B-Splines

- Polynomial curves
- C^{k-1} continuity
- Cubic B-spline: C² continuity

Knots

- A sequence of scalar values $t_1, ..., t_{2k}$ with $t_i \neq t_j$ if $i \neq j$, and $t_i < t_j$ for i < j
- If t_i chosen at uniform interval (such as 1,2,3, ...), than it is a <u>uniform knot sequence</u>

Control points, for k = 3

- We can define a unique k degree polynomial F(t) with blossom f, such that v_i = f(t_{i+1}, t_{i+2}, ...,t_{i+k})
- The sequence of v_i for i [0,k] are the control points of a B-spline
- Evaluation of a point on a curve with f(t,t,t)
- Remark: no control points will lie on the curve!

• Knots: t₁,t₂,t₃,t₄,t₅,t₆

- Control points
- $v_0 = f(t_1, t_2, t_3)$
- $v_1 = f(t_2, t_3, t_4)$
- $v_2 = f(t_3, t_4, t_5)$
- $v_3 = f(t_2, t_5, t_6)$

Definition Given a sequence of knots, t₁,...t_{2k}, For each interval [t_i, t_{i+1}], there's a kth degree parametric curve F(t) defined with corresponding B-spline control points v_{i-k}, v_{i-k+1}, ..., v_i If f() is the k-parameter blossom associated to the curve, then

Definition

- The control point are defined by $v_i = f(t_{j+1}, ..., t_{j+k}), j = i-k, i-k, ..., I$
- The k-th degree Bézier curve corresponding to this curve has the control points: $p_j=f(t_i, t_i, ..., t_i, t_{i+1}, t_{i+1}, ..., t_{i+1})$, j=0, 1, ..., k
- The evaluation of the point on the curve at $t \in [t_i, t_{i+1}]$ is given by F(t) = f(t, t, ..., t)

Relation between quadratic B-spline and Bézier curve

- K=2, limit on the ith interval, t ∈[t_i,t_{i+1}]
 For the quadratic Bézier curve corresponding: p0 = f(t_i, t_i) p1=f(t_i, t_{i+1}) p2=f(t_{i+1}, t_{i+1})
 For the B-Spline:
- $v_{i-2} = f(t_{i-1}, t_i)$ $v_{i-1} = f(t_i, t_{i+1})$ $v_i = f(t_{i+1}, t_{i+2})$ • And the interpolation:

$$f(t_{i}, t_{i}) = \frac{t_{i+1} - t_{i}}{t_{i+1} - t_{i-1}} \quad v_{i-2} + \frac{t_{i} - t_{i-1}}{t_{i+1} - t_{i-1}} \quad v_{i-1}$$

$$f(t_{i+1}, t_{i+1}) = \frac{t_{i+2} - t_{i+1}}{t_{i+2} - t_i} v_{i-1} + \frac{t_{i+1} - t_i}{t_{i+2} - t_i} v_i$$

B-splines or Bézier curves?

- Bézier curves are B-splines!
- But the control points are different
- You can find the Bézier control points from the B-spline control points
- In the case of a quadratic B-spline: p_0 is an interpolation between v_{i-2} and v_{i-1} , $p_1 = v_{i-1}$
 - \boldsymbol{p}_2 is an interpolation between $\boldsymbol{v}_{i\text{-}1}$ and \boldsymbol{v}_i

Advantage of B-splines over Bézier curves

- The convex hull based on m control points is smaller than for Bézier curve
- There is a better local control
- The control points give a better idea of the shape of the curve