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Abstract 
 
Mapping between genotype and phenotype using a model 
of biological development has been widely touted as a 
technique for evolving solutions to large, complex 
problems [1-3]. Here we describe two test-bed 
developmental systems for evolvable hardware problems, 
and compare each to a naive mapping system. We find 
that designing evolvable developmental systems is not a 
trivial problem, however early analysis of the evolved 
structures demonstrates the potential of the generative 
processes behind development. We also account for the 
differences between the results of the two systems, 
highlighting the importance of search space evolvability 
over size. 
 
 
1. Introduction 
 

As a problem becomes more complex it generally 
becomes increasingly difficult for an evolutionary 
algorithm (EA) to find acceptable solutions. This is 
known as the scalability problem, and has been reported 
by many evolvable hardware researchers as a serious 
issue that prevents the evolution of large, complex 
circuits [4-7]. Consequently finding mechanisms to 
increase the evolvability of such design spaces is crucial 
to furthering the field. 

Approaches to the scalability problem for evolvable 
hardware include Function Level Evolution [5], 
Cartesian Genetic Programming [4] and Incremental 
Learning [8]. A new approach that is gaining popularity 
is to use a model of biological development to map 
between genotype and phenotype. Not only does this 
allow evolution to search for useful representations, it 
can introduce the types of features that may aid 
evolvability, such as redundancy, modularity and local 
learning. In the field of evolvable hardware, Koza et al. 

[2], Hemmi et al. [9] and Lohn and Columbano [10] have 
pioneered use of such systems. However there is still 
much to be understood as to which features of 
developmental systems aid evolvability and scalability. 
This paper presents the progress we have made in 
developing test-bed developmental systems to explore 
evolvability and scalability, along with early results from 
two of these systems, and analysis that demonstrates their 
potential. 

The rest of the paper is structured as follows: section 
two discusses why development is such a good candidate 
for tackling the scalability problem. Section three 
describes and presents results from the first of two 
developmental systems discussed in this paper, along 
with analysis of the evolved circuits. Section four 
describes the second developmental system with results 
and analysis. Conclusions and plans for future work are 
given in section five. 
 
2. Improving Scalability 
 

In general a solution found by an inductive learning 
algorithm does not follow deductively from the 
information provided by the training data and the 
solution description. The set of additional assumptions 
needed to ensure that the solution follows deductively is 
called the inductive bias [11], and can be further 
categorised into representational bias and algorithmic 
bias [12]. Solving a learning problem is a matter of 
discovering and implementing a set of inductive biases 
that are suitable for the problem at hand. However this is 
often extremely hard.  

For example, one common approach to simplifying 
large evolvable hardware problems has been to reduce the 
search to a smaller space. The most common tactic is to 
choose primitives that impose a stronger bias to hopefully 
limit the search to useful areas of space (but do so 
without ruling out interesting areas of space).  This 



modification of the representational bias is the approach 
of function level evolution, which was developed at ETL 
[5,13]. The difficulty here is in choosing the correct 
structures to use in the representation. Any abstraction 
used makes assumptions about the type of problem. 
Therefore problem-dependent components may have to 
be developed again and again. Once this trade-off has 
been made, evolution is now limited to search the space 
of this abstraction, and any innovative solutions at the 
lower abstraction will be unattainable. In addition, 
modules must be chosen that provide a space tractable to 
evolution, otherwise we may be even worse off than 
before. It may be that in some cases abstractions that 
transform the space into something of the same size (or 
bigger) that is more tractable to evolution are more useful 
than abstractions that humans find useful, applied blindly 
to reduce the size of the space. However the problem of 
how to find and impose useful biases still remains.  

At this point let us consider how the complex features 
that we possess came about. Certainly it is extremely 
unlikely that such highly complex and well-optimised 
characteristics should arise overnight by chance. Many 
features tend to be simpler in organisms that evolved 
early in the history of life. For instance mechanisms of 
gene expression are far less complex, and seem to 
provide fewer avenues for evolvability in lower 
organisms. Such reasoning resulted in Dawkins [14] 
suggesting that evolvability itself has evolved. In more 
recent years this idea has become widely accepted 
[15,16], and experimental evidence of mechanisms to 
evolve evolvability have been demonstrated [17]. In 
terms of a learning algorithm, we can think of evolution 
as altering its inductive bias in the hope of finding one 
more appropriate to the current environment. So natural 
evolutionary systems not only possess biases that aid 
evolvability, but they possess the ability to shift their bias, 
thereby performing a meta-search of bias space. Hence 
they adapt their search, in addition to their phenotypes, 
to the prevailing conditions.  
 
2.1 Development 

 

Development can be thought of as one of biology’s 
representational bias search mechanisms. Biological 
development essentially maps genotype to phenotype 
through a complex process of regulated gene expression. 
As the developmental process itself results merely from 
expression of genes in a given environment, it is also 
under the control of evolution. But development’s basic 
mechanism, gene expression, allows the formation of 
complex gene regulatory networks (GRNs). These are 
networks of gene products that regulate the expression of 
each other. Such networks form modular, iterative and 
recursive patterns. When some of these gene products are 

involved in (or trigger) the formation of some biological 
function or structures, modular, iterative and recursive 
morphologies can arise [18]. Variation of genes within a 
module allows space to be searched in “leaps” involving 
this module, rather than the small steps of its 
components. If a master control gene is expressed 
multiple times, the module is reused [16]. Multiple 
iterations across time are possible through feedback loops 
within a module or between modules. 

Another form of iteration is across space. In 
multicellular organisms these processes occur in a 
distributed manner. The environment of particular cells 
results in different genes, hence perhaps different 
modules, being activated. This allows the generation of 
regular, iterative patterns across space as cells 
differentiate according to their environment. Recursive 
patterns across both space and time are also possible, 
through the same processes. 

In this way modules can impose a strong 
representational bias, biasing evolution to work with 
more complex primitives, but allowing re-use, iteration 
and recursion of these primitives, either across the 
structure of the organism, or across time to allow 
regulatory patterns to form. It is this re-use that is of 
most interest in any study that centres on improving 
scalability. A developmental module that is re-used more 
and more often in good solutions as the problem scales 
leaves less and less of the problem that has to be learned 
from scratch. So as problem complexity scales, finding a 
solution becomes increasingly easier relative to a system 
that cannot re-use modules. 
 

2.2 Development in Evolutionary Algorithms 
 

Developmental systems have been used in EAs since 
Dawkins [14] demonstrated that an explicit genotype-
phenotype map could easily be used to affect evolvability. 
He presented several handcrafted developmental systems 
that altered the morphology of geometrical patterns. He 
also noted that these mappings could be evolved, and 
were likely to be evolved in natural systems. Since then 
the idea of evolving a developmental system rather than 
the phenotype itself has been explored in a number of 
directions. Bentley and Kumar [19] noted that these can 
be divided into two approaches, explicit and implicit. 
 

2.2.1 Explicit Approaches 
 

Explicit approaches use a mapping that explicitly 
provides the properties of hierarchical modularity, 
iteration and recursion that make development so useful. 
Such is the approach taken by Cellular Encoding, which 
was first developed by Gruau to develop ANN 
architectures [20] but is perhaps better known through 



Koza et al.’s evolution of analogue circuits [2]. The basic 
technique is to evolve trees of developmental steps using 
genetic programming. Each developmental step, encoded 
as a GP node, explicitly codes for a phenotype 
modification. A fixed ‘embryonic’ phenotype is ‘grown’ 
by applying a tree of rules to it. Automatically Defined 
Functions can explicitly provide modularity, and 
Automatically Defined Loops/Iterations can provide 
iteration. Lohn and Columbano use a similar approach 
[10], but with a linear mapping representation which is 
applied to an embryonic circuit in an unfolding manner, 
rather than a circuit modifying one. 
 

2.2.2 Implicit Approaches 
 

The perhaps more elegant implicit approach uses sets 
of production rules rather than explicit mechanisms for 
generating modularity, iteration and recursion. The idea 
behind these is that complex objects can be defined by 
successively rewriting a symbolic description of a simple 
object according to the set of production (or rewriting) 
rules. A program to map between genotype and 
phenotype is specified by a start symbol (or set of 
symbols) for the rule rewriting process. Usually this is 
fixed and the grammar is evolved. Hence the fixed 
program is implicitly evolved though alteration of its 
grammar. The dynamics of an evolutionary system 
working on a set of grammar rules is clearly quite 
different from that of a program-modifying system, and 
there is empirical evidence to suggest that such an 
approach may be more scalable for at least a limited set 
of problems [19,21]. One example of a system that uses 
production rules to evolve hardware is [9]. Here rules 
were evolved to generate hardware description language 
(HDL) descriptions of circuits. It is an interesting 
approach that has the potential to evolve extremely large 
circuits, albeit at a very high-level abstraction that leaves 
little room for low-level hardware innovations.  

Many of these systems are based around class of 
production rules called Lindenmayer systems (L-
systems), which were proposed specifically to model 
plant development [22]. This class of systems is defined 
by the parallel application of the complete set of rules at 
each rewriting timestep, rather than the sequential 
application used by more traditional production rule 
systems [23]. Such an approach models the parallel 
division of cells in nature more closely. Thus L-systems 
achieve the complexity, iteration and recursion inherent 
to hierarchical mapping systems, that has been identified 
as a key component of biological development. In light of 
this, they have been applied to a number of evolutionary 
design problems [24,25] and have been proposed for 
evolving circuits [1,26]. A system designed specifically to 
evolve circuits have recently been reported [7]. However 

the results do not provide much insight into their 
viability for large circuit design problems owing to their 
preliminary nature. Another recent approach of 
particular interest is the use of parametric context-free L-
systems (P0L-systems) that allow external environmental 
parameters to guide development [24], unlike traditional 
context-free systems. Work on these is at an early stage, 
but this type of L-system looks promising. 

A number of similar approaches have also arisen from 
the study of biological systems. Some of the earliest 
developmental systems used cellular automata (CA) 
model the interaction between cells. The CA rules specify 
how each cell should react to the states of the 
surrounding cells. This sort of approach has many 
similarities with context driven L-systems. However there 
are some differences. First, the product of the rule 
interaction is usually not a program to generate the 
solution, but the solution itself. This models biological 
systems more closely. Secondly, and perhaps most 
importantly, CA is inherently driven by spatial context. 
Several researchers have reported promising results using 
CA-based biological techniques. For instance, de Garis 
[27] used a CA model of biological development to 
‘grow’ ANN architectures. However rather than evolving 
the CA rules he used hand-coded rules, and evolved the 
CA starting conditions. The use of CA to evolve 
hardware has also been advocated by those at EPFL [28]. 
Our work focuses on this approach rather than a more 
mathematically rooted L-system approach.  

 

3. Differentiation-based Development 
 

The first developmental system explored here aims to 
model features of cellular differentiation in order to 
generate circuits. Cellular differentiation is an aspect of 
biological development exhibited by all Metazoan 
organisms [29], and is one of nature’s key methods of 
generating complex iterative structures. At the heart of 
the differentiation process is DNA transcription. 

Transcription from DNA involves the following steps 
[30]. First a protein called RNA polymerase binds to a 
site at the start of the gene sequence called the promoter. 
Once bound, the RNA polymerase travels along the 
sequence, generating the RNA. The rate at which genes 
are transcribed (hence expressed) is controlled by the 
presence of more proteins called transcription factors. 
These are called activators or repressors, depending on 
whether they increase or decrease the rate of gene 
transcription. They work by binding to specific sequences 
of DNA upstream of the gene, and then modulate the 
ability of RNA polymerase to bind to the promoter. 
Typically many transcription factors are needed to 
stabilise the binding of RNA polymerase to the promoter. 
All the transcription factors are proteins that are coded 



for by other genes. Thus a dynamic network of gene 
products specifies which genes are expressed. 
 

3.1 The Rule Design 
 

This interaction of genes and proteins has been 
modelled in the developmental system presented here. 
Proteins are modelled as binary state variables - they are 
either present or not. The element corresponding to a 
biological gene is a rule, and a chromosome is essentially 
just a set of rules. An example rule is shown in Fig. 1. 
Each rule has two parts, a precondition and a 
postcondition. The precondition determines which of a 
number of proteins are transcription factors for the rule, 
i.e., which proteins must be present or absent for the rule 
to be activated. The precondition of the example rule in 
Fig. 1 codes for five proteins. (Five proteins were used in 
all experiments reported here.) Within the precondition 
each protein is coded by a two bit locus. If the protein 
must be present for the rule to activate, the locus has the 
binary value 11. In the example in figure 1, proteins A 
and E are coded as 11. We can think of these proteins as 
activators. If the protein must not be present for the rule 
to activate, the locus has the value 00. (For instance 
protein D in the example.) In this case we can think of 
the protein acting as a repressor. If a protein is coded as 
01 or 10, for instance proteins B and C in the example 
below, they are “don’t care” terms where the protein has 
no effect. The postcondition is simply a key to a lookup 
table that determines the effect that gene expression has 
on the phenotype. These can either generate a protein as 
the example below does, or indirectly alter the structure 
of the circuit as described sections 3.2 and 3.3. Protein 
concentration is not modelled - a protein is either 
generated or not, and in turn a protein is either detected 
or not. 
 

A present

11 10 01 00 11  0111001

(Don't Care)

D not present E present Generate protein BIf and and then

A EDCBProtein: Postcondition

 
Fig. 1. An example developmental rule. 

 
With this model of transcription, developmental 

modules can be formed through the dynamic network of 
gene expression. It is up to evolution to generate 
functional modules through the network if it so needs. 
Each individual contains a fixed number of rules, but 
evolution is free to evolve all the bits within the rules. 
Therefore several rules may have identical preconditions 
or postconditions, allowing for redundancy at the genetic 
level. Genes are expressed at each of a series of 
developmental timesteps. The effects of gene expression 

can be split into two classes, those that generate more 
proteins and those that affect the structure of the circuit, 
as described below. The mechanism by which changes 
are made to the circuit structure is based on the process 
of cellular differentiation.  
 

3.2 The Cell Design - Protein Development 
 

To demonstrate iteration across space we modelled the 
circuit design space as a cellular structure, consisting of a 
number of identical functional units. The circuits were 
evaluated using a Field Programmable Gate Array 
(FPGA). As these consist of an array of identical 
functional units called configurable logic blocks (CLBs), 
it was decided that each cell to be evolved should map to 
a distinct CLB. Each cell has five types of components - 
inputs, function generators, outputs, a protein detector 
and a protein generator. The protein detector records 
what proteins are present in the cell’s environment at 
timestep t. (If the majority of the neighbouring cells are 
producing a protein, it is detected by the cell’s detector.) 
This is achieved by querying the protein generators of the 
surrounding cells. The protein generators simply record 
what proteins will be produced by a cell at timestep t+1 
through the activation of rules that have postconditions 
corresponding to production of one of the proteins. The 
interaction between protein generators and detectors is 
shown in Fig. 2. 

We can think of this as a type of environmental 
interaction - there is an environment of cells and 
proteins. A cell is affected by its context, the nature of the 
surrounding cells, as a result of the protein interactions. 
 
3.3 The Cell Design - Mapping to Virtex 

 

The remaining three components of the cell are 
functional - inputs, LUTs and outputs, and are based on 
the Xilinx Virtex architecture [31]. Previous work used 
the design shown in Fig. 3a. Each cell had four inputs, 
which correspond to the four inputs of a Virtex LUT. 
Each input could be connected to the cell output from the 
north, east, south or west. However the Virtex CLB is 
split into two slices, each containing two LUTs labelled 
the F and G LUTs. To make better use of the hardware 
the cell design was altered to incorporate two LUTs, each 
with an independent output as shown in Fig. 3b. Each 
cell maps directly to a Virtex CLB, and these cells are 
arranged as an array to make the evolved area, as shown 
in Fig. 3c. Where possible, the north, south, east and 
west connections are each mapped to a manually selected 
single line leading in one of these directions that can be 
routed to the each of the four inputs. 1 The LUT outputs 
                                                
1 For full details of lines used, contact the authors. 
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Fig. 2. The protein cycle undergone by each cell. 
 

are each mapped through four of the eight Virtex CLB 
output multiplexers to single lines manually selected to 
carry signals in the required directions without causing 
contention with neighbouring outputs. The entire second 
slice of the CLBs, and the carry logic and flipflops from 
the first slice are not evolved.  

As no registers are used, unclocked feedback loops 
can occur between the LUTs of several cells. This 
potentially allows for the evolution of circuits outside 
conventional design spaces as the digital design rules of 
synchrony have been relaxed. In addition no clock has 
been provided. (Although the signal used to clock the 
configuration and data transfer interface circuits pervades 
the FPGA and may be sequestered by unconventional 
means to allow synchronisation.) 

 
3.4 Circuit Development 
 

We have discussed how protein generation is controlled 
by  development, and how the functional elements of the 
cell  (the inputs, LUTs and outputs) map to the Virtex 
architecture. Now we discuss how these functional 
elements are controlled  by development. 

In the Virtex architecture, inputs from different 
directions should not be routed to a given LUT input 
concurrently. Because of this a rule postcondition cannot 
be allowed to select an input source directly. Instead the 
source of each cell’s four inputs is determined by a 
competition between its eight possible inputs, two from 
each of the four surrounding cells, as shown in Fig. 4. So 
the only rule postconditions required to control input 
selection are ones that increase the score of a particular 
input in this competition. This totals 32 postconditions (4 
inputs x 8 sources). The element with the highest score at 
any timestep is selected as the current input. In the event 

of a draw the winner is selected arbitrarily. The two 
LUTs share the same four winning cell inputs. 
The LUT functions are controlled by a related scoring 
method, also again shown in Fig. 4. Postcondition keys 
exist for each of the 32 P-terms (16 in each LUT). A 
score of how many times a particular P-term 
postcondition has been activated is kept. At any 
developmental timestep the state of each LUT P-term 
entry is determined by the value of the corresponding P-
term score.  If the score is above a threshold value, the 
LUT entry is set to true. If it is below a threshold value 
the LUT entry is set to false. The threshold value for both 
LUTs is set to the expected P-term score if a set of 
random rules were fired. Thus it is dependent on the 
number of proteins and rules used. Unlike the inputs, the 
Virtex architecture allows each of the two outputs of the 
cell to connect to all four output directions 
simultaneously. Hence its configuration is dealt with in a 
similar manner to the LUTs - i.e. a threshold value rather 
than a competition. In this way the cell can be mapped to 
the Virtex architecture at any point during its 
development, using the Xilinx JBits API.  

 

3.5 Experiments - Evolving Two Bit Adders 
 

The evolution of adders has been well studied in the 
past [32-35] and the adder design space is very well 
understood, particularly in the digital domain. We have 
suggested that one of the primary uses of development is 
the learning of a bias that embodies a useful design 
abstraction. It is known that this problem can be 
described using such a design abstraction - as a 
combinational circuit that makes no use of feedback or 
memory. So while a naive evolutionary system working 
at a low design abstraction may struggle to solve this 
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problem (especially as the size of the problem is scaled), 
if a suitable developmental process learns to incorporate 
this abstraction into its bias it may be able to simplify its 
search. (It may be the case that evolution does not find 
this abstraction as useful as humans do, but it is a useful 
starting point.) So we have focused on the evolution of 
adders for our initial experiments. The experiments 
presented here set out to evolve two bit adders with carry 
using a genetic algorithm (GA). 

 Fitness evaluation was carried out on a Xilinx Virtex 
XCV400 mounted on an Alpha Data ADM-XRC PCI 
card [36]. A 2x5 cell area of the chip was selected for 
evolution using the current developmental system. This 
area was selected to expose a similar reconfiguration area 
as used successfully in [37]. 

Additionally a naive genotype/phenotype mapping 
system was tested on the same problem using the same 
circuit components. The naive 52 bit representation for 
one cell is shown in Table 1. (The concatenation of 10 
cells yields a naive chromosome length of 520 bits.) 

For both systems, in order to prevent contention and 
reduce noise, inputs and outputs on the edges of the 
evolved area other than those specified by the problem 
were forced off. The five cells on the west edge were 
provided with five input signals of the two bit adder with 
carry problem, A0, A1, B0, B1 and CIn, as their 
eastbound signals. The task was to evolve a circuit that 
mapped inputs to the three outputs Sum0, Sum1 and 
COut in accordance with the two bit adder with carry 
truth table. Fitness was measured as the total correct 
output bits across all input combinations, which in this 
case gives a maximum fitness of 96. The current 
developmental system uses 5 distinct proteins. Hence 
each rule precondition is coded in 10 bits. All circuit-
modifying rule postconditions can be coded in 7 bits. 80 
rules are used, yielding 1360 bits for the rule section of 
the chromosome. Initial protein states are also evolved. 

A bit signifying the initial concentration of each 
protein for each cell yields an additional 5x10 = 50 bits, 
making a total chromosome length of 1410 bits. Each 
individual was allowed to develop for 30 steps.  

Table 1. Naive representation for the 2 bit problem. 
Locus Component Bits (Representation) 
0-2 Input 1 3 (GN,GS,GE,GW, 

FN,FS,FE,FW) 
3-5 Input 2 2 (GN,GS,GE,GW, 

FN,FS,FE,FW) 
6-8 Input 3 2 (GN,GS,GE,GW, 

FN,FS,FE,FW) 
9-11 Input 4 2 (GN,GS,GE,GW, 

FN,FS,FE,FW) 
12-27 GLUT 16 (16 P-terms) 
28-43 FLUT 16 (16 P-terms) 
44 Output GN on 1 
45 Output GS on 1 
46 Output GE on 1 
47 Output GW on 1 
48 Output FN on 1 
49 Output FS on 1 
50 Output FE on 1 
51 Output FW on 1 

 
These values have been chosen as the observed best 
parameters during informal experimentation with a range 
of settings.  

The genetic parameters, held constant for both 
representations followed earlier experiments to evolve a 
two bit adders [37]. Two-member tournament selection 
was used. A tournament selection pressure as described 
by Miller [33] was also introduced, and set to 0.8, i.e. the 
winner of each tournament was selected only with 80% 
probability. One-point crossover and simple mutation 
were used. The population size was set to 100 and the 
mutation rate was set to an expected five mutations per 
individual. The first generation of each run was 
randomly generated. Evolution was halted after 2500 
generations. 

In order to ensure generalisation across any order of 
input sequences, the order of sequence presentation to the 
circuit under evaluation was randomised. The genetic 
representation allows for circuits that may not generate 
the same fitness when evaluated twice - the outputs may 
exhibit dynamical variations unrelated to the inputs. 
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Fig. 4. An input differentiates towards two possible sources, but the East F-LUT finally wins. Also a LUT 

differentiates, and then is thresholded to yield its final function. 
Although such circuits are not useful final solutions they 
may contain valuable information about how to solve part 
of the problem, or how to traverse the fitness landscape. 
Because of this each individual was evaluated five times, 
and its worst fitness selected. 

Early results for both the developmental system and 
the naive representation are shown in Table 2. Runs 
using random search across the same number of 
evaluations are also presented for both representations. 
 

Table 2. Results from 5 evolutionary runs with and 
without a developmental systems, & 5 random 

searches with and without a developmental system. 
System Mean Fitness 

of Best Solns. 
Std. Dev. of 
Best Solns. 

Best 
Soln.  

Developmental 
Evolution 80.20 3.30 84 

Naive Evolution 91.60 4.10 96 
Developmental 
Random Search 69.2 3.34 72 
Naive Random 

Search 63.4 1.34 64 
 

The results show that the developmental system does 
not evolve as fit solutions as the naive mapping system, 
and unlike the naive system, it has not succeeded in 
finding a fully functional two bit adder with carry. Note 
the difference between the improvement in mean fitness 
of the best solutions ( bestf ) as we move from random 
search to the GA search. When using a naive 
representation this increase is large. When using the 
developmental system, this is much smaller. This 
suggests that the reason for the low performance of the 
developmental system is that it is not as evolvable as the 
naive mapping system on the two bit adder problem. This 
is not completely surprising, as there are some 
disadvantages to this kind of system. Firstly, any 
additional layer of mapping from genotype to phenotype 

is likely to bring about increased epistatic interactions if 
a phenotypic feature relies on the presence of more than 
one gene product. In addition, although rule-based 
systems provide an advantage in robustness through the 
distribution of computation and the resultant possibility 
for redundancy, the fixed lengths of the rules in this 
system ensure that building blocks composed of more 
than one gene product will have defining lengths of at 
least two rules. Hence if the rule is long, they have a 
fixed, and reasonably high, minimum probability of 
disruption by crossover. But the most important 
impediment to evolvability is that we are introducing 
extra work for the GA by allowing it to search bias space. 
This means that evolution must find a representation that 
is evolvable before evolution can operate to find a 
successful solution. The results suggest that at least for 
this problem, evolution may not have done so before the 
stopping conditions are reached. 

Also random search on the developmental search 
space outperforms the random search on the naive search 
space by some margin. This suggests that even though 
the developmental space is not as evolvable as the naive 
system, the density of better solutions may be higher in 
the developmental space than the naive space. 

Despite lower mean fitnesses, the developmental 
system did demonstrate significant results because of the 
way it solved the problem. Fig. 5 shows various elements 
of the best circuit discovered with the first run, in various 
states of the development. The fully developed F-LUTs 
for each cell are shown in Fig. 5a. Each LUT is 
represented by a Karnaugh map (K-map), with white 
representing a true state and black a false. Two different 
K-map configurations can be identified, laid out in a 
regular, symmetrical pattern. These are the kinds of 
patterns one might expect to see if we had hand-designed 
K-maps for a traditional ripple-carry adder. However in 
this case the patterns have been created with a handful of 
rules activated by the presence or absence of proteins. In 



fact with such a set of rules it is possible to generate 
patterns that repeat indefinitely if the number of cells 
available to development were increased. This is 
precisely what would be needed if we wished to design a 
large ripple-carry adder. Hence here we see one of the 
key advantages of generative processes in action - the 
ability to generate large iterative structures. With this in 
mind it could be argued that generating larger adders 
would not tax evolution much more than our two-bit with 
carry example. We anticipate that the ratio of best 
evolved fitness to perfect fitness may increase as we move 
to larger adders, because the proportion of the circuit 
where symmetry must be broken to achieve a perfect 
score (in this case the top and the bottom) is reduced. 

The two distinct patterns shown in the final K-maps 
suggest that the process has indeed differentiated the 
cells, which were all originally identical in function, to 
two different functions. We can corroborate this by 
examining the development of the cell protein 
concentrations. Fig. 5b shows the initial starting 
conditions, where each horizontal stripe corresponds to 
one of the proteins, a white stripe denoting the protein is 
present in the cell. Little regularity can be picked out 
amongst the plethora of different cell states. Fig. 5c 
shows the final concentrations. Again two distinct states 
can be seen. The distribution of these matches the two 
distinct LUT functions shown in Fig. 5a. This reaffirms 
the suggestion that the process of development has 
differentiated all the cells into two distinct types, and no 
other precursor cell types remain. 
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4. Incorporating Aspects of Growth 
 

One possible factor contributing to the evolvability of 
the developmental system we discussed above is the 
length of the rules. There were three possible methods of 

reducing rule length. Firstly the precondition size could 
be reduced, either by reducing the number of proteins, or 
encoding the proteins in less than two bits each. Informal 
experiments with the first cell representation suggested 
that these options had little effect on the performance of 
the system. Secondly the postcondition size could be 
reduced, by reducing the number of postcondition keys. 
To investigate this possibility, a new LUT development 
representation was devised. The original development 
system used a unique rule postcondition for each P-term 
of each LUT. Hence 32 rules were needed for LUT rules 
alone. This system had been selected to employ as little 
bias as possible in the patterns of LUT P-terms that 
development used. As rules had to fire many times before 
a P-term became active, it also provided a mechanism for 
gradual change in the state of the LUT, modelling 
natural differentiation processes. 

The new postcondition system more closely resembles 
growth. Rules corresponding to individual P-term 
activation were removed. Instead the LUT was modelled 
as a K-map with only one active P-term at any given 
time. Rules were introduced to change the active P-term 
by moving it up, down, left or right by one step on the K-
map. A final rule sets the active P-term as true in the 
final, developed circuit. (At developmental step 0 the 
active P-term always begins at P-term 0.) An example 
growth step is given in Fig. 6.  

With these rules development can generate a function 
by navigating the K-map, setting P-terms as it goes. The 
reduction from 32 rules to 10 rules (5 for each LUT) 
allow the complete set of postcondition keys to be coded 
in six bits rather than the previous seven, reducing the 
rule length by one bit to 16b and the chromosome length 
from 1410b to 1330b. (Note that this system introduces 
an initial bias towards functions represented by P-terms 
set near the edges of a K-map, centred at P-term 0.) The 
experiments to evolve two bit adders were repeated with 
this change. The results are shown in the Table 3. 

 
Table 3: Results from 5 runs of 2 bit adder evolution 

with LUT growth rather than LUT differentiation 
Mean Fitness of 

Best Solns 
Std. Dev. of Best 

Solutions  
Best Solution 

Found 
75.6 2.61 80.0 

 
The results suggest that the introduction of the growth 
system has resulted in a small drop in performance. (A t- 
test revealed 97% probability that there was a significant 
difference between the mean best fitnesses.) This 
demonstrates that reducing the search space does not 
necessarily increase performance - a more important 
factor is the evolvability of the landscape as defined by 
the biases we use for the search. Here the additional bias 
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 Fig. 6. Two rules fire to move to P-term 13, then a rule fires to set it in the final K-Map 

 
we have introduced does not seem conducive to discovery 
of adder functions. 

It is worth taking a subjective look at the patterns 
generated by the two different systems. Fig. 7 shows K-
maps of the F-LUTs of typical circuits generated by both 
systems. We see that the pattern for the differentiation 
LUTs (Fig. 5a and Fig. 7a) there is no immediately 
evident trend in the LUT patterns generated by various 
individuals. In the case of the growth LUTs it is 
interesting to note that more regular patterns are evident, 
in particular continuous lines, as in the example shown 
in Fig. 7b. These lines are quite easily generated through 
the reuse of ‘move’ and ‘set’ rules throughout 
development. Such patterns are typical of the K-maps 
generated by the growth system. The ability to generate 
regular patterns like these is potentially useful. For 
instance if we wished to evolve logic that is to be mapped 
to traditional gate technologies or gate-based 
programmable logic, we may find that lower fanin, more 
gate-efficient solutions evolve when using these types of 
rules, as evolution will favour more minimised forms of 
logic. 
 
5. Conclusions 
 
The problem of scalability is one of great importance if 
evolvable hardware is ever to achieve much impact in the 
real world. In this paper we have focused on the 
approach of evolving developmental systems.  
This approach allows evolution to search for good 
inductive biases for solving large-scale complex problems 
as it generates inherently modular, iterative structures 

that exist in many real-world circuit designs, but at the 
same time allows evolution to search innovative areas of 
space where it sees fit. We have presented two 
developmental systems that allow us to model the 
features of modularity and local interaction in biological 
developmental systems, but for an engineering use. The 
results have demonstrated the ability of a developmental 
process to generate coherent and useful patterns of 
differentiated cells in circuit designs. There still remain 
problems of evolvability of these systems, which current 
work is addressing. Nevertheless, this work provides 
some crucial steps towards applying the generative power 
of development to solving large circuit design problems 
in the future. 
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