Identification of spatial biases in Affymetrix oligonucleotide microarrays

Jose Manuel Arteaga-Salas, Graham J. G. Upton, William B. Langdon and Andrew P. Harrison

University of Essex, U. K.
Agenda

1. Introduction

2. **Identification** of spatial biases **with replicates**.

3. **Reduction** of spatial biases **with replicates**.

4. **Identification** of spatial biases **without replicates**.

5. **Reduction** of spatial biases **without replicates**.

6. Conclusions
1. Introduction

• Microarrays are popular tools to measure gene expression.

• Several laboratories invest important resources on this technology.

• Affymetrix Oligonucleotide Microarrays contain spatial biases in their hybridizations (Suarez-Fariñas et. al. (2005); Langdon et. al. (2008)). The problem is independent of chip-type.

• Some methods have been proposed to identify and reduce these biases for replicated arrays.

• No methods available for experiments without replication.
2. Identification of spatial flaws w/replicates

• Suarez-Fariñas et. al. (2005) developed the “Harshlight” package (available in Bioconductor).

• Harshlight uses statistical and image processing methods to identify spatial defects.

• After identification of flawed locations in the array the user can correct by substituting with the median value of all the available arrays at each location, or with “N/A”.

• Disadvantage: ONLY works in the presence of replicate arrays.
Chip summary:

Extended defects: the variance of the Error Image explained by the background is 11.64

<table>
<thead>
<tr>
<th></th>
<th>compact</th>
<th>diffuse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of clusters found:</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Percent of the surface covered by the defects:</td>
<td>0.02</td>
<td>5.34</td>
</tr>
</tbody>
</table>

Harshlight report for 3 replicates of the GSE4217 experiment available at GEO (arrays GSM96262-4)
2.1 Another method

- Arteaga-Salas *et. al.* (2008) developed an independent method to identify spatial biases using replicate arrays.

- For location \((i,j)\) and replicate \(r\) calculate \(d_{ijr}\)

\[
d_{ijr} = \frac{L_{ijr} - \alpha_{ij}}{\beta_{ij}}
\]

Where \(L_{ijr}\) is the logarithm of the observed intensity values, \(\alpha_{ij}\) is the median of the \(L_{ijr}\) values and \(\beta_{ij}\) is the standard deviation of the \(L_{ij}\) values.

- Select locations where \(|d_{ijr}| > 25\%\) (say).
• The selected locations represent “unusually high” or “unusually low” values, in comparison with a reference set (in this case, the reference set is the median of all replicates).

• **Disadvantage**: ONLY works in the presence of replicate arrays.

• **Next**:

 Example 1: Three **HG-U133 Plus 2.0** replicates (from GEO).

 Example 2: Three **HG-U133A** replicates (from Affymetrix).

 Example 3: Four **DrosGenome1** replicates (from GEO).
Spatial flaws for 3 replicates of the GSE4217 experiment available at GEO (GSM96262-4) using HG-U133A Plus 2.0 arrays.

Arteaga-Salas, et. al.
Arteaga-Salas, et. al.

Spatial flaws for 3 replicates of the HG-U133A SpikeIn Experiment -- Affymetrix

Unusually high values

Unusually low values
Spatial flaws for 4 replicates of the GSE6515 experiment available at GEO (GSM149276-9) using DrosGenome1 arrays
3. Reducing spatial biases w/replicates

- Harshlight proposes to substitute flawed locations with the median (HMS) of all the arrays at each location or with “N/A”.

- Arteaga-Salas et. al. (2008) introduced two procedures to assist with flaw removal:

 CPP (complementary probe pair) adjustment, suitable only for replicated arrays.

 LPE (local probe effect) adjustment, suitable for replicate or non-replicate arrays.

- CPP and LPE can be used separately or in sequence.
3.1 Local Probe Effect (LPE) adjustment

- LPE can be used whenever R ($R > 2$) arrays are available.

- It uses the spatial structure in a **5 x 5 window** centred at location (i,j) to decide whether adjustment should take place.

- For array r we **first** calculate the values d_{ijr} given by,

 $$d_{ijr} = \frac{L_{ijr} - \alpha_{ij}}{\beta_{ij}}$$

 Where L_{ijr} is the logarithm of the observed value, α_{ij} is the median of the L_{ijr} values and β_{ij} is the standard deviation of the L_{ij} values.
• Now, define I_{ij} and G_{ij} as follows:

I_{ij} – The identifier of the array where d_{ijr} has largest absolute value.

G_{ij} – Is 1 if the d-value with largest magnitude is positive, otherwise is equal to -1.

• Using these two values calculate E_{ij} with,

$$E_{ij} = I_{ij} \times G_{ij}$$

So, with R arrays, E_{ij} takes one of the values \{-R, -(R-1), \ldots, -2, -1, 1, 2, \ldots (R-1), R \}
• An example,

Cell at location \((i,j)\)

<table>
<thead>
<tr>
<th></th>
<th>(r=1)</th>
<th>(r=2)</th>
<th>(r=3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>45</td>
<td>38.8</td>
<td>34952</td>
</tr>
<tr>
<td>(L_{ijr})</td>
<td>3.807</td>
<td>3.658</td>
<td>10.462</td>
</tr>
<tr>
<td>(d_{ijr})</td>
<td>-0.558</td>
<td>-0.596</td>
<td>1.154</td>
</tr>
</tbody>
</table>

\[\alpha_{ij} = 5.976\]
\[\beta_{ij} = 3.886\]
\[I_{ij} = 3\]
\[G_{ij} = 1\]
\[E_{ij} = 3\]

5 x 5 window centered at \((i,j)\)

\[
\begin{array}{cccccc}
-1 & -1 & 3 & 1 & -2 \\
-1 & 3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 & 1 \\
3 & 3 & 3 & 3 & 3 \\
-1 & 3 & 3 & 3 & -2 \\
\end{array}
\]

17 cases where \(E=3\)

• If the **5 x 5 window** contains a **majority** of **informative locations** (PM or MM only) with the **same E-code**, then a **spatial bias** is present.

We **adjust** the value in cell \((i,j,r)\).
• Let Δ be the set of N informative locations within the window (in the example, $N=17$).

• For each location in Δ we calculate the d-values for array r in need of correction, and let \bar{d} be their average.

• The adjusted value L_{ijr}^a is given by,

$$L_{ijr}^a = L_{ijr} - \beta_{ij} \bar{d}$$
3.2 Results

- We apply LPE+CPP and Harshlight Median Substitution (HMS) to Example 1 to illustrate the reduction of the spatial biases:

<table>
<thead>
<tr>
<th></th>
<th>Replicate 1</th>
<th>Replicate 2</th>
<th>Replicate 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>6.3</td>
<td>7.9</td>
<td>8.9</td>
</tr>
<tr>
<td>HMS (once)</td>
<td>1.7</td>
<td>3.0</td>
<td>3.3</td>
</tr>
<tr>
<td>HMS (twice)</td>
<td>0.8</td>
<td>2.2</td>
<td>2.3</td>
</tr>
<tr>
<td>CPP</td>
<td>0.9</td>
<td>0.9</td>
<td>1.8</td>
</tr>
<tr>
<td>LPE</td>
<td>3.8</td>
<td>5.3</td>
<td>5.2</td>
</tr>
<tr>
<td>CPP+LPE</td>
<td>0.8</td>
<td>0.9</td>
<td>1.8</td>
</tr>
<tr>
<td>LPE+CPP</td>
<td>0.6</td>
<td>0.6</td>
<td>1.7</td>
</tr>
</tbody>
</table>
Example 1 (three HG-U133 Plus 2.0 replicates)
Example 1 after LPE+CPP
How do we know that these adjustments are the appropriate adjustments?
ROC curves to measure the rate of false/negative positives in the HG-U133A Spike-In Experiment (Affymetrix) before and after Spatial Flaws Reduction. Gene Expression summarized with RMA.

From Arteaga-Salas et. al. (2008) in “Statistical Applications in Genetics and Molecular Biology” (SAGMB).
4. Identification --- without replicates

• In the absence of replicates the two methods described before are not applicable to visualize spatial flaws.

• To identify spatial biases without replicates we need an alternative reference set to compare the values.

• Langdon et. al. (2008) calculated an “Average GeneChip” and a “Variance GeneChip” using Affymetrix Chips in the Gene Expression Omnibus (GEO) as available in February 2007.

• This was done separately by Chip type and organism.
4.1 The Average GeneChip

• To obtain the “Average GeneChip” the arithmetic mean of the natural logarithm of the observed probe values in each available chip was calculated.

• The upper and lower 0.5% of the values were discarded to avoid the effects of outliers.

• Using the same set of data the variance was calculated to obtain the “Variance GeneChip”.

4.2 Steps to visualize spatial biases

Let A be the Average GeneChip, V the Variance GeneChip and L the logarithm of the observed values.

1. For each location (i,j) in the array, calculate

$$ h_{ij} = \frac{L_{ij} - A_{ij}}{\sqrt{V_{ij}}} $$

2. Sort h_{ij} by column j. For each sorted value assign a rank, and store them in array K.
3. Define a “sub-array” centered at \((i,j)\). A sub-array size 11 x 11 includes enough spatial information in a neighbourhood.

4. The sub-array centered at \(K_{ij}\) contains information about PM/MM/other probes. To avoid correlated values we do not consider adjacent cells (only one probe in a PM,MM probe pair). In total we select 61 probes from the total 121 available.

Calculate the scores \(Z_{ij}\),

\[
Z_{ij} = \frac{\sum_{n=1}^{61} K_n - 61*\mu}{\sqrt{61*\sigma^2}}
\]

\(\mu\) is the mean and \(\sigma^2\) is the variance of a discrete uniform distribution (defined by the size of the chip).
The scores $Z \sim N(0, S^2)$. In the absence of spatial biases $S^2=1$.

5. **Plot** the locations where $\text{abs}(Z) \geq 2*S$ to identify neighbourhoods with unusually low or unusually high values.

Following these 5 steps we applied the procedure separately to three **HG-U133 Plus 2.0 arrays** from GEO (GSM46959, GSM76563 and GSM117700), from the accession number GSE2109.
Arteaga-Salas, et al.

GSM46959

GSM76563

GSM117700

high

low

Blobs

Unusual concentration

Scratch
5. Reducing biases – without replicates

• **Problem**: In the absence of replicates, **two of the three** methods presented are not applicable (CPP and Harshlight are not, LPE is).

• Without replicates we don’t know which are the “correct” values (we need some reference arrays).

• **Alternative**: We can **compare** a “contaminated” array **with other arrays** (at least two) **of the same type** where flaws have been **previously reduced**.

• In Section 4 we presented three HG-U133A Plus2.0 arrays “contaminated”. In Section 3 we “cleaned” three replicate arrays of the same type.
The “clean” arrays: choose two of the three replicates previously cleaned with LPE+CPP (let’s choose the first and second replicates according to the Table).

The “contaminated” arrays: the three arrays presented in part 3.2 (the process is done separately for the three arrays).

- We now have three arrays of the same type.
- We can remove the flaws in the contaminated array using LPE.
Remaining flaws after LPE

Arteaga-Salas, et. al.
5. Conclusions

- Oligonucleotide arrays **contain** spatial flaws in their hybridizations (they are usually manifested as “blobs”, “rings” or “scratches”).

- The problem **IS NOT** uncommon.

- Some methods to reduce flaws exist, but **not** for experiments **without replication**.

- Spatial biases **AFFECT** gene expression measurements.
THANK YOU!