

Towards Development in Evolvable Hardware

Timothy G. W. Gordon and Peter J. Bentley
Department of Computer Science

University College London
Gower Street, London

UK, WC1E 6BT
{t.gordon, p.bentley}@cs.ucl.ac.uk

Abstract

Mapping between genotype and phenotype using a model
of biological development has been widely touted as a
technique for evolving solutions to large, complex
problems [1-3]. Here we describe two test-bed
developmental systems for evolvable hardware problems,
and compare each to a naive mapping system. We find
that designing evolvable developmental systems is not a
trivial problem, however early analysis of the evolved
structures demonstrates the potential of the generative
processes behind development. We also account for the
differences between the results of the two systems,
highlighting the importance of search space evolvability
over size.

1. Introduction

As a problem becomes more complex it generally
becomes increasingly difficult for an evolutionary
algorithm (EA) to find acceptable solutions. This is
known as the scalability problem, and has been reported
by many evolvable hardware researchers as a serious
issue that prevents the evolution of large, complex
circuits [4-7]. Consequently finding mechanisms to
increase the evolvability of such design spaces is crucial
to furthering the field.

Approaches to the scalability problem for evolvable
hardware include Function Level Evolution [5],
Cartesian Genetic Programming [4] and Incremental
Learning [8]. A new approach that is gaining popularity
is to use a model of biological development to map
between genotype and phenotype. Not only does this
allow evolution to search for useful representations, it
can introduce the types of features that may aid
evolvability, such as redundancy, modularity and local
learning. In the field of evolvable hardware, Koza et al.

[2], Hemmi et al. [9] and Lohn and Columbano [10] have
pioneered use of such systems. However there is still
much to be understood as to which features of
developmental systems aid evolvability and scalability.
This paper presents the progress we have made in
developing test-bed developmental systems to explore
evolvability and scalability, along with early results from
two of these systems, and analysis that demonstrates their
potential.

The rest of the paper is structured as follows: section
two discusses why development is such a good candidate
for tackling the scalability problem. Section three
describes and presents results from the first of two
developmental systems discussed in this paper, along
with analysis of the evolved circuits. Section four
describes the second developmental system with results
and analysis. Conclusions and plans for future work are
given in section five.

2. Improving Scalability

In general a solution found by an inductive learning
algorithm does not follow deductively from the
information provided by the training data and the
solution description. The set of additional assumptions
needed to ensure that the solution follows deductively is
called the inductive bias [11], and can be further
categorised into representational bias and algorithmic
bias [12]. Solving a learning problem is a matter of
discovering and implementing a set of inductive biases
that are suitable for the problem at hand. However this is
often extremely hard.

For example, one common approach to simplifying
large evolvable hardware problems has been to reduce the
search to a smaller space. The most common tactic is to
choose primitives that impose a stronger bias to hopefully
limit the search to useful areas of space (but do so
without ruling out interesting areas of space). This

modification of the representational bias is the approach
of function level evolution, which was developed at ETL
[5,13]. The difficulty here is in choosing the correct
structures to use in the representation. Any abstraction
used makes assumptions about the type of problem.
Therefore problem-dependent components may have to
be developed again and again. Once this trade-off has
been made, evolution is now limited to search the space
of this abstraction, and any innovative solutions at the
lower abstraction will be unattainable. In addition,
modules must be chosen that provide a space tractable to
evolution, otherwise we may be even worse off than
before. It may be that in some cases abstractions that
transform the space into something of the same size (or
bigger) that is more tractable to evolution are more useful
than abstractions that humans find useful, applied blindly
to reduce the size of the space. However the problem of
how to find and impose useful biases still remains.

At this point let us consider how the complex features
that we possess came about. Certainly it is extremely
unlikely that such highly complex and well-optimised
characteristics should arise overnight by chance. Many
features tend to be simpler in organisms that evolved
early in the history of life. For instance mechanisms of
gene expression are far less complex, and seem to
provide fewer avenues for evolvability in lower
organisms. Such reasoning resulted in Dawkins [14]
suggesting that evolvability itself has evolved. In more
recent years this idea has become widely accepted
[15,16], and experimental evidence of mechanisms to
evolve evolvability have been demonstrated [17]. In
terms of a learning algorithm, we can think of evolution
as altering its inductive bias in the hope of finding one
more appropriate to the current environment. So natural
evolutionary systems not only possess biases that aid
evolvability, but they possess the ability to shift their bias,
thereby performing a meta-search of bias space. Hence
they adapt their search, in addition to their phenotypes,
to the prevailing conditions.

2.1 Development

Development can be thought of as one of biology’s
representational bias search mechanisms. Biological
development essentially maps genotype to phenotype
through a complex process of regulated gene expression.
As the developmental process itself results merely from
expression of genes in a given environment, it is also
under the control of evolution. But development’s basic
mechanism, gene expression, allows the formation of
complex gene regulatory networks (GRNs). These are
networks of gene products that regulate the expression of
each other. Such networks form modular, iterative and
recursive patterns. When some of these gene products are

involved in (or trigger) the formation of some biological
function or structures, modular, iterative and recursive
morphologies can arise [18]. Variation of genes within a
module allows space to be searched in “leaps” involving
this module, rather than the small steps of its
components. If a master control gene is expressed
multiple times, the module is reused [16]. Multiple
iterations across time are possible through feedback loops
within a module or between modules.

Another form of iteration is across space. In
multicellular organisms these processes occur in a
distributed manner. The environment of particular cells
results in different genes, hence perhaps different
modules, being activated. This allows the generation of
regular, iterative patterns across space as cells
differentiate according to their environment. Recursive
patterns across both space and time are also possible,
through the same processes.

In this way modules can impose a strong
representational bias, biasing evolution to work with
more complex primitives, but allowing re-use, iteration
and recursion of these primitives, either across the
structure of the organism, or across time to allow
regulatory patterns to form. It is this re-use that is of
most interest in any study that centres on improving
scalability. A developmental module that is re-used more
and more often in good solutions as the problem scales
leaves less and less of the problem that has to be learned
from scratch. So as problem complexity scales, finding a
solution becomes increasingly easier relative to a system
that cannot re-use modules.

2.2 Development in Evolutionary Algorithms

Developmental systems have been used in EAs since
Dawkins [14] demonstrated that an explicit genotype-
phenotype map could easily be used to affect evolvability.
He presented several handcrafted developmental systems
that altered the morphology of geometrical patterns. He
also noted that these mappings could be evolved, and
were likely to be evolved in natural systems. Since then
the idea of evolving a developmental system rather than
the phenotype itself has been explored in a number of
directions. Bentley and Kumar [19] noted that these can
be divided into two approaches, explicit and implicit.

2.2.1 Explicit Approaches

Explicit approaches use a mapping that explicitly
provides the properties of hierarchical modularity,
iteration and recursion that make development so useful.
Such is the approach taken by Cellular Encoding, which
was first developed by Gruau to develop ANN
architectures [20] but is perhaps better known through

Koza et al.’s evolution of analogue circuits [2]. The basic
technique is to evolve trees of developmental steps using
genetic programming. Each developmental step, encoded
as a GP node, explicitly codes for a phenotype
modification. A fixed ‘embryonic’ phenotype is ‘grown’
by applying a tree of rules to it. Automatically Defined
Functions can explicitly provide modularity, and
Automatically Defined Loops/Iterations can provide
iteration. Lohn and Columbano use a similar approach
[10], but with a linear mapping representation which is
applied to an embryonic circuit in an unfolding manner,
rather than a circuit modifying one.

2.2.2 Implicit Approaches

The perhaps more elegant implicit approach uses sets
of production rules rather than explicit mechanisms for
generating modularity, iteration and recursion. The idea
behind these is that complex objects can be defined by
successively rewriting a symbolic description of a simple
object according to the set of production (or rewriting)
rules. A program to map between genotype and
phenotype is specified by a start symbol (or set of
symbols) for the rule rewriting process. Usually this is
fixed and the grammar is evolved. Hence the fixed
program is implicitly evolved though alteration of its
grammar. The dynamics of an evolutionary system
working on a set of grammar rules is clearly quite
different from that of a program-modifying system, and
there is empirical evidence to suggest that such an
approach may be more scalable for at least a limited set
of problems [19,21]. One example of a system that uses
production rules to evolve hardware is [9]. Here rules
were evolved to generate hardware description language
(HDL) descriptions of circuits. It is an interesting
approach that has the potential to evolve extremely large
circuits, albeit at a very high-level abstraction that leaves
little room for low-level hardware innovations.

Many of these systems are based around class of
production rules called Lindenmayer systems (L-
systems), which were proposed specifically to model
plant development [22]. This class of systems is defined
by the parallel application of the complete set of rules at
each rewriting timestep, rather than the sequential
application used by more traditional production rule
systems [23]. Such an approach models the parallel
division of cells in nature more closely. Thus L-systems
achieve the complexity, iteration and recursion inherent
to hierarchical mapping systems, that has been identified
as a key component of biological development. In light of
this, they have been applied to a number of evolutionary
design problems [24,25] and have been proposed for
evolving circuits [1,26]. A system designed specifically to
evolve circuits have recently been reported [7]. However

the results do not provide much insight into their
viability for large circuit design problems owing to their
preliminary nature. Another recent approach of
particular interest is the use of parametric context-free L-
systems (P0L-systems) that allow external environmental
parameters to guide development [24], unlike traditional
context-free systems. Work on these is at an early stage,
but this type of L-system looks promising.

A number of similar approaches have also arisen from
the study of biological systems. Some of the earliest
developmental systems used cellular automata (CA)
model the interaction between cells. The CA rules specify
how each cell should react to the states of the
surrounding cells. This sort of approach has many
similarities with context driven L-systems. However there
are some differences. First, the product of the rule
interaction is usually not a program to generate the
solution, but the solution itself. This models biological
systems more closely. Secondly, and perhaps most
importantly, CA is inherently driven by spatial context.
Several researchers have reported promising results using
CA-based biological techniques. For instance, de Garis
[27] used a CA model of biological development to
‘grow’ ANN architectures. However rather than evolving
the CA rules he used hand-coded rules, and evolved the
CA starting conditions. The use of CA to evolve
hardware has also been advocated by those at EPFL [28].
Our work focuses on this approach rather than a more
mathematically rooted L-system approach.

3. Differentiation-based Development

The first developmental system explored here aims to
model features of cellular differentiation in order to
generate circuits. Cellular differentiation is an aspect of
biological development exhibited by all Metazoan
organisms [29], and is one of nature’s key methods of
generating complex iterative structures. At the heart of
the differentiation process is DNA transcription.

Transcription from DNA involves the following steps
[30]. First a protein called RNA polymerase binds to a
site at the start of the gene sequence called the promoter.
Once bound, the RNA polymerase travels along the
sequence, generating the RNA. The rate at which genes
are transcribed (hence expressed) is controlled by the
presence of more proteins called transcription factors.
These are called activators or repressors, depending on
whether they increase or decrease the rate of gene
transcription. They work by binding to specific sequences
of DNA upstream of the gene, and then modulate the
ability of RNA polymerase to bind to the promoter.
Typically many transcription factors are needed to
stabilise the binding of RNA polymerase to the promoter.
All the transcription factors are proteins that are coded

for by other genes. Thus a dynamic network of gene
products specifies which genes are expressed.

3.1 The Rule Design

This interaction of genes and proteins has been
modelled in the developmental system presented here.
Proteins are modelled as binary state variables - they are
either present or not. The element corresponding to a
biological gene is a rule, and a chromosome is essentially
just a set of rules. An example rule is shown in Fig. 1.
Each rule has two parts, a precondition and a
postcondition. The precondition determines which of a
number of proteins are transcription factors for the rule,
i.e., which proteins must be present or absent for the rule
to be activated. The precondition of the example rule in
Fig. 1 codes for five proteins. (Five proteins were used in
all experiments reported here.) Within the precondition
each protein is coded by a two bit locus. If the protein
must be present for the rule to activate, the locus has the
binary value 11. In the example in figure 1, proteins A
and E are coded as 11. We can think of these proteins as
activators. If the protein must not be present for the rule
to activate, the locus has the value 00. (For instance
protein D in the example.) In this case we can think of
the protein acting as a repressor. If a protein is coded as
01 or 10, for instance proteins B and C in the example
below, they are “don’t care” terms where the protein has
no effect. The postcondition is simply a key to a lookup
table that determines the effect that gene expression has
on the phenotype. These can either generate a protein as
the example below does, or indirectly alter the structure
of the circuit as described sections 3.2 and 3.3. Protein
concentration is not modelled - a protein is either
generated or not, and in turn a protein is either detected
or not.

A present

11 10 01 00 11 0111001

(Don't Care)

D not present E present Generate protein BIf and and then

A EDCBProtein: Postcondition

Fig. 1. An example developmental rule.

With this model of transcription, developmental

modules can be formed through the dynamic network of
gene expression. It is up to evolution to generate
functional modules through the network if it so needs.
Each individual contains a fixed number of rules, but
evolution is free to evolve all the bits within the rules.
Therefore several rules may have identical preconditions
or postconditions, allowing for redundancy at the genetic
level. Genes are expressed at each of a series of
developmental timesteps. The effects of gene expression

can be split into two classes, those that generate more
proteins and those that affect the structure of the circuit,
as described below. The mechanism by which changes
are made to the circuit structure is based on the process
of cellular differentiation.

3.2 The Cell Design - Protein Development

To demonstrate iteration across space we modelled the
circuit design space as a cellular structure, consisting of a
number of identical functional units. The circuits were
evaluated using a Field Programmable Gate Array
(FPGA). As these consist of an array of identical
functional units called configurable logic blocks (CLBs),
it was decided that each cell to be evolved should map to
a distinct CLB. Each cell has five types of components -
inputs, function generators, outputs, a protein detector
and a protein generator. The protein detector records
what proteins are present in the cell’s environment at
timestep t. (If the majority of the neighbouring cells are
producing a protein, it is detected by the cell’s detector.)
This is achieved by querying the protein generators of the
surrounding cells. The protein generators simply record
what proteins will be produced by a cell at timestep t+1
through the activation of rules that have postconditions
corresponding to production of one of the proteins. The
interaction between protein generators and detectors is
shown in Fig. 2.

We can think of this as a type of environmental
interaction - there is an environment of cells and
proteins. A cell is affected by its context, the nature of the
surrounding cells, as a result of the protein interactions.

3.3 The Cell Design - Mapping to Virtex

The remaining three components of the cell are
functional - inputs, LUTs and outputs, and are based on
the Xilinx Virtex architecture [31]. Previous work used
the design shown in Fig. 3a. Each cell had four inputs,
which correspond to the four inputs of a Virtex LUT.
Each input could be connected to the cell output from the
north, east, south or west. However the Virtex CLB is
split into two slices, each containing two LUTs labelled
the F and G LUTs. To make better use of the hardware
the cell design was altered to incorporate two LUTs, each
with an independent output as shown in Fig. 3b. Each
cell maps directly to a Virtex CLB, and these cells are
arranged as an array to make the evolved area, as shown
in Fig. 3c. Where possible, the north, south, east and
west connections are each mapped to a manually selected
single line leading in one of these directions that can be
routed to the each of the four inputs. 1 The LUT outputs

1 For full details of lines used, contact the authors.

Functional Components

Present

Not Present

Present

Present

Protein Detector
?

?
?
?
?

Protein Generator
A:

E:
D:
C:
B:

If (A ∧ !B ∧ C) -> D
If (C ∧ D) -> D

If (A ∧ !B ∧ C) -> E

Functional Components

?

?
?
?
?

Protein Detector
?

?
?
?
?

Protein Generator

Not Present

��� ������� � 	 	

 � � � � � ��

� � � ��� � ���
�

��� � � � � ��� � � � �
� � � � � � � �

� � � � � �

� � � �
� � � � � � � � � � �

� � � �
 � �
����� !#"%$!'& ! (*) !,+�- "�$ +*. !0/ (& / (. !

1 ! . !) . +2$ & - / $! &�3 (%4 $�5 6 ! &87 / . 9 3 .) / (�:

"%$!) + (1 / . / + (&

;=< >@?BA#C A2D A%E F
G H E I J H E

G K L A I G A M
G N�O

F E A,P M
Q F G A

Q

R S TBU V�W X�Y
Z [Z2\ YZ�] U W ^ U _ Y `

A:

E:
D:
C:
B:

Functional Components

Present

Not Present
Present
Present

Not Present

Protein Detector
Not Present

Present

Present

Not Present

Not Present

Protein Generator
A:

E:
D:
C:
B:

Fig. 2. The protein cycle undergone by each cell.

are each mapped through four of the eight Virtex CLB
output multiplexers to single lines manually selected to
carry signals in the required directions without causing
contention with neighbouring outputs. The entire second
slice of the CLBs, and the carry logic and flipflops from
the first slice are not evolved.

As no registers are used, unclocked feedback loops
can occur between the LUTs of several cells. This
potentially allows for the evolution of circuits outside
conventional design spaces as the digital design rules of
synchrony have been relaxed. In addition no clock has
been provided. (Although the signal used to clock the
configuration and data transfer interface circuits pervades
the FPGA and may be sequestered by unconventional
means to allow synchronisation.)

3.4 Circuit Development

We have discussed how protein generation is controlled
by development, and how the functional elements of the
cell (the inputs, LUTs and outputs) map to the Virtex
architecture. Now we discuss how these functional
elements are controlled by development.

In the Virtex architecture, inputs from different
directions should not be routed to a given LUT input
concurrently. Because of this a rule postcondition cannot
be allowed to select an input source directly. Instead the
source of each cell’s four inputs is determined by a
competition between its eight possible inputs, two from
each of the four surrounding cells, as shown in Fig. 4. So
the only rule postconditions required to control input
selection are ones that increase the score of a particular
input in this competition. This totals 32 postconditions (4
inputs x 8 sources). The element with the highest score at
any timestep is selected as the current input. In the event

of a draw the winner is selected arbitrarily. The two
LUTs share the same four winning cell inputs.
The LUT functions are controlled by a related scoring
method, also again shown in Fig. 4. Postcondition keys
exist for each of the 32 P-terms (16 in each LUT). A
score of how many times a particular P-term
postcondition has been activated is kept. At any
developmental timestep the state of each LUT P-term
entry is determined by the value of the corresponding P-
term score. If the score is above a threshold value, the
LUT entry is set to true. If it is below a threshold value
the LUT entry is set to false. The threshold value for both
LUTs is set to the expected P-term score if a set of
random rules were fired. Thus it is dependent on the
number of proteins and rules used. Unlike the inputs, the
Virtex architecture allows each of the two outputs of the
cell to connect to all four output directions
simultaneously. Hence its configuration is dealt with in a
similar manner to the LUTs - i.e. a threshold value rather
than a competition. In this way the cell can be mapped to
the Virtex architecture at any point during its
development, using the Xilinx JBits API.

3.5 Experiments - Evolving Two Bit Adders

The evolution of adders has been well studied in the
past [32-35] and the adder design space is very well
understood, particularly in the digital domain. We have
suggested that one of the primary uses of development is
the learning of a bias that embodies a useful design
abstraction. It is known that this problem can be
described using such a design abstraction - as a
combinational circuit that makes no use of feedback or
memory. So while a naive evolutionary system working
at a low design abstraction may struggle to solve this

Inp 1

Inp 2

Inp 3

Inp 4

OUTLUT

G
OUTG LUT

F
OUTF LUT

Inp 1

Inp 2

Inp 3

Inp 4

CLB CLB

CLB CLB CLBCLB

CLB CLB CLBCLB

CLB CLB CLBCLB

CLB CLB

Fig 3a. The original developmental
cell. Dashed connections are fixed.

Fig 3b. The final developmental
cell. Dashed connections are fixed.

Fig 3c. An array of the final cells
each mapped to a Virtex CLB

problem (especially as the size of the problem is scaled),
if a suitable developmental process learns to incorporate
this abstraction into its bias it may be able to simplify its
search. (It may be the case that evolution does not find
this abstraction as useful as humans do, but it is a useful
starting point.) So we have focused on the evolution of
adders for our initial experiments. The experiments
presented here set out to evolve two bit adders with carry
using a genetic algorithm (GA).

 Fitness evaluation was carried out on a Xilinx Virtex
XCV400 mounted on an Alpha Data ADM-XRC PCI
card [36]. A 2x5 cell area of the chip was selected for
evolution using the current developmental system. This
area was selected to expose a similar reconfiguration area
as used successfully in [37].

Additionally a naive genotype/phenotype mapping
system was tested on the same problem using the same
circuit components. The naive 52 bit representation for
one cell is shown in Table 1. (The concatenation of 10
cells yields a naive chromosome length of 520 bits.)

For both systems, in order to prevent contention and
reduce noise, inputs and outputs on the edges of the
evolved area other than those specified by the problem
were forced off. The five cells on the west edge were
provided with five input signals of the two bit adder with
carry problem, A0, A1, B0, B1 and CIn, as their
eastbound signals. The task was to evolve a circuit that
mapped inputs to the three outputs Sum0, Sum1 and
COut in accordance with the two bit adder with carry
truth table. Fitness was measured as the total correct
output bits across all input combinations, which in this
case gives a maximum fitness of 96. The current
developmental system uses 5 distinct proteins. Hence
each rule precondition is coded in 10 bits. All circuit-
modifying rule postconditions can be coded in 7 bits. 80
rules are used, yielding 1360 bits for the rule section of
the chromosome. Initial protein states are also evolved.

A bit signifying the initial concentration of each
protein for each cell yields an additional 5x10 = 50 bits,
making a total chromosome length of 1410 bits. Each
individual was allowed to develop for 30 steps.

Table 1. Naive representation for the 2 bit problem.
Locus Component Bits (Representation)
0-2 Input 1 3 (GN,GS,GE,GW,

FN,FS,FE,FW)
3-5 Input 2 2 (GN,GS,GE,GW,

FN,FS,FE,FW)
6-8 Input 3 2 (GN,GS,GE,GW,

FN,FS,FE,FW)
9-11 Input 4 2 (GN,GS,GE,GW,

FN,FS,FE,FW)
12-27 GLUT 16 (16 P-terms)
28-43 FLUT 16 (16 P-terms)
44 Output GN on 1
45 Output GS on 1
46 Output GE on 1
47 Output GW on 1
48 Output FN on 1
49 Output FS on 1
50 Output FE on 1
51 Output FW on 1

These values have been chosen as the observed best
parameters during informal experimentation with a range
of settings.

The genetic parameters, held constant for both
representations followed earlier experiments to evolve a
two bit adders [37]. Two-member tournament selection
was used. A tournament selection pressure as described
by Miller [33] was also introduced, and set to 0.8, i.e. the
winner of each tournament was selected only with 80%
probability. One-point crossover and simple mutation
were used. The population size was set to 100 and the
mutation rate was set to an expected five mutations per
individual. The first generation of each run was
randomly generated. Evolution was halted after 2500
generations.

In order to ensure generalisation across any order of
input sequences, the order of sequence presentation to the
circuit under evaluation was randomised. The genetic
representation allows for circuits that may not generate
the same fitness when evaluated twice - the outputs may
exhibit dynamical variations unrelated to the inputs.

6

0
0

0

0
0 0

0

0

FN GN

FE
GE

FS GS

FW
GW

B Present

D Present

If D and !A then Inp2 -> West G-LUT
If B then Inp2 -> East F-LUT
If !C then Inp2 -> East F-LUT

0002
0 4 6 6

8
0

0 3 0
050

0002
0 4 5

8
0

0 3 0
040

If D and !A then G LUT -> P-term 15
If B then Inp2 -> P-term 1

2
0

0

0
1 0

0

0

FN GN

FE
GE

FS GS

FW
GW

G LUT G LUT

0000
0 0 1 1

1
0

0 0 0
000

G LUT

Apply
threshold=6

Input 2

Protein
Generator Find Max

Score
Input 2 =

East F-LUT

Input 2

Fig. 4. An input differentiates towards two possible sources, but the East F-LUT finally wins. Also a LUT

differentiates, and then is thresholded to yield its final function.
Although such circuits are not useful final solutions they
may contain valuable information about how to solve part
of the problem, or how to traverse the fitness landscape.
Because of this each individual was evaluated five times,
and its worst fitness selected.

Early results for both the developmental system and
the naive representation are shown in Table 2. Runs
using random search across the same number of
evaluations are also presented for both representations.

Table 2. Results from 5 evolutionary runs with and
without a developmental systems, & 5 random

searches with and without a developmental system.
System Mean Fitness

of Best Solns.
Std. Dev. of
Best Solns.

Best
Soln.

Developmental
Evolution 80.20 3.30 84

Naive Evolution 91.60 4.10 96
Developmental
Random Search 69.2 3.34 72
Naive Random

Search 63.4 1.34 64

The results show that the developmental system does
not evolve as fit solutions as the naive mapping system,
and unlike the naive system, it has not succeeded in
finding a fully functional two bit adder with carry. Note
the difference between the improvement in mean fitness
of the best solutions (bestf) as we move from random
search to the GA search. When using a naive
representation this increase is large. When using the
developmental system, this is much smaller. This
suggests that the reason for the low performance of the
developmental system is that it is not as evolvable as the
naive mapping system on the two bit adder problem. This
is not completely surprising, as there are some
disadvantages to this kind of system. Firstly, any
additional layer of mapping from genotype to phenotype

is likely to bring about increased epistatic interactions if
a phenotypic feature relies on the presence of more than
one gene product. In addition, although rule-based
systems provide an advantage in robustness through the
distribution of computation and the resultant possibility
for redundancy, the fixed lengths of the rules in this
system ensure that building blocks composed of more
than one gene product will have defining lengths of at
least two rules. Hence if the rule is long, they have a
fixed, and reasonably high, minimum probability of
disruption by crossover. But the most important
impediment to evolvability is that we are introducing
extra work for the GA by allowing it to search bias space.
This means that evolution must find a representation that
is evolvable before evolution can operate to find a
successful solution. The results suggest that at least for
this problem, evolution may not have done so before the
stopping conditions are reached.

Also random search on the developmental search
space outperforms the random search on the naive search
space by some margin. This suggests that even though
the developmental space is not as evolvable as the naive
system, the density of better solutions may be higher in
the developmental space than the naive space.

Despite lower mean fitnesses, the developmental
system did demonstrate significant results because of the
way it solved the problem. Fig. 5 shows various elements
of the best circuit discovered with the first run, in various
states of the development. The fully developed F-LUTs
for each cell are shown in Fig. 5a. Each LUT is
represented by a Karnaugh map (K-map), with white
representing a true state and black a false. Two different
K-map configurations can be identified, laid out in a
regular, symmetrical pattern. These are the kinds of
patterns one might expect to see if we had hand-designed
K-maps for a traditional ripple-carry adder. However in
this case the patterns have been created with a handful of
rules activated by the presence or absence of proteins. In

fact with such a set of rules it is possible to generate
patterns that repeat indefinitely if the number of cells
available to development were increased. This is
precisely what would be needed if we wished to design a
large ripple-carry adder. Hence here we see one of the
key advantages of generative processes in action - the
ability to generate large iterative structures. With this in
mind it could be argued that generating larger adders
would not tax evolution much more than our two-bit with
carry example. We anticipate that the ratio of best
evolved fitness to perfect fitness may increase as we move
to larger adders, because the proportion of the circuit
where symmetry must be broken to achieve a perfect
score (in this case the top and the bottom) is reduced.

The two distinct patterns shown in the final K-maps
suggest that the process has indeed differentiated the
cells, which were all originally identical in function, to
two different functions. We can corroborate this by
examining the development of the cell protein
concentrations. Fig. 5b shows the initial starting
conditions, where each horizontal stripe corresponds to
one of the proteins, a white stripe denoting the protein is
present in the cell. Little regularity can be picked out
amongst the plethora of different cell states. Fig. 5c
shows the final concentrations. Again two distinct states
can be seen. The distribution of these matches the two
distinct LUT functions shown in Fig. 5a. This reaffirms
the suggestion that the process of development has
differentiated all the cells into two distinct types, and no
other precursor cell types remain.

Fig. 5a F-LUTs
of the best

evolved adder
Fig. 5b Proteins

of the
undifferentiated

cells

Fig. 5c Proteins
of the final
differentiated

cells

4. Incorporating Aspects of Growth

One possible factor contributing to the evolvability of
the developmental system we discussed above is the
length of the rules. There were three possible methods of

reducing rule length. Firstly the precondition size could
be reduced, either by reducing the number of proteins, or
encoding the proteins in less than two bits each. Informal
experiments with the first cell representation suggested
that these options had little effect on the performance of
the system. Secondly the postcondition size could be
reduced, by reducing the number of postcondition keys.
To investigate this possibility, a new LUT development
representation was devised. The original development
system used a unique rule postcondition for each P-term
of each LUT. Hence 32 rules were needed for LUT rules
alone. This system had been selected to employ as little
bias as possible in the patterns of LUT P-terms that
development used. As rules had to fire many times before
a P-term became active, it also provided a mechanism for
gradual change in the state of the LUT, modelling
natural differentiation processes.

The new postcondition system more closely resembles
growth. Rules corresponding to individual P-term
activation were removed. Instead the LUT was modelled
as a K-map with only one active P-term at any given
time. Rules were introduced to change the active P-term
by moving it up, down, left or right by one step on the K-
map. A final rule sets the active P-term as true in the
final, developed circuit. (At developmental step 0 the
active P-term always begins at P-term 0.) An example
growth step is given in Fig. 6.

With these rules development can generate a function
by navigating the K-map, setting P-terms as it goes. The
reduction from 32 rules to 10 rules (5 for each LUT)
allow the complete set of postcondition keys to be coded
in six bits rather than the previous seven, reducing the
rule length by one bit to 16b and the chromosome length
from 1410b to 1330b. (Note that this system introduces
an initial bias towards functions represented by P-terms
set near the edges of a K-map, centred at P-term 0.) The
experiments to evolve two bit adders were repeated with
this change. The results are shown in the Table 3.

Table 3: Results from 5 runs of 2 bit adder evolution

with LUT growth rather than LUT differentiation
Mean Fitness of

Best Solns
Std. Dev. of Best

Solutions
Best Solution

Found
75.6 2.61 80.0

The results suggest that the introduction of the growth
system has resulted in a small drop in performance. (A t-
test revealed 97% probability that there was a significant
difference between the mean best fitnesses.) This
demonstrates that reducing the search space does not
necessarily increase performance - a more important
factor is the evolvability of the landscape as defined by
the biases we use for the search. Here the additional bias

10
0000

0 0 0 0
0
0

0 0 0
000

0000
0 0 0

0
0

0 0 0
000

If D then G LUT -> Move up
If B and !A then G LUT ->Move right

G LUT G LUT

0000
0 0 0

0
0

0 0 0
000

If !C then G LUT ->Set

G LUT

 Fig. 6. Two rules fire to move to P-term 13, then a rule fires to set it in the final K-Map

we have introduced does not seem conducive to discovery
of adder functions.

It is worth taking a subjective look at the patterns
generated by the two different systems. Fig. 7 shows K-
maps of the F-LUTs of typical circuits generated by both
systems. We see that the pattern for the differentiation
LUTs (Fig. 5a and Fig. 7a) there is no immediately
evident trend in the LUT patterns generated by various
individuals. In the case of the growth LUTs it is
interesting to note that more regular patterns are evident,
in particular continuous lines, as in the example shown
in Fig. 7b. These lines are quite easily generated through
the reuse of ‘move’ and ‘set’ rules throughout
development. Such patterns are typical of the K-maps
generated by the growth system. The ability to generate
regular patterns like these is potentially useful. For
instance if we wished to evolve logic that is to be mapped
to traditional gate technologies or gate-based
programmable logic, we may find that lower fanin, more
gate-efficient solutions evolve when using these types of
rules, as evolution will favour more minimised forms of
logic.

5. Conclusions

The problem of scalability is one of great importance if
evolvable hardware is ever to achieve much impact in the
real world. In this paper we have focused on the
approach of evolving developmental systems.
This approach allows evolution to search for good
inductive biases for solving large-scale complex problems
as it generates inherently modular, iterative structures

that exist in many real-world circuit designs, but at the
same time allows evolution to search innovative areas of
space where it sees fit. We have presented two
developmental systems that allow us to model the
features of modularity and local interaction in biological
developmental systems, but for an engineering use. The
results have demonstrated the ability of a developmental
process to generate coherent and useful patterns of
differentiated cells in circuit designs. There still remain
problems of evolvability of these systems, which current
work is addressing. Nevertheless, this work provides
some crucial steps towards applying the generative power
of development to solving large circuit design problems
in the future.

Fig. 7a. F-LUTs

generated by a typical
run of the differentiation-

based system

Fig. 7b. F-LUTs
generated by a typical
run of the growth-based

system

References

[1] P. C. Haddow and G. Tufte, "Bridging the Genotype-Phenotype Mapping for Digital FPGAs," Proc. of the 3rd NASA / DoD
Workshop on Evolvable Hardware, Pasadena, California, U.S.A., 2001.

[2] J. Koza, F. H. I. Bennett, D. Andre, and M. A. Keane, Genetic Programming III. San Francisco, California, U.S.A.: Morgan-
Kaufmann, 1999.

[3] A. Thompson, Hardware Evolution. London, U.K.: Springer Verlag, 1998.
[4] V. K. Vassilev and J. F. Miller, "Scalability Problems of Digital Circuit Evolution," Proc. of the 2nd NASA/DOD Workshop on

Evolvable Hardware, Los Alamitos, California, U.S.A., 2000.
[5] W. X. Liu, M. Murakawa, and T. Higuchi, "ATM cell scheduling by function level evolvable hardware," in Evolvable Systems:

From Biology to Hardware, vol. 1259, Lecture Notes in Computer Science, 1997, pp. 180-192.
[6] I. Kajitani, T. Hoshino, M. Iwata, and T. Higuchi, "Variable length chromosome GA for Evolvable Hardware," Proc. of the 3rd

Int. Conf. on Evolutionary Computation, Nagoya, Japan., 1996.
[7] P. C. Haddow, G. Tufte, and P. van Remortel, "Shrinking the Genotype: L-systems for EHW?," The 4th Int. Conf. on Evolvable

Systems: From Biology to Hardware, Tokyo, Japan, 2001.
[8] J. Torresen, "Scalable Evolvable Hardware Applied to Road Image Recognition," Proc. of the 2nd NASA/DoD Workshop on

Evolvable Hardware, Silicon Valley, USA., 2000.
[9] H. Hemmi, J. Mizoguchi, and K. Shimohara, "Evolving Large Scale Digital Circuits," Proc. of the Fifth Int. Workshop on the

Synthesis and Simulation of Living Systems, Nara, Japan, 1996.
[10] J. D. Lohn and C. S.P., "Automated Analog Circuit Synthesis Using a Linear Representation," Proc. of the 2nd Int. Conf. on

Evolvable Systems, Lausanne, Switzerland., 1998.
[11] T. M. Mitchell, Machine Learning. London: McGraw-Hill, 1997.
[12] D. Gordon and M. des Jardins, "Evaluation and selection of biases in machine learning," Machine Learning J., pp. 5-22, 1995.
[13] M. Murakawa, S. Yoshizawa, T. Adachi, S. Suzuki, K. Takasuka, M. Iwata, and T. Higuchi, "Analogue EHW chip for

intermediate frequency filters," in Evolvable Systems: From Biology to Hardware, vol. 1478, Lecture Notes in Computer
Science, 1998, pp. 134-143.

[14] R. Dawkins, "The evolution of evolvability," Proc. of Artificial Life: The Quest for a New Creation, Santa Fe, U.S.A., 1989.
[15] P. Marrow, "Evolvability: Evolution, Computation, Biology," Proc. of the 1999 Genetic and Evolutionary Computation Conf.

Workshop Program, Orlando, FL, U.S.A., 1999.
[16] G. Wagner and L. Altenberg, "Perspective--complex adaptations and the evolution of evolvability," Evolution, vol. 50, pp. 967-

976, 1996.
[17] P. D. Turney, "Increasing evolvability considered as a large-scale trend in evolution," Proc. of the Genetic and Evolutionary

Computation Conf. Workshop Program, Orlando, Florida USA, 1999.
[18] J. M. W. Slack, From Egg to Embryo, 2nd ed. Cambridge: Cambridge University Press, 1991.
[19] P. J. Bentley and S. Kumar, "Three Ways to Grow Designs: A Comparison of Embryogenies for an Evolutionary Design

Problem.," Proceeding of the Genetic and Evolutionary Computation Conf. (GECCO '99), Orlando, Florida USA,, 1999.
[20] F. Gruau, Neural Network Synthesis Using Cellular Encoding and the Genetic Algorithm Doctoral Thesis Ecole Normale

Supirieure de Lyon, 1994.
[21] S. Kumar and P. J. Bentley, "The ABCs of Evolutionary Design: Investigating the Evolvability of Embryogenies for

Morphogenesis.," Genetic and Evolutionary Computation Conf. (GECCO '99) Late Breakers, Orlando, Florida USA,, 1999.
[22] A. Lindenmayer, "Mathematical models for cellular interactions in development I Filaments with one-sided inputs," J. Theor.

Biol.., vol. 18, pp. 280-289, 1968.
[23] N. Chomsky, Syntactic Structures. The Hague: Moutin and Co., 1957.
[24] G. S. Hornby and J. B. Pollack, "The advantages of generative grammatical encodings for physical design," Proc. of the

Congress on Evolutionary Computation., Seoul, South Korea, 2001.
[25] E. J. W. Boers and H. Kuiper, Biological metaphors and the design of modular artificial neural networks Masters Thesis

Leiden University, 1992.
[26] H. Kitano, "Challenges of evolvable systems: Analysis and future directions," in Evolvable Systems: From Biology to

Hardware, vol. 1259, Lecture Notes in Computer Science, 1997, pp. 125-135.
[27] H. de Garis, L. S. Kang, Q. M. He, Z. J. Pan, M. Ootani, and E. Ronald, "Million module neural systems evolution - The next

step in ATR's billion neuron artificial brain ("CAM-Brain") Project," in Artificial Evolution, vol. 1363, Lecture Notes in
Computer Science, 1998, pp. 335-347.

[28] M. Sipper, Evolution of Parallel Cellular Machines: The Cellular Programming Approach. Heidelberg: Springer-Verlag, 1997.
[29] M. Kirschner and J. Gerhart, "Evolvability," Proc. of the National Acadamy of Science, vol. 95, pp. 420-8427, 1998.
[30] P. Raven and G. Johnson, Biology, 6th ed: McGraw-Hill Higher Education, 2001.
[31] Xilinx_Inc., Virtex 2.5 V Field Programmable Gate Arrays Data Sheet: http://direct.xilinx.com/partinfo/ds003.pdf, 2001.
[32] S. J. Louis and G. J. E. Rawlins, "Designer Genetic Algorithms: Genetic Algorithms in Structure Design," Proc. of the 4th Int.

Conf. on Genetic Algorithms, San Diego, CA, U.S.A, 1991.
[33] J. F. Miller, P. Thomson, and T. C. Fogarty, "Designing Electronic Circuits using Evolutionary Algorithms. Arithmetic Circuits:

A Case Study," in Genetic Algorithms and Evolution Strategies in Engineering and Computer Science: Recent Advancements
and Industrial Applications, D. Quagliarella, J. Periaux, C. Poloni, and G. Winter, Eds. London, U.K.: Wiley, 1997.

[34] C. A. C. Coello, A. D. Christiansen, and A. H. Aguirre, "Towards automated evolutionary design of combinational circuits,"
Comput. Electr. Eng., vol. 27, pp. 1-28, 2001.

[35] G. Hollingworth, S. Smith, and A. Tyrrell, "The Safe Intrinsic Evolution of Virtex Devices," Proc. of the 2nd NASA/DoD
Workshop on Evolvable Hardware, Palo Alto, CA, U.S.A., 2000.

[36] Alpha_Data_Parallel_Systems_Ltd., "ADM-XRC User Manual," 1.2 ed, 1999.
[37] T. G. W. Gordon and P. J. Bentley, "On Evolvable Hardware," in Soft Computing in Industrial Electronics, S. Ovaska and L.

Sztandera, Eds. Heidelberg, Germany.: Physica-Verlag, 2002, pp. To appear.

