

Distilling GeneChips with GP on the Emerald GPU Supercomputer

W. B. Langdon

Centre for Research on Evolution, Search and Testing Computer Science, UCL, London

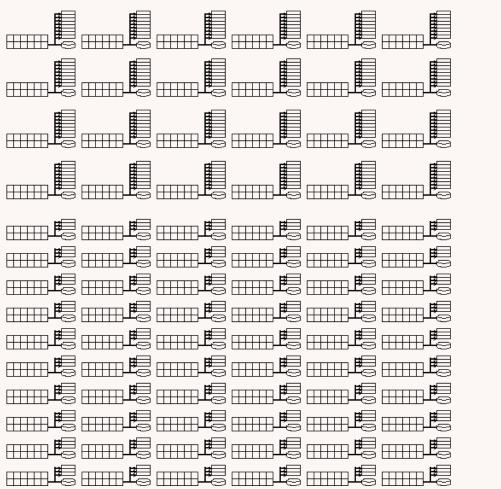
Distilling GeneChips with GP on the Emerald GPU Supercomputer

- SIGEvolution 6(1) p15-21
- Not an introduction to genetic programming. Free pdf _____
- Run existing CUDA on Emerald
- 25× speedup

Riccardo Poli William B. Langdon Nicholas F. McPhee

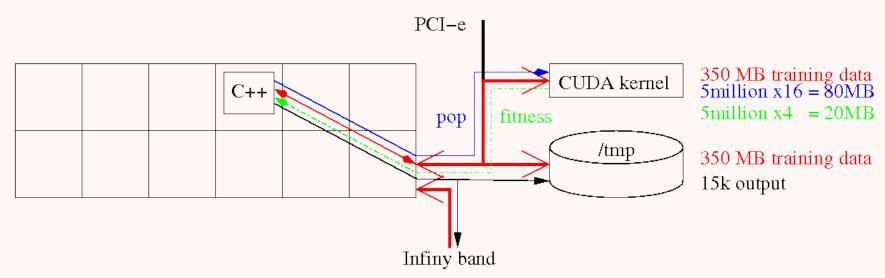
> with contributions by John R. Koza

Introduction


- 1987-89 all 251 women undergoing breast cancer surgery in Uppsala [<u>ftp data</u>].
- 1 million data per woman. Predict who lives
- 2 passes winow useful data. Last builds final predictor [<u>ftp code</u>].
- Many independent runs in each pass.
 GPU used to process big population.

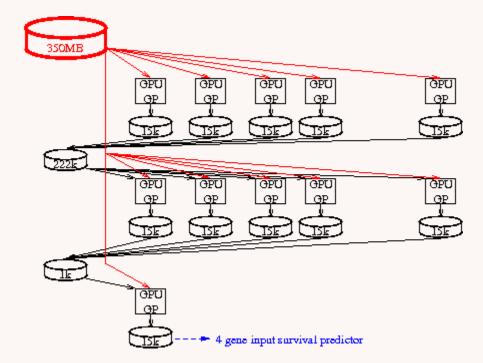
Emerald

24


60

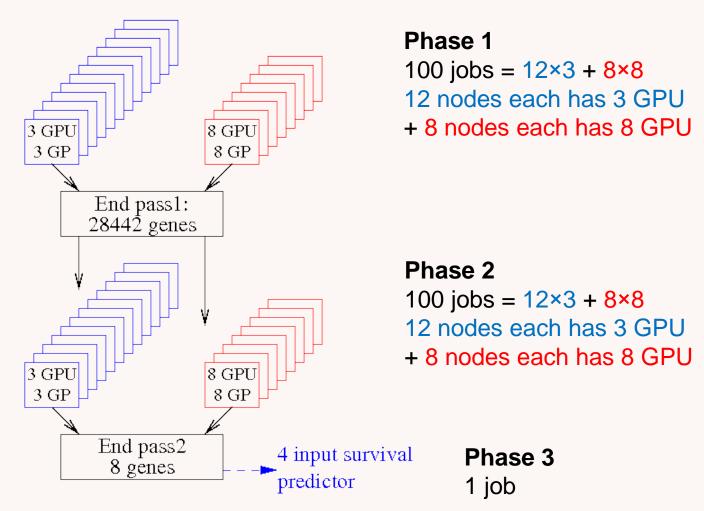
Each node consists of 6 twincore CPU (squares), local disk and 3 or 8 nVidia Tesla M2090 GPUs each containing 512 stream processors. 84 nodes (1008 CPU, 372 M2090, 190464 stream processors) connected by QDR Infiniband with Mellanox switches.

GP run: one cpu↔gpu

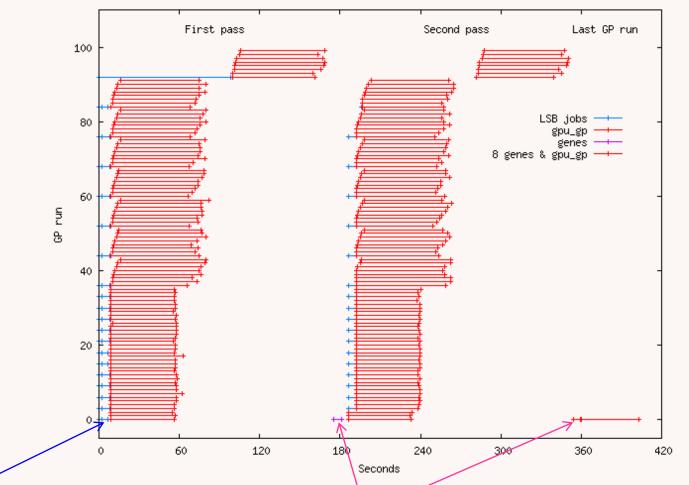

- Training data stored in GPU
- Each generation, new population created and transferred to GPU
- Each individual run on training data, gives fitness value.
- Each generation all fitness values transferred to host
- After 10 gen, best in pop reported (15k)

GP run: one cpu↔gpu

- Training data stored in GPU
- Each generation, new population created and transfer to GPU
- Each individual run on training data, to give a fitness value.
- Each generation all fitness value transferred to host
- After 10 gen, best in pop reported


Major data flows in datamining breast cancer

Phase 1 and 2 both have one hundred runs. (GeneChip training data in red.). The last phase (bottom) consists of a single GPU GP run which generates the final simple model which uses only four of the millions of GeneChip data to predict long term survival following breast tumour surgery.


Mapping GP jobs to LSF and Emerald hardware

CREST

2×100+1 GP runs in parallel

CREST

First 1.6 sec copying 352MB of training data. Only seven 8 GPUs nodes were available, so GP runs 92–99 must wait. Gathering output of pass 1 and 2 takes 6 seconds. The final GP run finished 6 minutes 43 sec after the submitted to Emerald. Average 33.8 giga GPop/second.

Recommendations

- Minimise copying datasets (cache on /tmp)
- Prevent core dumps limit coredumpsize 0
- Emerald multi-user batch system:

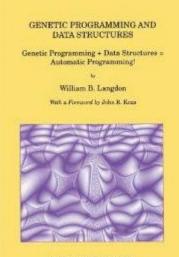
 not designed to give single user speedup
 LSF batch queues shares CPUs not GPUs
- Use LSF to spread jobs across Emerald
- Use linux scripts to control multiple jobs on same node with fork "&" "wait"
- Make scripts resilient. Eg GPU already in use: so use a different one, retry.
- Other http://www.cs.ucl.ac.uk/staff/W.Langdon/emerald/

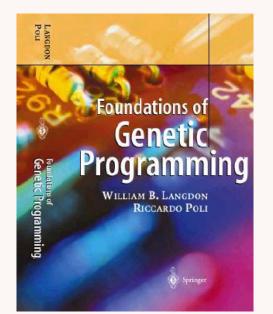
Conclusions

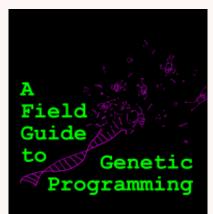
- If application already consists of 100s of (semi) independent runs, easily transferred to Emerald (using LSF queues and unix scripts).
- 25× speedup without recoding for Emerald
- Workload needs to be big enough to warrant using Emerald.

END

http://www.cs.ucl.ac.uk/staff/W.Langdon/


W. B. Langdon, UCL


Genetic Programming



W. B. Langdon Department of Computer Science

KLUWER ACADEMIC PUBLISHERS

Riccardo Poli William B. Langdon Nicholas F. McPhee

> with contributions by John R. Koza