W. B. Langdon
Computer Science,
Essex University

w1angdon@cs.essex.ac.uk
http://www.cs.essex.ac.uk/staff/W.Langdon
10:00–11:00 Bill Langdon

- Tutorial based on *Foundations of Genetic Programming*

- Will assume familiarity with Chapter 2 “Fitness Landscapes”. Chapter 2 can be downloaded from http://www.cs.ucl.ac.uk/staff/W.Langdon/FOGP/intro_pic/landscape.html.

- 7. and 8. The genetic programming search space. Plus **new** material on rates of convergence and limits.

- 11. Bloat: as genetic programming convergence; evolution of tree shapes; theory leads to prediction size $< O(t)^2$. Experimental test.

- Conclusions

 WWW links and references.
Scaling of Program Fitness Spaces

- Genetic Programming stochastic search for programs
- What is known about the space of all programs
- Above threshold, proportion of functions of each type independent of length
- Experimental evidence, tree based GP
- Proof linear, e.g. machine code GP
- summary tree based GP (slide 30)

- So what?
Number of programs v. size, various problems

Number of atoms in visible universe $4 \times 10^{78} - 6 \times 10^{79}$.

W. B. Langdon
Distribution of Binary Trees by size and height
Distribution of Binary Trees by size and height

![Graph showing the distribution of binary trees by size and height. The graph has x-axis labeled 'Depth' ranging from 0 to 60 Minimal, y-axis labeled 'Log number' ranging from 0 to 16, and z-axis labeled 'Length' ranging from 0 to 16. The graph includes lines for 'Full', 'Peak', and 'Minimal'.]
Proportion of NAND trees:

2 input logic function

or_{201} = 4.73\% \quad \text{or}_{255} = 4.75\% \quad \quad \text{on}_{201} = 10.91\% \quad \text{on}_{255} = 10.92\%
Fitness Sextic Polynomial

(constants and input equally sampled)
Artificial Ant

Proportion

Fitness

Program Length

W. B. Langdon
• Input and output registers part of memory.
• Memory initialy zero (except input register).
• Linear GP program is a sequence of instructions.
• CPU fetches operands from memory.
• Performs operation.
• Writes answer into memory (overwriting previous contents).
• Programs stops after l instructions.
• Final answer in output register.
Why Interest in Random Programs?

- Consider all programs, of a chosen length.

- Create a large number of random programs, measure their properties

- We are *sampling* the search space of all possible programs

- Bigger sample \sim better estimate of actual

- We are interested in Markov processes because analysis (rather than experiment) can give provable general results a) in the limit and b) the rate at which practical systems approach this limit.
Why are Random Programs Markov?

- A Markov process only depends on current state
- When a program is check pointed, its state is saved
 It can be restarted, without ill effect, if its state (i.e. content of memory) is restored and it restarts from the same point.
 I.e. what happens later only depends on current memory
- At each time step t a Markov process is in a state, i
 Randomly chose another state j for the next time step, $t+1$.
 Process is Markov if probabilities associated with each transition do not change with time, only depend on current state.
 Matrix $M =$ probability of transition from state i to j.
 M does not change with time.
- Executing a random program is a Markov process, whose state is the contents of the computer’s memory.
Proof Linear: Model of Computer

- State of computer given by contents of memory

- All memory, registers but exclude PC

- N memory bits $\Rightarrow 2^N$ states

- Execution \equiv state \rightarrow next state

- In general state \neq next state but allow state $=\ next state$

- Computer designed so all states accessible

- Symmetric instruction set, state \leftrightarrow next state
Proof Linear: Execution of computer program

- state$_0$ given by inputs

- Program = sequence of instructions, change state

- program l states long

- terminates at state state$_{l-1}$

- program itself need not be linear
 branches, loops, function calls OK *provided* executes random instructions
Instructions as Transformation Matrices

- Probability vector: $|\text{probability vector}| = 2^n$
 - $v = \overbrace{0, 0, \ldots, 1, 0, \ldots, 0}^{2^n \text{ elements}}$

- At any time t in one state $i \Rightarrow v^t_i = 1$ and $v^t_j = 0$

- Each instruction $= 2^n \times 2^n$ matrix

- $v^{t+1} = v^t N$

- Every $N_{ij} = 0$ or 1, N is stochastic*$

*Row stochastic matrices have the property that each of their elements are not negative and the elements in each row add up to one. “Stochastic” does not mean they are random!
All Programs

• All possible programs of l

 average vector $u = \text{Mean of all } v$

 $u_{t+1} = u_t M$ where M is average instruction matrix

• u is Markov, M is stochastic

 At least one $M_{ii} \neq 0$

 period of state $i = 1$ i.e. it will be aperiodic [Feller, 1970]

 Greatest common divisor (g.c.d) of all states = 1

• All states can be reached $\Rightarrow M$ irreducible

• Irreducible ergodic Markov chain $\Rightarrow \lim_{t \to \infty} u_t = u^\infty$

 independent of the starting state (i.e. the program’s inputs)
An Illustrative Example

- Two Boolean registers R_0 and R_1
- Each initially loaded with an input
- Program’s answer is given by R_0
An Illustrative Example: Instruction Set

- There are $2^2 = 4$ states ($R_1R_0 = 00, 01, 10, 11$)

- There are eight instructions

Eight transformation (4×4) matrices

\[
\begin{array}{cccc}
R_0 \leftarrow \text{AND} & R_1 \leftarrow \text{AND} & R_0 \leftarrow \text{NAND} & R_1 \leftarrow \text{NAND} \\
1 0 0 0 & 1 0 0 0 & 0 1 0 0 & 0 0 1 0 \\
1 0 0 0 & 0 1 0 0 & 0 1 0 0 & 0 0 0 1 \\
0 0 1 0 & 1 0 0 0 & 0 0 0 1 & 0 0 1 0 \\
0 0 0 1 & 0 0 0 1 & 0 0 1 0 & 0 1 0 0 \\
\end{array}
\]

\[
\begin{array}{cccc}
R_0 \leftarrow \text{OR} & R_1 \leftarrow \text{OR} & R_0 \leftarrow \text{NOR} & R_1 \leftarrow \text{NOR} \\
1 0 0 0 & 1 0 0 0 & 0 1 0 0 & 0 0 1 0 \\
0 1 0 0 & 0 0 0 1 & 1 0 0 0 & 0 1 0 0 \\
0 0 0 1 & 0 0 1 0 & 0 0 1 0 & 1 0 0 0 \\
0 0 0 1 & 0 0 0 1 & 0 0 1 0 & 0 1 0 0 \\
\end{array}
\]

W. B. Langdon
• Example $R_0 \leftarrow \text{AND}$

$$R_1 = 1, R_0 = 0 \quad u = (0 \ 0 \ 1 \ 0)$$

$$v = uM = (0 \ 0 \ 1 \ 0) \times \begin{pmatrix}
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix} = (0 \ 0 \ 1 \ 0)$$

$$R_1 = 1, R_0 = 0$$

I.e. $\text{AND}(0,1) = 0$, so R_0 is set to 0 while R_1 is unchanged

• If we use each of the instructions with equal probability the Markov transition matrix is the average of all 8, i.e.

$$M = \frac{1}{8} \begin{pmatrix}
4 & 2 & 2 & 0 \\
2 & 4 & 0 & 2 \\
2 & 0 & 4 & 2 \\
0 & 2 & 2 & 4
\end{pmatrix}$$
An Illustrative Example: Limiting Probabilities

- The limiting distribution \(u_\infty = 1/4(1,1,1,1) \) is given by the eigenvector corresponding the largest eigenvalue (which always has the value 1).

The eigenvalues \(\lambda \) and corresponding eigenvectors \(E \) of \(M \) are

\[
\begin{align*}
\lambda_{00} &= 1/2 \begin{pmatrix} 0 & -1 & 1 & 0 \end{pmatrix} \\
\lambda_{01} &= 1/2 \begin{pmatrix} -1 & 0 & 0 & 1 \end{pmatrix} \\
\lambda_{10} &= 1 \begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix} \\
\lambda_{11} &= 0 \begin{pmatrix} 1 & -1 & -1 & 1 \end{pmatrix}
\end{align*}
\]

Note since \(M \) is symmetric the other eigenvalues are also real.
Rate of Convergence and the Threshold

- The Rate of convergence is dominated by the second largest (absolute magnitude) eigenvector of M, λ_2

- The smaller λ_2 is the faster the actual distribution of functions converges to the limiting distribution

- I.e. the smaller is the threshold

- Threshold size $\approx -1/\log|\lambda_2|$

Convergence rate depends crucially on type of computer and size of its memory [Langdon, 2002a].
Extend to Functions

We have proved distribution of outputs tends to limit.

Formally need to extend this to the distribution of functions.

There is a limiting distribution of program functionality.

Uniform distribution of outputs $\not\Rightarrow$ uniform distribution of functions.
Functions Example

One Boolean register. \((N = 1 \text{ so } 2^N 2^N = 4 \text{ possible functions})\).

Suppose our machine has 4 instructions: CLEAR, NOP, TOGGLE, SET.

Two outputs (0 and 1) both equally likely.

<table>
<thead>
<tr>
<th>CLEAR</th>
<th>NOP</th>
<th>TOGGLE</th>
<th>SET</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0 0 0</td>
<td>1 0 0 0</td>
<td>0 0 0 1</td>
<td>0 0 0 1</td>
</tr>
<tr>
<td>1 0 0 0</td>
<td>0 1 0 0</td>
<td>0 0 1 0</td>
<td>0 0 0 1</td>
</tr>
<tr>
<td>1 0 0 0</td>
<td>0 0 1 0</td>
<td>0 1 0 0</td>
<td>0 0 0 1</td>
</tr>
<tr>
<td>1 0 0 0</td>
<td>0 0 0 1</td>
<td>1 0 0 0</td>
<td>0 0 0 1</td>
</tr>
</tbody>
</table>

The limiting distribution (eigenvector with eigenvalue=1) of the functions is

\[\frac{1}{2} (1 0 0 1). \]

I.e. 50% CLEAR and 50% SET (not uniform).
What is the Limiting Distribution?

The limit depends upon the computer type. If we restrict ourselves, the eigenvalues and eigenvectors of the Markov matrices may already be known or maybe we can discover them.

2. Bit flip. Flip bit \(i \) and NOP. Reversible but not universal [Langdon, 2002a; Langdon, 2003a].

3. Any non reversible. [Langdon, 2002a; 2002b; 2003a].

4. Any reversible [Langdon, 2003b].

5. CCNOT (Toffoli gate). Reversible and universal [Langdon, 2003b].

6. The “average” computer [Langdon, 2002a; 2002b; 2003a].

7. AND, NAND, OR, NOR. Not reversible but universal [Langdon, 2002a; 2002b; 2003a].
Program Outputs Limiting Distribution

In general the distribution of outputs of any computer will converge to a limiting distribution but programs may need to be exponentially long.

The cyclic computer shows not only is the upper bound exponential but that it can be reasonably tight in that exponentially long programs can be required for the distribution to be close to the limit. $l > 0.8 \frac{3}{4\pi^2} 2^{2N}$

However bit flip, average and four Boolean computers show in some cases the output distribution of much smaller programs is close to the limit.

\[l \leq \frac{1}{4}(N + 1)(\log(m) + 4) \] bitflip
\[l \leq (15 + 2.3 \ m)/\log I \] average
\[l \leq \frac{1}{2}N(\log(m) + 4) \] four Boolean.
Non Reversible Programs –
Limiting Fitness Distribution is Zero

Linear systems, where the inputs are not write protected, on average loose information. This means in the limit the fraction of programs implementing interesting functions goes to zero.

I.e. almost all non reversible linear programs return one of 2^m constants.

In general programs need to be exponentially long for fitness distributions to converge. In cyclic computers the upper bound is tight but in some cases (e.g. AND NAND OR NOR) programs can be much smaller and still be close to the limiting distribution.
Reversible Program –

Limiting Fitness Distribution is Gaussian

In the limit of long programs, with large reversible computers both every output and every possible (i.e. reversible) function are equally likely.

With a Hamming distance fitness function, fitness follows a Normal (Gaussian) distribution. This means almost all programs have near average fitness.

And the fraction of solutions is exponentially small (but bigger than zero).

CCNOT gates show reversible programs need not be desperately big before the their fitnesses is Normally distributed [Langdon, 2003b].
Distribution of Reversible Program

Fraction

Fitness on 6 Multiplexor, 6 spare lines

Gaussian \(\sigma = 4 \)

100 CCNOT
Convergence of Effect of Mutation

In general the effect on the outputs of a single point mutation falls at least as quickly as \(l^{-1} \) but the bound on the convergence threshold length is exponential in the number of fitness tests [Langdon, 2003a].

However in two cases (cyclic and bit flip), if we consider changes in fitness, the impact of mutation on fitness is independent of program size. I.e. convergence is instantaneous rather than requiring exponentially long programs.

The fitness impact of point mutation on the “average” computer falls as \(l^{-1} \) but the bound on the convergence threshold length is exponential in the size of the computer.

The cyclic and bit flip computers are simple enough to allow analysis of the time to solution (quadratic or faster).
Summary: Big Random Tree Programs

• Above a threshold, distribution of performance is independent of tree size.

• Most trees are asymmetric. The chance of finding a leaf near the root is $\approx 50\%$.

• Even if instruction set is symmetric, some functions are more likely than others.

• Solutions to problems where the function set requires them to be bushy will be rare.

• The number of solutions grows exponentially with size.
So what?

- Generally random instructions “lose information”. Unless inputs are protected, almost all long programs are constants. Write protecting inputs linear GP like tree GP.

- “Random Trees” a few inputs near root. May be good for Data Mining, where some inputs are more important. Other cases each input is equally important. Need bushy trees. E.g. parity more common in full trees.

- Depth limit promotes near full trees rather than random. Size limit promotes random trees.

- Density of solutions indication problem difficulty.

- No point searching above threshold?

- Predict where threshold is? Ad-hoc or theoretical.
Conclusions

- Size and shape of search space

- Experimental evidence, tree based GP

- Proof linear

- Proof tree (in FoGP book)

- Number of solutions grows exponentially with size
Bloat

- Bloat as convergence in GP
- Evolution of Size and Shape
- Prediction that size $O(\text{generations}^2)$ or less (binary trees)
Convergence

Genetic Algorithms

1. Fitness Selection

2. Crossover and Mutation

3. Converges after many generations

Geneotype continues to change

Phenotype converged

Mutation and selection balanced

Genetic Programming

1. Fitness Selection

2. Crossover and Mutation

3. After many generations

Phenotype converged

Genotype continues to change
Fitness Selection Acts on Phenotype

GA 1-to-1 mapping genotype-to-phenotype

GP 1-to-many mapping genotype-to-phenotype

Spread of phenotypes (unequally) reduced

1:1 mapping, identical reduction in genotypes

Complex mapping, uneven reduction in genotypes
Crossover and Mutation Spread the Genotype

fixed mapping, spread of phenotype

Most genotype slightly changed, map to (nearly) original ellipse. Some more diverse, new (small) ellipses, map to new phenotype ellipses.
Genetic Programming Phenotype Convergence

Phenotype converged

Genotype continues to change
Some GP genotypes resist crossover and mutation more and “breed true”. I.e. more of their offspring have the same phenotype. If it is fit, these genotypes quickly dominates.

Population convergences to contain just the descendents of one phenotype-genotype mapping (a bit like GA).

Genotype cluster does not stabilise but continues to evolve from a single point. The population’s ancestor, i.e. the individual program where most of its genetic material came from.

Since each fit child’s genotype tends to be bigger than its parents there is a progressive increase in size, which we know as bloat.
What is Bloat

• Tendency for programs to increase in size without a corresponding increase in fitness

• In the absence of counter measures always(?) happens

• Trees and linear

• Often size decrease in first 1..3 generations

• Steady increase (max, average, standard deviation) after \(\approx 10 \) generations

• No limit to increase??
Experimental Evidence

Size increase in most generations

No change in best fitness in most generations

Smooth “average” curves conceal wide variation between runs. Also wide variation within each population [Langdon et al., 1999]
Convergence of Phenotype

Sextic Polynomial, Phenotype of Best of Generation, Run 100

Plot of output of evolved program from a range of inputs (excludes training points)

Note similarity of behaviour (i.e. phenotype) of nearby generations
Fitness Needed for Bloat

Expected change in frequency of a gene Δq in the population from one generation to the next $= \text{covariance of the gene's frequency in the original population with the number of offspring } z \text{ produced by individuals in that population, divided by the average number of children } \bar{z}$

$$\Delta q = \frac{\text{Cov}(z,q)}{\bar{z}}$$ \[\text{Price, 1970}\]

Holds if genetic operations are random with respect to gene.

Applies to program size in GP with crossover and mutation operators which have no size bias \[\text{Langdon et al., 1999}\]

With tournaments t, fitness is given by ranking r in the population (of size p). If $p \gg 1$ \[\text{Price, 1970}\] can be approximated:

$$E\Delta\text{size} \approx \frac{t}{\bar{z}}\text{Cov}((r/p)^{t-1}, \text{size})$$ \[\text{Langdon and Poli, 1998a}\]
Covariance of fitness and program size gives change in mean size from one generation to the next

Positive increase (e.g. bloat) requires positive covariance, i.e. fitness variation in current generation
Note on average linear growth in tree depth during bloat
(≈ 1 level per generation)

W. B. Langdon
Note movement from bushy (full) trees towards random trees

Note only bushy half of search space is used

W. B. Langdon
Sub-quadratic Growth in Binary Trees

- Predicted \(\lim_{t \to \infty} \text{program size} = O(t^2) \)

- Measured bloat \(O(t^{1.2-1.5}) \), \(t \leq 50 \) generations

- Test \(O(t^2) \) 600 generations, size \(10^6 \)

- Theory

- Experiments

- Conclusions
Theory

• If program size \gg problem and fitness level dependent threshold, distribution of fitness does not change with length

• Above threshold, number of programs with fitness f of size l is distributed \propto total number of programs of size l

• Total number of programs grows exponentially with size

• Most programs are near mean depth $= 2\sqrt{\pi}$ (internal nodes) (ignoring terms $O(N^{1/4})$ [Flajolet and Oldyzko, 1982], cf. slide 45)
Rate of Bloat

- In a variety of problems linear increase in mean depth, cf. slide 44 and [Daida, 2003; Daida et al., 2005].

\[\Delta \text{depth} = 0.5 \ldots 2.2 \text{ per generation} \]

Variable between problems and individual runs

- If population remains near ridge, size can be predicted from depth
 - If \(\lim_{t \to \infty} \text{depth} \approx 2\sqrt{\pi \left\lfloor \frac{\text{size}}{2} \right\rfloor} \)
 \[\lim_{t \to \infty} \text{size} = O(\text{depth}^2) = O(\text{gens}^2) \]
 - Fitting a power law to ridge (50–500) yields
 \[\text{size} = O(\text{gens}^{1.3}) \]
Experiments

- Hundreds of generations, size = million on rapidly bloating populations
 - symbolic regression quartic polynomial \([\text{Koza, 1992}]\).
Results

• 9 of 10 bloat (1 trapped at local optima in generation 7)
 At least 400 generations
 3 runs reach 1,000,000 limit before 600 generations
 In all runs most new generations do not find better fitness
 I.e. changes in size and shape are due to bloat

• Each population close to the ridge and moves up it,

• Depth varies widely between runs. However mean of all ten runs increases ≈ 2.4 levels per generation

• The size power law varies widely. On average starts near 1.0 (generations 12–50) and steadily rises to 1.9 (12–400).
Evolution of Tree Shape: Quartic

Note log scales
Evolution Power Law Coefficient: Quartic

Nine bloating runs. Error bars show standard error

W. B. Langdon
Discussion

- Ridge divides search space in half. In fact the region searched is much less than 50%. Cf. also [Daida, 2003].

- Can predict when program size or depth restrictions will be effective

 In practice limits are quickly reached

 but may be beneficial in some problems

 Even Parity v. Santa Fe artificial ant

- Other genetic operators and non-tree GP have different bloat behaviour

- Benchmarks here simple but subtree crossover ineffective on programs of 10^6

 Many smaller trees? Different genetic operators?
Bloat Conclusions

- Bloat explained as evolution towards popular tree shapes
 Subtree crossover leads to growing ≈ 1 level per generation

- Predict average evolution of size, depth and shape

 Continuous $\lim_{g \to \infty} \text{mean size} = O(\text{generations}^{2.0})$
 Discrete $\text{mean size} \leq O(\text{generations}^{2.0})$

 (Wide variation in population and between runs)

New type of GP fitness convergence in discrete case

Memory $O(\text{gens}^{1.2-2.0})$ or $\leq O(\text{gens})$ (DAGs)
Run time $O(\text{gens}^{2.2-3.0})$ or $= O(\text{gens}^{2.0})$ (DAG caches)

- Understanding bloat provides insights into GP dynamics
 Understand GP biases \leadsto new operators, better biases

- GP theory developed, tested, Works! (in part)
Conclusions

- GP as search in the space of all possible programs. Big space!
 For both tree (proof in FoGP book) and linear GP, space converges (in practise rapidly) with increase in program size.

- Most trees are randomly (fractal) shape; not short and bushy full trees. So asymmetric “data-mining” functions more common than symmetric (parity like).
 Many trees have fitness > 0. Trees are like linear systems which write protect their inputs.

- Most unprotected irreversible linear programs are useless.
 Fitness of reversible linear programs is Gaussian.
 Number of solutions grows exponentially with size.

 GP is not random search!
• Bloat

We considered bloat as the way in which GP evolution converges. Note phenotype shows convergence, the genotype does not.

Bloat is so fast that common size and depth restrictions have an impact in almost all cases

Sub-quadratic growth predicted and tested

See gp-bibliography.bib for many other papers on other aspects of bloat
Foundations of Genetic Programming covers many other topics

Slides for whole book available via ftp://cs.ucl.ac.uk/genetic/papers/fogp_slides/ Chapter 2. on Fitness Landscapes and Glossary are online.

GP C++ code cs.ucl.ac.uk/genetic/gp-code/. Also ntrees.cc for tree counting, uniform random tree sampling rand_tree.cc and 3916 solutions to Santa Fe ant trail problem.

[Flajolet and Oldyzko, 1982] Philippe Flajolet and Andrew Oldyzko. The average height of binary trees and other simple

