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Introduction
� Self Organizing maps(SOM) – competitive 

unsupervised learning

� Kohonen’s algorithm and application to pattern 

classification

� Input vectors from  image and random 2-D 

quadratic weights

� Winner Takes All (WTA) strategy

� Parameters of the algorithm - alpha, 

neighborhood size and Mexican Hat function

� Applications of SOM - NP-Complete -

approximate



Introduction(contd.)
� Implementing SOM on sequential or pseudo-parallel 

machines for real life problems

� Comparison to a human brain

� Prominent role played by GPU and the analogy - size 
of the problem

� “Embarrassingly parallel”

� SPMD tasks and SOM – processing cost

� GPGPU libraries

� Automatic Parallelization – burden on compiler

� Other Neural Network and AI environments



Related Work
� Explicit location of winner - multi-pass method -

update of weights - OpenGL (PBuffer) - limitations

� Fundamental difference in the approaches

� Concurrent Self Organizing Maps – accuracy

� Use of Cluster Architecture – SDP

� Vectorisation, Partitioning of  parameter-less SOM

� Only for matrix multiplication operations – converting 
several inner product operations to a single matrix 
operation



Design of the problem
� Construct a vector representing the image – reduction 

and sampling 

� Length of the input vector and size of VRAM

� Method adopted:

� Binary matrix from image

� Bounding box algorithm

� Sampling with padding

� Same as  image convolution with filter of value 1 

� Implementation of sampling on GPU



Design(contd.)
Algorithm without GPU:

1. 2-D Weights are randomized and normalized

2. For each pattern in the set

1. The winner neuron is selected among others based on 

maximum activation

2. Neurons in the neighborhood of the winner neuron have 

their weights updated  

3. Neighborhood size and learning rate α are decreased 

accordingly

• Output of training phase is a set of weights which 
map 

the  input domain preserving topological ordering



Mapping to GPU
� Algorithm is by itself not data parallel - types

� Fragments which can be parallelized - spatial 

and temporal dependency

� Primitives do not permit index of array element to 

be extracted

� Role played by the winner neuron - To indicate 

the neurons whose weights need to be updated

� Obtain the position implicitly to update weights 

using a mask based approach



Mapping to GPU(contd.)

Revised algorithm

1. Vectors representing the image are obtained as 
before

2. Floating Point Array representation for array –
Disposable Arrays

3. Size of input matrix and weight matrix – patterns, 
input and output neurons

4. pacc - matrix product of input and weight matrix 

5. Maximum element is found for each row  into pmxval

6. Index of the winner neuron cannot be obtained –
coarse grained



Mapping to GPU(contd.)
� A new binary matrix to act as a mask 

Winner 

neuron



Binary matrix
1. pmxval, the column vector with maximum values is 

replicated along x-direction

2. New matrix, pwinner obtained by subtracting pmxval 
from pacc

3. pwinner is AND with matrices obtained by rotating 

pwinner in the range neisize to obtain pneighbor –
necessity

4. pmask is obtained by transforming pneighbor

5. Weight update equation is slightly modified 



Binary matrix(contd.)
� Matrices are sliced row-by-row and each slice is 

replicated vertically to make it conformable – Need 
for slicing 

� Operations implemented using GPU primitives –
slicing, rotating, subtracting, matrix multiplication, 

replication, inner product.

� Steps detailed above repeated till there is 

convergence or max iterations reached

� Performance degradation occurs if original algorithm 
implemented as it is - increased traffic – previous 

work



Environment
� Dual-Core AMD Turion with 512 MB RAM and 

GeForce 6150 Go GPU with 256 MB

� Accelerator – GPGPU library .NET 2.0 runtime with 

C# 2.0 as the language and DirectX 9.0c

� GPGPU libraries available with different level of 

abstractions – Cg,Sh,Brook,CUDA,CTM

fmaxval = PA.MaxVal(PA.InnerProduct(dinput,dweight),1);

fmaxval= PA.Replicate(fmaxval, numpat, no);

winnerMatrix = PA.Subtract(facc, fmaxval)



Implementation Considerations
� Limitations on the size of video memory and the 

operations which can be implemented

� Limitations on the shader length – unrolling the loop

� Only two dimensional arrays possible - higher 
dimensions from lower arrays

� Inevitable sequential looping – network iteration, 
successive slicing and replication, successive 

rotations

� Data parallel library – explicit partition of data –

synchronization primitives not needed

� Queuing of operations by GPU – Evaluate statement



Algorithmic Complexity
� Concentrate mainly on sequential areas in theta 

asymptotic analysis

� Two major areas - Building the update mask and 
updating the weights

� Over ‘n’ iterations, complexity in case of GPU

� In case of CPU – finding winner neuron and update

� Theoretical comparison between the two and 
assumptions



Results
� Comparing the time required by CPU and GPU while 

varying number of patterns, iterations and network 
size

� Counters used - QueryPerformanceCounter and 
DirectX timer and associated discrepancies –

necessary assumption

� Nature of results produced is identical in both cases, 

hence only running time is considered for evaluation

� Time taken by GPU - compilation, loading and 
execution



Result – I: Pattern
� Input layer = 1000 Output layer = 2000 alpha = 0.4



Result – II: Network Size
� Number of patterns = 20  alpha = 0.4

� Dip in the curve



Result – III: Iterations
� Iteration overhead



Result – IV: Modification
� Position of winner neuron is explicitly  obtained on 

CPU and result transferred to GPU – only matrix 
multiplication



Observations
� Arithmetic intensity and its effects

� Difference between 3rd and 1st,2nd - GPU curve

� Domination of CPU in earlier stages – overhead 

� Growth rate as problem size dominates

� Performance loss caused by interleaving CPU 

instructions as in Result - IV -- importance of the 
algorithm - previous work

� Compare theoretical bounds with results - number of 
sequential components - basic assumptions -

internal optimizations



Conclusion
Implications of designing an algorithm for a GPU and

using that algorithm in pattern classification has been

presented in this paper supported by the results of a

series of tests conducted.

Algorithm design for a GPU is still in its growing phase

GPU can complement a CPU, if not replace it for some

time to come.



Future Work
� Increasing the degree of parallelism  

� Enhancing the arithmetic intensity

� Transformation of existing iterative phases into 

GPGPU primitives

� Overcoming the restriction on the size of the images 

imposed by the video memory of GPU

� Achieving initialization, randomization on GPU itself 

i.e. efficient implementation of ‘scatter’ operation


