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Abstract— Metaheuristics are used for solving optimization
problems since they are able to compute near optimal solutions
in reasonable times. However, solving large instances it may
pose a challenge even for these techniques. For this reason,
metaheuristics parallelization is an interesting alternative in
order to decrease the execution time and to provide a dif-
ferent search pattern. In the last years, GPUs have evolved
at a breathtaking pace. Originally, they were specific-purpose
devices, but in a few years they became general-purpose shared
memory multiprocessors. Nowadays, these devices are a pow-
erful low cost platform for implementing parallel algorithms.
In this paper, we present a preliminary version of PUGACE,
a cellular Evolutionary Algorithm framework implemented on
GPU. PUGACE was designed with the goal of providing a tool
for easily developing this kind of algorithms. The experimental
results when solving the Quadratic Assignment Problem are
presented to show the potential of the proposed framework.

I. INTRODUCTION

Exact algorithms can be useless for solving large di-
mension optimization problems in reasonable times due to
their high computational complexity. In this context, when
the use of exact algorithms is impractical, metaheuristic
techniques have emerged as flexible and robust methods for
solving optimization problems. Metaheuristic methods do not
guarantee to obtain an optimal solution, but they find near
optimal solutions efficiently. Evolutionary Algorithms (EAs)
is a metaheuristic technique that has become popular in the
last twenty years.

Although metaheuristics are efficient techniques, when
applied to solve large problem instances they can lead to
a significant increase in the execution time. For this reason,
metaheuristics parallelization is an interesting alternative in
order to decrease the execution time, using the increasing
possibilities offered by modern hardware architectures. Par-
allel metaheuristics can also benefit from using a different
search pattern, even improving over traditional sequential
methods. Cellular Evolutionary Algorithms (cEAs) are a
class of inherently parallel evolutionary algorithms in which
the population is structured in neighborhoods and individuals
can only interact with their neighbors.

In recent years, Graphics Processing Units (GPUs) have
been progressively and rapidly advancing from specialized
fixed-function graphics to highly programmable and parallel
computing devices. With the introduction of the Compute
Unified Device Architecture (CUDA), GPUs are no longer
exclusively programmed using graphical APIs. Now, GPUs
are exposed to the programmer as a set of general-purpose
shared-memory Single Instruction Multiple Data multi-core
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processors. The number of threads that can be executed in
parallel on such devices is currently in the order of hundreds
and it is expected to multiply soon.

This paper presents a preliminary version of PUGACE, a
Cellular Evolutionary Algorithm framework implemented on
a GPU.

The paper is organized as follow. The next section gives
a background on graphics hardware. Section III briefly
describes EAs and cEAs, and it reviews the related work
about evolutionary techniques on GPU. Then, the proposed
framework is commented in section IV. Section V presents
the experimental analysis, reporting the quality and the
performance results for a test problem. The paper ends with
the conclusions of the research and suggestions for future
work in Section VI.

II. GPUS

In the last years, there was an uprise of hardware ac-
celerators like graphics processors. This growth has been
mainly based on two key issues: the GPUs architecture
is intrinsically parallel, in contrast to CPUs serial based
architecture; and game industry has forced to increase the
graphic processors capabilities to make faster and more
realistic games.

Old graphics cards used to have a fixed graphics pipeline,
that is to say the operations and the order in which they are
applied over data were preconfigured. In the last ten years,
GPUs have impressively changed. The major key changes
are commented next.

Concerning to the programming capabilities, at first GPU
only provided their own transformations and lighting op-
erations (vertex shaders) to be performed on vertices, and
their own pixel shaders to determine the final pixels color.
Whereas now, GPUs have many multiprocessors that can be
programmed for general purpose computing.

With respect to accuracy, GPUs originally worked with 8-
bits numbers and then switched to the 16-bits floating point
format. Subsequently, they supported the single precision
floating point system (32 bits); and currently GPUs fully
support the standard IEEE double precision arithmetic (64
bits).

Regarding the GPUs programming tools, the shaders orig-
inally had to be written in assembly language. With the
constant rising of functionality provided by GPUs, different
higher level programming languages were developed, such as
High-Level Shading Language (HLSL) and nVidia’s Cg [1].
Another alternative was to directly use computer graphics
tools, such as OpenGL [2] or DirectX [3]. Later, other high
level languages emerged based in turning GPUs into a stream
processor, such as Brook [4], Sh [5], PyGPU [6], Accelerator
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languages [7], CTM and ATI Stream Technology [8]. Finally,
CUDA [9] and OpenCL [10] were developed.

Compute Unified Device Architecture (CUDA) is the
API from nVidia for exposing the processing features of
the G80 GPU. CUDA is a C language API that provides
services ranging from common GPU operations in the CUDA
library to traditional C memory management semantics in
the CUDA runtime and device driver layers. Additionally,
nVidia provides a specialized C compiler to build programs
developed for the GPU.

As it was mentioned before, current GPUs can be consid-
ered as shared memory multi-core processors. The processing
is based on hundreds of threads that are grouped into blocks.
Memory hierarchy is an important attribute of modern GPUs.
Nowadays, GPUs have four levels of memory: registers,
shared block memory, local memory and global memory.
Registers are the fastest memory on the multiprocessor and
are only accessible by each thread. Shared memory is almost
as fast as registers and could be accessed by any thread of
the block. The local and the global memories are the slowest
memories on the multiprocessor (they are more than 100
times slower than the shared memory), and while the local
memory is only accessible to each thread, the global memory
is accessible to all the threads on the GPU.

Information about general-purpose computation on GPUs
can be found in Owens et al. [11]. The continuous develop-
ment of the area can be followed on the GPGPU organization
website [12].

III. CELLULAR EVOLUTIONARY ALGORITHMS

This section presents a description of EAs and cEAs.
After that, it summarizes the related previous work on the
implementation of evolutionary techniques on GPUs.

A. Evolutionary Algorithms

Evolutionary algorithms are stochastic search methods
inspired by the natural process of evolution of species. EAs
iteratively evolve a population of individuals representing
candidate solutions of the optimization problem. The evo-
lution process is guided by a survival of the fittest applied
to the candidate solutions and it involves the probabilistic
application of operators to find better solutions.

The initial population is randomly generated. Each it-
eration is divided in four stages. In the first stage, every
individual in the population is associated with a fitness
value that measures the quality of the candidate solution.
Afterward, the solutions are selected from the population
based on their fitness value, usually giving higher priority to
higher quality solutions. In the third stage, new solutions are
constructed applying evolutionary operators to the selected
solutions. Typically, the evolutionary operators used are the
crossover (recombination of parts of two individuals) and the
mutation (random changes in a single individual). Finally, in
the fourth stage, the new population is created, by replacing
the worse adapted individuals with solutions generated in the
iteration.

B. Cellular Evolutionary Algorithms

There are different proposals to structure the EA popu-
lation. Single population or panmixia works with a single
population in which there are no group structures and there-
fore any individual could be mated for reproduction with
anyone of the population. On the other hand, in the island
model or distributed EAs, the population is split in several
subpopulations called islands. Each subpopulation works
independently and some solutions are exchanged among
them with a given frequency.

Another alternative is known as cEAs [13]. cEAs work
with a single population structured in many small over-
lapped neighborhoods. Each individual is placed in a cell
on a toroidal n-dimensional grid. Each individual belongs
to several neighborhoods, but it has its own neighborhood
for reproduction. A given individual can only be mated for
reproduction with individuals of its neighborhood. The effect
of finding high-quality solutions gradually spreads to other
neighborhoods along the grid using a diffusion model as
a consequence of the neighborhoods overlapping. Figure 1
presents an example of a cEA population on a 2D grid.

Fig. 1. cEA population on a 2D grid.

C. Related work: evolutionary computation on GPUs

This subsection reviews some of the preceding effort in the
design of parallel implementations of EAs on GPUs. This is
a relatively new approach and there are few studies regarding
the issue. So, the survey covers not only the works that have
proposed parallel EA in GPU, but also other evolutionary
computation (EC) techniques. In recent times, several authors
have presented different interesting contributions about EC
on GPUs; most of the work in this area can be found at the
GPGPGPU website [14].

One of the pioneering works in this area is the proposal of
Wong et al. [15], where the authors studied an Evolutionary
Programming (EP) algorithm for solving five simple test
functions. In their proposal, denominated Fast Evolutionary
Programming (FEP), the selection process takes place in the
CPU while the fitness function evaluation and the mutation
are performed in the GPU, following a master-slave parallel
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model. The authors noticed that the population should be
stored in the device memory to obtain high performance
values due to the low ratio in the data transfer between
CPU and the device memory. For this reason, FEP uses
textures to store the population and one additional texture
to store the fitness values of all the population individuals.
The experimental evaluation was performed on a Pentium IV
at 2.4 GHz and a GeForce 6800 Ultra card, comparing the
parallel FEP and a sequential implementation. The results
showed that speedup values ranged between 0.62× and
5.02× were obtained depending on the population size and
the problem complexity. Later [16], the authors proposed a
Parallel Hybrid Genetic Algorithm (HGA) on GPU, where
the whole evolutionary process is executed on the GPU while
the generation of random numbers runs on the CPU. HGA
is a Genetic Algorithm that incorporates a Cauchy mutation
operator. The authors compared their proposal against a
full CPU implementation and the FEP method on an AMD
Athlon 64 3000 with 1 GB of memory RAM and a GeForce
6800 Ultra graphics card with 256 MB. The results showed
that HGA reaches speedup values between 1.14× and 4.24×
when considering population sizes between 400 and 6400
individuals. Finally, in a later work [17] they extended the
experimental evaluation considering more difficult instances,
reaching speedup values of 5.50×.

Harding and Banzhaf [18] implemented a Genetic Pro-
gramming (GP) algorithm for evolving computer programs
represented as tree structures following a master-slave model
on GPU. In their proposal, the GPU is only used to evalu-
ate the fitness function. Several problems were considered
involving different types of fitness functions such as floating
point, boolean expressions and a real world test. The purpose
of the conducted tests was to compare the time required for
evaluating a tree with a given size for a fixed number of
fitness cases in the CPU and in the GPU. The experimental
platform was an Intel Centrino T2400 and an nVidia GeForce
7300 GO graphic card. The results showed significant reduc-
tions on the time required for evaluating the fitness function
on the GPU, with speedup values in the order of tens for real
world tests, in the order of hundreds for boolean expressions
and in the order of thousands for floating point type when
compared against the sequential algorithm implemented in a
CPU. Following a similar idea, the authors [19] studied a GP
variant to generate shader programs to obtain image filters for
noise reduction, but the work focuses on the specific details
for solving the problem.

Also following a master-slave model, Maitre et al. [20]
extended EASE (a metalanguage to implement EAs) to
automatically exploit the GPU capabilities. The proposal was
validated by solving two cases: the Weierstrass-Mandelbrot
problem and a real world chemistry problem of structure
determination. The experimental evaluation was aimed at
studying the scalability of the proposal, considering only
the execution time corresponding to the fitness function
evaluation. The execution platform was a standard 3.6 GHz
PC. Two different graphic cards were considered in the exper-

iments, an nVidia 8800 GTX and an nVidia GTX 260. In the
Weierstrass-Mandelbrot problem, when using a population
of 4096 individuals the speedup of evaluation stage reached
values of 33× and 100× on the 8800 GTX and on the GTX
260, respectively. In the real world chemistry problem, when
considering a population size of 20, 000 individuals and using
an initial codification, the fitness function evaluation stage
took 23 s. in the CPU implementation and 80 s. in the GPU
implementation. However, the authors were able to reduce
the execution time to 7.66 s. for the CPU implementation
and 0.33 s. for the GTX 260 implementation by changing
the data structures used.

The first work on implementing a cellular EAs using
GPUs was made by Yu et al. [21]. The authors studied
the Colville minimization problem, placing the individuals
in a toroidal 2D grid and using the classical Von Neumann
neighborhood structure with five cells. The individuals were
represented using a set of texture maps in two dimensions.
Each chromosome was divided into several segments, which
were assigned to different textures in the same position.
Each segment contained four genes packed into each pixel
as RGBA color space. An additional texture was used to
store the fitness value of each individual. The experiments
performed on a computer AMD Athlon2500 and an nVidia
GeForce 6800 GT card showed speedup values of up to 20×
for populations of 5122 individuals.

In a similar line of work, Li et al. [22] proposed a cEA
completely implemented on GPU for solving the Schwefel,
Shaffer and Camel functions. The execution platform was
a PC with a Pentium IV 2.66 GHz with 256 MB of RAM
memory and an nVidia GeForce 6800 card. This proposal
obtained speedup values ranged between 1.4× and 5.4× for
a population of sizes between 200 and 800, speedup values
of 9.6× to 16.9× for populations with 3, 200 individuals
and speedup values ranged between 21× and 73× for a
population with 10, 000 individuals.

The proposal by Li et al. [23] follows a different line
within the fine-grained parallelism on GPU. The authors
studied an immune strategy algorithm applied to GA for
solving the Travelling Salesman Problem. The execution
platform was an AMD 3000 + with a 9600 GT card, and the
speedup values obtained ranged between 2.42× and 11.5×.

The island model is the parallelization strategy more lately
implemented on GPU. Tsutsui and Fujimoto [24] presented
a parallel island model implementation of a GA for solving
the Quadratic Assignment Problem. The execution platform
was a computer with an Intel i7 965 processor with an nVidia
GTX 285 card. The authors obtained speedup values between
3× and 12× when using population of sizes between 3, 840
and 19, 200 for solving instances with up to 40 locations.

Another proposal of a parallel island model was made
by Lewis et al. [25], who studied the technique known
as genetic cyclic programming. In this work, the authors
studied a full GPU implementation, an hybrid GPU-CPU
implementation and an hybrid GPU-CPU implementation
with two CPUs and two GPUs. The reported results are really
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impressive, reaching speedup values in the order of hundreds.
The paper also presents an interesting discussion on how to
evaluate the performance when comparing GPU and CPU
implementations.

Finally, up to our knowledge, Wong [26] presented the
only proposal of Multiobjective Evolutionary Algorithms
(MOEAs) using GPUs. The author proposed an algorithm
inspired on the NSGA-II implemented with CUDA. Two
different strategies to implement the non-dominance check-
ing in GPU were discussed. This is an important operation
in MOEAs, since it is used to quantify the quality of the
solutions. The experimental evaluation was performed in a
computer with an Intel Pentium Dual E2220 processor with
2GB RAM and a GeForce 9600 GT graphics card with 512
MB of RAM. The author reported values of speedup between
5.65× and 10.75× when using population sizes between
4, 096 and 16, 384 for solving the standard multiobjective
test problems ZDT and DTLZ.

The survey of related works allows to conclude that all
standard parallelization strategies of EA have already been
implemented on GPU, including the master-slave model
([15], [16], [17], [18], [20]), the cellular model ([21], [22],
[23]) and the island model ([24], [25]). The EC technique
that has been more used in parallel implementations on GPU
is EP. So far there is only one work that was proposed to
develop a generic framework or an automatic code generator
([20]) to simplify the implementation of EAs in GPUs.

The reviewed articles show that EA implementations on
GPUs systematically obtained high speedup values, thereby
drastically reducing the execution time. In particular, cEA
implementations obtained speedup values up to 11.5× ([23]),
20× ([21]) and 73× ([22]), respectively, making attractive
the study of this model. On the other hand, there have not
been proposals of generic framework for EAs implemented
on GPUs and therefore our proposal is a novel approach.

IV. PUGACE

PUGACE is a generic framework for implementing cEAs
to solve optimization problems on GPUs. The generic ap-
proach is in line with MALLBA (a library of skeletons
for sequential and parallel optimization algorithms) [27]
and JCell (a cellular genetic algorithms framework) [13].
PUGACE is implemented in C, and uses CUDA (version
2.1) to manage the GPU.

PUGACE supports working with different problem encod-
ing, selection policies, crossover and mutation operators, as
well as setting different parameters such as population size,
number of generations, mutation and crossover probability.
The framework includes the implementation of several evo-
lutionary operators, and it can be extended to incorporate
additional operators. PUGACE also supports using a local
search mechanism to improve the solutions.

The main features of the proposed framework are pre-
sented in the following subsections.

A. PUGACE architecture

The design of PUGACE focuses on implementing an
extensible and easy to use framework. To achieve the first ob-
jective, new evolutionary operators and neighborhood struc-
tures can be incorporated to the framework in an easy way. To
achieve the second objective, the framework implementation
is separated into several modules that encapsulate different
functionalities. However, the complete separation was not
entirely possible due to some CUDA (version 2.1) limita-
tions, such as the absence of dynamic memory allocation on
GPU and the impossibility of defining a device function in
a different module than the one that invokes it.

Figure 2 presents a diagram of the PUGACE modules.

Fig. 2. Diagram of the PUGACE modules.

The main program is main.cu, that reads the configuration
file, calls the user-defined functions, creates the data struc-
tures for the population and the fitness values in the device
memory, and calls the GPU procedures. Both the cEA and
framework parameters are set in the file config.txt.

All the functions and procedures that execute on the
GPU are implemented on kernels.cu. The methods that are
problem-dependant, such as the fitness function and the local
search procedure, as well as the methods that are problem-
independent, such as new evolutionary operators incorporated
to the framework, are implemented in this file. Ideally,
these functions and procedures should be implemented in a
separate file, but that is not possible due to CUDA limitation
already mentioned.

Some additional features, like a procedure for specifically
generate the initial population, could be implemented in the
file user functions.cu.

Some required parameters of the framework are set in
the file params.h, due to the CUDA limitations already
commented. The procedures that generate the sequence of
random numbers are implemented in the file rannum.cu.
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To instantiate a new problem, at least a fitness function
must be implemented in kernels.cu and both the cEA and
the framework parameters must be configured in config.txt.

The PUGACE design follows the next guidelines:
• The population of chromosomes always resides in the

device memory, and it is transferred from the CPU to the
GPU at the beginning of the algorithm, and viceversa
at the end of the algorithm.

• Each individual uses a different execution thread, and
threads are organized in blocks of varying size.

• To improve the algorithmic performance, the framework
exploits the different GPU memory levels. In particular,
the information of the problem is preloaded on constant
memory.

• The crossover and mutation operators are applied proba-
bilistically. So, some threads may apply them and others
do not, or crossover may occur at different points, which
can cause divergent threads within a block. To avoid
the thread divergence, the application of crossover and
mutation operators is decided at the block level; only
one decision per operator is made for each block. The
crossover points are also selected at block level, this is
to say that the same crossover points are used within a
block. On the other hand, the mutation points and the
new mutation values are selected independently for each
thread.

Designing a highly flexible and general framework usually
is in conflict with obtaining implementations that are as
efficient as possible. Since this is a first approach to develop
the PUGACE framework, the generality of the design is fa-
vored over the efficiency. For this reason, some GPUs aspects
were not taken into account when designing PUGACE, such
as maximizing the utilization of shared block memory and
coalescing the access to global memory. Incorporating such
aspects in the PUGACE design will imply an improvement
in the efficiency of the implementation, so it is planned to
study how to take into account this aspects in a future version
of the framework.

B. Population and neighborhood structure

The population is arranged in a circular 1-dimensional
structure, according to ideas proposed by Baluja [28]. The
individuals from both ends of the population are copied to the
opposite end to simplify the application of the operators. The
number of copied individuals at each end varies depending on
the length of the neighborhood structure used. Figure 3 shows
an example of a population with four copied individuals
(chromosomes 1, 2, N-1, and N). Copying individuals helps
avoiding the thread divergence, since all neighbors are close.
However, it requires an additional step in each generation in
which the copies acquire the values associated to the original
individuals.

The population can be randomly initialized or specifically
generated. This second option is useful to incorporate a
particular heuristic algorithm for the optimization problem.
After the population is initialized, the individuals are copied

Fig. 3. Circular 1-dimensional population structure.

into the device global memory where they reside until the
evolutionary process end.

Neighborhood structure consists of a configurable num-
ber of individuals to the left and right. The neighborhood
structure length is a parameter of the framework that also
determines the number of individuals that must be copied on
both ends.

C. Fitness function

The values of fitness function are stored in an auxiliary
vector in the same order as the chromosome population. Like
the population, the fitness values vector is stored in the device
memory.

The fitness function evaluation uses an independent thread
for each chromosome of the population, except for copies.
Each thread computes the fitness function and stores the
value at the corresponding chromosome position of the
fitness vector. The fitness function is problem-dependent and
must be implemented for each problem.

D. Evolutionary operators

Different alternatives for selection, crossover and mutation
operators were included. PUGACE implements a minimal
number of different operators; but the framework can be
easily extended with new implementations of the operators.

The selection operator is applied for each of the population
positions for choosing two individuals for reproduction.
Three selection operators are provided by PUGACE. All of
them choose the individual at the considered position as
one of the mating individuals. According to the operator
employed, the other individual could be choose randomly,
fitness proportionally, or the best one from the neighborhood.

The crossover operator is applied to recombine the individ-
uals selected for reproduction, obtaining two new solutions.
PUGACE provides implementations of the classic one point
and two point crossovers, as well as Partially Matched
Crossover (PMX) [29] crossover for permutations encoding.

The mutation operator is applied after the reproduction
to both offspring. PUGACE provides two different mutation
operators. The first one modifies one of the chromosome
values with a random value. The second one exchanges two
randomly selected values of the chromosome.

PUGACE uses a generational replacement strategy. Each
parent is replaced by the best one of its children. The
replacement is synchronous, this is to say that all children
replace its parents at the same time.

The framework allows incorporating a local search opera-
tor to improve the solutions during the evaluation. Obviously,
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as such operators are problem-dependent, they have to be
implemented for each problem.

E. Random number generation

As the GPU does not provide a pseudo-random numbers
generator, two different alternatives are implemented in PU-
GACE to tackle this problem.

The first alternative is that pseudo-random numbers are
generated in the CPU, and they are transferred to the GPU
in each generation, taking benefit of the CPU idle times.

The second option is to directly generate pseudo-random
numbers in the GPU with a specific algorithm based on a
linear congruential method.

V. EXPERIMENTAL RESULTS

This section presents experimental results. It introduces
the optimization problem chosen to evaluate the proposed
framework, the classical Quadratic Assignment Problem. It
also presents details on the cEA parametrization for solving
this problem. Finally, the quality and performance results are
commented.

A. Quadratic Assignment Problem

Quadratic Assignment Problem (QAP) [30] model many
applications in diverse areas such as operations research,
parallel and distributed computing, and combinatorial data
analysis. QAP is a NP-hard problem.

The problem is to assign N facilities to N locations with
costs proportional to the flow between facilities multiplied
by the distances between locations. The goal is to assign
each facility to a different location such that the total cost is
minimized.

This assignment problem can be modeled by two N ×N
matrices:

• A = (aik), where aik is the flow from facility i to
facility k;

• B = (bjl), where bjl is the distance from location j to
location l;

The objective function is defined by Equation 1, where Sn

is the set of all permutations of the integers 1, 2, ..., n. Each
product aikbφ(i)φ(k) is the transportation cost associated to
place the facility i on the location φ(i) and the facility k on
the location φ(k). Each term

∑
k=1..n aikbφ(i)φ(k) is the

total cost for installing i.

minφ∈Sn

(
n∑

i=1

n∑
k=1

aikbφ(i)φ(k)

)
(1)

Instances of the QAP with input matrices A and B are
generally denoted by QAP (A, B). The QAPLIB [31] library
contains several test sets with instances generated with
different criteria: symmetric matrices, asymmetric matrices,
randomly generated, rectangular distances, real world data,
etc. In the PUGACE evaluation we selected several instances
with up to 50 facilities and locations from five different test
sets.

B. Problem encoding

A permutation representation for encoding QAP solutions
was used. A feasible solution is represented as an integer
array; each integer value indicates the location where the
facility given by index array position is placed.

The population was initialized by generating random fea-
sible permutations. The evolutionary operators used were
proportional selection to the fitness of the neighbors, the
PMX crossover operator and the mutation operator that
exchanges two randomly selected values.

A local search method was implemented to improve so-
lutions. The local search randomly selects a chromosome
position and evaluates all possible exchanges between the
selected position and the rest. The exchange that produces
the largest increase in the fitness solution is applied. The
chosen position is the same for the whole population, but it
varies during the generations. For efficiency reason, the local
search method is applied every ten generations.

C. Parameters settings

A configuration analysis was carried out to determine the
best parameter values for solving the QAP. The parameters
considered in the analysis were: population size (512, 1024
and 2048), crossover probability (0.7, 0.8 and 0.9), mutation
probability (0.05, 0.1, 0.2) and neighborhood length (2 and
4).

The configuration analysis considered two instances from
two different test sets of QAPLIB, Chr25a and Kra30. The
parameter values were combined following the orthogonality
principle. Ten independent executions were run for each
different configuration using a stop criterion of reaching 500
generations. From the comparison of the best solution found
and the average solution cost for each configuration, it was
determined that the best parameter values were: population
size = 2048, crossover probability = 0.9, mutation probability
= 0.1 and neighborhood length = 4. No specific experiments
were conducted to determine the optimum values for the
number of threads per block and the number of thread blocks.

The results also showed that there is a direct relationship
between the crossover probability value and the runtime of
the algorithm. When the mutation probability used is 0.1, the
execution time is 5% larger than when using a probability
of 0.05, while when using a probability of 0.2 the execution
time is 10% larger than when using a mutation probability
of 0.1.

The stopping criterion adopted was to reach a specified
number of generations. A high limit value for the number
of generations was used (5000) trying to reach high quality
solutions.

Table I summarizes the parameter values used in this work.

D. Execution platform

The execution platform used was a Pentium dual-core at
2.5 GHz with a 2 GB RAM and an nVidia GeForce 9800
GTX+ graphic card.
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TABLE I
CEA PARAMETERS USED FOR SOLVING THE QAP.

population size 2048

generations 5000

thread blocks 32

threads per block 64

crossover probability 0.9

mutation probability 0.1

neighborhood length 4

E. Solutions quality

This subsection presents and discusses results obtained by
the cEA implemented on PUGACE for solving fourteen QAP
instances.

Table II presents the results obtained by the cEA on ten
independent runs for each QAP instance studied. The table
includes the number of facilities and locations of the instance,
the best known solution, the number of executions that the
best know solution was found (# Hits) and the gap respect
to the best known solution, defined by Equation 2.

Gap =
(Solution−Best Known Solution)

(Best Known Solution)
(2)

TABLE II
RESULTS OF CEA FOR SOLVING QAP.

Instance N
Best known

# Hits Gap (%)solution
Bur26a 26 5426670 7 0.00
Chr12a 12 9552 8 0.00
Chr15a 15 9896 7 0.00
Chr18a 18 11098 10 0.00
Chr20a 20 2192 8 0.00
Esc16f 16 0 6 0.00
Esc32a 32 130 4 0.00
Had12 12 1652 8 0.00
Had14 14 2724 4 0.00
Had16 16 3720 6 0.00

Lipa30a 30 13178 2 0.00
Lipa30b 30 151426 1 0.00
Lipa40a 40 31538 0 1.05
Lipa50b 50 1210244 1 0.00

The implemented algorithm reached the best known so-
lution in 13 out of 14 of the problem instances considered.
Only in one instance the best known solution was not found,
but the gap was small (1.05%). The results are acceptable,
but they start to degrade when considering larger instances,
possibly because the followed approach for solving the QAP
was too simple. On the other hand, the population size
is relatively smaller than the used by other authors for
GPU implementation of EAs. Increasing the population size
could contribute to improve the quality of the solutions by
increasing the diversity of the population.

The proposed framework showed its potential to easily
implement a cEA that obtained good quality solutions for a
classical combinatorial optimization problem.

F. Performance results

This subsection presents and compares the computational
performance of the cEA implemented on GPU and a sequen-
tial cEA implemented on CPU. The tests were conducted
in order to evaluate the reductions in runtime that can be
obtained by implementing a cEA on PUGACE rather than
on a CPU.

Table III presents the execution time of the cEA imple-
mented on GPU, the execution time of the sequential cEA
implemented on CPU and the algorithm speedup (sequential
execution time / parallel execution time) evaluated in ten
independent runs for the QAP instances studied. The speedup
values reported consider the total runtime of the algorithm,
including the transfer time.

TABLE III
PERFORMANCE RESULTS OF CEA IMPLEMENTED ON GPU AND ON CPU.

Case
GPU implementation CPU implementation Algorithm

time (s) time (s) speedup
Bur26a 16.961 270.22 15.93
Chr12a 2.559 45.943 17.95
Chr15b 4.802 74.152 15.44
Chr18a 6.092 112.142 18.41
Chr20a 7.853 143.285 18.25
Esc16f 5.905 88.983 15.07
Esc32a 28.06 455.564 16.24
Had12 2.532 46.081 18.20
Had14 3.444 63.82 18.53
Had20 7.963 143.281 17.99

Lipa30a 21.599 385.926 17.87
Lipa30b 21.044 386.632 18.37
Lipa40a 46.852 808.803 17.26
Lipa50b 91.429 1460.298 15.97

The speedup values obtained for the different QAP in-
stances ranged between 15 and 19, showing the potential of
the proposed framework for using GPU devices to signif-
icantly reduce the runtimes of cEA. Although the speedup
values are high, there are several areas for improvement such
as maximizing the utilization of shared block memory and
the coalescence of the access to the global memory.

Another important result concerning the PUGACE per-
formance was found on the calibration stage. In the GPU
implementation, the increase in the population size impacts
in a sublinear increase in the execution time. For example,
doubling the number of individuals in the population (from
512 to 1024 and from 1024 to 2048) implies runtime incre-
ments of less than 10%. Therefore, the effect of increasing
the population size in the solutions quality and the algorithm
performance should be studied thoroughly.

VI. CONCLUSION AND FUTURE WORK

This work presented PUGACE, a general framework of
cEAs implemented on GPU. The aim of our proposal is
to significantly reduce the cEAs runtime through exploiting
the potential of current multi-core GPUs. This work also
includes a study of algorithmic behavior and performance
when implementing a cEA for solving the QAP on PUGACE,
to show the potential of the proposed framework.
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Analyzing the quality and performance results obtained for
the QAP, some conclusions can be drawn on the applicability
of the proposed framework. It can be noted that PUGACE is
a useful tool for implementing cEA for solving optimization
problems, and a viable option to easily exploit GPUs. In
addition, high values of speedup were obtained, showing
that cEA is highly suitable for the implementation on GPUs,
obtaining high reductions in the execution time.

Three main areas that deserve further work are the eval-
uation of the applicability of PUGACE, the extension of
the proposed framework, and the experimentation with other
hardware configurations.

In the first place, in order to evaluate the applicability
and to validate the generality of PUGACE, the framework
must be applied to solve other optimization problems. The
problems should be carefully chosen assuring that the fitness
functions are complex enough to exploit the GPUs potential.

A second issue that deserves further work is the extension
of the proposed framework. Currently, the framework only
supports linear neighborhood structures. New neighborhoods
structures should be implemented, as well as new evolution-
ary operators should be incorporated to the framework to
make PUGACE a more powerful tool. Also, some aspects
of the CUDA behavior that were not considered in this
work should be taken into account, such as maximizing the
utilization of shared block memory and coalescing the access
to the global memory.

Finally, further work has to be done to extend the exper-
iment with other hardware configurations. The framework
was designed to encapsulate the GPU particularities, but the
experiments performed in this work used only one GPU
model. New experiments should be made on different devices
with diverse features to validate the implementation of the
framework. Complementarily, it is planned to investigate on
how to extend PUGACE to support different platforms that
involve GPU usage, such as one CPU with multiple graphic
cards (i.e. Tesla) and a cluster of PCs with graphic cards.
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