
Technical Considerations on the Visualisation of Virtual Environments

F. Tecchia, C.A. Avizzano, A. Brogni, C. Evangelista, G. Di Pietro, M. Bergamasco

PERCRO, Scuola Superiore S.Anna
Via Carducci, 40

Pisa, 56127 (PI), ITALY

Abstract

The problem of dealing with the graphical representa-

tion of 3D environments by means of computer systems

is introduced. The hardware and software tools that al-

low the 3D visualisation of virtual models by starting

from an abstract representation of the Virtual Environ-

ment are presented. The objectives for the design of

a software module allowing high performance interac-

tive visualisation of complex Virtual Environments are

given.

Keywords:

1 Introduction

A virtual environment can be considered as a multi-
sensory immersive experience. The basic idea is that of
designing a scenario that it does not exist in reality. The
person who lives through a virtual environment should
perceive sensorial stimuli in such a way as not to distin-
guish between the real and the virtual environment in
which he/she is immersed. In order to achieve such a
goal, the virtual environment system must be designed
by presenting a human/machine interface possessing ef-
ferent and a�erent �lters appropriately conceived and
realized.

As it happens for a real experience, one of the most
important components of the a�erent �lter is the visual
subsystem which goal is that of generating a 3D graph-
ical representation in real time.

An adequate performance of the visual subsystem can
be achieved by exploiting graphical workstations capa-
ble to perform in real time all the required operations
needed to generate the correct response to the subject's
action without any perceivable delays (general rules set
a rate of at least 30 frames per second for the 3D graph-
ical representation). Another feature to be integrated
in the design of the visual subsystem is the capability of
stereoscopic representation in order to generate depth
perception of the virtual objects belonging to the simu-
lated environment.

By taking into account the determinants specifying
the conditions of sense of presence in a virtual environ-
ment [1], it can be seen how the development of high
de�nition graphical rendering modules working in real

time represents a mandatory line of research in order
to achieve adequate levels of extent of information ex-
change in the a�erent �lter.

This paper describes the baseline motivations of the
work carried out at PERCRO �nalised to 3D visualisa-
tion of Virtual Environments (VE) and to the graphical
control of its contents.

The complexity of the geometrical models utilised for
VE applications is often very high and, consequently, a
real time visualisation in which all the descriptive data
of the environment are considered for the rendering pro-
cess is prevented. To obtain this, an advanced manage-
ment of the geometrical data base is required. The geo-
metrical data base must be arranged in such a way that,
in every step of the rendering process, it is possible to
eÆciently discern the information actually involved in
the visualisation from those, at least temporarily, not
needed.

Moreover, the realistic visualisation of speci�c phe-
nomena that occur in the virtual scenario, e.g. the inter-
active deformation of objects, requires ad hoc method-
ologies and algorithms. These speci�c algorithms, by fo-
cusing on the performances of the visualisation system,
succeed to optimise their management and to achieve
the best results under the very strong temporal con-
straints of the application.

The advanced management of the geometrical infor-
mation is then a very complex activity that cannot be
taken in charge of the speci�c applications. The optimi-
sation of the rendering process must be directly imple-
mented inside the visualisation module that must

separate the application from the necessary comput-
ing activities. The software module developed for 3D
visualisation performs such an organisation and man-
agement process of the geometrical data base by inte-
grating inside all the techniques presently available in
the �eld of the optimisation of real time 3D rendering.

The visualisation of 3D environments performed by
an application is a process articulated in di�erent
phases. The scenario to be traced on the video is repre-
sented by storing di�erent types of data specifying the
geometrical aspects of the environment and the visual
characteristics of its materials, such as colour and opac-

ity. The set of these data is called graphical data base
or, due to the speci�c geometrical description utilised,
polygonal database. The process of visualisation is the
set of activities that, by starting from the above logic
representation, is capable of visualising on a screen a
graphical representation of the environment.

The visualisation process can be schematically di-
vided in the following phases:

� The application retrieves, from the polygonal
database, data on the objects to be visualised and
requires their visualisation by means of suitable li-
brary functions.

� The information given by the application undergoes
a series of hardware and software processing. The
complex of the processing activity is restricted in
a single logical entity called graphical pipeline or
rendering pipeline. Along the path inside this logi-
cal entity data are converted into an image which is
stored in a dedicated memory area, the framebu�er.

� The stored raster image is visualised on the video.

Figure 1: Visualisation process

2 Visualization Hardware

The simplicity of the processing devoted to build a
raster image and also the high degree of parallelism by
which the input geometrical data can be handled allow
to perform at least a part of the activities internal to the
pipeline by means of a dedicated hardware. At present,
the large part of graphical workstations is capable to
process with extreme eÆciency very simple geometrical
entities, such as polygons with three edges, lines as well
as points. These are, in real time graphics, the more
suitable geometrical primitives to be used for the repre-
sentation of the environment to be visualised.

The above indicated dedicated systems utilise the
illumination model developed by Phong [2] to simu-
late the presence of light sources in the scene and the
correspondent shading e�ects. In the approximated
Phong model the reection of light radiation is mod-
elled by three components: di�used, specular and ambi-
ent, each one separately modelled and de�ned for both
light sources and materials. For each geometrical prim-
itive a material must be speci�ed; the parameters of the
material can be uniformly applied to the primitive sur-
face or varied by means of a texture speci�ed through a
bitmap 2D image.

In terms of design, the use of such elementary primi-
tives allows to optimise the management of the process-
ing resources by dedicating them to a restricted set of
operations. To this aim, every geometrical entity sent
to the rendering pipeline is preliminary decomposed in
triangles, segments and points. In order to avoid the
computational overhead of this operation, it is prefer-
able to store all the objects directly in the form utilised
inside the rendering pipeline; each group of primitives
representing a part of the scenario is called polygonal
mesh.

To allow the visualisation of the environment, the
rendering pipeline receives as input the information on
the graphical primitives setting up the scenario. For
each of them the following parameters must be speci�ed:

� Spatial position of the vertices with respect to an
absolute frame of reference (world coordinates);

� Characteristics of the materials utilised in the sce-
nario;

� Orientations of the polygons in space;

� Information on the textures, if present.

At the same time, also the point of view from which the
scenario must be seen, the sight direction (position and
orientation of the camera), the position of light sources
inside the scenario as well as a value specifying the span
of the �eld of view must be given. The activities per-
formed inside the rendering pipeline can be divided in
three di�erent steps, as depicted in 2.

The �rst step, called geometry engine, performs all
the geometrical transformations needed for positioning
the polygons in the scenario and the calculations related
to light e�ects. By starting from the input data, the
following operations are performed:

� The primitives coordinates are transformed in the
camera frame of reference (eye coordinate);

� The di�erent parameters related to the illumina-
tion of the primitive by the light sources (lighting
process);

� The primitives which are invisible with respect to
the sight direction and �eld of view span are re-
moved from the pipeline (view frustum culling pro-
cess);

� The operation of perspective correction is applied
and the primitives coordinates are transformed in
2D by projecting them on the sight plane (the mon-
itor screen).

In the second step of the rendering pipeline activities
(triangle setup) all the data necessary for rasterisation
are prepared. Calculations of the slopes and shading

Figure 2: Activities of the rendering pipeline

parameters of the lines and edges of the triangles are
performed.

In the third step all the pixels internal to the triangles
(rasterisation) are traced. To each pixel are assigned:

� A colour, calculated by considering the illumination
conditions of the triangle, the associated material,
the texture (if speci�ed) and other possible features
(e.g. transparency);

� A depth value, intended as the distance from the
camera position, that will be utilised later in the
z-bu�er algorithm for removing, via hardware, the
hidden surfaces.

All the described activities need the calculation of math-
ematical functions and , consequently, an adequate com-
puting power that limits the amount of data that the
rendering pipeline is able to process in the unit time.
Usually the performances of the rendering pipeline are
measured by the number of triangles processed per sec-
ond: since the three steps are strictly sequential, the
saturation of either of the three implies a bottleneck for
the whole system and, consequently, limits the achiev-
able performances. The causes of saturation are:

� Limited computing power for the calculations per-
formed in either the geometry engine, triagle setup
and rasterisation;

� Limited bandwidth for data transfer from the ras-
terisation step to the framebu�er.

Which of the above is the cause for the limit of perfor-
mances it depends on the type of required visualisation.
The following classi�cation applies:

� When the cause of saturation is due to the amount
of geometrical calculations required in the di�erent
steps (e.g. for polygonal mesh with a large num-
ber of polygons) the application is called geome-
try limited;

� When it is the number of pixel to be traced that lim-
its the computing speed (it often happens when the
video resolution is high), the application is called
�ll-rate limited.

2.1 Workstation Performances for 3D
Graphics

The performances of a graphical workstation are dif-
�cult to be de�ned since they are inuenced by di�erent
factors, such as the dimensions of the primitives to be
visualised, the number and type of the light sources,
the sizes of the textures to be applied to the triangles,
etc. Moreover, the evaluation should consider also the
quality of the produced image but for this it is diÆ-
cult to de�ne an objective parameter. It is possible to
use as evaluation criteria the number of triangles to be

rendered per second, the speed for tracing the pixels
belonging to the di�erent triangles (�ll rate) and the
amount of memory dedicated to store the textures (tex-
ture memory).

The capability of each system for graphical process-
ing largely depends on the strategy by which the ren-
dering pipeline has been realised. Two solutions have
been adopted (see 3):

Figure 3: Two di�erent strategies for the rendering
pipeline

� In the �rst solution only the geometry setup and
rasterisation steps are implemented in hardware.
The task of executing all the operations required
in the geometry engine are left to the processor(s).
This approach is �nalised to cost reduction on
which the impact for hardware implementation of
the GE is evident;

� In the second solution all the three steps of the
rendering pipeline are realised by hardware. In this
solution the eÆciency of the system is maximised
but the costs are also increased.

At present, the range of performances for commer-
cially available workstations is very wide. The lower
limit is represented by the platforms Intel PC equipped
with low cost 3D graphical boards, in which the �rst
strategy is implemented with a computing power of one
million of triangles per second. On the other hand, the
highest performances are obtained with Unix worksta-
tions by Silicon Graphics that, by utilising massively
parallel architectures for the realisation of each step of
the pipeline, are capable of generating more than 80
millions of triangles per second.

Notwithstanding the high gap of performances be-
tween the two architectures, at present the hardware
dedicated to 3D graphics on Intel platforms is subjected

to a very rapid evolution (two times the computing
power per year). Progresses can be registered also in
terms of quality of the image: in a very short time the
15 bit per pixel representation moved to a 24 or 32 bit
colour depth. Moreover the utilisation of antialiasing
techniques for the generated image are always more fre-
quently used. All these features have been matched with
an increase of the video memory (for both the frame-
bu�er and texture memory): from the initial 512k, at
present the average value is of 16 Mb with an availabil-
ity on the market of low-medium cost boards equipped
with 100Mb of memory. An example of the technical in-
novations devoted to the management of the large bulk
of data required by 3D graphical applications has been
the Intel AGP (Accelerated Graphics Port) bus that of-
fers an higher bandwidth with respect to the previous
PCI bus and the implementation of particular function-
alities, such as the Direct Memory Execution for the
data exchange between the processor, the memory and
the graphical hardware.

By taking into account the evolution of low cost
platforms, the development of future visualisation mod-
ules for VE applications must be design by taking into
account the characteristic of independence from the
utilised platform. This objective inuences also soft-
ware development choices. To this aim and, at the same
time, to exploit the advantages of the object oriented
programming, the implementation language can rely on
C++ while the management of the graphical hardware
can be performed through the use of the standard li-
brary OpenGL.

3 The Graphics Library OpenGL

In order to allow a generic application to access the
rendering pipeline, the availability of a dedicated library
(API, Application Programming Interface) is required in
order to manage the underlying hardware by releasing
the application from a direct communication with the
driver.

Several libraries are available to the above scope.
Some of them are speci�c for a given hardware; other are
speci�c for a given operating system (e.g. the DirectX
library developed by Microsoft).

In the framework of scienti�c visualisation the most
di�used API is OpenGL, introduced in the market by
Silicon Garphics as an evolution of the previous GL
(Graphics Library). This library has been designed to
be independent from the platform. At present it ex-
ists for almost every operating system. Its high spread
has also conditioned the hardware production, where
the trend is now that of directly integrating "on chip"
all the functionalities of OpenGL.

OpenGL renders available a series of functions ex-
clusively dedicated to the treatment of 3D graphics. It
allows to trace on video either simple primitives, such
as points, lnes and triangles, and either convex polygons

Figure 4: Access to the graphical hardware

composed of an arbitrary number of edges.
Moreover it allows the visualisation of analytical

curves and of complex surfaces (NURBS, Non Uniform
Rational B-Spline). To treat these type of entities it is
the same library that decompose them in segments and
polygons.

The application must specify all the geometrical
primitives and related materials; after that the OpenGL
library is able to visualise the scenario by utilising an
orthographic projection or a perspective projection (see
5).

Figure 5: Sight volumes for an orthogonal projection
and perspective projection.

OpenGL assumes as visible those primitives that,
at least partially, are included inside the sight volume
(view frustum); in the case of perpspective projection
this volume is de�ned by the observer's position in
the scene, by the sight direction, by the span of the
�eld of view and by the position of the two planes
(front clipping plane and back clipping plane) delimi-
tating the allowed distance for the primitives to be visu-
alised. The entities outside this volume are not visible
and for this reason are discharged from the rendering
pipeline immediately after the geometry engine step in
order to avoid unnecessary processing by the following
steps (View frustum culling process).

The geometrical transformations needed for the visu-

alisation are speci�ed to OpenGl by the application by
means of three matrices model matrix, view matrix ad
perspective matrix (see 6).

Figure 6: The transformation pipeline used by OpenGL

� In general, it is assumed that the primitives to be
visualised can be speci�ed in a local frame of ref-
erence; OpenGl transforms the local coordinates to
the absolute frame of reference (world coordinate)
by means of the model matrix.

� The second matrix (view matrix) takes care of the
position and orientation of the camera. All the
primitives expressed in world coordinate are trans-
formed in the frame of the camera (eye coordinate).

� By means of the third matrix (perspective matrix)
OpenGL performs the perspective correction on the
primitives. The coordinates obtained from this step
are called clip coordinates.

The primitives that after the transformation in
clip coordinates are outside the sight volume, are dis-
charged from the processing ow. The other primitives
undergo other further elaborations with the goal of ob-
taining the pixel coordinates for the visualisation on the
screen (window coordinates).

OpenGL allows also to specify an illumination for the
scenario. In this case the illumination model is very sim-
ilar to the Phong's one. Three types of light sources are
considered: directional, point and spot-like, here pre-
sented in terms of increasing computational costs. The
introduction of a new source in the description of the
scenario implies an increase in the amount of processing
performed in the pipeline.

OpenGL allows to trace primitives with uniform ma-
terials or to specify a bitmap image to be used as a
texture. Textures are a very powerful tool and allow
photorealistic visualisations also in real time graphics.

4 The Graphical Subsystem for VE Ap-

plications

After having introduced the available hardware and
software resources, the problem of visualisation is con-
sidered by focusing on the speci�c requirements for Vir-
tual Environments applications.

Although the speci�c sector of VE shares a lot of
aspects with the general problem of 3D visualisation, it
is necessary to consider the critical objectives that can
raise in this particular application scenario. The design
guidelines for the development of a graphical module for
the visualisation of polygonal environments with a high
level of complexity can be summarised in the following
points:

� Maximum eÆciency: as pointed out before, the
quality of the experience with VE systems is strictly
correlated to the degree of interactivity of the Vir-
tual Environment. The system must be able to re-
act in very short time to e�erent data (e.g. position
sensors); this implies that the maximum speed in
the visualisation process must be obtained. This
goal can be achieved, when necessary, also by util-
ising preprocessing techniques for the analysis of
the polygonal data base and for the construction of
data structures in such a way of accelerating the
graphical rendering when required by the interac-
tion with the user.

� Maximum modularity: in VE application, the 3D
visualisation in real time is only one of the nec-
essary activities in order to obtain an immersive
experience. Other computing processes contribute
to the simulation: e.g. force feedback , collision
detection and, in general, processes for the acqui-
sition of data. Each of these processes shares with
the rendering process the characteristic of being a
time critical process, i.e. in which the time required

for the data processing is the main parameter for
the evaluation of the quality. Among all the previ-
ous activities there is a large exchange of informa-
tion , for which the same eÆciency considerations
apply. Then it is needed that the software module
for the visualisation can integrate with all the other
activities and foresee eÆcient mechanisms of inter-
action with them. Moreover, due to the extreme
variety of application �elds considered in VE, the
visualisation module must be open to the introduc-
tion to new functionalities, by maintaining a logical
architecture capable of being expandable without
strong changes in the whole architecture.

� Maximum exibility of use: the contents and ty-
pologies of the applications in VE are very di�erent;
for this reason, in order to allow a general use, the
visualisation module must possess a high exibility
of use. In particular the utilisation and eÆcacy of
its functionalities must be guaranteed in order to
tackle di�erent ranges of condition of use.

As described in the previous Sections, the visualisa-
tion of a virtual means to send to the rendering pipeline
data coming from a polygonal data base which has been
previously modelled; at the same time geometrical op-
erations (such as roto-translation transformations) can
be performed on the basis of external data. In the real-
isation of a software module that allows an interactive
visualisation, the following considerations must be taken
into account:

� The scene to be visualised is the result of a compo-
sition of several objects, each of them is represented
by a polygonal mesh;

� Every mesh possesses several attributes in terms of
colours, materials and textures;

� It must be possible to give to each object, and inde-
pendently from the others, a position and an orien-
tation in space. Such geometrical information must
be modi�ed in time, in order to simulate the motion
of the object;

� In the same scenario meshes composed by few poly-
gons must coexist with other meshes possessing a
high degree of complexity. No a priori assumption
can be done about the complexity of the models;

� For the illumination of the scene one or more light
sources must be de�ned, each of them freely mov-
able in the space and possessing speci�c character-
istics in terms of colour, intensity, etc.;

� In order to easily represent articulated characters
or complex mechanical parts, the use of kinematic
chains must be foreseen. Each chain de�nes the
hierarchy among the objects and the application of

coordinate transformation must correctly evolve in
the chain;

� In order to augment the range of possible appliac-
tions, the scenario can contain both rigid and de-
formable objects. To this aim it could be extremely
interesting the use of interactive procedures in or-
der to deform some of the polygonal meshes used;

� To simulate the immersion of the user inside the
virtual environment, the scene must be visualised
according to arbitrary points of view and orienta-
tions.

to be overcome for the realisation of a visualisation mod-
ule possessing the above characteristics can be sum-
marised in the following three points:

1. To succeed to interactively visualise polygonal
databases possessing a complexity of several de-
grees of magnitude higher with respect to those that
can be managed with the available computing re-
sources. Examining in parallel the course of graph-
ical capabilities of the computers and the complex-
ity of the polygonal models utilised in the �eld
of Virtual Environments, it can be noted that the
models have always been more complex than those
that could have been treated at the required speed
by the available hardware. Moreover the increase
in the complexity of the utilised models has been
higher than the increase in computing power. This
fact means that the management of large polygonal
databases cannot be solved by only increasing the
performances of the graphical hardware;

The main diÆculties

2. To study and implement an algorithm that allows
the real time deformation of arbitrary polygonal
meshes. Due to the large amount of geometrical
data to be manipulated in very short times, it is
necessary to identify a strategy allowing to obtain
the best ratio between the needed computing power
and the visible obtainable results.

3. To realise a logical architecture of the visualisation
module in which, besides being satis�ed the pre-
vious requirements, high exibility and easiness of
use can be maintained.

5 Conclusions

In the paper the objective of designing an adequate
software module for the interactive visualisation of com-
plex Virtual Environments has been introduced. The
work performed at PERCRO in this framework has pro-
duced an innovative graphics library that has been suc-
cessfully tested and implemented for the application of
Virtual Environments technologies to the �eld of Cul-
tural Heritage.

References

[1] Sheridan T., \Telerobotics and Human Supervisory
Control", MIT Press, 1992.

[2] Phong Bui-Thong, \Illumination for Computer-
generated Pictures", Comm. ACM 18(6), June 1975.

