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Abstract— In recent years the the potential and programma-
bility of Graphics Processing Units (GPU) has raised a note-
worthy interest in the research community for applications that
demand high-computational power. In particular, in financial
applications containing thousands of high-dimensional samples,
machine learning techniques such as neural networks are often
used. One of their main limitations is that the learning phase
can be extremely consuming due to the long training times
required which constitute a hard bottleneck for their use in
practice. Thus their implementation in graphics hardware is
highly desirable as a way to speed up the training process. In
this paper we present a bankruptcy prediction model based on
the parallel implementation of the Multiple BackPropagation
(MBP) algorithm which is tested on a real data set of French
companies (healthy and bankrupt). Results by running the
MBP algorithm in a sequential processing CPU version and
in a parallel GPU implementation show reduced computational
costs with respect to the latter while yielding very competitive
performance.

I. INTRODUCTION

The hit rate of firms insolvency has increased exponen-
tially during last year due to the global economic crisis.
As a consequence, there is an ever-increasing need for fast
automated recognition systems for bankruptcy prediction.

Enterprise bankruptcy forecasting is very important to all
stakeholders (banks, insurance firms, creditors, and investors)
to manage credit risk associated with counterparts. Although
it is a widely studied topic, it is becoming harder to estimate
as companies become more complex and develop more
sophisticated schemes to hide their real situation. On the
other hand as the inability to discharge all debts as they
come due (insolvency) increases, the need for substantially
more accurate predicting models and, at the same time, for
faster decision-maker systems becomes crucial.

Due to the recent financial crisis and regulatory concerns,
credit risk assessment is a very active area both from aca-
demic and business community. The ability to discriminate
between trustworthy customers from potential bad ones is
thus crucial for commercial banks and retailers.

The problem is stated as follows: given a set of parameters
(mainly of financial nature) that describe the situation of a
company over a given period, predict the probability that the
company may become bankrupted during the following year.
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Neural Networks (NNs) are particularly suited for predicting
the bankrupt probability, thus they are a strategic choice
among other methods. Likewise, their properties make them
often used in financial applications because of their excellent
performances of treating non-linear data with self-learning
capability [8]. A review of the topic of bankruptcy prediction
with emphasis on NN models is given in [4]. More recently,
in [14] there is a broad coverage of a wide range of other
intelligent techniques such as fuzzy set theory, decision trees,
rough sets, case-based reasoning, support vector machines,
data envelopment analysis and soft computing. Although
these models have been widely used in the last decades,
still the pioneer statistical techniques are worth mentioning
in the modeling of corporate bankruptcy prediction such as
univariate and multivariate discriminant analysis [1], [2]. All
these techniques aim at finding an optimal linear combination
of explanatory input variables such as solvency and liquidity
ratios, in order to analyze, model and predict corporate
default risk.

Most of the prediction models use financial ratios as
predictor variables, by employing the selection of only a
few financial ratios according to a choice based criteria.
Model selection of corporate distress prediction is advis-
able for reducing problem complexity saving computational
costs. In [13] a linear pre-processing stage using princi-
pal component analysis (PCA) for dimensionality reduction
purposes is tested. However, nonlinear projection methods
have been successfully used [16] making them more suitable
for this problem. With the same goal, non-negative matrix
factorization (NMF) is used in [15] for extracting the most
discriminative features.

Despite the numerous papers dealing with the problem it
is often difficult to compare the techniques due to different
data sets, algorithms and approaches. Moreover, all have been
deployed as desktop applications running in the available
hardware (PC or Laptop) at the time, possibly equipped
with the most modern CPU. Our work compares (in the
procedures and methods) to the previous published work on
this topic, however our focus is to implement a nonparamet-
ric and hybrid design architecture in cutting-edge parallel
GPU hardware. The rationale behind is twofold: to develop
very effective bankruptcy recognition system and both to
reduce complexity in model selection (no need to perform
unnecessary pruning of predictor variables) and to reduce
computational learning time.

For this study we used a large database of French compa-
nies. This database is very detailed containing information
on a wide set of financial ratios spawning over a period of
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several years. It contains up to three thousands distressed
companies and about sixty thousand healthy ones.

The rest of the paper is organized as follows. In Section
II we introduce the Graphical Processing Units (GPUs) and
the CUDA programming model. In Section III we address
the implementation of Multiple BackPropagation (MBP)
algorithm for a neural network approach to the bankruptcy
prediction model in a case study of the French Market.
Moreover, we give an overview of the kernels used in
the GPU implementation and explain a detailed kernel. In
Section IV we describe the solvent (and default) firm data
collected from French companies provider, detail historical
organization of data as well as the experimental setup for
prediction model design. Section V presents and discusses
the results. In the last section conclusions will be drawn and
further lines of work will be addressed.

II. GRAPHICS PROCESSING UNITS (GPUS)
Graphics Processing Units (GPUs) have been used as

graphic processor engines in gaming industry due to their
powerful capability and parallel characteristics. The graphics
pipeline is well-suited for parallelism attaining high per-
formances in matrix and vector operations as for instance
when dealing with 2D and 3D graphics. Their enormous
computational potential has led to an explosion of research
to leverage GPUs for general-purpose computation on GPUs
(GPGPU).

The increase of their programmability featuring floating-
point arithmetic make them suitable for data high-demanding
real time applications. This is especially important with
machine learning algorithms such as neural networks which
are often complex, placing high demands on memory and
computing resources and CPUs are simply not powerful
enough to solve them quickly for use in interactive appli-
cations.

Example of applications of GPU computing spawn a
broad range of areas such as Bioinformatics [3], Medical
Imaging [17], Linear Algebra [18], [6] and many other.

Unlike CPUs which use the paradigm SISD (Single In-
struction Single Data), GPUs are optimized to perform
floating-point operations (on large data sets) using the
paradigm Single Instruction Multiple Data (SIMD). Subse-
quently, this architectural difference between both platforms
leads to more complex programming tasks. To cope with this
complexity NVIDIA [11], [7] developed a parallel technol-
ogy namely CUDA (Compute United Device Architecture)
which provides a programming model for its GPUs with an
adequate API for non-graphics applications using standard
ANSI C, extended with keywords that designate data-parallel
functions.

The CUDA programming model is supported by an ar-
chitecture built around a scalable array of multi-threaded
Streaming Multiprocessors (SMs), as shown in Figure 1.

Over the past few years not only GPU evolved but also the
programming model and programming tools able to allow
the development of applications of this nature. The trend
is to develop high parallel computers and to concentrate on
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Fig. 1. CUDA hardware model

adding cores rather than increase the capacity of single thread
performance ones.

III. PARALLEL IMPLEMENTATION OF NEURAL
NETWORKS

The promise in late eighties that neural networks (NNs)
due to their eminent parallel capabilities could be imple-
mented in hardware has never been met. Researchers with
very high data demanding applications had expectations that
NNs as non-linear powerful approximation devices could be
used as a powerful solution, if implemented in parallel, for
their problems but this never happened.

Most neural networks recognition systems have two major
components: training and classification. The system is trained
using a large number of labeled patterns with relevant
features. The training is often iterative and proceeds until
the error on a small set of testing patterns is sufficiently low.

However, the training process is computational intensive
and time consuming especially when a large number of
training patterns are involved. The classification accuracy
of unknown patterns often depends on the effort spent on
training and most applications settle down for a suitable
trade-off. Using new training data to improve the perfor-
mance is uncommon due to the large computational effort.
On the contrary, the parallelism of a GPU is fully utilized
by accumulating a lot of input feature vectors and weight
vectors, then converting the many inner-product operations
into one matrix operation [12], [5].

A. Multiple Back-Propagation Algorithm

Multiple Back-Propagation (MBP) is a generalization of
the Back-Propagation (BP) algorithm that can be used to train
Multiple Feed-Forward (MFF) networks. A MFF network is
obtained by integrating two feed-forward (FF) networks: a
main network and a space network. Details of the algorithm
can be found in [9]. Figure 2 shows the scheme interaction
between the two networks that form the MFF architecture.
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Fig. 2. Example of a Multiple Feed-Forward (MFF) network. Squares
represent inputs, darker circles (with an ×) multipliers, lighter circles
neurons, and triangles the bias.

Both the MBP and BP algorithms are implemented in
the Multiple Back-Propagation software, which is a highly
optimized software, developed in C++.1

B. GPU Implementation

A detailed description of the GPU parallel implementation
of MBP for MFF networks can be found in [10]. The GPU
version was benchmarked for classification and regression
problems on two different devices: a NVIDIA GeForce 8600
GT with 4 SM (32 cores) and a NVIDIA GTX 280 with 30
SM (240 cores). The CPU version was benchmarked on a
Intel Core 2 6600 CPU running at 2.4 GHz.

The current GPU implementation relies on six kernels
(special functions that are to be executed in parallel, on a
physically separate device (GPU)): FireLayer which calcu-
lates the outputs of all neurons in a given layer; FireOut-
putLayer which calculates the outputs of the network output
layer and the local gradients of its neurons; CalcLocalGra-
dients which calculates the local gradient of all neurons in
a hidden layer; CorrectWeights which adjusts the weights
of a given layer; CalculateRMS which calculates the Root
Mean Square (RMS) error of the network; and RobustLearn-
ing which ensures the training RMS error does not rise,
by restoring the network best weights (obtained so far) if
needed. Figure 3 presents the CUDA code of the FireLayer
kernel. The remainder of the code can be obtained together
with the Multiple Back-Propagation software source code
(http:dit.ipg.pt/MBP) or by downloading GPUMLib
– an open source Graphic Processing Unit Machine Learning
Library (http://gpumlib.sourceforge.net/).

IV. EXPERIMENTAL SETUP AND DISCUSSION

A. Data Description

We used Diane database which contains financial state-
ments of French companies. The initial sample consisted of

1The latest version of Multiple Back-Propagation software can be freely
obtained at http://dit.ipg.pt/MBP.

financial ratios of about 60 000 industrial French companies
(for the years of 2002 to 2006) with at least 10 employees.
From these companies, about 3000 were declared bankrupted
in 2007 or presented a restructuring plan to the court for
approval by the creditors. In Table I 30 variables are defined
to be used further in the prediction model. The ultimate
goal is class (healthy, bankrupt) prediction. These financial
predictors allow to describe firms in terms of the finan-
cial strength, liquidity, solvability, productivity of labor and
capital, margins, net profitability and return on investment.
Upon appropriate treatment of the database to eliminate firms
with missing values, a final set of 600 default examples
was obtained. In order to obtain a balanced dataset we
randomly selected 600 non-default examples resulting in a
set of 1200 examples. To accommodate historical information
yearly variations of important financial ratios reflecting the
balance sheet were then evaluated. Thus information from
the past 3 years preceding the default (bankrupt) were also
included. Therefore, the number of inputs was increased from
30 to 90 ratios.

B. Evaluation metrics

Performance metrics were defined based on the classifica-
tion contingency matrix2 represented in Table II. Measures
such as Recall (R= tp

tp+fn ) and Precision (P= tp
tp+fp ) are

calculated for final model evaluation. Also important is a
“Type I error” (or false positive rate, i.e. fp

fp+tn ) which
indicates the misclassification of a healthy firm as distressed.
Conversely, a “Type II error” (or false negative rate,i.e.

fn
fn+tp ) indicates that a distressed firm is misclassified by the
predictor as viable. An “overall hit” refers to the total correct
classifications for the set ( tp+tn

tp+fp+fn+tn ) regardless of type.
Another measure combining recall and precision into a single

TABLE II
CONTINGENCY MATRIX.

real predicted class
class Bankrupt Healthy total
Bankrupt tp fn pos
Healthy fp tn neg
total posp negp T

utility criterion by taking their weighted harmonic mean is
F1-score (F1 = 2∗P ∗R/(P +R)). It quantifies the tradeoff
between Recall and Precision and is fairly indicative of the
performance of the overall algorithm. The F1 score can be
interpreted as a weighted average of the precision and recall,
where an F1 score reaches its best value at 1 and worst score
at 0. All the illustrated results represent mean values obtained
in test financial data. For completeness standard deviations
are also indicated.

C. Results Analysis

The bankruptcy prediction model is designed with 30
financial ratios for the historical 3 years considered, therefore

2tp, fp, tn, fn represent the usual notation for the confusion matrix in
terms of true (or false) and positive (or negative) results from the classifier.
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#define INPUT threadIdx.x
#define NUM INPUTS INCLUDING BIAS blockDim.x
#define NUM INPUTS (NUM INPUTS INCLUDING BIAS - 1)
#define BIAS 0
#define NEURON threadIdx.y
#define NUM NEURONS blockDim.y
#define PATTERN blockIdx.x
#define THREAD ID connection

device void SumInputWeight(int connection, float * inputs, float * weights) {
extern shared float iw[];

iw[connection] = weights[connection];
if (INPUT > BIAS) iw[connection] *= inputs[PATTERN * NUM INPUTS + (INPUT - 1)];

syncthreads();

int numberElemSum = NUM INPUTS INCLUDING BIAS;
for(int sumUpTo = (numberElemSum >> 1); numberElemSum > 1; sumUpTo = (numberElemSum >> 1)) {

int nextNumberElemSum = sumUpTo;
if (numberElemSum & 1) nextNumberElemSum++;
if (INPUT < sumUpTo) iw[connection] += iw[connection + nextNumberElemSum];
numberElemSum = nextNumberElemSum;

syncthreads();
}
}

global void FireLayer(float * inputs, float * weights, float * m, int mOffset, int totalNeuronsWithSelectiveActivation, float * outputs) {
extern shared float iw[];

int connection = NEURON * NUM INPUTS INCLUDING BIAS + INPUT;
SumInputWeight(connection, inputs, weights);

if (INPUT == 0) {
int n = PATTERN * NUM NEURONS + NEURON;
float output = CUDA SIGMOID(iw[THREAD ID]);
if (m != NULL) output *= m[PATTERN * totalNeuronsWithSelectiveActivation + NEURON + mOffset];
outputs[n] = output;
}
}

Fig. 3. FireLayer CUDA kernel.

TABLE I
DIANE DATA BASE FINANCIAL RATIOS

D
IA

N
A

D
A

TA
B

A
SE

Variable Description
x1 - Number of Employees Previous year x16 - Cashflow / Turnover
x2 - Capital Employed / Fixed Assets x17 - Working Capital / Turnover days
x3 - Financial Debt / Capital Employed x18 - Net Current Assets/Turnover days
x4 - Depreciation of Tangible Assets x19 - Working Capital Needs / Turnover
x5 - Working Capital / Current Assets x20 - Export
x6 - Current ratio x21 - Added Value per Employee in k Euros
x7 - Liquidity Ratio x22 - Total Assets Turnover
x8 - Stock Turnover days x23 - Operating Profit Margin
x9 - Collection Period days x24 - Net Profit Margin
x10 - Credit Period days x25 - Added Value Margin
x11 - Turnover per Employee k Euros x26 - Part of Employees
x12 - Interest / Turnover x27 - Return on Capital Employed
x13 - Debt Period days x28 - Return on Total Assets
x14 - Financial Debt / Equity x29 - EBIT Margin
x15 - Financial Debt / Cashflow x30 - EBITDA Margin
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Fig. 4. Number of milliseconds required to train one epoch using the MBP
algorithm in the French Financial Data.

with 90 inputs. The experiments were performed with 10
networks per configuration which allowed to obtain mean
values and the corresponding standard deviations. The con-
figuration with two hidden layers was found to yield better
results. The GPU implementation was tested in a NVIDIA
GTX 280 with 30 SM (240 cores). The sequential processing
standalone version run on a Intel Core 2 T2300 CPU running
at 1.66 GHz. Both algorithms BP and MBP were parallelized.
In particular, the sequential BP used for comparison includes
an improved implementation with both adaptive learning rate
and adaptive momentum3. We run the experiments for both
algorithms and both hardware implementations under the
same conditions, i.e the training was stopped considering
a RMS (root mean square) error less than 0.01. Figure 4
depicts the number of milliseconds necessary to train one
epoch versus the number of hidden neurons in the first
layer for MBP in both hardware types considered: GPU
and a dual core CPU processor chip. Figure 5 shows the
the corresponding average speedups obtained by GPU. The
largest speedup (173.82) is obtained when using 10 hidden
neurons in the first hidden layer.

Table III presents performances measures obtained on the
test data set for both NNs implementations. The meanings
of the second row titles (from 4th column onwards) are as
follows: R is Recall, P is Precision, F1 is F1 measure, E1 is
Type I Error, and E2 is Type II Error. In general the results
are quite good, with high F1 (tradeoff between Recall and
Precision) and low Type II error. In the case of the bankruptcy
prediction the Type II error is of greater importance, since
it corresponds to the inability of the learning machine to
detect that a company is at risk making it difficult for
creditors to take the correct decision. Despite the importance
of type II errors, most bankruptcy prediction methods take
into account only the global classification error. Furthermore,
the characteristics of the hybrid architecture running MBP

3MBP Software Toolbox (see Subsection III-A) has been used for the
experiments.
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Fig. 5. Average speedup (×) delivered by the GPU, relatively to the CPU,
for the MBP algorithm using the French Financial Data.

(see [9]), which consists of two networks (the main network
and the space network) make this design well-suited for
this problem. The selective actuation neurons of the space
network tune nicely the training scheme by casting the
input patterns into their appropriate range, thus yielding an
accurate model prediction capability.

Three main aspects are worth mentioning. First, we ob-
serve (see Figure 4) the trend of the depicted timing curves
as the number of hidden neurons increase for both platforms.
In the sequential processing implementation task there is an
increase of complexity whereas in the parallel version there
is a clear benefit in terms of both time and performance.
Second, we notice competitive performance results from
the parallel version (both algorithms) as compared with the
sequential version (both algorithms). For instance, the results
for the MBP (20 neurons in the first hidden layer) in the GPU
hardware are impressive. Moreover, despite the very low
reduced time in the training phase, the best result is attained
for F1 while a very low Type II error is also achieved. In the
latter it means that the machine commits only a few errors
to detect that a company is at risk to bankrupt. Finally, the
prediction is very fast. To sum it up, Type II errors for the
MBP in GPU (presented in bold in Table III) are lower than
the sequential implementation of the algorithm (the standard
deviations are also very small) which adds to our analysis
that despite of being fast the decision is subjected to less
errors. In summary, above properties are highly desirable for
financial decisors.

V. CONCLUSION AND FUTURE WORK

In the midst of a global economic crisis, the availability of
accurate instruments for fast and reliable decision making by
financial regulators is strongly desirable. A step forward in
this direction is the design of automated recognition systems
for bankruptcy detection using GPU. The graphics processing
units have enjoyed a great deal of interest recently for being
programmed to solve high-dimensional problems with a large
amount of sampled data. Our contribution is the parallel
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TABLE III
PERFORMANCE MEASURES (%) (MEAN) AND (STDEV): GPU VERSUS CPU

Neural Network Hardware GPU GTX 280 CPU - Core 2 T2300
Algorithm Configuration Statistics R P F1 E1 E2 R P F1 E1 E2

BP (5-2-1) mean 90.23 90.89 90.55 9.67 9.77 91.17 91.64 91.40 8.91 9.37
stdev 2.02 0.70 1.03 0.88 2.02 1.38 1.34 1.05 1.51 1.36

BP (10-2-1) mean 90.68 91.90 91.28 8.56 9.32 91.97 91.20 91.55 9.55 8.61
stdev 1.45 0.98 0.81 1.16 1.45 1.91 1.84 0.69 2.35 1.73

BP (15-2-1) mean 91.49 92.73 92.10 7.66 8.51 92.78 91.05 91.89 9.77 7.85
stdev 1.12 0.76 0.86 0.81 1.12 1.60 0.79 0.62 1.06 1.57

BP (20-2-1) mean 91.17 92.25 91.70 8.20 8.83 91.56 92.31 91.90 8.22 8.89
stdev 1.15 1.14 0.69 1.36 1.15 1.39 1.13 0.058 1.41 1.31

MBP (5-2-1) mean 91.28 91.44 91.35 9.15 8.72 92.93 90.20 91.53 10.84 7.77
stdev 0.89 1.16 0.71 1.36 0.89 1.60 1.57 0.62 2.09 1.50

MBP (10-2-1) mean 91.21 91.44 91.31 9.15 8.79 91.56 92.41 91.98 8.05 8.93
stdev 0.96 1.35 0.70 1.63 0.96 0.82 0.89 0.67 1.02 0.81

MBP (15-2-1) mean 90.86 91.79 91.31 8.72 9.14 91.24 91.49 91.36 9.08 9.34
stdev 1.14 1.50 0.73 1.77 0.14 0.15 0.54 0.27 0.63 1.14

MBP (20-2-1) mean 91.31 92.09 91.69 8.41 8.69 91.61 90.91 91.24 9.83 9.01
stdev 0.88 1.20 0.56 1.43 0.88 1.80 1.40 0.90 1.75 1.72

implementation of the Multiple backpropagation algorithm
(MBP) for training a Multiple Feed Forward neural network
(MFF) bringing to the edge the design of a nonparametric
prediction model for bankruptcy prediction in a case study of
the French market. Its hybrid nonparametric nature enabled
modeling irregularities in the system overall function over
the feature space yielding improved accuracy as well as
decreasing Type II errors. From the experimental results, we
conclude that an implementation running in GPU presents
high speedups as compared to the running time of a CPU
version. Besides being accurate, our model is able to predict
much faster. Future work will study how to increase the
system bias-variance tradeoff possibly including consensus
among chosen classifiers.
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