PUGACE, A Cellular Evolutionary Algorithm framework on GPUs

Nicolás Soca, José Luis Blengio, Martín Pedemonte y Pablo Ezzatti
Instituto de Computación, Facultad de Ingeniería, Universidad de la República, Uruguay

2010 IEEE World Congress on Computational Intelligence
Barcelona, Spain
Outline

• Motivation & Objectives
• Graphic processing units
• Cellular Evolutionary Algorithms
• Related work
• PUGACE
• Experimental results
• Conclusions and future work
Motivation & Objectives

• Parallel Evolutionary Algorithms:
 – decrease execution time
 – not only speed up the search: new exploration patterns

• Graphic Processing Units (GPUs):
 – low cost platform for implementing parallel algorithms
 – complex architecture

• Objective:
 – build a tool for easily developing cellular Evolutionary Algorithms (cEAs) on GPUs
Graphic Processing Units

- Architecture is intrinsically parallel
- Shared memory multi-core processors
- Memory hierarchy:
 - registers
 - shared block memory
 - local memory
 - global memory
- Programming tools for general purpose computing: CUDA and OpenCL

PUGACE, A Cellular Evolutionary Algorithm framework on GPUs
Cellular Evolutionary Algorithms

- Single population structured in many small overlapped neighborhoods
- Each individual belongs to several neighborhoods
- An individual can only be mated for reproduction with individual of its neighborhood
- High-quality solution gradually spreads (diffusion)

PUGACE, A Cellular Evolutionary Algorithm framework on GPUs
Related work

- All standard parallel strategies for Evolutionary Computation have already been implemented successfully on GPUs:
 - master-slave
 - island model
 - cellular model
- cEAs on GPUs obtained good speedup values
- EASEA:
 - generates code that automatically exploits GPU capabilities
 - follows a master-slave model for evaluation of the population
- No proposals of generic framework

PUGACE, A Cellular Evolutionary Algorithm framework on GPUs
PUGACE

- Generic framework for implementing cEAs on GPUs
- Problem related features must be implemented
- In line with: Mallba, JCell, ParadisEO, etc.
- Implemented in C and CUDA (version 2.1).
- Supports different problem encoding, selection policies, crossover operators and mutation operators
- Supports a local search method
- Can be extended to incorporate additional operators
• Design:
 – extensible: new evolutionary operators and neighborhood structures can be incorporated
 – easy to use: implementation separated in several modules encapsulating different functionalities (CUDA limitations)

• First version: generality of the design favored over efficiency

• GPU aspects not considered in this version:
 – maximizing the usage of shared block memory
 – coalescing the access to memory
PUGACE (3)

- Population:
 - always resided in the device memory
 - arranged in a circular 1-dimensional structure
 - individuals from both ends are copied to opposite end

- Each individual executes in a different thread (blocks of varying size)
- Neighborhood: configurable number of individuals to the left and right
- Application of crossover and mutation operator is decided at block level (to avoid thread divergence)
- Problem information preloaded on constant memory

PUGACE, A Cellular Evolutionary Algorithm framework on GPUs
PUGACE (4)

- Fitness values are stored in an auxiliary vector
- Fitness function evaluation uses an independent thread for each chromosome
- Generational replacement: each parent is replaced by the best one of its children
- Random numbers could be generated:
 - in the CPU and transferred to GPU in each generation (CPU idle times)
 - in the GPU with a specific algorithm based on a linear congruential method
Experimental results

• Quadratic Assignment Problem with a simple approach:
 – permutation representation
 – proportional selection
 – partially mapped crossover
 – mutation operator: randomly swap two values
 – local search: randomly selects a position and makes the best exchange between the selected position and the rest

• Parameters:
 – population = 2048, neighborhood length = 4
 – thread blocks = 32
 – thread per block = 64

• Pentium dual-core 2.5 GHz with 2 GB RAM and a nVidia GeForce 9800 GTX+
Experimental results (2)

- Best known solution in 13 out of 14 instances
- More than 5 Hits in 10 runs for instances with less than 30 facilities
- Less than 5 Hits in 10 runs for instances with more than 30 facilities
- Acceptable for a simple approach
Experimental results (3)

- Tests performed to evaluate reductions in runtime obtained by implementing a cEA on a GPU rather than on a CPU
- Runtime reductions ranged between 15 and 19
- Increase in number of individuals impacts in a sublinear increase in the execution time (10% when doubling the population size)
Conclusions and future work

• Conclusions:
 – Proposal of a tool for easily implementing cEA on GPUs
 – High reductions on execution time

• Future work:
 – second version:
 • coalescing the access to memory
 • maximizing the usage of shared block memory
 • upgrade to CUDA 3.1
 – use the framework to solve a concrete problem
 – new experiments on different devices
Thank you for your attention

PUGACE, A Cellular Evolutionary Algorithm framework on GPUs