the predicted score, p. The

performance measure, S, is then calculated as the proportion of successful

classifications.

For each data set, two variations of parametric settings were applied. The

first used a restricted function set consisting of {+,−, ∗, /} only, and the sec-

ond used a larger set of functions, {+,−, ∗, /, x2,
√

x, exp(x), ln(x), sin(x), cos(x)}.
Crossover was applied at a rate 100% and children created always underwent

either node or branch mutation.

Random Choice

As a baseline for establishing if the GP-generated models are doing more than

simply guessing randomly, the results that follow compare the GP scores with

those that would be expected by a simple Random Choice method. Based

on the ranges of values defining bad, okay and good, the probability that a

random guess method matches the actual target value as chosen by the user

is approximately 0.339. This value is used in a Null Hypothesis Significance

Test (with alpha level 0.05) to indicate if the performance of a GP-generated
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model is significantly better than a wild guess.

4.4 Results

Results from the symbolic regression experiments on the raw data are shown

in Tables 4.3 and 4.4, while Tables 4.5 and 4.6 show the corresponding results

from experiments on the filtered data.

Overall, we can see that GP does appear to have the capability to learn

the fitness functions, although there is room for improvement in certain cases.

All tables show that the GP results are significant except in three out of the

fifty six cases shown, which is a very positive result.

Statistical tests comparing the use of raw and filtered data reveals no

significant difference between the two sets of results. A further comparison

between the experiments using a restricted and larger function set also show

no significant difference.

4.4.1 Conclusions

The results show that GP appears capable of performing meaningful symbolic

regression on real and extremely noisy data. This is pleasing, if somewhat

surprising; however the results also show cases where the GP-induced models

perform quite poorly. This is especially disappointing in cases where the

history data is taken from a subject with a high score in the odd-one-out

test.

Nevertheless, the GP scores do compare favourably with those of the

Random Choice predictor, suggesting that GP is doing more than simply

taking a blind guess at the DrumGA user’s choice.

What can be said for certain about the results above is that there is

definitely room for more experimentation; we have cases where good models

of human preferences are generated by GP, which is an excellent basis for

further research. If it were the case that all models produced very poor

results, it would be safe to close off this avenue of investigation. Given that
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Table 4.3: Results from symbolic regression on the raw data with function set {+,-,*,/}. The mean test performance
and standard error (calculated from 30 runs) achieved on each subject’s history file sampled at 10, 20, 50, 100, 150
and 200 generations is shown. The table shows the best score found over all runs and also reports whether the best
GP result achieved is significantly superior to that which would be expected from a method taking random guesses.

Generation
10 20 50 100 150 200 Best Significant P-value

Mean Std Err Mean Std Err Mean Std Err Mean Std Err Mean Std Err Mean Std Err (30 runs)
01 0.6917 0.0175 0.7139 0.0190 0.6722 0.0203 0.6528 0.0212 0.6139 0.0198 0.6139 0.0209 0.9167 YES 2.47E-018
02 0.7278 0.0149 0.6861 0.0186 0.5944 0.0298 0.5444 0.0225 0.5306 0.0238 0.5194 0.0225 0.8333 YES 1.12E-021
03 0.4556 0.0125 0.4389 0.0207 0.4250 0.0197 0.3833 0.0194 0.3389 0.0215 0.3556 0.0174 0.5833 YES 2.96E-010
04 0.5389 0.0182 0.5361 0.0142 0.5389 0.0158 0.5528 0.0185 0.5528 0.0181 0.5556 0.0171 0.7500 YES 2.45E-013
05 0.5417 0.0168 0.4944 0.0183 0.4250 0.0205 0.4167 0.0230 0.4000 0.0227 0.4000 0.0205 0.7500 YES 8.36E-013
06 0.6972 0.0123 0.7250 0.0161 0.8028 0.0176 0.7583 0.0162 0.7750 0.0127 0.7778 0.0135 1.0000 YES 8.79E-022
07 0.6250 0.0164 0.6472 0.0173 0.6139 0.0206 0.6139 0.0209 0.6333 0.0242 0.6278 0.0210 0.8333 YES 3.51E-017
08 0.4306 0.0288 0.4417 0.0250 0.4389 0.0219 0.4694 0.0213 0.4833 0.0231 0.4583 0.0236 0.7500 YES 8.03E-007
09 0.6417 0.0150 0.6222 0.0191 0.6500 0.0213 0.6667 0.0165 0.6472 0.0137 0.6306 0.0199 0.9167 YES 1.91E-018
10 0.7361 0.0223 0.7222 0.0185 0.6778 0.0229 0.6306 0.0214 0.6167 0.0242 0.6194 0.0232 0.9167 YES 3.62E-017
11 0.9139 0.0028 0.9000 0.0062 0.9028 0.0058 0.8778 0.0087 0.8694 0.0086 0.8806 0.0077 0.9167 YES 1.61E-047
12 0.5083 0.0241 0.5194 0.0221 0.5222 0.0207 0.5111 0.0222 0.5111 0.0222 0.5056 0.0233 0.7500 YES 1.01E-009
13 0.3306 0.0217 0.2944 0.0191 0.2750 0.0196 0.2972 0.0255 0.2944 0.0235 0.2722 0.0211 0.6667 NO 7.00E-001
14 0.4000 0.0185 0.3861 0.0251 0.3194 0.0208 0.2722 0.0236 0.2639 0.0253 0.2389 0.0249 0.5833 YES 2.57E-003
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Table 4.4: Results from symbolic regression on the raw data with function set
{+,−, ∗, /, x2,

√
x, exp(x), ln(x), sin(x), cos(x)}. The mean test performance and standard error (calculated

from 30 runs) achieved on each subject’s history file sampled at 10, 20, 50, 100, 150 and 200 generations is
shown. The table shows the best score found over all runs and also reports whether the best GP result achieved is
significantly superior to that which would be expected from a method taking random guesses.

Generation
10 20 50 100 150 200 Best Significant P-value

Mean Std Err Mean Std Err Mean Std Err Mean Std Err Mean Std Err Mean Std Err (30 runs)
01 0.7306 0.0148 0.8028 0.0141 0.7611 0.0125 0.6972 0.0176 0.6750 0.0234 0.6889 0.0164 0.9167 YES 1.70E-024
02 0.7611 0.0111 0.7361 0.0183 0.6222 0.0207 0.5389 0.0199 0.5139 0.0196 0.5000 0.0155 0.8333 YES 2.75E-026
03 0.4194 0.0129 0.3722 0.0163 0.3222 0.0225 0.3028 0.0248 0.2806 0.0176 0.2917 0.0225 0.5833 YES 8.77E-007
04 0.4806 0.0124 0.4889 0.0104 0.5528 0.0123 0.5750 0.0176 0.5972 0.0145 0.5972 0.0150 0.7500 YES 9.06E-017
05 0.5472 0.0124 0.4972 0.0224 0.4444 0.0209 0.4111 0.0222 0.4000 0.0201 0.3833 0.0228 0.7500 YES 1.90E-016
06 0.6806 0.0070 0.7306 0.0190 0.7417 0.0129 0.7306 0.0111 0.7278 0.0126 0.7111 0.0153 1.0000 YES 6.50E-024
07 0.6194 0.0202 0.6861 0.0182 0.6861 0.0173 0.6750 0.0197 0.6667 0.0196 0.6611 0.0191 0.8333 YES 5.68E-018
08 0.3083 0.0179 0.3250 0.0205 0.4167 0.0233 0.4111 0.0249 0.4139 0.0209 0.4056 0.0207 0.5833 YES 2.35E-003
09 0.6194 0.0137 0.6028 0.0186 0.6333 0.0217 0.6278 0.0182 0.6528 0.0175 0.6472 0.0190 0.9167 YES 2.89E-017
10 0.7556 0.0215 0.6806 0.0183 0.5583 0.0175 0.5806 0.0194 0.6000 0.0217 0.5972 0.0200 1.0000 YES 3.84E-018
11 0.9167 0.0000 0.9139 0.0028 0.8861 0.0085 0.8833 0.0076 0.8694 0.0077 0.8750 0.0077 0.9167 YES 0.00E+000
12 0.5556 0.0330 0.5222 0.0195 0.5333 0.0130 0.5056 0.0211 0.4889 0.0229 0.4833 0.0269 0.8333 YES 3.50E-007
13 0.2889 0.0153 0.2667 0.0152 0.2694 0.0148 0.2917 0.0153 0.3028 0.0198 0.2806 0.0202 0.5000 NO 7.72E-002
14 0.4056 0.0104 0.3694 0.0182 0.3417 0.0224 0.2778 0.0166 0.2639 0.0183 0.2806 0.0206 0.5833 YES 5.07E-007
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Table 4.5: Results from symbolic regression on the filtered data with function set {+,-,*,/}. The mean test perfor-
mance and standard error (calculated from 30 runs) achieved on each subject’s history file sampled at 10, 20, 50,
100, 150 and 200 generations is shown. The table shows the best score found over all runs and also reports whether
the best GP result achieved is significantly superior to that which would be expected from a method takine random
guesses.

Generation
10 20 50 100 150 200 Best Significant P-value

Mean Std Err Mean Std Err Mean Std Err Mean Std Err Mean Std Err Mean Std Err (30 runs)
01 0.7722 0.0068 0.7944 0.0087 0.7750 0.0081 0.7500 0.0160 0.7556 0.0159 0.7361 0.0155 0.9167 YES 2.81E-030
02 0.8139 0.0086 0.8222 0.0104 0.7694 0.0177 0.7222 0.0244 0.6806 0.0183 0.6611 0.0226 0.9167 YES 8.05E-029
03 0.3972 0.0124 0.3750 0.0159 0.3694 0.0137 0.3528 0.0124 0.3361 0.0167 0.3556 0.0149 0.5833 YES 6.12E-005
04 0.6472 0.0103 0.6250 0.0125 0.6306 0.0142 0.6556 0.0186 0.6472 0.0177 0.6444 0.0154 0.8333 YES 1.29E-016
05 0.5833 0.0000 0.5806 0.0028 0.5333 0.0153 0.4750 0.0200 0.4750 0.0188 0.4500 0.0181 0.6667 YES 0.00E+000
06 0.6722 0.0068 0.7361 0.0133 0.6861 0.0086 0.6583 0.0073 0.6528 0.0099 0.6611 0.0126 0.8333 YES 2.52E-023
07 0.6361 0.0094 0.6083 0.0114 0.6167 0.0124 0.6222 0.0168 0.6139 0.0176 0.5889 0.0195 0.8333 YES 4.43E-024
08 0.3500 0.0193 0.2444 0.0169 0.2139 0.0111 0.2083 0.0096 0.2139 0.0103 0.2194 0.0109 0.5833 NO 5.74E-001
09 0.6083 0.0107 0.6111 0.0140 0.5639 0.0148 0.5333 0.0186 0.5194 0.0131 0.5111 0.0153 0.7500 YES 3.78E-018
10 0.7778 0.0193 0.7667 0.0180 0.7500 0.0155 0.6861 0.0182 0.6361 0.0189 0.6139 0.0172 0.9167 YES 4.96E-020
11 0.8972 0.0095 0.8472 0.0155 0.7500 0.0000 0.7750 0.0091 0.7833 0.0103 0.7972 0.0111 0.9167 YES 1.12E-031
12 0.4806 0.0210 0.4583 0.0118 0.3861 0.0147 0.3806 0.0163 0.3583 0.0165 0.3778 0.0182 0.6667 YES 2.18E-007
13 0.3083 0.0081 0.3194 0.0058 0.3250 0.0061 0.3056 0.0115 0.3111 0.0174 0.3222 0.0125 0.5000 YES 2.98E-002
14 0.3889 0.0176 0.4333 0.0146 0.4361 0.0158 0.4583 0.0178 0.4778 0.0195 0.4917 0.0162 0.7500 YES 2.35E-010
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Table 4.6: Results from symbolic regression on the filtered data with function set
{+,−, ∗, /, x2,

√
x, exp(x), ln(x), sin(x), cos(x)}. The mean test performance and standard error (calculated

from 30 runs) achieved on each subject’s history file sampled at 10, 20, 50, 100, 150 and 200 generations is
shown. The table shows the best score found over all runs and also reports whether the GP best result achieved is
significantly superior to that which would be expected from a method taking random guesses.

Generation
10 20 50 100 150 200 Best Significant P-value

Mean Std Err Mean Std Err Mean Std Err Mean Std Err Mean Std Err Mean Std Err (30 runs)
01 0.7722 0.0154 0.7806 0.0102 0.7389 0.0137 0.7056 0.0143 0.6778 0.0195 0.6889 0.0219 0.9167 YES 6.18E-028
02 0.7139 0.0131 0.6500 0.0213 0.5778 0.0219 0.5667 0.0234 0.5250 0.0208 0.4972 0.0181 0.8333 YES 7.58E-023
03 0.4222 0.0132 0.4472 0.0129 0.4278 0.0242 0.4194 0.0176 0.4250 0.0185 0.4056 0.0203 0.6667 YES 3.21E-009
04 0.5722 0.0203 0.5861 0.0206 0.5778 0.0164 0.5611 0.0207 0.5611 0.0164 0.5528 0.0162 0.7500 YES 8.74E-013
05 0.5694 0.0070 0.5139 0.0192 0.4417 0.0184 0.4167 0.0204 0.3806 0.0242 0.3833 0.0225 0.6667 YES 1.71E-024
06 0.6667 0.0000 0.6639 0.0028 0.6694 0.0063 0.6861 0.0077 0.7028 0.0131 0.7194 0.0152 0.9167 YES 3.51E-021
07 0.5361 0.0158 0.4444 0.0140 0.4861 0.0160 0.4917 0.0220 0.4778 0.0178 0.4806 0.0199 0.8333 YES 3.63E-013
08 0.4222 0.0164 0.3417 0.0166 0.2667 0.0157 0.2556 0.0169 0.2722 0.0169 0.2778 0.0166 0.5833 YES 2.14E-005
09 0.5917 0.0073 0.5667 0.0062 0.5417 0.0104 0.5917 0.0135 0.5806 0.0109 0.5722 0.0153 0.7500 YES 9.10E-018
10 0.7250 0.0227 0.7417 0.0224 0.6722 0.0219 0.5806 0.0363 0.5556 0.0318 0.5083 0.0349 0.9167 YES 2.80E-017
11 0.9000 0.0084 0.9111 0.0039 0.8889 0.0115 0.8639 0.0135 0.8556 0.0138 0.8444 0.0143 0.9167 YES 2.56E-043
12 0.5472 0.0153 0.5194 0.0131 0.5500 0.0202 0.4944 0.0229 0.5056 0.0195 0.5028 0.0176 0.7500 YES 2.48E-011
13 0.3417 0.0146 0.3833 0.0194 0.3972 0.0163 0.3917 0.0208 0.3972 0.0168 0.3750 0.0182 0.5833 YES 1.67E-003
14 0.3833 0.0202 0.3972 0.0168 0.3750 0.0148 0.3833 0.0206 0.3778 0.0195 0.3694 0.0199 0.6667 YES 1.67E-003
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there is some promise shown, it would be a worthwhile pursuit to try to

improve on the findings thus far.

4.5 Musical Evolution: the MelodyGA

Experiments on the DrumGA showed that some merit may exist in using GP

for producing models of the musical preferences of human users. Feedback

from users who took part in the experiment mentioned that fatigue was

experienced by many participants as the experiment progressed, making it

difficult to accurately score evolving populations of drum patterns which

were starting to sound more and more alike as time went on. In an effort

to make the evolving patterns more interesting, and to ultimately lead to

more consistent user-evaluations, the DrumGA was updated to incorporate

an extra layer consisting of a simple melody.

Similar to the DrumGA, the MelodyGA is an Interactive Genetic Al-

gorithm for producing pleasing two-track melodies consisting of piano and

drums. The system starts off by presenting the user with a population of

twelve short melodies, each of which must be listened to and interactively

evaluated.

Once all members of the population have been scored, the user proceeds

to the next generation with an evolved set of melodies. The evolutionary

operators selection, crossover and mutation are applied to the population

between one generation and the next. The selection operator is used to take

the fittest members of the population and place them into a breeding pool.

Crossover is then applied to sets of two parents from the breeding pool in

order to exchange genetic material between them and pass it on to their

offspring. Mutation is then used to introduce small genetic changes to the

offspring created via crossover. The process is terminated after a number of

generations when the user is satisfied with the quality of one or more of the

musical pieces evolved.

In the earlier DrumGA experiments, the subjects were asked to use an
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evaluation scale of 0 – 10 when rating individuals. At each generation, the

initial value was pre-set to the neutral value of 5 prior to evaluation. The

rating scale was reduced to 0 – 7 for the MelodyGA experiments, removing

a neutral value and persuading users to make a positive or negative decision

about the fitness of each individual. The effect of this slight bias is likely to

be exploited by the underlying fitness-proportionate selection process of the

Genetic Algorithm. The intent here is to make it easier for the MelodyGA

users to notice the consequences of their decisions.

Each musical piece in the evolving population comprises two instruments,

piano and drums. The drum set used consists of five instruments: bass

drum, snare drum, closed hi-hat, open hi-hat and ride cymbal. The piano

instrument used is limited insofar as it can only play one of 48 notes per

“tick” ranging from C1 to B4. Pseudo-polyphony can occur within the piano

instrument due to overlapping notes (of three note lengths permitted), but

no two notes are allowed to be sounded from the same starting tick 5. An

example individual is depicted in Figure 4.3. To aid evaluation, each decoded

individual is played back to the user in a loop of four iterations.

As users running the MelodyGA progress from one generation to the next,

a record of the genetic makeup of each piece and the fitness score allocated

to it is kept in a history file. Later, we will see how this data can be used as

input to a Genetic Programming system which attempts to learn the user’s

subjective fitness functions.

4.6 Experiments

At a European conference on Genetic Programming6, participants were in-

vited to take part in a song contest where competing entries were evolved

by the MelodyGA. Apart from being a fun event in itself, the contest was

5This property is enforced throughout the run. If crossover produces an individual
which has the option to sound two different notes, the note is chosen randomly from the
parents.

6EuroGP 2004
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ride cymbal

bass drum
snare drum

closed HH
open HH

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 2523 24 26 27 28 29 30 323122

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 2523 24 26 27 28 29 30 323122

F1 G1 C1 B1 C2 F1 F1D1 C2 C1E1 G1 A1D1F1

2 4 4 2 2 4 4 211 2 242 1

0 0 01 1 1 1 0 0 0 0 000 0 0 0 01 1 1 1 1 1 0 0011 1 1 1mask

duration

note

Genotype

Phenotype

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 2523 24 26 27 28 29 30 323122

A1

C1
D1
E1
F1
G1

B1
C2

Melody track

Drums track

Melody representation

Drums representation bass drum snare drum closed hihat open hihat ride cymbal

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Figure 4.3: Representation of individuals in the MelodyGA. The top half
(genotype) shows the genetic makeup of each musical piece as evolved by the
system. The bottom half (phenotype) gives a “piano-roll” style representa-
tion of the genotype. The drums are represented as an 80-bit binary string
where five 16-bit segments are used to represent each drum instrument. This
is then scaled up to a 32-tick drum track. The melody instrument is repre-
sented by three 32-value arrays: a 32 bit mask which dictates whether a note
should be sounded or not, followed by two integer values specifying the pitch
and duration of each note (independent of the mask value). For simplicity,
note and duration values in the piano representation under a 0 value in the
mask are shaded out.

actually an experiment in disguise, the aim of which was to gather data for

the research described in this chapter.

4.6.1 Song Contest

The contest consisted of three stages; each participant took part in a Trian-

gle test, followed by approximately one hour of musical evolution. Finally,

once all songs were evolved, contestants then voted on each other’s musical

creations.

The Triangle test followed the same structure as described earlier with

the DrumGA experiments in Section 4.2 except that the sound samples used

were MelodyGA individuals, containing both drums and melody.

Table 4.11 (left hand side) summarises the results obtained from this part
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of the experiment; the second column shows the triangle test score attained

and the third column shows the number of generations of musical pieces

evolved by each participant. The number of generations evolved plays an

important role in the stage that follows; the higher this number, the more

data we have at our disposal for analysis with GP.

4.6.2 Symbolic Regression Analysis

In order to apply GP for symbolic regression to the data collected, each

subject’s history data file is split into two parts, one for training and one

for testing. In the training phase, GP uses the examples supplied to build

a model that fits the data with minimum error. In the testing phase, the

model is then supplied with a set of previously unseen examples and asked

to output a set of predictions.

Each subject’s history file is analysed in three ways by supplying GP with:

1. All Data – this data set contains all of the genotype data, which

consisted of 80 variables for the drums part and 96 variables for the

piano, giving a total of 176 variables and 1 target;

2. Melody Only – this data set contains only the piano part of the

genotype, 96 variables and 1 target;

3. Rhythmic Events – this set contains the drums part of the genotype

and the piano’s bit-mask, 112 inputs and 1 target.

The amount of training examples depends on the amount of generations

evolved by each subject, if N generations were evolved then N−1 of these are

used for training; testing is then carried out on the last generation. Training

performance is calculated using Mean Squared Error.

To measure testing performance, the actual fitness score, t is classified as

either bad (0 ≤ t ≤ 2.33), okay (2.33 < t ≤ 4.66) or good (4.66 < t ≤ 7) as

is the predicted score, p. The performance measure, S, is then calculated as

the percentage of successful classifications.
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Using a variation of GP settings and multiple views of the data, a set

of experiments were conducted consisting of a total of 14400 runs. The

experimental settings used are summarised in Table 4.7.

Table 4.7: GP run settings for the experiments carried out on the data
gathered from the MelodyGA participants. Four sets of 50 runs were carried
out for each participant, where each set used a different function set. Three
views of each participants’ data was also considered, giving a total of 14400
runs.

Population Size 1000
Generations 200
Crossover rate 0.7
Mutation rate 0.02
Tournament size 3
Function set 1 {+, -, *, /}
Function set 2 {+, -, *, /, x2,

√
x}

Function set 3 {+, -, *, /, x2,
√

x, exp(x), ln(x)}
Function set 4 {+, -, *, /, x2,

√
x, exp(x), ln(x), sin(x), cos(x)}

Terminal set 1 {x1, .. , x176, ℜ }
Terminal set 2 {x1, .. , x96, ℜ }
Terminal set 3 {x1, .. , x112, ℜ }
Raw fitness MSE(targets, predictions)
Standardised fitness Same as raw fitness for this problem (minimising)
Testing Performance Proportion of correctly classified predictions

4.7 Results

The results from all runs on the 24 subjects are summarised in Table 4.8, Ta-

ble 4.9 and Table 4.10. This information is summarised further in Table 4.11

together with extra information including the Triangle test scores and the

amount of data available for each subject.

In most cases, GP has been able to construct good models of the functions,

with the maximum testing performance score reaching 70% or more in 10 out

24 cases. In many other cases, a trend towards better testing performance

is seen as the run progresses despite not reaching the (arbitrarily chosen)
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Table 4.8: Summary of the best GP results over all 24 subjects obtained using all input data over the four function
sets tested. In the case of each function set, the table shows the mean best GP performance and standard error(50
runs). Also shown is the result of a null hypothesis significance test, showing whether the GP results obtained are
significantly better than those that would be expected by a method taking random guesses.

Function Set 1 Function Set 2 Function Set 3 Function Set 4
Mean Std

Err
Signif. P-Value Mean Std

Err
Signif. P-Value Mean Std

Err
Signif. P-Value Mean Std

Err
Signif. P-Value

01 0.8300 0.0033 YES 2.54E-066 0.8250 0.0060 YES 8.13E-054 0.8300 0.0058 YES 8.13E-054 0.8150 0.0055 YES 3.91E-055
02 0.6850 0.0096 YES 1.26E-036 0.6800 0.0113 YES 4.20E-033 0.6867 0.0091 YES 4.20E-033 0.6600 0.0143 YES 3.28E-027
03 0.7300 0.0127 YES 1.97E-033 0.7100 0.0115 YES 1.92E-034 0.7183 0.0132 YES 1.92E-034 0.6983 0.0141 YES 1.02E-029
04 0.6683 0.0017 YES 1.85E-072 0.6600 0.0052 YES 1.16E-047 0.6667 0.0000 YES 1.16E-047 0.6650 0.0017 YES 3.06E-072
05 0.4700 0.0114 YES 5.37E-015 0.4817 0.0117 YES 7.24E-016 0.4767 0.0147 YES 7.24E-016 0.4733 0.0138 YES 1.45E-012
06 0.4833 0.0130 YES 2.01E-014 0.5083 0.0137 YES 3.51E-016 0.5017 0.0136 YES 3.51E-016 0.5217 0.0168 YES 2.92E-014
07 1.0000 0.0000 YES 0.00E+000 0.9967 0.0023 YES 3.60E-080 0.9983 0.0017 YES 3.60E-080 0.9933 0.0052 YES 7.11E-063
08 0.5200 0.0162 YES 1.26E-014 0.5083 0.0179 YES 2.81E-012 0.4967 0.0190 YES 2.81E-012 0.5000 0.0192 YES 1.17E-010
09 0.4467 0.0146 YES 5.87E-009 0.4117 0.0193 YES 9.23E-004 0.4133 0.0137 YES 9.23E-004 0.3983 0.0189 YES 5.86E-003
10 0.4250 0.0060 YES 2.55E-018 0.4233 0.0062 YES 3.21E-017 0.4283 0.0063 YES 3.21E-017 0.4367 0.0105 YES 1.08E-011
11 0.4317 0.0094 YES 1.96E-012 0.4500 0.0130 YES 1.14E-010 0.4517 0.0117 YES 1.14E-010 0.4483 0.0111 YES 1.57E-012
12 0.6650 0.0017 YES 3.06E-072 0.6600 0.0047 YES 4.26E-050 0.6667 0.0000 YES 4.26E-050 0.6650 0.0017 YES 3.06E-072
13 0.9083 0.0055 YES 4.86E-059 0.9067 0.0045 YES 7.37E-063 0.9050 0.0048 YES 7.37E-063 0.8967 0.0094 YES 3.91E-047
14 0.8350 0.0050 YES 9.50E-058 0.8417 0.0049 YES 1.29E-058 0.8417 0.0055 YES 1.29E-058 0.8517 0.0064 YES 2.49E-053
15 0.2917 0.0165 YES 2.79E-003 0.2700 0.0181 YES 1.64E-004 0.2600 0.0185 YES 1.64E-004 0.2983 0.0169 YES 9.61E-003
16 0.7183 0.0101 YES 1.40E-037 0.7033 0.0072 YES 1.13E-043 0.7033 0.0093 YES 1.13E-043 0.6800 0.0099 YES 1.13E-035
17 0.9167 0.0000 YES 0.00E+000 0.9167 0.0000 YES 0.00E+000 0.9167 0.0034 YES 0.00E+000 0.9167 0.0000 YES 0.00E+000
18 0.4000 0.0117 YES 1.42E-005 0.4117 0.0151 YES 4.37E-005 0.3967 0.0120 YES 4.37E-005 0.3900 0.0113 YES 1.55E-004
19 0.4183 0.0113 YES 2.71E-008 0.4183 0.0017 YES 2.11E-041 0.4167 0.0067 YES 2.11E-041 0.4233 0.0047 YES 3.00E-022
20 0.6850 0.0096 YES 1.26E-036 0.6800 0.0113 YES 4.20E-033 0.6867 0.0091 YES 4.20E-033 0.6600 0.0143 YES 3.28E-027
21 0.6967 0.0091 YES 2.48E-038 0.7033 0.0076 YES 1.36E-042 0.6967 0.0091 YES 1.36E-042 0.6950 0.0074 YES 1.11E-042
22 0.4467 0.0142 YES 2.94E-009 0.4583 0.0131 YES 1.39E-011 0.4533 0.0170 YES 1.39E-011 0.4533 0.0133 YES 8.08E-011
23 0.6383 0.0127 YES 5.07E-028 0.6133 0.0173 YES 1.26E-020 0.6033 0.0162 YES 1.26E-020 0.5867 0.0149 YES 1.78E-021
24 0.5033 0.0186 YES 2.47E-011 0.5250 0.0240 YES 8.88E-010 0.5183 0.0217 YES 8.88E-010 0.5133 0.0209 YES 1.35E-010
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Table 4.9: Summary of the best GP results over all 24 subjects obtained using input data restricted to melodic
events only over the four function sets tested. In the case of each function set, the table shows the mean best GP
performance and standard error(50 runs). Also shown is the result of a null hypothesis significance test, showing
whether the GP results obtained are significanty better than those that would be expected by a method taking
random guesses.

Function Set 1 Function Set 2 Function Set 3 Function Set 4
Mean Std

Err
Signif. P-Value Mean Std

Err
Signif. P-Value Mean Std

Err
Signif. P-Value Mean Std

Err
Signif. P-Value

01 0.8150 0.0031 YES 2.54E-066 0.8125 0.0050 YES 8.13E-054 0.8200 0.0050 YES 1.55E-054 0.8100 0.0040 YES 3.91E-055
02 0.6683 0.0120 YES 4.44E-031 0.6133 0.0121 YES 2.57E-027 0.6150 0.0134 YES 2.21E-025 0.6283 0.0120 YES 1.39E-028
03 0.7350 0.0152 YES 3.84E-030 0.7083 0.0124 YES 9.68E-033 0.6867 0.0187 YES 1.33E-023 0.7100 0.0137 YES 7.70E-031
04 0.6633 0.0067 YES 1.12E-042 0.6617 0.0037 YES 4.00E-055 0.6667 0.0000 YES 0.00E+000 0.6650 0.0017 YES 3.06E-072
05 0.4767 0.0079 YES 5.66E-022 0.4850 0.0081 YES 1.46E-022 0.4867 0.0069 YES 6.26E-026 0.4850 0.0074 YES 2.63E-024
06 0.4833 0.0130 YES 2.01E-014 0.5083 0.0137 YES 3.51E-016 0.5017 0.0136 YES 1.04E-015 0.5217 0.0168 YES 2.92E-014
07 0.9983 0.0017 YES 2.24E-087 1.0000 0.0000 YES 0.00E+000 1.0000 0.0000 YES 0.00E+000 0.9983 0.0017 YES 2.24E-087
08 0.6417 0.0153 YES 1.01E-024 0.6467 0.0146 YES 6.28E-026 0.6200 0.0167 YES 1.07E-021 0.6283 0.0147 YES 1.40E-024
09 0.4033 0.0291 NO 4.60E-002 0.4017 0.0103 YES 8.75E-007 0.4067 0.0094 YES 2.06E-008 0.3717 0.0107 NO 1.20E-002
10 0.4233 0.0058 YES 1.52E-018 0.4200 0.0086 YES 8.43E-012 0.4383 0.0075 YES 4.29E-017 0.4350 0.0087 YES 3.73E-014
11 0.4567 0.0093 YES 2.15E-016 0.4383 0.0116 YES 1.16E-010 0.4383 0.0095 YES 2.08E-013 0.4600 0.0093 YES 7.26E-017
12 0.6667 0.0000 YES 0.00E+000 0.6667 0.0000 YES 0.00E+000 0.6683 0.0038 YES 3.23E-055 0.6700 0.0041 YES 1.69E-053
13 0.9083 0.0036 YES 5.00E-068 0.9100 0.0040 YES 1.28E-065 0.9083 0.0049 YES 2.80E-061 0.9150 0.0017 YES 1.76E-084
14 0.8317 0.0017 YES 3.98E-081 0.8333 0.0000 YES 0.00E+000 0.8333 0.0000 YES 0.00E+000 0.8333 0.0000 YES 0.00E+000
15 0.2967 0.0158 YES 4.53E-003 0.2983 0.0143 YES 2.59E-003 0.2967 0.0182 NO 1.25E-002 0.3033 0.0190 NO 3.86E-002
16 0.7467 0.0075 YES 3.55E-045 0.7533 0.0041 YES 2.61E-058 0.7417 0.0099 YES 3.36E-039 0.7233 0.0084 YES 1.30E-041
17 0.9167 0.0000 YES 0.00E+000 0.9167 0.0000 YES 0.00E+000 0.9167 0.0041 YES 2.77E-065 0.9167 0.0000 YES 0.00E+000
18 0.3817 0.0117 YES 2.12E-003 0.4000 0.0114 YES 9.96E-006 0.3900 0.0090 YES 5.27E-006 0.3967 0.0094 YES 8.52E-007
19 0.4250 0.0080 YES 1.13E-013 0.4183 0.0017 YES 2.11E-041 0.4200 0.0033 YES 8.35E-028 0.4250 0.0055 YES 8.05E-020
20 0.6683 0.0120 YES 4.44E-031 0.6133 0.0121 YES 2.57E-027 0.6150 0.0134 YES 2.21E-025 0.6283 0.0120 YES 1.39E-028
21 0.6817 0.0078 YES 9.03E-041 0.7000 0.0079 YES 1.43E-041 0.6950 0.0056 YES 2.56E-048 0.6917 0.0060 YES 5.54E-047
22 0.4250 0.0043 YES 3.53E-024 0.4150 0.0029 YES 3.67E-029 0.4200 0.0106 YES 3.64E-009 0.4167 0.0041 YES 6.57E-023
23 0.6183 0.0156 YES 8.62E-023 0.6017 0.0153 YES 4.91E-022 0.6100 0.0171 YES 1.25E-020 0.5883 0.0169 YES 2.57E-019
24 0.5433 0.0243 YES 9.13E-011 0.4967 0.0219 YES 7.44E-009 0.5317 0.0274 YES 1.15E-008 0.4817 0.0263 YES 3.40E-006
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Table 4.10: Summary of the best GP results over all 24 subjects obtained using input data restricted to rhythmic
events only over the four function sets tested. In the case of each function set, the table shows the mean best GP
performance and standard error(50 runs). Also shown is the result of a null hypothesis significance test, showing
whether the GP results obtained are significanty better than those that would be expected by a method taking
random guesses.

Function Set 1 Function Set 2 Function Set 3 Function Set 4
Mean Std

Err
Signif. P-Value Mean Std

Err
Signif. P-Value Mean Std

Err
Signif. P-Value Mean Std

Err
Signif. P-Value

01 0.8300 0.0033 YES 2.54E-066 0.8100 0.0045 YES 8.13E-054 0.8250 0.0050 YES 1.55E-054 0.8200 0.0055 YES 3.91E-055
02 0.7100 0.0096 YES 4.12E-038 0.6950 0.0123 YES 3.14E-032 0.6933 0.0108 YES 8.40E-035 0.7033 0.0090 YES 3.80E-039
03 0.7050 0.0099 YES 3.12E-037 0.7117 0.0083 YES 3.71E-041 0.7067 0.0107 YES 1.15E-035 0.6967 0.0103 YES 7.18E-036
04 0.6667 0.0000 YES 0.00E+000 0.6633 0.0023 YES 5.48E-065 0.6667 0.0000 YES 0.00E+000 0.6667 0.0000 YES 0.00E+000
05 0.4883 0.0137 YES 3.10E-014 0.4850 0.0113 YES 8.51E-017 0.4783 0.0130 YES 6.29E-014 0.4700 0.0095 YES 5.93E-018
06 0.5450 0.0162 YES 9.04E-017 0.5433 0.0157 YES 3.54E-017 0.5317 0.0173 YES 1.24E-014 0.5233 0.0112 YES 3.64E-021
07 1.0000 0.0000 YES 0.00E+000 0.9900 0.0070 YES 1.26E-056 0.9983 0.0017 YES 2.24E-087 0.9983 0.0017 YES 2.24E-087
08 0.5167 0.0147 YES 6.63E-016 0.5250 0.0157 YES 1.26E-015 0.5067 0.0159 YES 9.78E-014 0.5150 0.0128 YES 4.83E-018
09 0.3967 0.0094 YES 8.52E-007 0.4117 0.0044 YES 1.83E-020 0.4167 0.0000 YES 0.00E+000 0.4000 0.0086 YES 3.28E-008
10 0.4467 0.0085 YES 2.48E-016 0.4517 0.0096 YES 2.99E-015 0.4583 0.0124 YES 2.79E-012 0.4517 0.0086 YES 6.83E-017
11 0.4583 0.0147 YES 4.13E-010 0.4767 0.0145 YES 3.27E-012 0.4450 0.0155 YES 3.75E-008 0.4500 0.0158 YES 1.75E-008
12 0.6650 0.0017 YES 3.06E-072 0.6583 0.0049 YES 6.43E-049 0.6633 0.0033 YES 2.02E-057 0.6667 0.0000 YES 0.00E+000
13 0.8900 0.0125 YES 5.89E-041 0.9100 0.0047 YES 2.04E-062 0.9017 0.0081 YES 2.49E-050 0.9067 0.0057 YES 3.22E-058
14 0.8600 0.0065 YES 1.85E-053 0.8583 0.0099 YES 1.51E-044 0.8500 0.0086 YES 3.61E-047 0.8633 0.0103 YES 7.13E-044
15 0.2367 0.0220 YES 1.22E-005 0.1967 0.0176 YES 5.64E-011 0.2467 0.0245 YES 2.41E-004 0.2617 0.0243 YES 1.43E-003
16 0.6750 0.0090 YES 2.17E-037 0.6600 0.0078 YES 2.97E-039 0.6517 0.0113 YES 3.46E-031 0.6633 0.0092 YES 3.72E-036
17 0.9167 0.0024 YES 5.89E-077 0.9167 0.0000 YES 0.00E+000 0.9183 0.0017 YES 1.33E-084 0.9167 0.0000 YES 0.00E+000
18 0.3883 0.0132 YES 1.41E-003 0.3950 0.0114 YES 4.10E-005 0.4033 0.0144 YES 1.32E-004 0.4033 0.0069 YES 1.94E-011
19 0.4200 0.0112 YES 1.20E-008 0.4167 0.0000 YES 0.00E+000 0.4250 0.0112 YES 2.88E-009 0.4183 0.0044 YES 6.15E-022
20 0.7100 0.0096 YES 4.12E-038 0.6950 0.0123 YES 3.14E-032 0.6933 0.0108 YES 8.40E-035 0.7033 0.0090 YES 3.80E-039
21 0.7150 0.0133 YES 8.85E-032 0.7033 0.0124 YES 1.70E-032 0.7250 0.0122 YES 5.06E-034 0.7000 0.0119 YES 3.83E-033
22 0.4783 0.0148 YES 4.58E-012 0.4917 0.0141 YES 4.37E-014 0.4983 0.0102 YES 4.62E-020 0.4883 0.0137 YES 3.10E-014
23 0.5167 0.0161 YES 1.98E-014 0.5150 0.0159 YES 1.68E-014 0.4933 0.0180 YES 5.94E-011 0.4883 0.0168 YES 2.45E-011
24 0.5167 0.0172 YES 1.59E-013 0.5367 0.0191 YES 1.37E-013 0.5450 0.0216 YES 1.96E-012 0.5483 0.0186 YES 7.91E-015
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70% threshold. Additionally, almost all of the mean best performance scores

attained by GP are statistically significant (as shown in Tables 4.8, 4.9 and

4.10)

An example of where GP has done particularly well is shown in Figure 4.4.

In this case we can see better performance results when we include the vari-

ables that incorporate piano events; when this information is removed there

is a decline in performance, possibly indicating that this subject paid more

attention to the piano melody than the drum rhythm when assigning fitness

scores to the evolving musical pieces.

Figure 4.5 shows an example of where GP has failed to reach a testing

performance score of 70%, although traces of learning are evident when GP

is focused on the drum events and the piano bit-mask, perhaps indicating

that this subject was more rhythm-oriented.

4.8 Discussion

Although GP has shown some promise in modelling the musical preferences

of some of the human subjects who took part in this study, for the most part

the results were quite poor. It was hoped that by adding extra melody into

the mix, the users would have more interesting musical candidates to evolve

and would therefore produce more consistent datasets for analysis.

Unfortunately, if anything, the extra inputs presented to the symbolic

regression system made the problem far too difficult in many cases. To check

if this shortcoming was limited to GP, the experiments were repeated using

an artificial neural network (ANN) as a learner-predictor.

The ANN used was a multi-layer perceptron with one hidden layer con-

sisting of eight neurons and an output layer of three neurons representing

bad, okay and good as with the GP experiments. For each subject, thirty

runs of the ANN were performed with the data split up into training / test

sets in the same way as with GP. In each run, the network was trained using

10000 iterations of back-propagation and then tested on the (unseen) test
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Table 4.11: Summary of results from all 24 subjects. This table first reports
the Triangle test score achieved by each subject together with the number
of generations of the MelodyGA performed. A summary of the best GP
results is then given showing whether improvement in GP test performance
score is observed over time (GP Learning), and whether GP test performance
scores greater than 70%. The Coefficient of Determination value, R2 is also
reported, computed from the Triangle test scores and best GP scores, and
also from the MelodyGA generations and the best GP scores.

Triangle Test

score

MelodyGA

Gens

GP Learning? GP Best GP ≥ 70%

01 0.60 13 Yes 0.830 Yes
02 0.40 5 Yes 0.710 Yes
03 0.50 8 Yes 0.735 Yes
04 0.90 19 No 0.668 No
05 0.50 9 No 0.488 No
06 0.71 7 Yes 0.545 No
07 0.50 21 Yes 1.000 Yes
08 0.40 16 Yes 0.647 No
09 0.60 5 Yes 0.447 No
10 0.90 13 No 0.458 No
11 0.80 15 Yes 0.477 No
12 0.40 13 Yes 0.670 No
13 0.70 7 No 0.915 Yes
14 0.80 20 Yes 0.860 Yes
15 0.60 26 Yes 0.303 No
16 0.80 8 Yes 0.753 Yes
17 0.00 25 Yes 0.918 Yes
18 0.20 6 No 0.412 No
19 0.70 6 No 0.425 No
20 0.50 30 Yes 0.710 Yes
21 0.80 9 Yes 0.725 Yes
22 0.40 12 Yes 0.498 No
23 0.30 6 Yes 0.638 No
24 0.30 9 Yes 0.545 No

Coefficient of Triangle Test and GP Best, R2 0.0060
Determination MelodyGA Gens and GP Best, R2 0.0552
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data. Test performance is reported as the proportion of successful classifica-

tions.

Results from these experiments are summarised in Table 4.12. It can be

seen from this table that very similar results are obtained to those from the

GP experiments in the case of subjects 1, 13, 14 and 16 (for set 1 and 2). This

is an interesting finding as it further suggests the existence of patterns within

the training sets that lead to the construction of good predictive models7.

4.9 Conclusions

It can be seen from the results from both the DrumGA and MelodyGA exper-

iments that it has been possible to produce good models of subjective fitness

functions using GP. Of course, the process has not been an overwhelming

success although the existence of good results is very pleasing.

The significance tests show that the GP models created are doing more

than taking wild guesses. The less successful results can not be ignored,

however. The following possible explanations for these cases have become

apparent:

• the amount of user data collected is not large enough

• there are too many input variables in the input set and not enough

fitness cases to learn from

• conflicting examples may exist in the datasets, due to uneven user

behaviour

• the GP-based Symbolic Regression system appears to either

1. converge on a constant, or

7It is worth noting that the ANN experiments undertaken here did not undergo the
same degree of fine-tuning as those performed using GP, therefore it is not unreasonable
to assume that the ANN results could be improved upon to highlight this finding more
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Table 4.12: Results summary from experiments using a neural network
(ANN) on the song contest participants’ data sets. Similarly to the GP
experiments, the data sets were split into three; set 1 contains all data, set
2 has the drum information removed and set 3 only contains rhythm infor-
mation. Cases where a test performance score greater than 70% have been
achieved are highlighted in bold. Note that a reminder of the best GP result
found is also given in the last column of the table.

ANN Results GP: Best score

Set 1 Set 2 Set 3
01 0.7609 0.7618 0.6958 0.830
02 0.6629 0.6581 0.4363 0.710
03 0.5563 0.5556 0.5278 0.735
04 0.4659 0.4673 0.4340 0.688
05 0.3118 0.3132 0.3351 0.488
06 0.3468 0.3468 0.4005 0.545
07 0.3875 0.3875 0.3875 1.000
08 0.5081 0.5111 0.5085 0.647
09 0.3021 0.2972 0.3549 0.447
10 0.4123 0.4148 0.3674 0.458
11 0.3722 0.3752 0.3683 0.477
12 0.4146 0.4148 0.3595 0.670
13 0.7917 0.7823 0.7641 0.915
14 0.7808 0.7795 0.6814 0.860
15 0.2493 0.2500 0.2568 0.303
16 0.7020 0.7008 0.5603 0.753
17 0.5897 0.5898 0.5818 0.918
18 0.2856 0.2839 0.3878 0.412
19 0.3222 0.3217 0.3028 0.425
20 0.4844 0.4885 0.3892 0.710
21 0.6674 0.6670 0.5861 0.725
22 0.2967 0.2934 0.3869 0.498
23 0.3394 0.3422 0.3789 0.638
24 0.6212 0.6340 0.5764 0.545
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2. use a very small amount of input variables in the evolved solutions,

resulting in a poor prediction.

• the problem is too difficult; the fitness landscape is a needle-in-a-

haystack problem, with a moving needle. It might be too ambitious

to expect any learning method to be able to tackle a problem of this

magnitude.

• the search-space is far too large to expect any system to arrive at a

usable solution.

Additionally, the academic background of the subjects that took part in

the two studies may have had some influence on the results. For the first set

of experiments, all the subjects were pursuing postgraduate courses in either

Interactive Media or Computer Music, both of which would involve some

degree of musical knowledge. In contrast, most of the subjects who took

part in the second experiment would have had a very good understanding

of the evolutionary aspect of the application8. It is interesting to note that

when all of the subjects from the second experiment voted on the best songs

produced by the group, both the winning song and the song that was voted

second best were actually produced by two of the few subjects who did not

have an academic background in Evolutionary Computation.

The issues highlighted above will be addressed in more detail in Chap-

ter 5.

8So much so that some even tried to break it.
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(a) Subject 1, Experiment 1; GP using all 176 inputs
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(b) Subject 1, Experiment 2; GP using 96 inputs (drums removed)
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(c) Subject 1, Experiment 3; GP using 112 inputs (drums and piano
bit-mask)

Figure 4.4: Testing performance results achieved on 3 views of the data
collected from subject 1; In the first plot, GP is given access to all of the
genotype variables comprising a MelodyGA music piece. In the middle plot,
only information about the piano events is given. In the last plot, GP is
given the drum events and information about whether a piano note is played
or not (regardless of its pitch and duration). Each plot shows the mean
performance of the best individual, across 50 runs.
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(b) Subject 21, Experiment 2; GP using 96 inputs (drums removed)
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(c) Subject 21, Experiment 3; GP using 112 inputs (drums and
piano bit-mask)

Figure 4.5: Testing performance results achieved on 3 views of the data
collected from subject 21; In the first plot, GP is given access to all of the
genotype variables comprising a MelodyGA music piece. In the middle plot,
only information about the piano events is given. In the last plot, GP is
given the drum events and information about whether a piano note is played
or not (regardless of its pitch and duration). Each plot shows the mean
performance of the best individual, across 50 runs.
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Chapter 5

New Directions

Experience from the results obtained so far has shown that in certain situa-

tions, it is possible to use GP to produce a model from data that can make

good predictions about future events. This is supported by corresponding

results in cases where GP is substituted with a Neural Network. From this it

is apparent that with the right conditions in place, learning from the data is

possible. The research presented in this chapter is founded on the following

hypothesis:

With more consistent user behaviour, modelling user preferences

and predicting future decisions becomes an achievable task.

The goals are therefore summarised as follows:

• To re-examine the DrumGA and MelodyGA systems to identify areas

that are leading to noisy, inconsistent behaviour.

• To show the results that can be expected when noise and inconsistent

human behaviour is not an issue.

• To perform a new set of experiments based on lessons learned from past

experience.

• To identify the conditions under which successful artificial models can

be created.
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Re-examination of previous systems leads to the “bottom-up” construc-

tion of a new system which also aims to build models of human musical

preferences with high predictive power. It will be shown here how Grammat-

ical Evolution (Ryan et al. , 1998) can be used to effectively construct models

from artificial datasets which mimic real-world user-generated history data.

These models will ultimately substitute for the subjective fitness functions

that human users employ during Interactive Evolution of pleasing musical

melodies.

5.1 Reducing Noise, Improving Consistency

Recall that in Section 4.2, we examined the use of Genetic Programming for

modelling the preferences of human users of an evolutionary drummer, the

DrumGA. This system allowed drum sequences to be evolved towards fitter

states through human guidance, while keeping records of the scores allocated

to each individual for subsequent analysis with GP. The GP performed sym-

bolic regression using the raw genetic data combined with the user-allocated

score as inputs, with the aim of producing a function of the form:

f(sequence) = score

To address this, we decided to make the candidate solutions more interest-

ing by including a melody track into the mixture (Section 4.5). A second set

of experiments was then initiated using the MelodyGA. The data collected

was fed through the symbolic regression system (as before with the DrumGA

experiments) however, despite having this extra melody information, the re-

sults showed few signs of improvement in general, although some successful

results came about using data from certain participants. It is likely in some

cases, the extra inputs presented to the symbolic regression system made the

problem too difficult to expect solutions with consistently good predictive

power over all.
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5.2 System Simplification

Two areas of concern are identified here as potential contributors to inconsis-

tent, noisy data. The first is the size of the search space of musical candidates.

If this is too large, the human user taking the role of the fitness function is

less likely to reach a good optimum before “fatigued distraction” is experi-

enced. Be decreasing the size of the search space, there is a better chance of

coverage by the user, which (it is assumed) is less of a distraction. The more

focused the user, the more consistent (and less noisy) the generated history

data is expected to be.

The second is the make-up of the user interface that receives the fitness

allocation from the human subject. Presenting too many individuals for

parallel evaluation is a likely contributor to fatigue. Reducing the information

overload should make things less taxing on the subject which should also

reduce noise and make past experience easier to create good predictive models

from.

5.2.1 Search Space Reduction

With the DrumGA, each individual is represented by 80 boolean values,

therefore 280 possible solutions, which is quite a large number compared to

the amount of data gathered from human subjects in the experiments; the

examples that we gathered only represented a tiny fraction of the potential

cases – and this is without adding melody to the mix. When we do add

information about the melody, we are adding 32 new boolean values and

64 (constrained) integer values (32 for the note pitch numbers and 32 for

the note durations). We can calculate the number of potential solutions as

follows:

2x × ln+d+1

where x represents the number of bits making up the drum sequence, l

represents the number of notes in the melody, n is the maximum number of

possible note values and d is the number of note durations.
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With x=80, l=32, n=12 and d=3 (these values have been used in all

MelodyGA experiments to date), the number of possible solutions is approx-

imately 2.53× 1030; if it takes an average user of the MelodyGA system one

hour to rate 240 individuals according to the format above, then it would

take approximately 1.2 × 1024 years to evaluate them all. This is clearly in-

feasible and suggests that it would be a good idea to try and reduce the size

of the search space. This is achieved by making the following modifications

to the system:

• The drum sequence that an individual uses is taken from a pool of W

possibilities

• The melody that an individual uses is taken from a pool of X possibil-

ities

• The tempo is fixed at one of a set of Y values

• The instrument that plays the melody is taken from a set of Z possi-

bilities.

If we set W=32, X=32, Y =32 and Z=32 we have a total search-space size of

1048576 (182.04 days for an average human evaluator to process at the same

rate as in the previous example), which seems to be a much more realistic

figure to expect a black-box system to be able to build models from.

5.2.2 Tournament-style Evolution

In previous incarnations of the DrumGA and MelodyGA software, users were

presented with a palette of candidate solutions, representing each generation,

all of which needed to be scored in parallel before proceeding to the next

generation. A point taken from the feedback of the subjects who took part

in the evaluations was that it can be quite difficult for a user to efficiently

and consistently score several songs (12, in our experiments) in parallel. This

point is addressed by altering the system so that the user processes two
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candidates at a time (see screen-shot in Figure 5.1). It is worth noting here

that a similar practice is used by opticians when testing patients for new

lenses 1 – reducing the problem to a set of binary decisions is less taxing on

the brain, therefore more likely to arrive at the intended solution.

Figure 5.1: Tournament-style GUI for the MelodyGA. Due to the simplified
nature of the selection process, the interface itself may be made much easier
for the user to operate.

We will therefore use a tournament system for all future experiments,

based on the following conjecture:

A user is better able to say that song x1 is better/worse than song

x2 as opposed to ranking n songs (n > 2) in order of preference,

according to an arbitrary scale.

If this is true then it would follow that a tournament-style system would pro-

duce a more consistent dataset for subsequent analysis than the generational-

style system. Note that we could also use a league system, however the idea

is to produce data that is as consistent as possible. It may be the case that

expecting the user to make more comparisons (as would be needed by a

league) will lead to the same user-fatigue that was exhibited in the genera-

tional system, leading to inconsistent data.

1This type of test is also referred to as a discrimination test or ABX test.
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Figure 5.2: A simple tournament situation involving four competing
melodies. Rather than allocate a score to a set of competing candidates,
the human subject is instead asked to choose a single favourite from two
possible choices. The process is repeated until an overall favourite emerges.

For the data analysis, the learning method cannot simply act as a re-

gression system, making future predictions from historical examples because

the history data would have a different form. Instead, we alter it to more

closely follow the tournament-style path that is taken by the user. Figure 5.2

depicts an example of four songs competing in a user-guided tournament. In

this setting, an accurate artificial model would contain a choice function, Cm,

such that

Cm(x1, x2) = Cu(x1, x2)

where Cu is the choice made by the human user. Simply put, the aim is to

discover a function that mimics the user’s behaviour consistently throughout

the tournament, making the same decisions as those made by the user. The

inputs to the metric are the genetic representations of the songs. The metric

may be scored by using a comparison with the decisions allocated by the user

for each round of the tournament. To use the example shown in Figure 5.2

we could have the scenario given in Table 5.1.

5.3 Choosing the choice() function

Now that we know what the choice function should do, the next task is to

decide how such a function should be designed. We know that the inputs
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Table 5.1: An example comparison of the choices made by a human subject
Cu and those made by an artificial model Cm. By matching up actual choices
and modelled choices, a fitness function for model accuracy can be easily
formulated.

Round 1 1 2
Cu B C B
Cm B D B
Score 1 0 1

to the function are two songs and each song is presented in its raw, genetic

representation. For example, lets assume that the genetic makeup of two

individuals is as follows:

X) [x0, x1, x2, x3]

Y) [y0, y1, y2, y3]

Of course, this is a simplified case since an individual would typically be

composed of more than 4 components, however the idea remains the same

for any number of components (not just with boolean values for Xi and Yi).

We can define a grammar for the choose() function as follows:

choose ::= f( <inputs> )

inputs ::= <vars> | <inputs> <op> <vars>

vars ::= x0 | x1 | x2 | x3 | y1 | y2 | y3 | y4

op ::= and | or

Another issue that needs to be addressed is the format of the historical

data from user-runs. Common sense dictates that it is better to have too

much data rather than too little since we can trim data but not invent it. At

the least, it will be necessary to know the following:

• the complete genetic makeup of each song

• the outcome when one song competes with another (chosen by the user)
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For example, if we use the tournament outcome depicted in Figure 5.2,

the output of the runs (and input to the black box learning system) might

be:

A,B,1

C,D,0

B,C,0

Where the first and second columns refer to the competitors and the third

column refers to the winner of the tournament. Note that in order to produce

more data (and to help prevent any bias), the black box learning system could

also be reinforced with the same results in the opposite order:

B,A,0

D,C,1

C,B,1

The goal of the black box learner will be to produce a prediction for each

set of competitors. The set of predictions may then be compared against the

actual user choices in order to compute the fitness of the predictive model. As

hinted at by the use of a grammar above, we will use Grammatical Evolution

(O’Neill & Ryan, 2003) as the black box learner in the experiments that

follow.

5.4 Experiments

Although it would seem tempting at this point to proceed directly to a set

of experiments on live data gathered from human subjects, past experience

suggests that the time would be better spent validating this new approach on

some controllable artificial problems to investigate if the foundations are se-

cure. If it turns out to be the case that the system cannot produce meaningful

results on consistent, artificial data then we cannot expect it to build models

of more complex human-generated data (which is costly to gather). With

this in mind we have set up our datasets to mimic the following scenarios:
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1. The user consistently picks a song that has a specific drumbeat, ignor-

ing all other attributes. This mimics a user who is only interested in

the percussion part and is able to filter out melody, instrument and

tempo information.

2. The user always picks a song that has a particular drumbeat and

melody, which work well together. This mimics a situation where a

user is only interested in a particular percussion and melody combina-

tion, with no interest in anything else.

3. The user likes a particular drums and melody combination when it is

played at a particular tempo, but not at other tempos.

4. The user likes a drums and melody combination played with a partic-

ular instrument and tempo.

5. The user is only interested in the percussion sequence but has a set

of preferred beats (1, 2, 3, 4) over others. Songs with drumbeat 1 are

chosen over all other songs. Songs with drumbeat 2 are chosen over all

other songs except those with drumbeat 1. Songs with drumbeat 3 are

chosen over all songs except those with drumbeats 1 and 2. Finally,

songs with drumbeat 4 are chosen over all other songs except those

with drumbeats 1, 2 and 3.

For each problem we generated 100 training cases and 100 test cases and

performed 30 runs of Grammatical Evolution using the BNF grammar shown

in Figure 5.3. The GE algorithm settings are given in Table 5.2. Note that

the x in the grammar refers to the array of 8 values which correspond to

a competition between two songs. The musFunc productions can also be

explained by the following example; if x contains the values {1,2,3,4,5,6,7,8}
then a call to song1UsesDrumbeat(x, 1) would return true since the array

contains the value of 1 in the position corresponding to the drums preset

for the first song. Similarly, a call to song2UsesDrumbeat(x, 5) would also

return true.
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In all problems, the datasets assume the availability of 32 preset drum

sequences, melodies, instruments and tempo values. Random noise was also

introduced into each dataset whereby a random set of presets is generated

for two competitors along with a randomly chosen outcome; each dataset

contains 10% noise. The introduction of random noise into the datasets is

done so that the problems are not made too easy for the system. Adding

noise in this way is also done to introduce very slight inconsistencies into the

training set, as could reasonably be expected from real-world data.

<choose> ::= define f(x) { return <body>; }

<body> ::= <musFunc> | <body> <binary_op> <musFunc> |

<unary_op> <body>

<musFunc> ::= song1UsesDrumBeat(x, <val> ) |

song1UsesMelody(x, <val> ) |

song1UsesInstrument(x, <val> ) |

song1UsesTempo(x, <val> ) |

song2UsesDrumBeat(x, <val>) |

song2UsesMelody(x, <val>) |

song2UsesInstrument(x, <val>) |

song2UsesTempo(x, <val>)

<val> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |

9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |

17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |

25 | 26 | 27 | 28 | 29 | 30 | 31

<binary_op> ::= and | or

<unary_op> ::= not

Figure 5.3: Actual grammar used by the GE experiments on the artificial
datasets.

5.4.1 Assessing Performance

As was the case with previous experiments from the DrumGA and MelodyGA,

a baseline for assessing the performance of GE here is a Null Hypothesis Sig-

nificance test that establishes whether a statistically significant difference

exists between the scores attained by GE and those that would be expected

by a method taking a random guess. An implementation of the choice()
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Table 5.2: Experimental settings for the GE runs.
Population size 200
Number of gener-
ations

100

Crossover rate 0.9
Mutation rate 0.01
Replacement
strategy

Steady-state

Other Settings Sensible initialisation
(Ryan & Azad, 2003)

Fitness function The number of cases
where the guesses match
the targets (maximising)

function that returns a random, unbiased, result (from two possible values)

would have an expected mean performance score of 50%.

5.5 Results and Discussion

This section gives a brief summary of the results from each problem, followed

by an overall discussion of the outcome as a whole.

5.5.1 Problem 1

In problem 1, both training and test datasets show candidates with a drum

preset value of 1 getting chosen as the winner of the tournament. Each

dataset contains examples of the form:

1 15 2 15 25 24 9 25 0

The first set of 4 values refers to the first song and the second 4 to the

second song. The final value refers (0 or 1) determines which song is chosen

by the human user. The first song uses the drumbeat preset 1, melody

preset 15, instrument preset 2 and tempo preset 15. In this fitness case,
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the left song was chosen (hence the value of 0 in the last position) since

it contains drumbeat 1. To avoid confusion, there are no examples in the

datasets where the two songs competing use the same preset. Results from

30 runs are shown in Figure 5.4 and a selection of the best-of-run individuals

is given below:

define f(x) { return song2UsesDrumBeat(x, 1 ); }

define f(x) { return song2UsesDrumBeat(x, 1 ) or

song1UsesInstrument(x, 17 ); }

define f(x) { return not (song1UsesDrumBeat(x, 1 ) or

song1UsesTempo(x, 19 )); }

define f(x) { return song2UsesDrumBeat(x, 1 ) or

song1UsesDrumBeat(x, 25 ) or

song1UsesDrumBeat(x, 27 ); }

In fact, every solution produced contains some mention of “UsesDrum-

Beat(x, 1)”, making it clear that GE has picked up on the importance of the

use of drumbeat 1. The testing performance scores reported in Figure 5.4

also support this finding.

5.5.2 Problem 2

In problem 2, both training and test datasets show candidates with a drum

preset value of 1 and a melody preset of 2 getting chosen as the winner of the

tournament. For this problem, each dataset contains examples of the form:

11 15 2 15 1 2 9 25 1

Here we can see that the right song was chosen (value of 1 at the end)

since it contains drumbeat 1 and melody 2. Results from the second artificial

problem are shown in Figure 5.5 and a selection of the best-of-run individuals

is given below:
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Figure 5.4: Training and Testing performance scores on the first artificial
problem. Performance scores are the mean best fitness from 30 runs, showing
training and testing performance at each generation. Training was performed
on 100 fitness cases and testing was carried out on 100 unseen cases. The
scores have been normalised to values between 0 and 1.

define f(x) { return not (not (song2UsesDrumBeat(x, 1 ))

or song1UsesMelody(x, 2 )); }

define f(x) { return not (song1UsesMelody(x, 2 ))

and song2UsesMelody(x, 2 )

or song1UsesMelody(x, 6 ); }

define f(x) { return not (not (song2UsesMelody(x, 2 ))

or song1UsesMelody(x, 2 )); }

define f(x) { return not (song2UsesDrumBeat(x, 4 )

or song1UsesMelody(x, 2 ))

and song2UsesDrumBeat(x, 1 )

or song1UsesInstrument(x, 28 ); }

5.5.3 Problem 3

Results from the third artificial problem are shown in Figure 5.6. A selection

of the best-of-run individuals from the experiments is given below:

define f(x) { return not (song1UsesMelody(x, 2 )
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Figure 5.5: Training and Testing performance scores on the second artificial
problem. Performance scores are the mean best fitness from 30 runs, showing
training and testing performance at each generation. Training was performed
on 100 fitness cases and testing was carried out on 100 unseen cases. The
scores have been normalised to values between 0 and 1.

and song1UsesDrumBeat(x, 1 )); }

define f(x) { return song2UsesMelody(x, 31 ) or

song2UsesDrumBeat(x, 1 ) and

song2UsesTempo(x, 3 ); }

define f(x) { return not (song1UsesTempo(x, 3 )

and song1UsesDrumBeat(x, 1 )

or song1UsesMelody(x, 26 )); }

define f(x) { return not (not (song2UsesDrumBeat(x, 1 ))

or song2UsesMelody(x, 16 )); }

In this problem all of the fitness cases take the form:

1 2 3 15 25 24 9 25 0

In the generated solutions, the focus in most cases is on the input combi-

nations that resulted in a successful choice by the artificial user. The notions

of using melody 2, drumbeat 1 and tempo 3 show up in a majority of solu-

tions.
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Figure 5.6: Training and Testing performance scores on the third artificial
problem. Performance scores are the mean best fitness from 30 runs, showing
training and testing performance at each generation. Training was performed
on 100 fitness cases and testing was carried out on 100 unseen cases. The
scores have been normalised to values between 0 and 1.

5.5.4 Problem 4

Results from the fourth artificial problem are shown in Figure 5.7. A selection

of the best-of-run individuals from the experiments on this problem is given

below:

define f(x) { return song2UsesInstrument(x, 4 ) and

song2UsesMelody(x, 2 ) or

song1UsesMelody(x, 23 ); }

define f(x) { return song2UsesMelody(x, 2 ) and

song2UsesInstrument(x, 4 ); }

define f(x) { return song2UsesMelody(x, 2 ) and

song2UsesDrumBeat(x, 1 ) or

song1UsesDrumBeat(x, 28 ) or

song2UsesTempo(x, 2 ); }

define f(x) { return song2UsesMelody(x, 2 ) or

song2UsesTempo(x, 2 ) or

song2UsesInstrument(x, 13 ) and

song2UsesDrumBeat(x, 13 ); }

82



 0

 0.2

 0.4

 0.6

 0.8

 1

 10  20  30  40  50  60  70  80  90  100

M
ea

n 
B

es
t F

itn
es

s

Generation

Problem 04

training
testing

Figure 5.7: Training and Testing performance scores on the fourth artificial
problem. Performance scores are the mean best fitness from 30 runs, showing
training and testing performance at each generation. Training was performed
on 100 fitness cases and testing was carried out on 100 unseen cases. The
scores have been normalised to values between 0 and 1.

5.5.5 Problem 5

Results from the fifth artificial problem are shown in Figure 5.8. A selection

of the best-of-run individuals from the experiments on this problem is given

below:

define f(x) { return song2UsesDrumBeat(x, 3 ) and

song1UsesDrumBeat(x, 4 ) or

song2UsesDrumBeat(x, 2 ) or

song2UsesDrumBeat(x, 1 ); }

define f(x) { return song2UsesDrumBeat(x, 1 ) or

song1UsesDrumBeat(x, 4 ) or

song1UsesTempo(x, 4 ) or

song1UsesTempo(x, 21 ) or

song1UsesMelody(x, 4 ); }

define f(x) { return song1UsesMelody(x, 1 ) or

song2UsesTempo(x, 27 ) or

song1UsesDrumBeat(x, 4 ) or

song2UsesDrumBeat(x, 1 ) or

song1UsesInstrument(x, 3 ); }

What is interesting here is that in most of the generated best-of-run
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solutions, the musical functions that make up the solutions focus primarily

on the “UsesDrumBeat” notion. This is particularly apparent in the first

of the best-of-run solution shown above. Furthermore, the solutions that do

focus on the “UsesDrumBeat” notion have few inputs other than those in the

preferred set ({1, 2, 3, 4}). However, this problem also seems to be one which

GE has more difficulty solving, in terms of the generalisation performance.
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Figure 5.8: Training and Testing performance scores on the fifth artificial
problem. Performance scores are the mean best fitness from 30 runs, showing
training and testing performance at each generation. Training was performed
on 100 fitness cases and testing was carried out on 100 unseen cases. The
scores have been normalised to values between 0 and 1.

5.5.6 Summary

It should be clear from the testing performance scores achieved across all

problems that GE is solving them with a high degree of success. The worst

performance (approximately 70%) was on problem 5, which is arguably the

most realistic problem of the set since it mimics a situation where multiple

levels of preference ordering are at work in the mind of the user. Despite the

fact that there is room to improve on this outcome, it is felt that this would

be a very desirable result to achieve on real-world, non-contrived user data.
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Results from the application of statistical hypothesis tests as shown Ta-

ble 5.3 reveal that the GE models created are significantly superior to those

that would be exected from an unbiased coin toss.

Table 5.3: Null Hypothesis Statistical test results using the end-of-run GE
test performance score, using a t-test with alpha-level 0.01. If the resulting
p-value from the test is less than 0.01, a statistically significant outcome is
reported.

Problem GE Significant P-Value
1 0.9313 Yes 2.96E-047
2 0.9423 Yes 8.92E-037
3 0.9403 Yes 6.72E-048
4 0.9113 Yes 1.83E-043
5 0.7137 Yes 1.24E-018

In relation to solution structure, in some cases it has been clear that the

GE-evolved functions are focused on the input combinations which corre-

spond to a “correct” choice, however it is not immediately clear in others.

Of course, the question then emerges: should we be concerned about such

solution structures as long as they are achieving good predictive performance

on unseen data? Clearly, our goal has been to construct an accurate model

of user behaviour; while it may be interesting to examine the inner-workings

of a particular successful model, it is not essential that this can be performed

– provided that the predictive performance of the model is sufficiently high.

5.6 An Initial Experiment with Real Data

In the previous section it was shown how a GE-based learning system can be

used to form meaningful models of (contrived) fitness functions using a set of

artificial problems. This is an encouraging result and represents a significant

milestone on the journey towards the modelling of fitness functions from real-

world data. It is clear from this result that when consistent data is part of

the input, GE can be used to build good models.
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Table 5.4: Instruments and scales used to generate preset melodies. Note
that while the scale of the preset melody cannot change after it has been
generated, the system does allow the instrument and drumbeat to be changed
during evolution. The size of the search space using this setup is 16384.

Instruments available Melody Scale Drumbeat Style
Piano Harpsichord Chromatic scale Rock (1)
Xylophone Hammond organ E Major Rock (2)
Steel string guitar Overdriven guitar F Harmonic Minor Rock (3)
Acoustic bass Slap bass G Melodic Minor Funk (1)
Violin Cello Blues Scale in A Funk (2)
Harp Synth strings B Diminished Pop
Choir aahs Saxophone C Persian Reggae
Oboe Flute C Major Samba

An obvious next step would be to see if the system can still produce mean-

ingful models when we introduce a human into the equation. In accordance

with the “bottom-up” nature of the previous experiments and due to the rel-

atively high cost of gathering data from a large cohort of human users, this

initial experiment will focus on data gathered from a single subject before

proceeding to a larger set of participants.

5.6.1 Presets Used

In the experiment that follows, eight pre-programmed drumbeats were used

including the styles rock, funk, pop, reggae and samba. Sixteen instruments

and eight musical scales were used to generate a total of 128 melodies. All

settings used are shown in Table 5.4. The total number of presets that can

come about using this configuration is 16384 (this is the size of the search

space).

5.6.2 MelodyGA Settings

From a user point of view, the MelodyGA system is nothing more than a

binary decision: two candidate songs are presented and a decision must be

made as to which song is better. As mentioned earlier in Section 5.2, this

is done to ease user-fatigue and aid user-concentration by making things as
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Table 5.5: Summary of the MelodyGA settings used in the first “bottom-up”
experiment on human user data.

Population Size 40
Initial Score 0
Update Amount 10
Replacement Interval 10 evaluations
Cull Cutoff -11
Tournament Size 3
Crossover Rate 0.7
Mutation Rate 0.01

simple as possible. The job of the GA, then is to make the best use of this

information to drive the evolution forward. The way that information is

fed back to the GA for this experiment is as follows. If a song is selected

as a winner, it gets an increased score; if it loses, its score is decreased.

After a predetermined number of comparisons (the replacement interval),

the population is sorted by score and those songs with the lowest scores are

removed. Tournament selection, one-point crossover and point mutation then

takes place to replace the individuals that have been removed. This setup

allows for a larger, more diverse population since it is not absolutely necessary

for every individual to be evaluated in order to stay in the population. All

that is needed for an individual to survive is a score that is greater than a cull

cutoff value, which will always be the case unless a user-comparison takes

place in which the individual loses. A summary of the GA settings used is

given in Table 5.5.

5.6.3 Learning from the Data

Over a one hour period, a human subject2 performed 219 comparisons, which

were then used to produce a dataset containing 438 fitness cases. This data

was then split into a training and test set containing 292 and 148 fitness

cases respectively. Thirty runs of GE were then performed using the settings

2The author of this dissertation.
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Figure 5.9: Training and Testing performance using MelodyGA data gath-
ered from a human subject. Performance scores are the mean best fitness
from 30 runs, showing training and testing performance at each generation.
Training was performed on 292 fitness cases and testing was carried out on
148 unseen cases.

described in Table 5.7 with the grammar described in Table 5.6 used to

specify solutions.

Plots of mean best performance on the training and testing data are given

in Figure 5.9. As can be seen, the mean best training and testing performance

stays above 65% for the duration of the run with test performance coming in

just below 70% at the end of the run. If we zoom in on the test performance

score (Figure 5.10) we can see that the best test score obtained was 69.4%

at generation 56.

As used previously, a desirable result for GE to achieve would be statis-

tically significantly better than that which would be expected by from an

unbiased coin toss. A Null Hypothesis Significance test (alpha level 0.01)

yields a P-Value of 4.833E-28, indicating that a significantly superior perfor-

mance is achieved by GE. This is very impressive result given that it has been

obtained from non-contrived data. Recall that in the most complex of the

artificial problems examined in Section 5.5.5 a comparable test performance

score was obtained. The fact that the learning method has maintained this
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Figure 5.10: Detailed plot of the testing performance score from Figure 5.9.
The best score obtained was 69.4% at generation 56.

level is very encouraging and represents another significant milestone.

5.7 Music to the Masses

So far in this chapter we have de-constructed and rebuilt a system for dis-

covering human user’s fitness functions from the bottom up. Experiments

on artificial problems using the system have yielded encouraging results and

a subsequent speculative experiment using non-contrived user data has indi-

cated that the system is ready to be re-tested against a wider audience.

In the previous data-gathering experiments, the human subjects that took

part did so in an environment which was specifically set up for data collection

(in both previous cases, this was a teaching lab in a university). This con-

straint was removed for the experiments reported in this section. Although a

lot of the data collected was still taken from students in computer labs, other

interested parties could also take part in the experiment from anywhere else

with an internet connection and a Java-enabled web browser. The overall

architecture of the system is depicted in Figure 5.11.

There are no constraints on how many times a user runs the application
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Table 5.6: Grammar used in the initial experiment on a single human subject.

<body> ::= <musFunc> | <body> <binaryop> <musFunc>

| <unaryop> ( <body> )

<musFunc> ::= song1UsesDrumBeat(x, <val8> ) | song1UsesMelody(x, <val128> )

| song1UsesScale(x, <val8> ) | song1UsesInstrument(x, <val16> )

| song2UsesDrumBeat(x, <val8> ) | song2UsesMelody(x, <val128> )

| song2UsesScale(x, <val8> ) | song2UsesInstrument(x, <val16> )

<binaryop> ::= and | or

<unaryop> ::= not

<val8> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

<val16> ::= <val8> | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15

<val128> ::= <val16> | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24

| 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35

| 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46

| 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57

| 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68

| 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79

| 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 91

| 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101

| 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110

| 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119

| 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127

nor on the amount of time that it takes for a user to complete a given run.

The Melody Evolver user interface only permits the user to progress to the

next set of songs to be evaluated once the play button for each song has been

pressed. The system keeps a record of the total run time, the total number

of comparisons and the time taken for each comparison. History files for

analysis by GE can then be downloaded from the system using appropriate

selection criteria to filter out records below certain unusable levels.

To collect the data, two classes of first-year computing students from two

Irish universities were given access to the system during their lab sessions.

A total of 177 users took part3 and of these, 15 produced enough data to be

considered for this study according to the selection criteria shown below. By

these criteria, the user must have:

1. Performed at least 50 comparisons; and

2. Spent at least 20 minutes doing so.

3This means that this number of distinct users visited the application URL, downloaded
the applet and clicked the next button at least once.
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Table 5.7: Experimental settings used by GE on the first “bottom-up” ex-
periment on human user data.

Population size 500
Number of gener-
ations

200

Crossover rate 0.9
Mutation rate 0.01
Replacement
strategy

Steady-state

Fitness function The proportion of cases
where the guesses match
the targets (maximising)

A list of runs that meet these criteria is given in Table 5.8.

5.7.1 Results from Online Experiments

For each subject that was included in this study, the run data generated by

the subject was split into a training and testing set using the first 85% of

the data for training and the latter 15% for testing. Multiple runs of GE

were then performed on each subject’s data using the settings in Table 5.10.

The GE grammar was adapted from that used in the previous speculative

experiment on human user data (from Section 5.6) to include the use of

conditional statements as shown in Table 5.9.

Results from the online experiments are given in Figure 5.12 and Fig-

ure 5.13 and summarised in Table 5.11. From the plots and the table it can

be seen that the GE models achieved a performance score of at least 60% in

8 out of 15 cases.

A Null Hypothesis Significance test is carried out at each generation by

taking the best solution discovered on the training data and calculating its

corresponding test score from the unseen data. This test score is compared

with that which would be expected from an unbiased coin toss. It turns out

that the GE models produce results that are statistically significant (using
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Figure 5.11: System architecture. Melody Evolver clients (Java applets)
download their configuration settings from a central server. Users then take
part in the experiment by repeatedly choosing their favourite songs. When
finished, results are posted back to the server and persisted to a database.
Results files from selected individuals may then be downloaded by the (GE)
learning system for the purposes of building models of their fitness functions.

a t-test with alpha-level 0.01) in all but two cases. Table 5.11 shows the

minimum p-value together with the generation at which it is calculated for

those cases where a significant difference is observed.

Learning Curves

Inspection of the training lines shown in Figures 5.12 and 5.13 indicates a

slow rate of learning in the training phase – the lack of steepness of the

training curves in the initial generations suggest that the randomly created

GE individuals from generation zero are solving the bulk of the problems,

with only minor enhancements occurring over the course of the evolutionary

run. Re-running the experiment above with a smaller population size does

not produce drastically different training curves, as can be seen from Figures

5.14 and 5.15.

Initial examination of the plots suggests little difference between the re-

92



Table 5.8: User-runs with a minimum number of 50 comparisons which also
took 20 minutes or more to complete.

Subject ID Total Comparisons Run Time (mins)

265 54 23.04
267 72 23.88
317 97 29.52
318 72 30.30
333 92 22.75
345 67 20.12
352 151 22.55
354 129 22.92
357 71 27.33
359 55 28.07
360 123 24.41
366 73 31.67
371 142 24.41
372 133 32.31
373 104 33.51

sults obtained from the use of a large population (5000) and a small one (50).

A re-run of the significance tests shows an increase in the number of cases

where no difference is observed to four. Hence, the increased population size

offers better results, even if the best solutions appear in early generations.

5.8 Discussion

Producing accurate models of human user behaviour in the musical setting

as described in this chapter has been a difficult task. Although it is clear

that the use of GE has significantly outperformed a random choice method,

a higher test performance score on each subject would have been a more

desirable outcome.

The results that have been achieved emphasise the difficulty of the prob-

lem that is learning from (and predicting) human behaviour when making

subjective, musical judgements. Despite introducing measures to simplify

the problem by reducing the search space in the musical GA and altering the
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Table 5.9: Grammar used in the online experiments. This grammar adds the
availability of conditional statements to the evolving models.

<body> ::= <if else> | <if elseif>

<if else> ::= if <conditional> then return <true false>

else return <true false> end

<if elseif> ::= if <conditional> then return <true false>

<elseifs>

else return <true false> end

<elseifs> ::= elseif <conditional> then return <true false>

| <elseifs> elseif <conditional> then return <true false>

<conditional> ::= <musFunc> | <conditional> <binaryop> <conditional>

| <unaryop> ( <conditional> )

<musFunc> ::= song1UsesDrumBeat(x, <val8> ) | song1UsesMelody(x, <val128> )

| song1UsesScale(x, <val8> ) | song1UsesInstrument(x, <val16> )

| song2UsesDrumBeat(x, <val8> ) | song2UsesMelody(x, <val128> )

| song2UsesScale(x, <val8> ) | song2UsesInstrument(x, <val16> )

<binaryop> ::= and | or

<unaryop> ::= not

<true false> ::= true | false

<val8> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

<val16> ::= <val8> | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15

<val128> ::= <val16> | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24

| 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35

| 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46

| 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57

| 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68

| 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79

| 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 91

| 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101

| 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110

| 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119

| 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127
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Table 5.10: Experimental settings for the GE runs using data gathered from
the online Melody Evolver experiments.

Number of runs
(per subject)

30

Population size 5000
Number of gener-
ations

50

Crossover rate 0.99
Mutation rate 0.1
Replacement
strategy

Steady-state

Fitness function The number of cases
where the guesses match
the targets (maximising)

user interface to transform fitness allocation into a binary decision, it is still

unlikely that all unpredictable aspects of the behaviour of human users have

been removed from the system. It may be the case that the more successful

artificial models produced by GE correspond to cases where the human user

has behaved in a certain way when making decisions about the quality of

the musical pieces undergoing evolution. To investigate this idea further, we

can use some of the (non-subjective) information about each user’s run to

discover if a relationship exists between the way in which the system is used

and the corresponding performance of the GE-evolved models on the user’s

run data.

5.8.1 Predicting the Predictability

In addition to the raw run data accumulated by each subject, the online

experiments also recorded other information about a given user run, such as

the total number of song comparisons (evaluations), the run time and the

average time taken to compare a set of competing songs. This information

is used to produce a set of tuples of the form:
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Table 5.11: Summary of the testing performance results achieved by GE
from the online experiments. With a desirable result set at 60%, GE meets
this level in 8 out of 15 cases. In all but two cases, the GE evolved models
performance scores are significant based on a t-test with alpha level 0.01. In
these cases, the minimum P-value together its associated generation number
is reported.
Subject Best Test

Score
≥ 60% Significant Minimum

P-value
Generation

265 0.622 Yes Yes 3.06E-009 9
267 0.545 No Yes 1.33E-003 38
317 0.738 Yes Yes 3.33E-016 46
318 0.553 No Yes 1.18E-003 5
333 0.610 Yes Yes 6.46E-012 11
345 0.585 No Yes 0 19
352 0.671 Yes Yes 0 5
354 0.486 No No - -
357 0.611 Yes Yes 3.16E-007 38
359 0.579 No Yes 9.14E-008 45
360 0.643 Yes Yes 0 3
366 0.595 No Yes 2.82E-007 26
371 0.603 Yes Yes 4.95E-013 19
372 0.507 No No - -
373 0.664 Yes Yes 0 1

[x1, x2, x3, y]

where x1 is the total number of comparisons performed by a human subject,

x2 is the run time (in seconds), x3 is the average comparison time and y is the

testing performance score achieved by the GE-induced model of the subject’s

choice metric. To investigate if a relationship exists between the inputs and

the target values, GE is used here again with the following grammar:
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<body> ::= (function() return <expr> end) ()

<expr> ::= <expr> <bin op> <expr> | <unary op>(<expr>) | <summary metric>

<summary metric> ::= total comps(x) | run time(x) | avg comp time(x)

<unary op> ::= math.log | math.sin | math.cos

<bin op> ::= + | - | * | /

The system is trained using eight of the fifteen fitness cases (chosen at

random) and the models produced are tested against the remaining seven

cases. All experimental settings are given in Table 5.12. To calculate test

performance, the best models discovered during training are applied to the

test data. A test hit occurs if the guessed value falls within 10% of the

target value. Overall test performance is then calculated by measuring the

proportion of test hits achieved.

Table 5.12: Experimental settings for the GE runs used to investigate a
relationship between the way in which a user run was carried out and the
resulting test performance score obtained from the artificial models of the
user’s choices.

Number of runs 30
Population size 500
Number of generations 100
Crossover rate 0.9
Mutation rate 0.01
Replacement strategy Steady-state
Fitness function Maximise the hits; a hit occurs when

the guessed value and the target value
differ by at most 0.01.

Test Performance The percentage of cases where the
guessed value and the target value differ
by at most 0.1.

Results

After performing thirty runs of the GE configuration described above, a test

performance score of 90.95% was obtained. This means that in over 90%

of cases, the GE-induced model comes within 10% of the target value. A

selection of best of run individuals is given below:
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function() return math.sin(math.sin(math.sin(

math.cos(math.sin(avg_eval_time(x))))))

end

function() return math.sin(math.sin(math.sin(

math.cos(math.sin(math.sin(

math.log(math.cos(math.sin(

eval_time(x) * math.cos(math.sin(

math.log(math.log(eval_time(x)))))))) - avg_eval_time(x)))))))

end

function() return math.sin(math.cos(math.cos(

math.sin(math.sin(total_evals(x)) -

math.sin(math.cos(total_evals(x) +

math.cos(avg_eval_time(x)) - avg_eval_time(x)

* eval_time(x) + math.sin(eval_time(x) +

eval_time(x) * math.sin(total_evals(x) /

total_evals(x)) * total_evals(x)))) + total_evals(x)))))

end

These results show that a relationship does exist between the way in

which a human user performed a run and the performance obtained by a GE

system producing artificial models of that user’s behaviour.

We have seen from the results reported in Section 5.7.1 that the artificial

models produced are not perfect. By deriving this relationship, we can start

to find the boundaries of where this work can be useful.

This is very significant; such information helps in identifying the condi-

tions under which artificial models of human fitness functions can be created.

5.9 Conclusions

At the beginning of this chapter it was hypothesised that consistent user

behaviour is the key to the derivation of models of human choices that have

good predictive power. This has been initially demonstrated by the substi-

tution of real-world data with controllable, artificial datasets. Given usable

inputs, Grammatical Evolution produces models which perform very well

when presented with previously unseen examples.
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Moving out of the artificial, controllable domain and onwards to experi-

mentation on human subjects, it was hoped that changes to the size of the

search space and to the make-up of the user interface would help to filter

out some of the noise that is to be expected from experimentation with hu-

man subjects. An initial experiment on a single human subject showed the

measures to be working well, with a good predictive performance of almost

70% achieved. A subsequent set of experiments on a much larger group of

participants has shown a wider range of results.

It is difficult to determine exactly how effective these simplification mea-

sures have been at ensuring consistent behaviour from all subjects tested.

Based on the results achieved (as summarized in Table 5.11) it would be fair

to assume that there are other potential factors at work that cause a given

subject to produce consistent data.

This idea is investigated further by measuring some of the external condi-

tions as experienced by subjects taking part in the experiments (as described

in Section 5.8.1) and attempting to discover a relationship between these con-

ditions and to the production of a good GE model. A better understanding

of this is very likely to aid data noise reduction and ultimately to better

artificial models.
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Figure 5.12: GE results from the first set of subjects that took part in the
online experiments. Each plot shows the mean training and testing perfor-
mance scores gathered from 30 runs.
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Figure 5.13: GE results from the second set of subjects that took part in the
online experiments. Each plot shows the mean training and testing perfor-
mance scores gathered from 30 runs.
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Figure 5.14: GE results (using population size of 50) from the first set of
subjects that took part in the online experiments. Each plot shows the mean
training and testing performance scores gathered from 30 runs. Note that
the training lines still appear quite flat despite the massive reduction in the
population size.
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Figure 5.15: GE results (using population size of 50) from the second set of
subjects that took part in the online experiments. Each plot shows the mean
training and testing performance scores gathered from 30 runs. Note that
the training lines still appear quite flat despite the massive reduction in the
population size.
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Chapter 6

Improving Generalisation in

Genetic Programming

In Chapter 4, Genetic Programming was applied to the task of of musical

fitness function prediction and it was seen that certain success stories exist,

which is an excellent result for GP in the context of a difficult real-world

problem.

For the less successful cases, it would be unfair to blame GP. In fact, any

case of poor performance is much more likely to be a result of the small, noisy,

inconsistent dataset that was provided to it. This claim is supported by the

corresponding predictions which were made by other “black-box” learning

methods on the same data.

In this chapter, we initially detour from modelling subjective fitness func-

tions and instead focus on the generalisation of GP. We examine this on

some well-studied test problems and also critically examine the performance

of some well known GP improvements from a generalisation perspective.

From this, the need for GP practitioners to provide more accurate reports

on the generalisation performance of their systems on problems studied is

highlighted. Based on the results achieved, it is shown that improvements in

training performance thanks to GP-enhancements represent only half of the

battle.
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The goal of the work presented in this chapter is to try to improve the

generalisation of GP, particularly in the context of recent advances to the

field. It is argued here that the blind application of improvement techniques

is not always a good idea, rather, there is a balance that can be struck which

has desirable consequences for making predictions about unseen events.

These aims are summarized as follows:

• To investigate and improve GP’s generalisation abilities

• To examine recent enhancements to the field in order to show how

getting the balance right is important

In particular, the combination of two recent GP-improvement techniques,

Linear Scaling (Keijzer, 2003) and No Same Mates (Gustafson et al. , 2005)

is recommended for achieving better generalisation on forecasting and pre-

diction problems.

Following an initial demonstration on artificial problems, this positive ef-

fect is also demonstrated by revisiting the DrumGA experiments from Chap-

ter 4.

6.1 Background and Motivation

Improvements to Genetic Programming are discovered and reported at Evo-

lutionary Computation conferences and in articles every year. A typical

effort involves the discovery of a new technique followed by its comparison

with standard Koza-style GP (often on the same problem). These compar-

isons tend to show that due to a statistically significant improvement between

the proposed method and standard GP on training data, the new method is

therefore declared to be successful.

Unfortunately, what many such studies fail to address is the performance

of the proposed GP-improvements on unseen data 1. A central message

1Even the seminal, award winning papers by Keijzer (Keijzer, 2003) and Gustafson et
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of this chapter is that approaches such as these must take generalisation

performance into account before any declaration of success is made.

It should be stressed that the motivation for much of the work described

here is not founded in an attempt to discount the valuable contributions

that researchers have made to the GP field. On the contrary: this work

aims to increase the robustness of such contributions, making them stronger

competitors against other methods within the field of Artificial Intelligence

and beyond.

6.2 On Problem Difficulty

In assessing the generalisation ability of GP, it would be prudent to examine

it in a simple form and strip away some limiting factors. For example, if

we want to assess limitations, there is no point in trying to assess these on

a difficult problem, since this will only add to the limitations. Instead, it

would be useful to choose a problem that has been studied well and acts as

a useful benchmark for assessing GP.

To gain an idea of the difficulty of a GP problem Koza suggests the

measurement of the number of individuals that must be processed in order

to satisfy the problem’s success predicate with a chosen probability. A strict

success predicate can be defined as the discovery of a 100% correct solution

to the problem. A slightly less strict version of the predicate deems a GP-

generated program to be successful if it achieves N “hits” (where N is the

number of fitness cases and a hit occurs when a predicted outcome and a

target outcome fall within a pre-specified error window).

If the amount of processing that must take place to achieve a successful

solution to a problem is correlated with problem difficulty, then it follows

that the lower the value of this measurement (or the larger the error window

is), the easier the problem is for GP to solve. Two obvious factors that

al (Gustafson et al. , 2005) are examples. The two examples cited have made significant
contributions to the GP field – the fact that these particular studies do not directly address
generalisation performance should not deter from this.
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influence the amount of processing are the population size M and number

of generations G. Koza describes the process of measuring the amount of

processing required by estimating the probability γ(M, i) that a particular

run with population size M first yields a successful individual at generation i.

The cumulative probability of success, P (M, i), then refers to the prob-

ability of achieving a successful result for all generations between 0 and i.2

Koza defines

R(M, i, z) = ⌈ 1 − z

log(1 − P (M, i))
⌉

as the number of runs required to have a probability z = 99% of discovering a

solution before generation i. Calculating the total number of individuals that

must be processed to achieve a successful result is then a matter of straight-

forward multiplication by the population size and the number of generations

(including the initial generation):

I(M, i, z) = m(i + 1)R(M, i, z)

As noted (and even criticised3) elsewhere (Luke & Panait, 2002), the

above metrics are often used in GP literature to compare new GP-variants.

For a more comprehensive study on problem difficulty in GP, the reader is

referred elsewhere (Vanneschi et al. , 2005).

2It is calculated experimentally as follows:

P (M, i) =
Ns(i)

T

where T is the total number of runs and Ns(i) is the number of successful runs at generation
i.

3The authors (Luke & Panait, 2002) note a difficulty with the use of ideal solution
count measures GP research due to an observed lack of correlation with best-fitness-of-run
measures – it was noted that in cases where there were very few successful runs, the results
appear distorted suggesting a better overall performance than what was actually achieved.
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6.2.1 A Simple Problem

If there is one symbolic regression problem that receives the most attention in

GP research, it is probably that of (re-) discovering the quartic polynomial.

The function is described as follows:

f(x) = x4 + x3 + x2 + x (6.1)

Due to the popularity of this problem in GP research, it is used here for

the purposes of demonstration.

Making things easy

Now that we have a simple problem to study and a metric that can be used

to approximate the difficulty of the problem, let us now turn our attention

to the task of finding a configuration of the problem settings that achieve a

high success rate. This task is achieved experimentally as follows. Using a

Koza-style GP system (Costelloe, 2008), we supply a set of configurations to

the system, run each one and then choose the configuration that turns out

to be the easiest for GP.

An easy configuration is (arbitrarily) defined here as one that produces

an average success rate of at least 70% by the end of the run. Let us choose

configuration value for population size; using the run parameters shown in

Table 6.1, four sets of 30 independent runs are carried out using population

size 50, 100, 200 and 500.

By examining the success rate plots in Figure 6.1 (left), we can immedi-

ately identify two “easy” configurations from the use of populations sizes 200

and 500 since the success rate passes the pre-defined target value of 70% in

both cases. Also shown in Figure 6.1 (right) is the success rate as calculated

from the number of hits on the testing dataset. It is encouraging to note

that the performance on unseen data holds up almost as well as the train-

ing performance, which is a very desirable characteristic for any black box

learner/predictor method.
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Figure 6.1: Success rate plots from four sets of runs on the quartic polynomial
problem using a training dataset of 21 points in the range [-1:0.1:1] (left) and
a test dataset of 11 points in the range [1:0.1:1] (right). Each set of runs uses
a different population size.

This characteristic is so desirable that it should form the basis of a much

more useful comparison between GP + improvement and standard GP for

forecasting problems. Put another way, if the training / testing plots exhibit

very obvious differences then it would be wise to question the validity of the

technique in a generalisation context.

6.3 A Selected Improvement: Linear Scaling

A number of improvements to GP for symbolic regression have been pub-

lished in recent years (Fernandez & Evett, 1998; Topchy & Punch, 2001;

Keijzer, 2003; Keijzer, 2004). Among these is Keijzer’s application of linear

scaling (Keijzer, 2003) to a suite of test problems and the subsequent proof

(Keijzer, 2004) of the superiority of the scaled error measure over standard

error measures (such as MSE) on symbolic regression problems. The method
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Table 6.1: Run settings used to find a population size to use which produces
a success rate of at least 70%.

Generations 200
Crossover rate 0.95
Mutation rate 0.02
Tournament size 5
Function set {+, −, ∗, %, sqr()}
Terminal set {x}
Raw fitness MSE(targets, predictions)
Standardised fitness 1

1+MSE

Hits criterion Number of points where the GP
program comes within 0.01 of the
desired value

works by finding two values, a and b such that

a + bg(x) = t + ǫ

It can be proved that the error (ǫ) is reduced via the application of linear

scaling for a 6= 0 and b 6= 1. The process works as follows. If x is a set

of independent variables, g is a GP-induced function that produces a set

of predictions y and t is a set of target values derived from an unknown

function f such that f(x) = t, a linear regression on the target values can be

performed:

b =

∑n
i=0 (t − t̄)(y − ȳ)
∑n

i=0 (y − ȳ)2
(6.2)

a = t̄ − bȳ (6.3)

The error measure is then scaled as:

MSE(t, a + by) =
1

N

N
∑

i=0

((a + by) − t))2 (6.4)

Due to the relatively low computational cost of calculating a and b, the
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implementation of this technique has been recommended to GP researchers

and some successful results can be found in the literature (Raja et al. , 2007;

Majeed & Ryan, 2006). The technique is not without its apparent limitations,

however. In one particular example of its application on a real-world problem

(Valigiani et al. , 2004), the findings suggest that the application of linear

scaling leads to over-fitting, resulting in poor forecasting abilities4.

6.3.1 Does Linear Scaling Over-fit?
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Figure 6.2: Success rate plots on the quartic polynomial problem (population
size 200) with linear scaling, using a training dataset of 21 points in the range
[-1:0.1:1] (left) and a test dataset of 11 points in the range [1:0.1:1] (right).

Using a population size of 200 as chosen from section 6.2.1, let us examine

the success rate plots when linear scaling is applied to quartic polynomial

problem (with all other settings as per Table 6.1). The results from thirty

4It should be pointed out here, however, that the study (Valigiani et al. , 2004) led
to this conclusion based on 20 independent runs. It has been noted elsewhere (Luke &
Panait, 2002) that at least 30 runs should be carried out before any statistically sound
conclusions may be made regarding performance comparisons.
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independent runs are shown in Figure 6.2. What is clear from this test is that

the application of linear scaling to this so-called easy problem configuration

does not show any evidence of over-fitting. This can be seen in the right plot

in the figure: the success rate does not drop off when applied to unseen data,

which shows that the GP-derived models can forecast with a comparable

amount of accuracy to that observed on the training set. Again, this sort of

result is desirable; any experiences with GP-improvement techniques that do

not follow this pattern should be called into question.

6.3.2 Comparing Performance

The use of sound statistics is of the utmost importance when comparing

approaches such as these. As noted by Luke (Luke & Panait, 2002), many

examples can be found in GP literature where conclusions regarding success-

ful techniques are founded on questionable statistical practices.

A widely used test to determine whether there is a statistically significant

difference between two sets of observations is the paired t-test. This test can

be used to compare two methods for example, GP and improved GP with

all else being equal (same random seeds, run settings and so on). The test is

performed as follows; if X and Y are two sets of observations, let

X̂i = (Xi − X̄)

Ŷi = (Yi − Ȳ )

t = (X̂ − Ŷ )

√

√

√

√

n(n − 1)
∑n

i=0 (X̂i − Ŷi)2

This statistic has n−1 degrees of freedom and this information is used to

estimate the P-value, that is the estimated probability of rejecting the null

hypothesis. To bring this into context, we could let X be the set of best-of-
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run values obtained from standard GP applied to a problem and let Y be the

set of best-of-run values obtained using improved GP. The null hypothesis

in this case would be that there is no difference between the two sets of

observed values X and Y . The question that the study is asking is: is there

a significant difference in performance between the two methods? This forms

the alternative hypothesis, which states that there is a significant difference

in performance between the methods. To claim statistical significance, the

aim is to reject the null hypothesis.

Although the choice of threshold P-value varies across statistical studies,

values of 0.05 and 0.01 are typical. In the former case, a P-value obtained

that is less than 0.05 can be interpreted (in English) as: “a less than one in

twenty chance of being wrong” (about rejecting the null hypothesis).

The only difficulty with the method described above is that the sets of

observations X and Y are obtained from a single point in time: the end of

the run. It would be statistically much stronger to state that no point over

the duration of the run is there evidence that differences in performance are

due to chance.

We can use confidence intervals to convey this information – this is sta-

tistically equivalent (Wasserman, 2004) to performing a paired t-test about

each set of runs per generation. Using a sample of n (i.e the number of runs)

observations of X, the 95% confidence limits are defined as:

X̄ ± 1.96
σ√
n

where X̄ and σ refer to the mean and standard deviation of the observations.

What this measure tells us is that based on the sample provided, we can

be 95% certain that the (statistical) population lies inside these limits. To

apply this in a GP-context, this information can easily be incorporated into

best-of-run plots (using error-bars, where the bars represent the confidence

intervals) showing the differences between two competing methods. If there

is no overlap between the error-bar plots then it is safe to assume that a
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statistically significant difference in performance is observed.

Armed with this technique, we can now assess the performance of linear

scaling. A comparison is shown in Figure 6.3. The figure shows the error bar

plots obtained from both training and testing. We can clearly see by inspec-

tion (overlapping error-bars) that no significant difference in performance is

observed for this particular problem.
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Figure 6.3: Mean best fitness plots on the quartic polynomial problem (pop-
ulation size 200). Each plot compares the use of standard GP with and
without linear scaling, using a training dataset of 21 points in the range [-
1:0.1:1] (left) and a test dataset of 11 points in the range [1:0.1:1] (right). The
error-bars shown represent 95% confidence intervals. Note that standardised
fitness is used so all y-axis values fall between 0 and 1.

This simple demonstration does not provide enough information to con-

clude that GP with linear scaling does not outperform standard GP. This

will be investigated by experimentation in the following section.

6.3.3 Widening the Scope

Using a set of test problems (most of which can be found in (Keijzer, 2003))

described in Table 6.2, let us now examine the performance differences be-

tween standard GP and standard GP with linear scaling on a selection of

four problems. It has already been shown and also proven that training error

is guaranteed to be reduced when linear scaling is applied, so the differences

in training performance will not be shown here. Instead, we will examine
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the generalisation performance on unseen data. Unless otherwise stated, the

run settings used for 30 runs of GP both with and without linear scaling are

given in Table 6.3.

Table 6.2: Test Problems under investigation
# Description Training set Test set

1 f(x) = x4 + x3 + x2 + x 401 cases:
[0:0.01:4]

81 cases:
[1:0.025:3]

2 f(x) = 0.3xsin(2πx) 161 cases:
[0:0.025:4]

55 cases:
[0:0.073:4]

3 f(x, y) = xy 400 random cases:
x, y ∈ [0:1]

100 random cases:
x, y ∈ [0:1]

4 f(x, y) = 6sin(x)cos(y) 400 random cases:
x, y ∈ [0:1]

100 random cases:
x, y ∈ [0:1]

Table 6.3: Run settings for the 4 test problems.
Population Size 200
Generations 200
Crossover rate 0.7
Mutation rate 0.02
Tournament size 3
Function set {+, -, *, %, sqr(), sin(), cos(), ln() }
Terminal set {x}
Raw fitness MSE(targets, predictions)
Standardised fitness 1

1+MSE

Hits criterion Number of points where the GP program
comes within 0.01 of the desired value

Results from the four test problems are summarised in Table 6.4. In

terms of statistical significance, the results are quite disappointing; it is found

that in none of four trials examined did the application of linear scaling

contribute to a significant performance improvement, which is quite dramatic

considering the huge performance gains that would be expected if we were

to examine training performance alone.
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Table 6.4: Summary of results obtained when comparing the generalisation
performance of standard GP versus standard GP with Linear Scaling over
four test problems. Note that a “No” value means that the improvement to
GP has not resulted in performance significantly better than standard GP.
An example confidence interval illustrating whether or not overlap occurs is
also given.

Problem Significant 95% confidence interval

GP GP with LS

1 No 0.8680 ± 0.1040 0.9587 ± 0.0649
2 No 0.9317 ± 0.0128 0.9505 ± 0.0146
3 No 0.9911 ± 0.0015 0.9957 ± 0.0042
4 No 0.9309 ± 0.0197 0.9644 ± 0.0303

6.3.4 Discussion

The results obtained from the four test problems would not support any

assertion that the use of linear scaling should improve generalisation perfor-

mance. Variations of the experiments above were also re-run by incorporat-

ing the idea of potency whereby the level of application of the scaled error

measure was both increased and decreased over the duration of the run. In

neither case was it possible to improve upon the results from Table 6.4.

6.4 Powers Combined: No Same Mates

As indicated previously, the use of Linear Scaling with GP has been shown to

offer little performance gains over standard GP when applied to unseen data.

Given that the method has been proven to reduce the error on training data

(Keijzer, 2004) it is unfortunate that the same gains are not evident when

it comes to generalisation. However, the results from the experiments above

should not necessarily lead us to the conclusion that GP with linear scaling

cannot generalise. It could be the case that good generalisation is possible,

however not necessarily with the application of Linear Scaling alone. It

would appear that LS can cause the selection of individuals which match the
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training data too well – the population quickly becomes saturated with these

individuals which has a negative effect on the resulting generalisation. In

this scenario, having some means to counter-act the selection pressure would

be desirable.

Gustafson et al (Gustafson et al. , 2005) reported a simple GP improve-

ment technique that forced the genetic operators to always use parents with

different fitness values. The method was shown to provide a statistically

significant performance improvement in the training phase when compared

with standard GP. At the core of the work carried out by Gustafson et al was

the fact that the probability of no change in solution quality increases with

the similarity of solutions. By forcing the mating of dissimilar individuals, a

significant improvement in solution quality was observed.

In the experiments that follow, we combine this no same mates idea with

the application of Linear Scaling to see if it results in better generalisation.

Using the same experimental settings as given in Table 6.3, standard GP is

compared to GP with Linear Scaling using No Same Mates (NSM). Results

from the four test problems are summarised in Table 6.5.

It can be seen from the table that the incorporation of NSM with Linear

Scaling results in a significant improvement over standard GP in three out

of four cases. Recall that when standard GP was compared with GP and

Linear Scaling, a significant improvement was not observed in any of the four

cases. To test that this improvement was due to the combination of the two

techniques (LS and NSM) and not just NSM alone the experiment was re-run

without Linear Scaling. In this case, no statistically significant improvement

in generalisation performance was observed in any case. This is good news,

both for Linear Scaling and for the No Same Mates technique. Although the

combination of the two techniques has not been an overwhelming success,

a step in the right direction is clearly observed. In the case of the second

problem, no single configuration of settings was found to significantly outper-

form (or under-perform) another. Furthermore, this problem presented the

greatest difficulty for all GP variants tested, resulting in the lowest number
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of successful individuals discovered.

Table 6.5: Summary of results obtained when comparing the generalisation
performance of standard GP versus standard GP with Linear Scaling and the
No Same Mates technique over four test problems. Note that a “Yes” value
means that the improvement to GP resulted in performance significantly
better than standard GP. An example confidence interval illustrating whether
or not overlap occurs is also given.

Problem Significant 95% confidence interval

GP
GP with LS and
NSM

1 Yes 0.8680 ± 0.1040 0.9907 ± 0.0047
2 No 0.9317 ± 0.0128 0.9525 ± 0.0112
3 Yes 0.9911 ± 0.0015 0.9975 ± 0.0010
4 Yes 0.9309 ± 0.0197 0.9809 ± 0.0043

6.5 DrumGA Revisited

The results obtained on the artificial problems described so far would appear

to advocate the combination of Linear Scaling and the No Same Mates tech-

nique. To test the applicability of this idea to a real-world problem, let us

return to the problem of predicting fitness values for drum-patterns, using

data gathered from the DrumGA experiment as described in Chapter 4.

The raw data sets from the fourteen subjects were split into training and

test sets as before. To guard against over-use of (or a reliance upon) the

protected division operator, values of 0 (corresponding to rests or off-beats

in the drum pattern) were converted to -1. The experiments performed used

the gpsr system (Costelloe, 2008) in the following four configurations:

• GP (standard)

• GP with LS

• GP with NSM
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• GP with LS and NSM

All four configurations used the same random seeds for thirty runs each.

Settings for the runs are shown in Table 6.6.

To obtain a high-level view of the results, the highest test performance

scores found by each GP-variant on each subject was extracted as shown

in Table 6.7 (best values shown in bold type). In some cases, the highest

value is shared by more than one GP-variant. Each of the four GP-variants

are then rated by recording the number of “wins” as the number of times

that a variant produced the highest test performance value. The number of

“out-right wins” is also recorded as the number of times that a variant got

the highest value, over all others.

Table 6.6: Run settings used in a comparison of GP with three other GP
variants with Linear Scaling, No Same Mates and both.

Population Size 200
Generations 100
Crossover rate 0.7
Mutation rate 0.02
Tournament size 3
Function set {+, -, *, %, sqr(), sin(), cos(), ln() }
Terminal set {x}
Raw fitness MSE(targets, predictions)
Test Performance Proportion of correct classifications

As can be seen from the table, the GP+LS+NSM variant performs best

since it records the most wins and out-right wins. This finding supports

previous results which suggest that the combination of Linear scaling and

the No Same Mates technique leads to better test performance.

6.6 Summary

This chapter has noted the relative absence of generalisation performance

analysis in Genetic Programming research in recent years. This deficit stands
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Table 6.7: Summary of a comparison of GP and variations of improvement
techniques on real-world data taken from participants of the DrumGA ex-
periments. The table reports the highest test performance score found by
each method (averaged over 30 runs). Values in bold are the best of the four
configurations tested (sometimes shared by more than one GP-variant). At
the bottom of the table, the number of wins is reported as the number of
times that a variant got the highest value. The number of out-right wins

is the number of times that a variant got the highest value over all other
methods.

Subject GP GP+LS GP+NSM GP+LS+NSM

01 0.9167 0.9167 0.9167 0.9167

02 0.8111 0.7944 0.8083 0.7944
03 0.6750 0.6917 0.6889 0.6917

04 0.3583 0.4056 0.3639 0.4194

05 0.4583 0.5083 0.5028 0.5139

06 0.8333 0.8333 0.8306 0.8333

07 0.5861 0.5833 0.5833 0.5833
08 0.7472 0.7306 0.7472 0.7306
09 0.4722 0.5639 0.4611 0.5861

10 0.4944 0.4917 0.4889 0.4917
11 0.5361 0.5389 0.5528 0.5333
12 0.5861 0.6389 0.5861 0.6111
13 0.6194 0.6750 0.6194 0.7083

14 0.3417 0.5417 0.3583 0.5278

Wins 6 5 3 7

Out-right

wins
3 2 1 4

in stark contrast to the amount of reported successful GP-improvements

stemming from their application to problems consisting solely of training

data. The main motive for highlighting this apparent shortcoming has not

been to de-value the contributions of GP researchers. Rather, we have aimed

to strengthen the foundations by pointing to areas that appear to be lacking

with the hope that future research may benefit.

In Section 6.2, a frequently used metric (Cumulative Frequency of Suc-

cess) was used to display performance on unseen data for a simple GP prob-

lem. We suggest that the success rate plots resulting from unseen data should
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not differ drastically from those achieved on training data if the method un-

der investigation is to be relevant in terms of generalisation. Later, in Section

6.3, we examined the unseen data success rate on a popular GP improvement

technique – Linear Scaling. An initial experiment on the quartic polynomial

showed the success rate on unseen data to hold up well compared to the

training phase.

This hopeful start lead to a more detailed investigation of differences in

performance using commonly used measures of statistical significance in the

context of generalisation. The finding (based on a set of test problems) has

been quite dramatic: Linear Scaling does not always generalise well – that

is to say, not significantly better than standard GP. This is an unfortunate

outcome for a method that has been demonstrated to perform so well on

training data. Some valid questions then emerge. Does this mean that

Linear Scaling is bad? If so, should the practice of using it be discouraged?

Not necessarily. It is equally plausible that the technique is simply too good.

It was hinted in Section 6.4 that it causes too much pressure on the selection

of individuals that match the training data as closely as possible, with poor

generalisation as a consequence.

By combining the application of Linear Scaling with another simple im-

provement to GP that forces recombination between parents with differ-

ent fitness values, we have found cases where better generalisation is possi-

ble. This second improvement technique appears to be a steadying counter-

balance for the more aggressive characteristics displayed by Linear Scaling.

While their symbiotic relationship has not resulted in perfect generalisation

scores on all of the test problems studied, we are certainly experiencing a pos-

itive outcome. It is quite fortunate and somewhat pleasing that such a result

has grown from the combination of methods which were initially criticised in

Section 6.1.

What is even more pleasing is that this finding stands up when applied

to the DrumGA human fitness function modelling problem. When we move

from the controlled, restricted environments of artificial test problems to a
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noisy, real-world problem we see that the best performance values found were

achieved using the same combination of GP-improvement techniques.
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Chapter 7

Conclusions

The core of this thesis has been about the ability of Evolutionary techniques

to learn and predict from humans as they make subjective decisions. The

musical domain within the creative arts was chosen as an appropriate area

of study due to the fact that a single piece of music may be experienced in

infinitely many different ways by human listeners. By recording the subjec-

tive choices made by humans as they listen to simple rhythms and melodies,

it has been shown here that Evolutionary techniques such as Genetic Pro-

gramming can be used to construct models of subjective fitness functions

that have good predictive power.

In the case of the DrumGA experiments described in Chapter 41 and

those of the later MelodyGA, cases were found where good predictive power is

achievable for some subjects. Running the same data through another black-

box learning mechanism (a Neural Network) showed corresponding successes.

This has shown that is is possible to use the system in a way that lends itself

to the production of good artificial models.

On the pessimistic side, both DrumGA and MelodyGA experiments also

showed cases where the models constructed were poor predictors. As such it

may have been too optimistic to assume that good models could be built for

a majority of the human subjects tested.

1Also published in (Costelloe & Ryan, 2004).
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Even so, the successful cases provided hope. In Chapter 5, the MelodyGA

system was demolished and reconstructed on a firmer foundation, taking

lessons learned from human subjects into account. Through the construc-

tion of a set of test problems, the new system was demonstrated to capably

learn from noisy, historical data2. When compared to the performance that

would be expected by a random predictor, the models generated using Gram-

matical Evolution were demonstrated to be significantly superior in terms of

predictive power.

Although based on artificial data sets (with noise added to make things

more challenging), the fact remains that GE can learn and accurately predict

in these simple scenarios. Any failures that GE has can therefore be blamed

on data that is too noisy, too inconsistent or too sparse.

With this more solid foundation in place, human subjects were again

asked to take part in a data collection experiment (this time over the internet

in somewhat less controlled situations than in other cases). A repeat appli-

cation of GE has a model builder / predictor on the data gathered showed

mixed results. It is encouraging to see that the GE performance is statis-

tically significant in almost all cases. We also observed a test performance

score of 60% or more in over half of the cases tested.

The positive side of this result is that by predicting the predictability, it

has been shown how the conditions in which a human user takes part in the

data-gathering experiment have an influence on the overall performance of

the models derived from the data. In this way, we not only see that good

models of human fitness functions can be created, but we can also start to

understand how.

7.1 Answering Core Questions

This brings us back to the core questions addressed by this research, restated

here as follows. In the context of fitness function modelling:

2Also published in (Costelloe & Ryan, 2007).
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1. Can a system be constructed that displays the ability to learn subjective

notions from humans?

2. How well do artificially created models compare with future (unseen)

choices?

3. Can the causes of any inconsistent user behaviour be identified and

restricted?

The answer to the first question is that yes, Evolutionary methods (such

as GP and GE) can learn subjective notions from humans. We have seen

successful cases therefore the ability is there.

Answering the second question is more difficult. For some subjects, under

some conditions, the artificial models compare very well with their human

counterparts. Sadly, these successful cases appear to be in the minority.

The lack in consistency of user behaviour is the most likely contributor to

the less successful outcomes. This claim is supported by the substitution of a

human user with a controllable, artificial agent on a set of musical test prob-

lems - when consistent historical data is used as an input, the Evolutionary

learner can produce accurate models from the data.

The size of the search space and the style of the user interface were identi-

fied as two possible sources that lead to inconsistent behaviour leading to the

recommendation of a tournament-style user interface and a restricted search

space in order to create less noisy data. It is evident that the introduction

of these changes alone is not enough to provide a thorough clean-up of the

data across all subjects studied.

However all is not lost; it has also been shown here that a relationship

exists between the manner in which a human subject takes part in the exper-

iment and the resulting predictive performance of the artificial model. This

helps us to identify conditions where good prediction is possible.

This research has made considerable advances towards answering the

“Problem of Aesthetic Selection” (McCormack, 2005). Producing a formali-

sation of the subjective functions at work in the mind of the human decision
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maker is advantageous in terms of alleviating the fitness bottleneck that

comes about in Interactive Evolution. Overcoming the bottleneck in any

way is clearly a highly valuable contribution.

Outside of the musical domain, the question was asked if recent advances

in the theory have lead to practical improvements on real-world problems.

As has been seen, prediction and generalisation has played a central role

in the investigation into the modelling of subjective fitness functions. It is

fitting then that the penultimate chapter focuses on generalisation in Ge-

netic Programming. GP was used almost exclusively in the initial experi-

ments. In an effort to improve on testing performance scores a selection of

GP-improvement techniques were examined for symbolic regression problems

(not restricted to modelling subjective functions).

It was startling to discover that recent GP improvement techniques did

not appear to consider performance on unseen data. This stands in stark

contrast to what is considered standard practice in other statistical modelling

research fields. It was fortunate, to discover that a combination of two recent

advances in the GP field leads to significant improvements in generalisation

performance on a set of symbolic regression problems. Even more pleasing

was the discovery that the same combination of techniques produces better

performance when re-applied to a real-world problem in the musical domain.

7.2 Future Research Directions

Some possible avenues of future work now follow; for fitness function model

building, it would be interesting to investigate if user behaviour can be made

more consistent by examining more of the non-subjective characteristics gath-

ered and applying lessons learned from them during early generations of the

run. If it can be predicted when an artificial model is likely to perform poorly

when building a model, then we can feed this back to the user to try to make

better predictions possible.

It is true that when applied to a wide audience of subjects, there was
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a mixture of results from the experiments described earlier in this thesis.

However, let us briefly consider the type of user who is likely to benefit from

this research. An active user of an Interactive Evolutionary system is likely

to be doing so with the goal of discovering new, previously unknown ideas

of artistic / creative merit for a particular problem. It is this goal-driven

behaviour that sets such a user apart from the general class of user examined

in previous experimentation. This same behaviour has a better chance of

producing less noisy history data, making it easier to build models of the

subjective fitness functions. If it is possible to identify this class of user(s),

then it would be interesting to see how accurate the artificial models created

are on a cohort of members of this class.

The serial evaluation of evolving musical candidates is a likely contribu-

tor to the fatigued distraction phenomenon described earlier in this thesis.

Recent research has shown that serial evaluation of musical samples is not

necessarily a prerequisite in order to select based on preferences (Fernström

& McNamara, 2005). An interesting avenue of future work would be to in-

vestigate how a user interface permitting parallel evaluation of musical pieces

leads to subsequent modelling by artificial means.

The central application of this research has been in the musical domain

but it is not constrained to it. Evaluation of artistic pieces in the form of

images may also be done in parallel (by showing more than one image on the

screen at the same time). An investigation into the ability to model fitness

functions in the visual arts would therefore be an interesting area of inquiry.

The field of Genetic Programming offers many opportunities for future

research; improvements to the field are introduced every year however not

all approaches consider generalisation performance. An examination of what

makes a given improvement technique a good predictor constitutes a signifi-

cant improvement to the field of research as a whole.
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