
 

Abstract — A novel GPU-based simulation of spiking neural 
networks is implemented as a hybrid system using Parker-
Sochacki numerical integration method with adaptive order. 
Full single-precision floating-point accuracy for all model 
variables is achieved. The implementation is validated with 
exact matching of all neuron potential traces from GPU-based 
simulation versus those of a reference CPU-based simulation. A 
network of 4096 Izhikevich neurons simulated on an NVIDIA 
GTX260 device achieves real-time performance with a speedup 
of 9 compared to simulation executed on Opteron 285, 2.6-GHz 
device. 
 

Index Terms—GPU, CUDA, STDP, spiking neural network, 
high accuracy, parallel computing, shared memory. 

I. INTRODUCTION 
spiking neural network (SNN) is a model of a 

biological neural network with a simplified process of 
synaptic transmission. Neurons communicate with each 
other by spikes, modeled as time-stamped potential pulses. 
The accuracy of a spike time depends on the choice of a 
numerical integration system classified by Brette et al. [1] 
into the following categories. Clock-driven (synchronous) 
systems evaluate model variables only at fixed points in 
time. The resolution of the time grid, defined by the 
magnitude of a time step, determines the simulation 
accuracy and affects the execution time. More complex 
event-driven (asynchronous) systems update variables at the 
exact time of a spike event. The accuracy of the event time 
in these systems is not tied to a precision of any time grid, 
but depends on floating-point format chosen (double or 
single precision). Hybrid systems combine advantages of 
event-driven and clock-driven systems. They refresh the 
model variables at fixed points in time, but yet they process 
events at the exact time. Two identical SNNs excited with 
identical stimuli, but implemented as a clock- and event-
driven systems do not produce the same spiking pattern 

unless a time step in the clock-driven implementation is 
small enough to achieve the desired accuracy [1], [2]. 

Some biological mechanisms, for example spike time 
dependent plasticity (STDP), require accurate timing. STDP 
simulation in a clock-driven system is contaminated with 
quantization error and thus may result in incorrect evolution 
of the network topology due to inability of the system to 
distinguish between long-term potentiation and long-term 
depression [1]. 

The Parker-Sochacki [3] (PS) numerical integration 
method, recently applied by Stewart and Bair [2] to the 
biologically plausible phenomenological neuron model 
developed by Izhikevich [4] (IZ), provides an accuracy 
appropriate for simulation of SNNs with biological 
mechanisms requiring exact event timing. In fact, such 
simulations achieve full double-precision integration 
accuracy. 

This research applies graphical processing units (GPUs) 
and Compute Unified Device Architecture (CUDA), which 
offers for GPU-based computing a powerful development 
framework integrated with the C language. GPUs are cost 
effective commodity devices designed to exploit parallel 
shared memory-based floating-point computation. They 
provide memory access speeds superior to those of 
commodity CPU-based systems. High-speed memory access 
is essential in the simulations of neural networks because all 
model variables have to be updated every iteration. These 
features make GPUs attractive for SNN simulations 
compared to other solutions based on programmable logic, 
integrated circuits, custom shared memory solutions, and 
cluster message passing computing systems. 

Successful implementations of CUDA GPU-based SNN 
simulations have already been demonstrated in a number of 
publications. Nageswaran et al. reported a real-time 
simulation of leaky integrate-and-fire (LIF) SNN [5] and 
near real-time simulation of IZ-based SNN with STDP 
model [6]. In the latter work the simulation time, the 
network size, and the connectivity density are emphasized, 
but not the accuracy. Moreover, verification of the GPU-
based implementation with the reference one is performed 
indirectly. The difference between GPU-based and the 
reference simulation increases with the network size. 
Various factors are listed as causes of this error, but the 
exact origin is left unclear. 

Fidjeland et al. [7] presented a real-time implementation 
of IZ-based SNN for the cluster-oriented network 
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topologies. No verification with reference implementation is 
performed. 

 Both above works use the original implementation by 
Izhikevich [4] based on an Euler-type numerical integration 
method, a synchronous system, and a one-ms time step. As a 
result, quantization error is introduced. 

Tiesel et al. [8] reported an OpenGL implementation of a 
planar integrate-and-fire SNN with nearest neighbor 
connectivity. The forth order Runge–Kutta (RK4) 
integration method in a synchronous system is used. The 
verification of results from NVIDIA and ATI GPUs with 
results of an exact closed-form solution and Matlab RK4 
solution is performed. However, the error introduced by the 
binary floating point standard itself is not differentiated. 
Consequently, the origin of the error is left unclear. 

This novel implementation addresses both issues: 
simulation accuracy and verification error. It provides a real-
time parallel simulation of IZ-based SNNs with the PS 
method, hybrid system, and full single-precision integration 
accuracy on CUDA-enabled GPUs. The simulation results 
are verified directly. They exactly match that of the 
reference implementation within the domain of IEEE-754 
standard. Examples of potential applications of this work are 
high-accurate real-time neural systems, high-precision 
robotics, and scientific simulations. 

The second section introduces the reader to the main 
concepts of the system: PS method, IZ neuron model, and 
CUDA. The third section provides insight into design and 
implementation of this project. Section four concentrates on 
the results and analysis of the system. Finally, the last 
section draws overall conclusions and proposes future work.  

II. ESSENTIAL CONCEPTS 

A. Parker-Sochacki Numerical Integration Method 
The Parker-Sochacki (PS) [3] numerical integration 

technique is based on application of the Maclaurin series to a 
solution of differential equations with an initial value 
problem (IVP), 

  ′( ) =     =    ,  ( ) ,  (  ) =   , ∈ [  −  ,   +  ] (1) 

 
The method was developed based on the Picard iteration 

[9] under the assumption that the solution function is locally 
Lipschitz continuous in y and continuous in t (Picard–
Lindelöf theorem, [10]), and therefore can be described with 
power series. Consequently, based on the fact that next 
coefficient in the series can be represented with the 
derivative of previous coefficient, 

  ( + 1)       
   =        

   ,   =  ( )(0) ! , (2) 

 
and after substituting Eq. (2) in Eq. (1), the IVP Eq. (1) can 
be described in terms of power series: 

  ( + 1)       
   =    ,       

    . (3) 

 
Provided that   is a linear function,    ,  ( ) =   ( ) +  , 

Eq. (3) becomes (constant term is temporary dropped ): 
  ( + 1)       

   =         
    , (4) 

 
which can be represented with pseudo code. 

  =   ;    = 1;    :    = 0,  <  ,  + +:   =    /( + 1);  =  +    ;  =  × ∆ ;      =  +  ; 
(Listing 1) 

 
Code in Listing 1 exhibits loop level parallelism (LLP) 

and parallel reduction, which can be exploited if all 
coefficients are pre-calculated. 

However, provided that   is a quadratic function,    ,  ( ) =    ( ) +   ( ) +  , after series multiplication, Eq. 
(3) becomes: 
  ( + 1)       
   =            

     
     +         

    , (5) 

 
which can be represented with pseudo code. 

  =   ;    = 1;    :    = 0,  <  ,  + +:  = 0;    :    = 0,  ≤  ,  + +:  =  +       ;       = (  +    )/( + 1);  =  +    ;  =  × ∆       =  +  ; 

(Listing 2) 

 
Exploiting parallel computation is problematic in this case 

because of linearly scaled convolution, which introduces 
loop-carried circular dependence. Partial parallelism still can 
be exploited in the convolution itself and in term    /( + 1). 

2144



 

PS method allows a representation of an IVP with partial 
sums, where number of summands defines solution 
accuracy. PS method can be used for systems of 
simultaneous equations. Although parallel techniques can be 
applied with PS method, a discrete convolution (Cauchy 
product) appearing as a result of power operations reduces 
LLP. At the same time, in contrast to the finite order 
methods, PS method provides an adaptive order for a given 
error tolerance. Error tolerance is defined as a largest 
acceptable difference between values of an integration 
variable from two consecutive PS iterations. Consequently, 
execution time of computation naturally depends on the 
Lipschitz constant of the local solution function. 

B. Izhikevich neuron membrane model 
Targeting large-scale cortical SNN simulations, the 

phenomenological IZ model [4] was designed with the goal 
of providing simultaneous biological plausibility and 
computational simplicity at the expense of parametric space 
transformation and consequent change in definitions of 
parameters compared to those of classical Hodgkin-Huxley 
model [11]. The model has been gaining popularity 
especially for SNNs originally targeting leaky integrate-and-
fire (IF) models, Lapicque [12]. The model equations are as 
follows, Izhikevich et al. [13]: 

      =  ( −      )( −        ) −  +   
      =  ( ( −      ) −  )      ≥      :    =    =  +     

(6) 

 
In these equations   represents the membrane 

capacitance;  , membrane potential;       , resting 
membrane potential;        , threshold potential;      , 
action potential escape limiting value;  , recovery variable 
that models     and    currents;  , injected current;  , a 
parameter that describes time scale of recovery variable  ;  , a parameter that describes sensitivity of   to subthreshold 
fluctuations of membrane potential;  , a parameter that 
describes after-spike reset value due to hyperpolarizing 
outward    current (typically set to a value less than      );  , a parameter that describes after-spike reset of  ; and  , 
describes sensitivity of   to the fluctuations of itself. 

The model functions in the following way: injected 
current   is integrated as a charge on the membrane 
capacitance  . This process results in membrane potential 
fluctuations  . If   crosses        , the quadratic part of the 
equation,  ( −      )( −        ), accelerates membrane 
potential dynamics, which results in a spike. At the same 
time, this high spiking value of   accelerates  , which 
provides negative feedback to   and to itself playing a role 
of    ionic current at that time. In contrast to  , which gives 
a quadratic dependence to its acceleration, the equation that 
governs   has only first power dependence on  . Thus,   

shaped by   and   follows  . As a consequence,   has to be 
artificially reset in order to keep it in the plausible range. 
Hence, once   reaches      , it is reset to value  . At the 
same time,   is incremented rather than reset, and therefore 
it “memorizes” previous spike dynamics and affects the 
refractory period. Variable   without term  ( −      ) 
would play a role similar to the one    conductance plays in 
IF model with spike frequency adaptation. However, this 
term gives it the functionality of controllable response to 
membrane potential dynamics, and therefore enriches the 
model with various types of dynamics [4]. 

C. Compute Unified Device Architecture 
CUDA supports heterogeneous computing with 

asynchronous concurrent execution of CPU (host) and GPU 
(device) threads. GPU code is executed as a kernel. A kernel 
divides computation into parallel operations and separates 
GPU code from the CPU code. The division into parallel 
tasks is based on notions of a thread, block, and grid. A 
thread is a copy of an executed kernel at runtime with its 
own state and register set. A block is a collection of threads. 
A grid is a collection of blocks (Fig. 1). 

Threads can be packed into blocks using 1D, 2D, or 3D 
indexing, and blocks can be packed into a grid using 1D or 
2D indexing. The resulting indices, thread ID, and block ID 
respectively, are convenient for task-parallel and data-
parallel computations. Each data piece can be allocated to 
threads/blocks based on these IDs. Thus, various levels of 
parallelism with various granularities can be exploited. 

Each GPU is a collection of streaming multiprocessors 
(SM), which execute blocks of threads in arbitrary order.  
Hence, SNN size and the density of synaptic connections 
can be easily scaled with the number of blocks. 

Threads are executed on SM cores in arbitrary order in 
small batches called warps; each consists of 32 threads. The 

 
 

Fig. 1.  CUDA thread hierarchy [17]. Threads are organized in blocks, 
and blocks are organized in a grid with a desired dimensionality. The 
kernel code is executed on the grid. 
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SM scheduler issues a single instruction to the entire warp. 
Threads in a warp are free to take different execution paths 
(branch divergence). However, these execution paths are 
processed in sequence until they reach a common execution 
path and continue in parallel from that point. Potential 
sources of branch divergence in PS SNN implementation are 
handling of spiked neurons, variability of synaptic events per 
neuron, and variability of PS steps per neuron. 

A CUDA device has several memory types, which have 
their own distinct properties: not-cached large-capacity 
DRAM-type high-latency global memory, accessed by any 
thread; fast on-chip small-capacity shared memory, accessed 
by any thread from a block currently executing on an SM; 
small constant memory cached and optimized for broadcast, 
accessed by any thread; and texture memory, cached and 
optimized for 2D locality, accessed by any thread. 

A typical flow of program execution with CUDA is the 
following: 1) host code allocates and initializes global 
memory on the device and calls kernel; 2) kernel loads data 
from the global memory to the shared memory, 
synchronizes, processes data through the algorithm, and 
writes results back to the global memory; and 3) host 
transfers results back to the host memory. 

The global memory allows exchanging spikes between all 
neurons in all blocks. However, kernel re-launch is required 
for global synchronization. The shared memory provides 
storage for model variables and data structures during 
execution. Texture memory can be used for storing synaptic 
data structure. 

Among the major challenges of CUDA programming are 
these issues: balancing limited resources (registers, shared 
memory) for maximum parallelism; aligning and coalescing 
global memory access operations for maximum throughput; 
avoiding access conflicts in shared memory operations; 
reducing and hiding global memory access and 
synchronization latency; and obtaining an execution 
configuration (collection of kernels with various grid and 
block sizes, allocation of computation) with the best 
performance. 

III. DESIGN AND IMPLEMENTATION 
Stewart and Bair [2] applied PS method to IZ-based 

hybrid system of SNN and demonstrated full double-
precision accuracy. Hybrid system in general can be 
represented as a block diagram (Fig. 2). Specifically, the 
update iteration in Fig. 2 consists of several steps: First, 
running a PS integration step an arbitrary number of times 
until the error tolerances for all model variables reach their 
required limits. The number of runs defines the integration 
order. Second, testing for a spike. If a spike is detected, the 
computation proceeds with the Newton-Raphson (NR) root-
search method, which is used to obtain the exact spike time. 
The NR computation is followed by a PS step, which is 
required for the model variables to update at the corrected 
spike time. The update iteration runs sequentially for all 
synaptic events arrived within the current integration step.  

Concluding iteration updates model variables at the end of a 
simulation step. 

The arbitrary order and full event time scale introduce 
difficulties for GPU-based implementation, because of the 
variable computation size per neuron. 

A. Software architecture 
The implementation is based on three kernels: update, 

propagation, and sorting (Fig. 3). Computation is done in 

 
Fig. 2.  Hybrid SNN system: simulation execution flow. An integration 
step dt consists of iterations through time-sorted synaptic events 
t_0…t_n for every neuron in the network. With every iteration the 
update of model variables takes place relative to the time of a processed 
synaptic event. The value of dt is small enough (0.25 ms) so that a 
neuron can produce at most one spike event during this period. In the 
propagation phase all spike events are distributed to Synaptic Events in 
Transmission data structure for future execution with appropriate 
weights and delays. The distribution is processed according to the matrix 
of synaptic connectivity. 

 
Fig. 3.  Data Flow in GPU-based implementation of PS-based SNN with 
IZ neurons. 
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single-precision floating-point format.  
The update kernel loads the sorted array of synaptic 

events from the global memory, performs numerical 
integration, and stores spike events to the global memory.  

The propagation kernel loads the spike events produced 
by the update kernel. For each spike event it queries the 
synaptic connectivity matrix for the destination neurons, 
weights (GABAergic or AMPAergic synaptic conductance 
deltas) and delays. From these data it forms the synaptic 
events and stores them into the global memory based on 
their arriving time slot. The time slot for an event is 
determined by its delay in terms of dt, (i.e. in which dt 
relative to the current time this event is scheduled to arrive). 
Since delays are bounded by maximum and minimum 
values, the time slot data structure can be implemented as a 
circular buffer. 

The sorting kernel loads all synaptic events from the 
current time slot, sorts them by the target neuron index and 
by the event time, forms a pointer-based compact array, and 
stores it to the global memory.  

The execution configuration of each kernel is tuned based 
on the respective computation algorithm for the best 
performance. Communication abstraction between kernels 
allows flexible partitioning of work between grids with 
blocks of various sizes. Coalesced memory access is 
achieved. 

B. Update phase 
The update phase performs PS integration at dt time 

increments for each neuron in the network. Within dt time 
period, the update is performed at the time of synaptic events 
if there are any scheduled (Fig. 2). The computation in the 
update iteration is based on PS equations describing IZ-
neuron with conductance-based synapses [2].  ( + ∆ ) =  ( ) +    × (∆ ) ,  = 

   { , , ,  } 

  =  (  ) +     +     −   +   1  

(  ) =         
    

    =  (  ) +     +     −    1 ( + 1) 

    =      −    1( + 1) 

    = −    1( + 1) 

    = −    1( + 1)     =    −   −   ,   =    −   −   −               ≥      :    =    =  +     

(7) 

 
Parameters in Eq. (7) are the same as in Eq. (6) with 

addition of these terms:  , excitatory conductance;  , 
inhibitory conductance; ∆ , time step;  , maximum PS 
order;  , current PS order;   , excitatory synaptic reversal 
potential;   ,  inhibitory synaptic reversal potential; (  ) , 
second order term that requires a convolution; and    and   , excitatory and inhibitory synaptic conductance decay 
rate constants respectively. 

Eq. (7) can be described as a dependency graph (Fig. 4). 
In Fig. 4 and Eq. (7), the PS step has both data and task 
parallel computation. A few attempts to exploit parallelism 
within the PS step on GPU resulted in more overhead than 
the benefit. As a result, in the most recent implementation 
the PS step is considered as a basic block of computation. 

A neuron is mapped to a single thread during the 
integration step. The maximum number of neurons that an 
SM can handle is 64. The major limitation is the shared 
memory space, which is used for the PS step data structures, 
for storage of model variables and parameter, and for spike 
and the synaptic events. Another limitation is the register 
space, which limits the number of active threads to 256 per 
SM. As a result block partition range is 1-4 active blocks.  

There are three major sources of branch divergence. First, 
the number of PS steps per PS update (Fig. 4) is not the 
same for all neurons. Second, the number of PS updates 
varies among neurons and depends on the number of 
synaptic events scheduled for each neuron (Fig. 2). Third, 
Newton-Raphson (NR) algorithm increases computation size 
for spiked neurons. In order to reduce branch divergence the 

 
Fig. 4.  Dependency graph of PS iterations in IZ-based SNN model. The 
update of model variables at any point in time is an iterative process. The 
iterations are suspended if the error tolerance limits on all variables are 
reached. This graph reflects the data dependencies of Eq. 7. Variables 
participating in Cauchy product computation are highlighted in grey. 
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allocation of neurons to threads is done in sparse manner, 
(i.e. every 2nd – 4th thread performs the update computation). 

C.  Propagation phase 
The propagation kernel distributes spike events to the time 

slots organized in the circular buffer array. Several stages 
are performed: filtering, synapse fetching, and time slot 
binning. 

Filtering allows only spikes from the neurons with 
connections in the block of interest to participate in the 
further computation. It is done as a bitwise “AND” of 
incoming spikes with a block-specific filtering mask loaded 
from the texture memory. 

A fetch of the synaptic data is done from the block-
partitioned synaptic matrix stored as a 2D texture (Fig. 5). 

The spiking behavior of neurons is suitable for both 
temporal and spatial cache locality. Indeed, spikes usually 
arrive as spike trains (temporal locality). Besides, there are 
usually several post-synaptic target neurons for a pre-
synaptic spiking neuron (spatial locality). CUDA provides a 
cache with spatial 2D locality. The data access is the most 
efficient if the threads in a warp are accessing a coalesced 
segment in the texture memory. The synaptic data structure 
is based on ELLPACK format, Bell and Garland [14], and is 
optimized for uniform connectivity and warp-oriented access 
(Fig. 5). Although this approach may seem to increase the 
number of data loads during the synapse look-up, because 
the synaptic connectivity data of a source neuron is present 
in multiple blocks of the connectivity matrix, the data loads 
with temporal or special locality are generally well suited for 
caches, which are expected to grow in size in the next GPU 
generations. 

The spike binning stage distributes synaptic events into 
bins or time slots according to their arrival times 
approximated to the nearest dt. Each event is a triplet: 
neuron number, time, and weight. Within a bin the exact 

time is preserved. The bins are emptied by the sorting kernel 
and reused again by the propagation phase in the circular 
manner. The number of bins is determined by the maximum 
and minimum synaptic delay in the network. Each block has 
its own set of bins. In the future implementation optimized 
for large event throughput, each neuron may have a set of 
bins, which would reduce sorting time. 

D. Sorting phase 
The sorting phase is required because the propagation 

kernel distributes synaptic events by appending them to the 
time slot arrays. As a result events are unsorted. The sorting 
phase can be a part of the update kernel. In this case the 
number of data accesses to the global memory is reduced. 
However, a separate kernel for sorting phase provides 
opportunity for an optimal execution configuration and 
computation decomposition, which results in better 
performance. 

The task of the sorting kernel is to sort the synaptic events 
by time and by the neuron index, and to reduce the resulting 
sorted data structure to a pointer array. In this array, the 
pointer part provides a reference for each target neuron to a 
segment with sorted time-weight pairs. Thus, the update 
phase can sequentially iterate through these pairs for each 
neuron and perform the PS updates. Sorting by neuron index 
can be avoided in the future implementation if each neuron 
has its own set of time slots. Such implementation can be 
justified if the number of synaptic events per neuron per 
integration step is large enough to use available global 
memory bandwidth fully.  

The sorting algorithm is based on the radix sort designed 
by Satish et al. [15], which is considered as the fastest GPU 
sort at the time of publication. The code for this algorithm is 
available as a part of CUDPP (CUDA Data Parallel 
Primitives) Library on the terms of BSD license [16].  

The original radix sort implementation was modified in 
order to accommodate the specifics of this application. The 
kernel loads blocks of data into shared memory. Every block 
is sorted by an optimal algorithm based on the data size in 
the block (e.g., warp size, 128, 256 events). This 
implementation helps to reduce synchronization overhead. 
The formation of pointer array is done by the warp-scan 
algorithm, which is a part of CUDPP.  

IV. RESULTS AND ANALYSIS 

A. Verification 
Functionality of the implementation was verified with that 

of provided reference CPU code [2] for networks with all 
sizes and connectivity densities presented in this paper. The 
reference implementation was modified to accommodate 
variable delay time. All neuron parameters, weights, and 
delays are randomly initialized with values about original 
values. Connectivity is randomized, but kept at a specific 
percentage. Zero PS error tolerance was applied. Voltage 
traces for all neurons for the ten seconds of simulation have 
been tested for equality between the CPU and GPU versions. 

Fig. 5.  Synaptic connectivity matrix. A vertical coordinate is a spiking 
neuron index. A horizontal coordinate represents all target synapses for 
the spiking neuron for a block of the update phase. If a spike event is 
produced, the entire target array is loaded by a warp via texture cache 
into the shared memory for distribution to the time slot buffer. 
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Exact match was achieved in all cases. 
CUDA supports IEEE-compliant basic mathematical 

floating-point operations in special instructions with explicit 
rounding modes. These instructions incur a higher 
computational time penalty and prevent the compiler from 
optimizing separate multiply and add into the multiply-add 
operation, which is faster but less accurate [17]. This 
implementation provides both options to the user: IEEE 
compliant version, (which uses instructions with round-to-
nearest-even mode), and compiler-optimized version, (which 
provides 5–8 % reduction in execution time at the expense 
of accuracy). 

B. Results 
For profiling purposes the networks of various sizes and 

connectivity densities with randomized values of model 
parameter for all neurons have been simulated on a GTX260 
device. This device has 24 SMs, has 16 KB shared memory 
per SM, has 938 MB global memory, and operates at a clock 
rate of 1.3 GHz. Two characterization tests have been 
performed. PS update step never diverged in both tests. 

The first test characterizes how simulation time scales 
with the network size and the connectivity density. All tested 
networks are randomly connected with a constant ratio of 
80% excitatory and 20% inhibitory synapses. All parameters 
are loaded into the device memory before starting 
simulation. The excitation is done by injecting current into 
each cell with a random magnitude in the 0–200 pA range 
during first 50 ms of simulation time. The time is measured 
using CUDA events [18] starting from the first kernel launch 
and ending with the last kernel execution. No data are 
transferred between the host and the device during the 

simulation. Zero error tolerance on model variables is 
applied in the PS integration step. The reference simulation 
is performed on a PC with Opteron 285, 2.6-GHz processor. 
The characterization plot of simulation time is depicted in 
Fig. 6. 

As seen in the Fig. 6, the execution time has a near linear 
scaling factor for both devices. This linearity is expected, 
since hardware resources are fully used at a single block, and 
increasing the network size results in more blocks executed 
sequentially. However, due to the shared memory 
limitations, the networks with high connectivity density and 
larger network sizes cannot be simulated in the current 
implementation, which requires all the synaptic events to be 
loaded into shared memory before proceeding with the PS 
update. This limitation can be surmounted if synaptic events 
are fetched in batches. 

GPU simulation is 8–9 times faster than PC simulation. 
Real time or faster performance is achieved for all networks 
with size of 2048 neurons and for 2%-connected (81 
synapses per neuron) and 4%-connected (162 synapses per 
neuron) networks with 4096 neurons.  

Previous works mentioned earlier achieve faster 
performance, larger network sizes, and larger connectivity 
density. This is expected because of several factors. First of 
all they use faster devices. Secondly, the complexity of 
computation is different since they use Euler-type method 
with Eq. (6) compared to PS method used in this work. Since 
they use synchronous simulation, the time of events is 
averaged to the nearest millisecond. Consequently, the 
change in synaptic conductance is done once per millisecond 
for all events. In this work, besides synchronous updates 
every 0.250 ms, the handling of an event is done exactly at 
the time when it arrives to the synaptic cleft. Thus, all events 
are processed sequentially per neuron, but every event is 
unique in time within the boundaries of single precision 

Fig. 6.  Simulation time versus network size for a range of network 
densities (number of synapses per neuron represented as a percent of the 
total network size). Upper plot characterizes PC simulation and lower 
plot characterizes GPU simulations. Each data point on the plot is an 
average result of three 10-second simulations of network activity. 
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floating-point accuracy. The previous works do not provide 
comparable accuracy.  

The second test characterizes how the simulation time 
varies with the event throughput per neuron for the networks 
with various connectivity densities (Fig. 7). The mean 
throughput is generated by increasing the 
excitatory/inhibitory synaptic ratio from 0.8/0.2 to 0.98/0.02 
for a network of 4096 neurons. As a result, more events are 
generated per second per neuron. 

As seen in the Fig. 7, the execution time has near linear 
scaling factor for both devices. In this case, GPU simulation 
is 6–9 times faster than PC simulation. The system is 
capable of handling the throughput of unique events on the 
order of 10,000 events per second per neuron. The maximum 
detected PS integration order is 23. It is directly proportional 
to the event throughput. 

V. CONCLUSION 
Real-time performance for SNN with 4% connected 4096 

IZ neurons was achieved in this implementation on the 
GTX260 GPU. The GPU simulation is 9 times faster than 
PC simulation based on Opteron 285, 2.6-GHz. The major 
part of the computation (about 80 %) is done by the update 
kernel. 

Implemented as a hybrid type, the system has a potential 
for applications requiring high computational accuracy. This 
potential becomes prominent if the system is extended with 
an STDP algorithm. Very low quantization error in hybrid or 
event-driven systems makes these systems preferable if high 
accuracy is required. 

Functionality of the system was verified with a reference 
implementation. Transient potential waveforms for the entire 
network were compared to those of reference program. An 
exact match between CPU and GPU results has been 
achieved. 

There are many more potential improvements, which 
could be investigated: 1) parallel implementation of Newton-
Raphson method or replacing it with another more parallel-
friendly root-search algorithm; 2) optimization of synaptic 
connectivity matrix and its memory access; 3) using page-
locked mapped memory and/or streams for interface and 
overlapping communication between a host and a device 
with computation on the device; 4) optimization of the 
block-level network allocation, and reduction of inter-block 
connections based on provided topology and heuristics; 5) 
extending to a double-precision floating-point format; 6) 
verification of system results with devices other than 
GTX260, enabling multi-GPU functionality; 7) extending 
the range of biological features (e.g., synaptic plasticity, 
long-term potentiation and depression, and STDP); 8) 
applying the system in robotics; 9) reducing effects of shared 
memory limitations and branch divergence; and 10) 
synchronizing every simulation step with the device clock, 
and implementing a real-time system. 
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