B-Splines
• Polynomial curves
• C^{k-1} continuity

Knots

- A sequence of scalar values $\mathrm{t}_{1}, \ldots, \mathrm{t}_{2 \mathrm{k}}$ with $\mathrm{t}_{\mathrm{i}} \neq \mathrm{t}_{\mathrm{j}}$ if $i \neq j$, and $t_{i}<t_{j}$ for $i<j$
- If t_{i} chosen at uniform interval (such as $1,2,3, \ldots$), than it is a uniform knot sequence

Control points, for $\mathrm{k}=3$

- We can define a unique k degree polynomial $\mathrm{F}(\mathrm{t})$ with blossom f , such that $v_{i}=f\left(t_{i+1}, t_{i+2}, \ldots, t_{i+k}\right)$
- The sequence of v_{i} for $\mathrm{i}[0, \mathrm{k}]$ are the control points of a B-spline
- Evaluation of a point on a curve with $\mathrm{f}(\mathrm{t}, \mathrm{t}, \mathrm{t})$
- Remark: no control points will lie on the curve!

Case $\mathrm{k}=3$

- Knots: $\mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{t}_{3}, \mathrm{t}_{4}, \mathrm{t}_{5}, \mathrm{t}_{6}$
- Control points
$v_{0}=f\left(t_{1}, t_{2}, t_{3}\right)$
$\mathrm{v}_{1}=\mathrm{f}\left(\mathrm{t}_{2}, \mathrm{t}_{3}, \mathrm{t}_{4}\right)$
$\mathrm{v}_{2}=\mathrm{f}\left(\mathrm{t}_{3}, \mathrm{t}_{4}, \mathrm{t}_{5}\right)$
$\mathrm{v}_{3}=\mathrm{f}\left(\mathrm{t}_{2}, \mathrm{t}_{5}, \mathrm{t}_{6}\right)$

Definition

- Given a sequence of knots, $\mathrm{t}_{1}, \ldots \mathrm{t}_{2 \mathrm{k}}$,
- For each interval $\left[\mathrm{t}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}+1}\right]$, there's a $\mathrm{k}^{\text {th }}$ degree parametric curve $\mathrm{F}(\mathrm{t})$ defined with corresponding B-spline control points $\mathrm{v}_{\mathrm{i}-\mathrm{k}}, \mathrm{V}_{\mathrm{i}-\mathrm{k}+1}, \ldots, \mathrm{v}_{\mathrm{i}}$
- If $f()$ is the k-parameter blossom associated to the curve, then

Relation between quadratic B-spline and Bézier curve

- $\mathrm{K}=2$, limit on the ith interval, $\mathrm{t} \in\left[\mathrm{t}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}+1}\right]$
- For the quadratic Bézier curve corresponding: $\mathrm{p} 0=\mathrm{f}\left(\mathrm{t}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}}\right) \quad \mathrm{p} 1=\mathrm{f}\left(\mathrm{t}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}+1}\right) \quad \mathrm{p} 2=\mathrm{f}\left(\mathrm{t}_{\mathrm{i}+1}, \mathrm{t}_{\mathrm{i}+1}\right)$
- For the B-Spline:
$v_{i-2}=f\left(t_{i-1}, t_{i}\right) \quad v_{i-1}=f\left(t_{i}, t_{i+1}\right) \quad v_{i}=f\left(t_{i+1}, t_{i+2}\right)$
- And the interpolation:
$f\left(t_{i}, t_{i}\right)=\frac{t_{i+1}-t_{i}}{t_{i+1}-t_{i-1}} \quad v_{i-2}+\frac{t_{i}-t_{i-1}}{t_{i+1}-t_{i-1}} v_{i-1}$
$f\left(t_{i+1}, t_{i+1}\right)=\frac{t_{i+2}-t_{i+1}}{t_{i+2}-t_{i}} v_{i-1}+\frac{t_{i+1}-t_{i}}{t_{i+2}-t_{i}} v_{i}$
Department of Computer Science

Advantage of B-splines over Bézier curves

- The convex hull based on m control points is smaller than for Bézier curve
- There is a better local control
- The control points give a better idea of the shape of the curve

B-splines or Bézier curves?

- Bézier curves are B-splines!
- But the control points are different
- You can find the Bézier control points from the B-spline control points
- In the case of a quadratic B-spline: p_{0} is an interpolation between $\mathrm{v}_{\mathrm{i}-2}$ and $\mathrm{v}_{\mathrm{i}-1}$, $\mathrm{p}_{1}=\mathrm{v}_{\mathrm{i}-1}$ p_{2} is an interpolation between $\mathrm{v}_{\mathrm{i}-1}$ and v_{i}

