

Abstract — A novel GPU-based simulation of spiking neural
networks is implemented as a hybrid system using Parker-
Sochacki numerical integration method with adaptive order.
Full single-precision floating-point accuracy for all model
variables is achieved. The implementation is validated with
exact matching of all neuron potential traces from GPU-based
simulation versus those of a reference CPU-based simulation. A
network of 4096 Izhikevich neurons simulated on an NVIDIA
GTX260 device achieves real-time performance with a speedup
of 9 compared to simulation executed on Opteron 285, 2.6-GHz
device.

Index Terms—GPU, CUDA, STDP, spiking neural network,
high accuracy, parallel computing, shared memory.

I. INTRODUCTION
spiking neural network (SNN) is a model of a

biological neural network with a simplified process of
synaptic transmission. Neurons communicate with each
other by spikes, modeled as time-stamped potential pulses.
The accuracy of a spike time depends on the choice of a
numerical integration system classified by Brette et al. [1]
into the following categories. Clock-driven (synchronous)
systems evaluate model variables only at fixed points in
time. The resolution of the time grid, defined by the
magnitude of a time step, determines the simulation
accuracy and affects the execution time. More complex
event-driven (asynchronous) systems update variables at the
exact time of a spike event. The accuracy of the event time
in these systems is not tied to a precision of any time grid,
but depends on floating-point format chosen (double or
single precision). Hybrid systems combine advantages of
event-driven and clock-driven systems. They refresh the
model variables at fixed points in time, but yet they process
events at the exact time. Two identical SNNs excited with
identical stimuli, but implemented as a clock- and event-
driven systems do not produce the same spiking pattern

unless a time step in the clock-driven implementation is
small enough to achieve the desired accuracy [1], [2].

Some biological mechanisms, for example spike time
dependent plasticity (STDP), require accurate timing. STDP
simulation in a clock-driven system is contaminated with
quantization error and thus may result in incorrect evolution
of the network topology due to inability of the system to
distinguish between long-term potentiation and long-term
depression [1].

The Parker-Sochacki [3] (PS) numerical integration
method, recently applied by Stewart and Bair [2] to the
biologically plausible phenomenological neuron model
developed by Izhikevich [4] (IZ), provides an accuracy
appropriate for simulation of SNNs with biological
mechanisms requiring exact event timing. In fact, such
simulations achieve full double-precision integration
accuracy.

This research applies graphical processing units (GPUs)
and Compute Unified Device Architecture (CUDA), which
offers for GPU-based computing a powerful development
framework integrated with the C language. GPUs are cost
effective commodity devices designed to exploit parallel
shared memory-based floating-point computation. They
provide memory access speeds superior to those of
commodity CPU-based systems. High-speed memory access
is essential in the simulations of neural networks because all
model variables have to be updated every iteration. These
features make GPUs attractive for SNN simulations
compared to other solutions based on programmable logic,
integrated circuits, custom shared memory solutions, and
cluster message passing computing systems.

Successful implementations of CUDA GPU-based SNN
simulations have already been demonstrated in a number of
publications. Nageswaran et al. reported a real-time
simulation of leaky integrate-and-fire (LIF) SNN [5] and
near real-time simulation of IZ-based SNN with STDP
model [6]. In the latter work the simulation time, the
network size, and the connectivity density are emphasized,
but not the accuracy. Moreover, verification of the GPU-
based implementation with the reference one is performed
indirectly. The difference between GPU-based and the
reference simulation increases with the network size.
Various factors are listed as causes of this error, but the
exact origin is left unclear.

Fidjeland et al. [7] presented a real-time implementation
of IZ-based SNN for the cluster-oriented network

GPU-Based Simulation of Spiking Neural Networks with Real-Time
Performance & High Accuracy

Dmitri Yudanov, Member, IEEE, Muhammad Shaaban, Member, IEEE, Roy Melton, Member, IEEE,
and Leon Reznik, Member, IEEE

A

Manuscript received February 7, 2010.
D. Yudanov is with Rochester Institute of Technology, Department of

Computer Engineering, Rochester, NY 14623 USA (e-mail:
dxy7370@gmail.com).

M. Shaaban is with Rochester Institute of Technology, Department of
Computer Engineering, Rochester, NY 14623 USA (e-mail:
meseec@rit.edu).

R. Melton is with Rochester Institute of Technology, Department of
Computer Engineering, Rochester, NY 14623 USA (e-mail:
Roy.Melton@mail.rit.edu).

L. Reznik is with Rochester Institute of Technology, Department of
Computer Science, Rochester, NY 14623 USA (e-mail: lr@cs.rit.edu).

WCCI 2010 IEEE World Congress on Computational Intelligence
July, 18-23, 2010 - CCIB, Barcelona, Spain IJCNN

978-1-4244-8126-2/10/$26.00 c©2010 IEEE 2143

topologies. No verification with reference implementation is
performed.

 Both above works use the original implementation by
Izhikevich [4] based on an Euler-type numerical integration
method, a synchronous system, and a one-ms time step. As a
result, quantization error is introduced.

Tiesel et al. [8] reported an OpenGL implementation of a
planar integrate-and-fire SNN with nearest neighbor
connectivity. The forth order Runge–Kutta (RK4)
integration method in a synchronous system is used. The
verification of results from NVIDIA and ATI GPUs with
results of an exact closed-form solution and Matlab RK4
solution is performed. However, the error introduced by the
binary floating point standard itself is not differentiated.
Consequently, the origin of the error is left unclear.

This novel implementation addresses both issues:
simulation accuracy and verification error. It provides a real-
time parallel simulation of IZ-based SNNs with the PS
method, hybrid system, and full single-precision integration
accuracy on CUDA-enabled GPUs. The simulation results
are verified directly. They exactly match that of the
reference implementation within the domain of IEEE-754
standard. Examples of potential applications of this work are
high-accurate real-time neural systems, high-precision
robotics, and scientific simulations.

The second section introduces the reader to the main
concepts of the system: PS method, IZ neuron model, and
CUDA. The third section provides insight into design and
implementation of this project. Section four concentrates on
the results and analysis of the system. Finally, the last
section draws overall conclusions and proposes future work.

II. ESSENTIAL CONCEPTS

A. Parker-Sochacki Numerical Integration Method
The Parker-Sochacki (PS) [3] numerical integration

technique is based on application of the Maclaurin series to a
solution of differential equations with an initial value
problem (IVP),

 ′() = = , () , () = , ∈ [− , +] (1)

The method was developed based on the Picard iteration

[9] under the assumption that the solution function is locally
Lipschitz continuous in y and continuous in t (Picard–
Lindelöf theorem, [10]), and therefore can be described with
power series. Consequently, based on the fact that next
coefficient in the series can be represented with the
derivative of previous coefficient,

 (+ 1)
 =

 , = ()(0) ! , (2)

and after substituting Eq. (2) in Eq. (1), the IVP Eq. (1) can
be described in terms of power series:

 (+ 1)
 = ,

 . (3)

Provided that is a linear function, , () = () + ,

Eq. (3) becomes (constant term is temporary dropped):
 (+ 1)

 =
 , (4)

which can be represented with pseudo code.

 = ; = 1; : = 0, < , + +: = /(+ 1); = + ; = × ∆ ; = + ;
(Listing 1)

Code in Listing 1 exhibits loop level parallelism (LLP)

and parallel reduction, which can be exploited if all
coefficients are pre-calculated.

However, provided that is a quadratic function, , () = () + () + , after series multiplication, Eq.
(3) becomes:
 (+ 1)
 =

 +

 , (5)

which can be represented with pseudo code.

 = ; = 1; : = 0, < , + +: = 0; : = 0, ≤ , + +: = + ; = (+)/(+ 1); = + ; = × ∆ = + ;

(Listing 2)

Exploiting parallel computation is problematic in this case

because of linearly scaled convolution, which introduces
loop-carried circular dependence. Partial parallelism still can
be exploited in the convolution itself and in term /(+ 1).

2144

PS method allows a representation of an IVP with partial
sums, where number of summands defines solution
accuracy. PS method can be used for systems of
simultaneous equations. Although parallel techniques can be
applied with PS method, a discrete convolution (Cauchy
product) appearing as a result of power operations reduces
LLP. At the same time, in contrast to the finite order
methods, PS method provides an adaptive order for a given
error tolerance. Error tolerance is defined as a largest
acceptable difference between values of an integration
variable from two consecutive PS iterations. Consequently,
execution time of computation naturally depends on the
Lipschitz constant of the local solution function.

B. Izhikevich neuron membrane model
Targeting large-scale cortical SNN simulations, the

phenomenological IZ model [4] was designed with the goal
of providing simultaneous biological plausibility and
computational simplicity at the expense of parametric space
transformation and consequent change in definitions of
parameters compared to those of classical Hodgkin-Huxley
model [11]. The model has been gaining popularity
especially for SNNs originally targeting leaky integrate-and-
fire (IF) models, Lapicque [12]. The model equations are as
follows, Izhikevich et al. [13]:

 = (−)(−) − +
 = ((−) −) ≥ : = = +

(6)

In these equations represents the membrane

capacitance; , membrane potential; , resting
membrane potential; , threshold potential; ,
action potential escape limiting value; , recovery variable
that models and currents; , injected current; , a
parameter that describes time scale of recovery variable ; , a parameter that describes sensitivity of to subthreshold
fluctuations of membrane potential; , a parameter that
describes after-spike reset value due to hyperpolarizing
outward current (typically set to a value less than); , a parameter that describes after-spike reset of ; and ,
describes sensitivity of to the fluctuations of itself.

The model functions in the following way: injected
current is integrated as a charge on the membrane
capacitance . This process results in membrane potential
fluctuations . If crosses , the quadratic part of the
equation, (−)(−), accelerates membrane
potential dynamics, which results in a spike. At the same
time, this high spiking value of accelerates , which
provides negative feedback to and to itself playing a role
of ionic current at that time. In contrast to , which gives
a quadratic dependence to its acceleration, the equation that
governs has only first power dependence on . Thus,

shaped by and follows . As a consequence, has to be
artificially reset in order to keep it in the plausible range.
Hence, once reaches , it is reset to value . At the
same time, is incremented rather than reset, and therefore
it “memorizes” previous spike dynamics and affects the
refractory period. Variable without term (−)
would play a role similar to the one conductance plays in
IF model with spike frequency adaptation. However, this
term gives it the functionality of controllable response to
membrane potential dynamics, and therefore enriches the
model with various types of dynamics [4].

C. Compute Unified Device Architecture
CUDA supports heterogeneous computing with

asynchronous concurrent execution of CPU (host) and GPU
(device) threads. GPU code is executed as a kernel. A kernel
divides computation into parallel operations and separates
GPU code from the CPU code. The division into parallel
tasks is based on notions of a thread, block, and grid. A
thread is a copy of an executed kernel at runtime with its
own state and register set. A block is a collection of threads.
A grid is a collection of blocks (Fig. 1).

Threads can be packed into blocks using 1D, 2D, or 3D
indexing, and blocks can be packed into a grid using 1D or
2D indexing. The resulting indices, thread ID, and block ID
respectively, are convenient for task-parallel and data-
parallel computations. Each data piece can be allocated to
threads/blocks based on these IDs. Thus, various levels of
parallelism with various granularities can be exploited.

Each GPU is a collection of streaming multiprocessors
(SM), which execute blocks of threads in arbitrary order.
Hence, SNN size and the density of synaptic connections
can be easily scaled with the number of blocks.

Threads are executed on SM cores in arbitrary order in
small batches called warps; each consists of 32 threads. The

Fig. 1. CUDA thread hierarchy [17]. Threads are organized in blocks,
and blocks are organized in a grid with a desired dimensionality. The
kernel code is executed on the grid.

2145

SM scheduler issues a single instruction to the entire warp.
Threads in a warp are free to take different execution paths
(branch divergence). However, these execution paths are
processed in sequence until they reach a common execution
path and continue in parallel from that point. Potential
sources of branch divergence in PS SNN implementation are
handling of spiked neurons, variability of synaptic events per
neuron, and variability of PS steps per neuron.

A CUDA device has several memory types, which have
their own distinct properties: not-cached large-capacity
DRAM-type high-latency global memory, accessed by any
thread; fast on-chip small-capacity shared memory, accessed
by any thread from a block currently executing on an SM;
small constant memory cached and optimized for broadcast,
accessed by any thread; and texture memory, cached and
optimized for 2D locality, accessed by any thread.

A typical flow of program execution with CUDA is the
following: 1) host code allocates and initializes global
memory on the device and calls kernel; 2) kernel loads data
from the global memory to the shared memory,
synchronizes, processes data through the algorithm, and
writes results back to the global memory; and 3) host
transfers results back to the host memory.

The global memory allows exchanging spikes between all
neurons in all blocks. However, kernel re-launch is required
for global synchronization. The shared memory provides
storage for model variables and data structures during
execution. Texture memory can be used for storing synaptic
data structure.

Among the major challenges of CUDA programming are
these issues: balancing limited resources (registers, shared
memory) for maximum parallelism; aligning and coalescing
global memory access operations for maximum throughput;
avoiding access conflicts in shared memory operations;
reducing and hiding global memory access and
synchronization latency; and obtaining an execution
configuration (collection of kernels with various grid and
block sizes, allocation of computation) with the best
performance.

III. DESIGN AND IMPLEMENTATION
Stewart and Bair [2] applied PS method to IZ-based

hybrid system of SNN and demonstrated full double-
precision accuracy. Hybrid system in general can be
represented as a block diagram (Fig. 2). Specifically, the
update iteration in Fig. 2 consists of several steps: First,
running a PS integration step an arbitrary number of times
until the error tolerances for all model variables reach their
required limits. The number of runs defines the integration
order. Second, testing for a spike. If a spike is detected, the
computation proceeds with the Newton-Raphson (NR) root-
search method, which is used to obtain the exact spike time.
The NR computation is followed by a PS step, which is
required for the model variables to update at the corrected
spike time. The update iteration runs sequentially for all
synaptic events arrived within the current integration step.

Concluding iteration updates model variables at the end of a
simulation step.

The arbitrary order and full event time scale introduce
difficulties for GPU-based implementation, because of the
variable computation size per neuron.

A. Software architecture
The implementation is based on three kernels: update,

propagation, and sorting (Fig. 3). Computation is done in

Fig. 2. Hybrid SNN system: simulation execution flow. An integration
step dt consists of iterations through time-sorted synaptic events
t_0…t_n for every neuron in the network. With every iteration the
update of model variables takes place relative to the time of a processed
synaptic event. The value of dt is small enough (0.25 ms) so that a
neuron can produce at most one spike event during this period. In the
propagation phase all spike events are distributed to Synaptic Events in
Transmission data structure for future execution with appropriate
weights and delays. The distribution is processed according to the matrix
of synaptic connectivity.

Fig. 3. Data Flow in GPU-based implementation of PS-based SNN with
IZ neurons.

2146

single-precision floating-point format.
The update kernel loads the sorted array of synaptic

events from the global memory, performs numerical
integration, and stores spike events to the global memory.

The propagation kernel loads the spike events produced
by the update kernel. For each spike event it queries the
synaptic connectivity matrix for the destination neurons,
weights (GABAergic or AMPAergic synaptic conductance
deltas) and delays. From these data it forms the synaptic
events and stores them into the global memory based on
their arriving time slot. The time slot for an event is
determined by its delay in terms of dt, (i.e. in which dt
relative to the current time this event is scheduled to arrive).
Since delays are bounded by maximum and minimum
values, the time slot data structure can be implemented as a
circular buffer.

The sorting kernel loads all synaptic events from the
current time slot, sorts them by the target neuron index and
by the event time, forms a pointer-based compact array, and
stores it to the global memory.

The execution configuration of each kernel is tuned based
on the respective computation algorithm for the best
performance. Communication abstraction between kernels
allows flexible partitioning of work between grids with
blocks of various sizes. Coalesced memory access is
achieved.

B. Update phase
The update phase performs PS integration at dt time

increments for each neuron in the network. Within dt time
period, the update is performed at the time of synaptic events
if there are any scheduled (Fig. 2). The computation in the
update iteration is based on PS equations describing IZ-
neuron with conductance-based synapses [2]. (+ ∆) = () + × (∆) , =

 { , , , }

 = () + + − + 1

() =

 = () + + − 1 (+ 1)

 = − 1(+ 1)

 = − 1(+ 1)

 = − 1(+ 1) = − − , = − − − ≥ : = = +

(7)

Parameters in Eq. (7) are the same as in Eq. (6) with

addition of these terms: , excitatory conductance; ,
inhibitory conductance; ∆ , time step; , maximum PS
order; , current PS order; , excitatory synaptic reversal
potential; , inhibitory synaptic reversal potential; () ,
second order term that requires a convolution; and and , excitatory and inhibitory synaptic conductance decay
rate constants respectively.

Eq. (7) can be described as a dependency graph (Fig. 4).
In Fig. 4 and Eq. (7), the PS step has both data and task
parallel computation. A few attempts to exploit parallelism
within the PS step on GPU resulted in more overhead than
the benefit. As a result, in the most recent implementation
the PS step is considered as a basic block of computation.

A neuron is mapped to a single thread during the
integration step. The maximum number of neurons that an
SM can handle is 64. The major limitation is the shared
memory space, which is used for the PS step data structures,
for storage of model variables and parameter, and for spike
and the synaptic events. Another limitation is the register
space, which limits the number of active threads to 256 per
SM. As a result block partition range is 1-4 active blocks.

There are three major sources of branch divergence. First,
the number of PS steps per PS update (Fig. 4) is not the
same for all neurons. Second, the number of PS updates
varies among neurons and depends on the number of
synaptic events scheduled for each neuron (Fig. 2). Third,
Newton-Raphson (NR) algorithm increases computation size
for spiked neurons. In order to reduce branch divergence the

Fig. 4. Dependency graph of PS iterations in IZ-based SNN model. The
update of model variables at any point in time is an iterative process. The
iterations are suspended if the error tolerance limits on all variables are
reached. This graph reflects the data dependencies of Eq. 7. Variables
participating in Cauchy product computation are highlighted in grey.

2147

allocation of neurons to threads is done in sparse manner,
(i.e. every 2nd – 4th thread performs the update computation).

C. Propagation phase
The propagation kernel distributes spike events to the time

slots organized in the circular buffer array. Several stages
are performed: filtering, synapse fetching, and time slot
binning.

Filtering allows only spikes from the neurons with
connections in the block of interest to participate in the
further computation. It is done as a bitwise “AND” of
incoming spikes with a block-specific filtering mask loaded
from the texture memory.

A fetch of the synaptic data is done from the block-
partitioned synaptic matrix stored as a 2D texture (Fig. 5).

The spiking behavior of neurons is suitable for both
temporal and spatial cache locality. Indeed, spikes usually
arrive as spike trains (temporal locality). Besides, there are
usually several post-synaptic target neurons for a pre-
synaptic spiking neuron (spatial locality). CUDA provides a
cache with spatial 2D locality. The data access is the most
efficient if the threads in a warp are accessing a coalesced
segment in the texture memory. The synaptic data structure
is based on ELLPACK format, Bell and Garland [14], and is
optimized for uniform connectivity and warp-oriented access
(Fig. 5). Although this approach may seem to increase the
number of data loads during the synapse look-up, because
the synaptic connectivity data of a source neuron is present
in multiple blocks of the connectivity matrix, the data loads
with temporal or special locality are generally well suited for
caches, which are expected to grow in size in the next GPU
generations.

The spike binning stage distributes synaptic events into
bins or time slots according to their arrival times
approximated to the nearest dt. Each event is a triplet:
neuron number, time, and weight. Within a bin the exact

time is preserved. The bins are emptied by the sorting kernel
and reused again by the propagation phase in the circular
manner. The number of bins is determined by the maximum
and minimum synaptic delay in the network. Each block has
its own set of bins. In the future implementation optimized
for large event throughput, each neuron may have a set of
bins, which would reduce sorting time.

D. Sorting phase
The sorting phase is required because the propagation

kernel distributes synaptic events by appending them to the
time slot arrays. As a result events are unsorted. The sorting
phase can be a part of the update kernel. In this case the
number of data accesses to the global memory is reduced.
However, a separate kernel for sorting phase provides
opportunity for an optimal execution configuration and
computation decomposition, which results in better
performance.

The task of the sorting kernel is to sort the synaptic events
by time and by the neuron index, and to reduce the resulting
sorted data structure to a pointer array. In this array, the
pointer part provides a reference for each target neuron to a
segment with sorted time-weight pairs. Thus, the update
phase can sequentially iterate through these pairs for each
neuron and perform the PS updates. Sorting by neuron index
can be avoided in the future implementation if each neuron
has its own set of time slots. Such implementation can be
justified if the number of synaptic events per neuron per
integration step is large enough to use available global
memory bandwidth fully.

The sorting algorithm is based on the radix sort designed
by Satish et al. [15], which is considered as the fastest GPU
sort at the time of publication. The code for this algorithm is
available as a part of CUDPP (CUDA Data Parallel
Primitives) Library on the terms of BSD license [16].

The original radix sort implementation was modified in
order to accommodate the specifics of this application. The
kernel loads blocks of data into shared memory. Every block
is sorted by an optimal algorithm based on the data size in
the block (e.g., warp size, 128, 256 events). This
implementation helps to reduce synchronization overhead.
The formation of pointer array is done by the warp-scan
algorithm, which is a part of CUDPP.

IV. RESULTS AND ANALYSIS

A. Verification
Functionality of the implementation was verified with that

of provided reference CPU code [2] for networks with all
sizes and connectivity densities presented in this paper. The
reference implementation was modified to accommodate
variable delay time. All neuron parameters, weights, and
delays are randomly initialized with values about original
values. Connectivity is randomized, but kept at a specific
percentage. Zero PS error tolerance was applied. Voltage
traces for all neurons for the ten seconds of simulation have
been tested for equality between the CPU and GPU versions.

Fig. 5. Synaptic connectivity matrix. A vertical coordinate is a spiking
neuron index. A horizontal coordinate represents all target synapses for
the spiking neuron for a block of the update phase. If a spike event is
produced, the entire target array is loaded by a warp via texture cache
into the shared memory for distribution to the time slot buffer.

2148

Exact match was achieved in all cases.
CUDA supports IEEE-compliant basic mathematical

floating-point operations in special instructions with explicit
rounding modes. These instructions incur a higher
computational time penalty and prevent the compiler from
optimizing separate multiply and add into the multiply-add
operation, which is faster but less accurate [17]. This
implementation provides both options to the user: IEEE
compliant version, (which uses instructions with round-to-
nearest-even mode), and compiler-optimized version, (which
provides 5–8 % reduction in execution time at the expense
of accuracy).

B. Results
For profiling purposes the networks of various sizes and

connectivity densities with randomized values of model
parameter for all neurons have been simulated on a GTX260
device. This device has 24 SMs, has 16 KB shared memory
per SM, has 938 MB global memory, and operates at a clock
rate of 1.3 GHz. Two characterization tests have been
performed. PS update step never diverged in both tests.

The first test characterizes how simulation time scales
with the network size and the connectivity density. All tested
networks are randomly connected with a constant ratio of
80% excitatory and 20% inhibitory synapses. All parameters
are loaded into the device memory before starting
simulation. The excitation is done by injecting current into
each cell with a random magnitude in the 0–200 pA range
during first 50 ms of simulation time. The time is measured
using CUDA events [18] starting from the first kernel launch
and ending with the last kernel execution. No data are
transferred between the host and the device during the

simulation. Zero error tolerance on model variables is
applied in the PS integration step. The reference simulation
is performed on a PC with Opteron 285, 2.6-GHz processor.
The characterization plot of simulation time is depicted in
Fig. 6.

As seen in the Fig. 6, the execution time has a near linear
scaling factor for both devices. This linearity is expected,
since hardware resources are fully used at a single block, and
increasing the network size results in more blocks executed
sequentially. However, due to the shared memory
limitations, the networks with high connectivity density and
larger network sizes cannot be simulated in the current
implementation, which requires all the synaptic events to be
loaded into shared memory before proceeding with the PS
update. This limitation can be surmounted if synaptic events
are fetched in batches.

GPU simulation is 8–9 times faster than PC simulation.
Real time or faster performance is achieved for all networks
with size of 2048 neurons and for 2%-connected (81
synapses per neuron) and 4%-connected (162 synapses per
neuron) networks with 4096 neurons.

Previous works mentioned earlier achieve faster
performance, larger network sizes, and larger connectivity
density. This is expected because of several factors. First of
all they use faster devices. Secondly, the complexity of
computation is different since they use Euler-type method
with Eq. (6) compared to PS method used in this work. Since
they use synchronous simulation, the time of events is
averaged to the nearest millisecond. Consequently, the
change in synaptic conductance is done once per millisecond
for all events. In this work, besides synchronous updates
every 0.250 ms, the handling of an event is done exactly at
the time when it arrives to the synaptic cleft. Thus, all events
are processed sequentially per neuron, but every event is
unique in time within the boundaries of single precision

Fig. 6. Simulation time versus network size for a range of network
densities (number of synapses per neuron represented as a percent of the
total network size). Upper plot characterizes PC simulation and lower
plot characterizes GPU simulations. Each data point on the plot is an
average result of three 10-second simulations of network activity.

0

50

100

150

200

250

2 4 6 8

Si
m

ul
at

io
n

Ti
m

e,
 se

c.

Network size, 1000 x neurons

Simulation Time versus Network Size

2% 4% 8% 16%

2% 4% 8% 16%

Fig. 7. Simulation time versus throughput per neuron for a range of
network densities (number of synapses per neuron represented as a
percent of the total network size). Upper plot characterizes PC
simulation and lower plot characterizes GPU simulations. Each data
point on the plot is an average result of three 10-second simulations of
network activity.

10

60

110

160

210

260

310

360

410

0 2 4 6 8 10 12

Si
m

ul
at

io
n

Ti
m

e,
 se

c.

Mean Event Throughput, 1000 x events/(sec. x neuron)

Simulation Time versus Event Throughput

2% 4% 8% 16%

2% 4% 8% 16%

2149

floating-point accuracy. The previous works do not provide
comparable accuracy.

The second test characterizes how the simulation time
varies with the event throughput per neuron for the networks
with various connectivity densities (Fig. 7). The mean
throughput is generated by increasing the
excitatory/inhibitory synaptic ratio from 0.8/0.2 to 0.98/0.02
for a network of 4096 neurons. As a result, more events are
generated per second per neuron.

As seen in the Fig. 7, the execution time has near linear
scaling factor for both devices. In this case, GPU simulation
is 6–9 times faster than PC simulation. The system is
capable of handling the throughput of unique events on the
order of 10,000 events per second per neuron. The maximum
detected PS integration order is 23. It is directly proportional
to the event throughput.

V. CONCLUSION
Real-time performance for SNN with 4% connected 4096

IZ neurons was achieved in this implementation on the
GTX260 GPU. The GPU simulation is 9 times faster than
PC simulation based on Opteron 285, 2.6-GHz. The major
part of the computation (about 80 %) is done by the update
kernel.

Implemented as a hybrid type, the system has a potential
for applications requiring high computational accuracy. This
potential becomes prominent if the system is extended with
an STDP algorithm. Very low quantization error in hybrid or
event-driven systems makes these systems preferable if high
accuracy is required.

Functionality of the system was verified with a reference
implementation. Transient potential waveforms for the entire
network were compared to those of reference program. An
exact match between CPU and GPU results has been
achieved.

There are many more potential improvements, which
could be investigated: 1) parallel implementation of Newton-
Raphson method or replacing it with another more parallel-
friendly root-search algorithm; 2) optimization of synaptic
connectivity matrix and its memory access; 3) using page-
locked mapped memory and/or streams for interface and
overlapping communication between a host and a device
with computation on the device; 4) optimization of the
block-level network allocation, and reduction of inter-block
connections based on provided topology and heuristics; 5)
extending to a double-precision floating-point format; 6)
verification of system results with devices other than
GTX260, enabling multi-GPU functionality; 7) extending
the range of biological features (e.g., synaptic plasticity,
long-term potentiation and depression, and STDP); 8)
applying the system in robotics; 9) reducing effects of shared
memory limitations and branch divergence; and 10)
synchronizing every simulation step with the device clock,
and implementing a real-time system.

VI. REFERENCES

[1] R. Brette, et al., "Simulation of networks of spiking neurons: A review
of tools and strategies," Journal of Computational Neurscience, vol.
23, no. 3, pp. 349-398, 2007.

[2] R. Stewart and W. Bair, "Spiking neural network simulation:
numerical integration with the Parker-Sochacki method," Journal of
Computational Neuroscience, vol. 27, no. 1, pp. 115-33, Aug. 2009.

[3] G. E. Parker and J. S. Sochacki, "Implementing the Picard iteration,"
Neural, Parallel Sci. Comput., vol. 4, pp. 97--112, 1996.

[4] E. M. Izhikevich, "Simple model of spiking neurons," Neural
Networks, IEEE Transactions on, vol. 14, pp. 1569--1572, 2003.

[5] J. M. Nageswaran, N. Dutt, Y. Wang, and T. Delbrueck, "Computing
spike-based convolutions on GPUs," in Intl. Symposium on Circuits
And Systems, 2009, pp. 1917-1920.

[6] J. Nageswaran, N. Dutt, J. Krichmar, A. Nicolau, and A. Veidenbaum,
"A configurable simulation environment for the efficient simulation of
large-scale spiking neural networks on graphics processors," Neural
Networks, Jul. 2009.

[7] A. K. Fidjeland, E. B. Roesch, M. P. Shanahan, and W. Luk, "NeMo:
A Platform for Neural Modelling of Spiking Neurons Using GPUs,"
Application-Specific Systems, Architectures and Processors, IEEE
International Conference on, vol. 0, pp. 137-144, 2009.

[8] J.-P. Tiesel and A. S. Maida, "Using parallel GPU architecture for
simulation of planar I/F networks," in , 2009, pp. 754--759.

[9] E. Picard, Traite D'Analyse. Gauthier-Villars, 1922-1928, vol. 3.
[10] E. A. Coddington and M. Levinson, Theory of Ordinary Differential

Equations. New York: McGraw-Hill, 1955.
[11] A. Hodgkin and A. Huxley, "A quantitative description of membrane

current and its application to conduction and excitation in nerve.," The
Journal of physiology, vol. 117, pp. 500--544, Aug. 1952.

[12] L. Lapicque, "Recherches quantitatives sur l'excitation electrique des
nerfs traitee comme une polarisation," J Physiol Pathol Gen, no. 9, pp.
620-635, 1907.

[13] E. M. Izhikevich and G. M. Edelman, "Large-scale model of
mammalian thalamocortical systems," Proceedings of the National
Academy of Sciences, vol. 105, pp. 3593-3598, 2008.

[14] N. Bell and M. Garland. (2008) Efficient Sparse Matrix-Vector
Multiplication on CUDA. [Accessed online 04/30/2010].
http://mgarland.org

[15] N. Satish, M. Harris, and M. Garland, "Designing efficient sorting
algorithms for manycore GPUs," in , 2009, pp. 1--10.

[16] (2010, Apr.) CUDA Data Parallel Primitives Library. [Accessed online
04/30/2010]. http://code.google.com/p/cudpp/

[17] (2008) NVIDIA CUDA Programming Guide 2.3. [Accessed online
04/30/2010]. http://developer.nvidia.com

[18] (2009, Jul.) NVIDIA CUDA C Programming Best Practices Guide.
[Accessed online 04/30/2010]. http://developer.nvidia.com

2150

