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1 Introduction 
 

In a single computer system, many of the threats to security can be countered by 
providing special hardware to prevent processes interfering with each other.  In 
communications systems such hardware protection mechanisms cannot be used and 
cryptographic techniques generally form the basis of any security system.  In these 
notes we shall first look at the threats in a distributed system, then look at the basic 
encryption mechanisms.  The way in which these are used is crucial to the security of 
the system and a number of techniques have been developed which will be discussed.  
Cryptographic systems depend on keys, and keys need to be distributed to 
participants.  This, coupled with key storage, is perhaps one of the hardest problems in 
communications security, and will also be discussed.  Finally, many systems involve 
multiple administrations which are autonomous.  Coping with them, whilst being 
sceptical about the trustworthiness of all parts of the system is of growing concern, 
and has been the subject of papers including [Birrel86]. 

2 Aspects of Security 
There are four broad areas of security in distributed systems: 

• Access Control 
• Security Threats 
• Authentication and  
• Notarisation 

2.1 Access Control 
In a simple client-server interaction the server may wish to limit access to resources.  
The standard techniques for doing this are: 

• Access Control Matrix 
• Capabilities 
• Labels 

The access control matrix is familiar from many systems, usually splitting the world 
into the “owner” of the resource, “friends” and “the rest of the world”.  The controls 
may be enforced on a limited number of operations e.g. Read, Write, Delete, Change 
Protection, etc.  Typically each resource will hold its access matrix close by, and the 
client must first prove its identity and be classified before access can be granted.  It is 
usually the client’s principal, i.e. the person who uses the client process, who is 
authenticated, but there may be more than one principal.  Extensions to such schemes 
also exist, eg. UNIX where the “set UID” bit is used to allow the creator/installer of a 
program to exert their (superior) authority even when the client process is executed by 
a less privileged person. 

Capabilities are unforgeable tokens which include indicators as to which operations 
can be performed on a resource.  In a single machine environment such tokens are 
never passed to process, they are kept securely by the operating system; only 
references to them are passed out.  In a distributed system they must be sent through 
the network, and it must not be possible to alter them without such changes being 
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detected.  Moreover, it is desirable that a process should be able to pass a reduced set 
of privileges to another process via a capability, preferably without having to consult 
the original issuer of the capability, i.e. it should be possible for ordinary processes to 
reduce access rights offered by capabilities but not to enhance them.  Techniques to 
do this exist. 

Labels are used in so-called mandatory security systems.  The techniques above are 
used in discretionary security systems.  Mandatory control is used in military and 
high security systems, where classifications such as low, medium, high and top 
security are used.  Information derived from that of other high security information 
would be classified high security, and only people/processes of suitable rank could 
access it.  A set of rules would exist to determine the classification of new documents 
derived from existing classified sources.  In such systems there is a tendency for all 
new information to eventually migrate to the highest classification, so de-
classification has to take place periodically. 

2.2 Security Threats 
Consider a client and server connected by a network link.  There are a number of 
threats posed by such links: 

• Passive Tap 
• Active Tap 
• Denial of Service 
• Faking 
• Replay 
• Traffic Analysis 
• Accidental Access 

The passive tap allows the interloper to observe traffic passing on the link.  Whilst it 
cannot change the observed messages, it may be able to use the information to gain 
improper access, e.g. if a password is observed it can later be used to log in as 
someone else.  Passive tapping is extremely easy on some networks, e.g. shared 
Ethernet. 

An active tap is where the interloper can interpose a process between the original 
client and server.  This may be purely for obtaining information such as passwords 
(“Trojan Horse”), or it may be as a means of changing messages, usually to the 
benefit of the interloper. 

An often forgotten threat is denial of service.  In some cases preventing access by a 
legitimate user can be a serious threat, so very persistent attempts to access a server, 
although they may be badly formed messages, may jam up the protocol handler and 
prevent legitimate access.  There was reputed to be such a case some years ago where 
bookings for a Bruce Springsteen concert jammed all the Washington telephone 
exchanges for several hours.  We were assured that there was no threat to key US 
Government lines. 

A process may fake messages and send them to a server.  These may be modeled on 
previous legitimate messages, with key fields changed.  If the fields are not changed, 
it is termed replay, and this may be valuable to the fraud if it can get, say, multiple 
payments into its bank account.  Audit trails are usually used in secure systems to 
record all transfers, but although the perpetrator may be known, it may be too late to 
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recover the loss.  In computer systems, audit trails need to record details of people, 
processes and machines, although the latter is very difficult on LANs. 

Traffic analysis is usually used to infer where and when a military engagement will 
take place.  This is based on the assumption that message activity will increase before 
a battle, and there will be a high traffic density on links to the front-line forces.  There 
are some analogous cases in commerce.  The usual defence is to keep all links heavily 
loaded with random (information-free) messages, and when messages need to be sent 
to transmit them in place of this background traffic. 

Accidental access can be caused by a number of failures, e.g. crossed lines, software 
faults etc.  Perhaps the most common on dial-up computer connections is the failure 
of a call to be completely disconnected by software, and for a subsequent caller to be 
communicated directly to the previous caller’s session without any formalities.  
Similar problems can occur in packet protocols. 

2.3 Authentication 
We have already identified the need for authentication, both of the client and the 
server.  Client authentication usually involves authentication of the principal.  Server 
authentication is important not only because of the threat of active tapping (Trojan 
Horse) but also because many RPC binders only offer hints as to where a service is 
located.  If it crashes, it may be replaced by another, totally different server, but the 
client needs to know of this mismatch so that the binder may be consulted again.  
Cryptography can be used for such purposes. 

A related term is message integrity, often called message authentication.  It is often 
important to be sure that a received message has not been tampered with in transit.  
Sometimes there is no requirement for secrecy of the message in transit;  sometimes 
there is.  A form of strong sumcheck based on cryptographic techniques is appended 
to messages for such purposes.  This is sometimes called a digital signature or a 
message authentication code (MAC). 

2.4 Non-Repudiation 
Sometimes an even stronger requirement exists, such that the sender cannot deny 
sending a message.  In such cases a notary is used to register messages such that 
neither of the participants can back out of a transaction and disputes can be resolved 
by presenting relevant signatures or encrypted text. 

3 Cryptography 
3.1 Ciphers 
The purpose of encryption or encipherment is to transform a message or plaintext into 
an apparently random pattern, the ciphertext, such that decryption of the ciphertext is 
extremely difficult unless an appropriate algorithm is known.  For a normal two-way 
cipher there will be encryption and decryption algorithms which are complementary;  
for a one-way cipher the encryption algorithm will have no known inverse, i.e. it is 
not possible to algorithmically convert ciphertext to plaintext. 
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An example of a simple two-way cipher is the Caesar cipher, where each letter of the 
message is shifted by a number of places, say 3; such shifts are considered to be 
circular.  To decrypt, a three place shift is applied in the opposite direction, e.g. 

    VENI  VIDI  VICI 

might become: 
    YHQL  YLGL  YLFL 

To maintain secrecy it is generally necessary to change the encryption algorithm 
periodically.  If this were done on a daily or hourly basis, a large number of 
algorithms might need to be agreed in advance.  For this reason, algorithms can 
usually be varied by a key, e.g. in the above example the key was 3 (one of a total of 
26 in this case). In a good system there will be a vast number of keys so as to make it 
difficult to break the code by exhaustive search of the key space, i.e. where the 
ciphertext is decrypted with every possible key until recognisable cleartext emerges. 

In the most common systems, known as Secret Key Cryptography (SKC), identical or 
closely related keys are used for both encryption and decryption.  Thus knowledge of 
both the algorithm and the key would breach security.  For this reason, although the 
algorithm may be made public it is vital that the keys be kept secret.  A typical key 
may be 56 bits long so even if the algorithm is public, exhaustive search will take 
11,000 years if the encipherment process only took 5 microseconds! 

An alternative is Public Key Cryptography (PKC).  The aim here is to develop a two-
key system where one key is used for encryption and another is used for decryption.  
Clearly the two keys are related, but the mechanism is designed such that knowing 
one key yields little clue to the other one.  More specifically, to compute the other key 
with the best of known algorithms would take hundreds or thousands of years.  If this 
is the case then one key can be published, the public key, and one key is kept by the 
owner, the personal or secret key.  When a message is sent it is encrypted with the 
public key of the recipient, and only the recipient can decrypt the message.  By an 
interesting twist this mechanism can also be used to prove the authenticity of the 
sender.  If the message is encrypted with the sender's personal key then anyone can 
decrypt it by virtue of the published public key.  If it decrypts properly, and the 
published keys are trustworthy then the originator has been authenticated.  A 
combination of the two techniques can be used to provide secrecy and authentication. 

3.2 Block and Stream Cipher Security 
One of the important encryption algorithms of recent years has been the, NBS Data 
Encryption Standard [Diffie77, FIPS74].  This secret key algorithm encrypts 64-bit 
blocks of data using a series of transformations and substitutions, and has a 56-bit 
key.  The 64-bit cleartext is thus transformed into a 64-bit block of cipher-text.  This 
is the electronic code-book (ECB) [FIPS81] mode of operation, where a given pattern 
is transformed into another pattern equivalent to a table lookup.  Under the same key, 
the same cleartext will always produce the same ciphertext.  The DES algorithm is not 
usually used in ECB mode because many messages have a similar format, e.g. bank 
transactions may have a fixed pattern of bits at the start equivalent to “Pay to account 
...”.  If ECB is used, a known plaintext attack may be used by a fraud to decrypt the 
text and possibly manufacture new messages.  

To overcome this Cipher Block Chaining (CBC) can be used.  Besides the encryption 
device, a 64-bit buffer is introduced into the system.  This is loaded with a previously 
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agreed value, the initialisation vector (IV), before the message is sent.  The first 64 
bits of the message are XOR-ed with the contents of the buffer, and the result is 
encrypted, sent to the recipient, and stored in the buffer.  The process is repeated for 
successive 64-bit blocks. Thus, each block depends on its predecessor (or the IV) and 
increases the difficulty of systematic analysis.  The recipient has a complementary 
scheme for decrypting, and must know both the IV and the key. 

There are two other modes of use of the DES algorithm.  The first, Cipher Feedback 
Mode (CFM), is rather similar to CBC except that it aims to encipher character 
streams, i.e.  8-bit characters arriving at arbitrary times.  Initially, the IV is encrypted, 
and this value is stored in a buffer (select buffer), which is selected 8 bits at a time to 
XOR with the character stream.  The outgoing coded characters are sent to the 
recipient and to the buffer which held the IV.  After the eighth character this buffer is 
re-encrypted.  Thus, there might be a slight delay after every eighth character. 

In the second stream cipher, termed Output Feedback (OFB), the output of the select 
buffer is fed back to the IV buffer directly.  The selected value is also XOR-ed with 
the message characters, but this output is only fed to the recipient.  Thus, the IV 
buffer, encryption, and select buffer form a random sequence generator, independent 
of the message contents.  Such a system is much faster, and transmission errors do not 
propagate, so might be useful for broadcasting of video etc. 

The above techniques are specified in the DES standards, but are applicable to other 
block ciphers. 

3.3 Encryption Algorithms 

3.3.1 DES Algorithm 
The Data Encryption Standard (which is not an ISO standard) is a block cipher, 
dealing with 64-bit data blocks encrypted under a 56-bit key.  The algorithm is 
sketched in the attached diagrams.  

3.3.2 RSA Algorithm 
The Rivest, Shamir and Adleman algorithm (RSA) [Rivest,78] belongs to a family of 
exponentiation ciphers.  They rely on the comparative ease of computing exponentials 
and the difficulty of computing logarithms.  They also use modular arithmetic, where 
the modulus is usually a very large number.  Thus, a message M may be encrypted to 
ciphertext C and decrypted back to M by application of: 

 C  =  ( M
e
)  mod N ....  (1) 

and, M  =  ( Cd)  mod N ....  (2) 

where e and d are the encryption and decryption keys respectively, and N is a large 
integer.  N is usually of the order of 500-1,000 bits in length. 

In order for us to appreciate the RSA approach we need a little mathematics first.  
Fermat's Theorem states that if p is prime and gcd(a,p)=l ("gcd" means greatest 
common divisor) then: 

 ap-1  mod p = 1 
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Thus if a and p have no factors in common, i.e. a is not a multiple of p, the above 
relationship holds. 

Euler's Generalisation states that for every a and n such that gcd(a,n)=l then: 

 aφ(n)  mod n = 1  .... (3) 

where φ(n) is the Euler Totient Function, i.e. the number of positive integers less than 
n which are relatively prime to n.  For n=10, φ(n) = 4, the relative primes are (1, 3, 7, 
9).  If p is prime, then φ(p)=p-1. 

For our encryption purposes we now take equations (1), (2), and (3), giving: 

 Mφ(n) mod n=1 

from  which  it  can  be  shown   that: 

 e * d  mod φ (n) = 1. .... (4) 

We are now in a position to construct a simple exponentiation cipher using the 
Pohlig-Hellman Scheme.  In this the modulus is a prime p, so that φ(p)=p-1.  Using 
p=11 and choosing the decryption key d to be 7, we get: 

 7  *  e  mod  10  =     1. 

Clearly, e=3 satisfies this.   If we now encipher a message, say M=5, we get: 

 C = 52 mod 11 = 4 

and decrypting it gives: 

 M = 42 mod 11 = 5. 

However, in order to operate this scheme both the sender and recipient need to know 
the modulus p, one needs e and the other one needs d.  However, knowing p means 
that φ (p) is also known (p-1), and given one key the other is then easily discovered 
using equation (4).  This is clearly not suitable for a public key scheme. 

The RSA approach is similar, but chooses the modulus n to be the product of two 
primes p and q. Thus: 

 n = p  *  q 

and, φ (n)  =  (p-1) * (q-1) 

If we take p=5 and q=7, we get n=35 and φ (n)=4*6=24.  Choosing a key d=11, e can 
be computed using equation (4), i.e.: 

 e  =  inv (11, 24) = 11. 

For a message M=2: 

 C  =  2   mod  35  =  2048  mod  35  =  18 

and, M  =  18    mod  35  =  2  

Of course, e and d do not usually turn out to be identical.  The security of this scheme 
compared to the Pohlig-Hellman one is as follows.  Both parties need to know n (but 
definitely not its factors), one needs to know e and the other needs to know d. 
However, unless the factors of n are known it is extremely difficult to determine φ (n) 
and thus to determine the other key from the one in your possession.  The difficulty of 
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factorising integers is related to the time taken to compute discrete logarithms, for 
which the fastest known algorithm takes of the order: 

 T  =  O (exp (sqrt (ln (n) . ln (ln (p) ) ) ) 

For a 200-bit value of p at one step per microsecond factorisation might take about 
two to three days, while for a 200-decimal digit key (664 bits) it would take several 
billion years.  It is, however, relatively easy to prove that a number is prime in a short 
space of time so constructing n from constituent primes is easy. 

3.4 Breaking Ciphers 
There is only one unbreakable form of encryption, known as the one-time-pad.  Both 
parties in the communication have an identical long list of random values which they 
use in sequence to encode the data units being sent.  If the values are truly random, i.e. 
not generated by an algorithm, then the code is unbreakable. 

Other codes are based on algorithms, and so are, in principle, breakable.  They are 
usually designed to take either very long periods of time or large amounts of space to 
decipher.  The "brute force" approach is an exhaustive search.  Successive keys are 
tried on ciphertext until either the known plaintext or recognisable plaintext emerges.  
Even with fast encryption, a 56-bit key would take hundreds of years to break in this 
way.  A US study in the early 1980s estimated that by 1990 it might be possible to 
have a machine available to find a key within a day, but it would be of enormous cost, 
consume enormous amounts of power, and there was only a 10-20% probability that it 
could be built. 

If it is possible for the cryptanalyst to insert some plaintext into the system and 
observe the ciphertext, this may provide a basis for finding the key.  Such attacks are 
known as chosen-plaintext attacks. 

Other attacks can be made on the basis of the forms of communication.  For example, 
if only two messages were ever transmitted e.g. financial shares rising or falling, it 
would not take much to detect their encodings.  Clearly the key needs to be changed 
for every message, or some other form of whitening is needed. 

4 Techniques 
4.1 Passwords 
Passwords, pass phrases and personal identification numbers (PINS) are the major 
means of authenticating users of computing equipment.  Passwords illustrate the point 
that system security not only depends on good algorithms, but also good operational 
practice.  However passwords are stored in a computer system it is unwise to choose:- 

a) a short password 
b) an easily predicted one (e.g. spouse's name) 
c) one from a very small character set (e.g. telephone number). 

NIST have produced guidelines identifying 10 characteristics which need to be 
carefully considered in designing a password system [FIPS112] which include: 

• length 
• character set 
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• lifetime 
• source, i.e. user or administrator generated 
• ownership, preferably individual 
• distribution 
• storage 
• entry e.g. keyboard, display, possibility of being overlooked 
• etc. 

Storage and transmission can pose problems.  Many systems now use a one-way 
encryption function for storage of passwords (e.g.  UNIX), and the checking program 
takes the cleartext password and encrypts it before comparing with the stared value.  
The benefit of such an approach is that no special security needs to be applied to the 
password file because decryption is "impossible".  Nonetheless, exhaustive search 
techniques can be used, hence the need for careful management of passwords. 

Where passwords need to be transmitted on insecure media, neither the cleartext nor 
the one-way enciphered form is safe: in one case an observer could see the password, 
in the other the enciphered password is freely available in a file, so a system using it 
via a link is totally insecure.  Transmission of passwords requires them to be further 
encrypted while in transit. 

4.2 Capabilities 
In an object-based system access control might be by capabilities which contain some 
form of object identification, a bit map of the allowed operations, and a random 
component which is denied from the bits in the capability.   If this is to be secure, the 
algorithm for generating the random component must be kept secret.    A public 
algorithm may be used if the random component (which acts as a means of detecting 
improper changes) is generated from the other components and a key kept by the 
server.  Since the server generates and checks capabilities before using them there is 
no difficulty of key distribution.   This solution is cumbersome in distributed systems, 
since whenever a client wishes to pass on a restricted capability to another process, it 
must make a request of the server to manufacture the new capability, involving a 
network request. 

Mullender and Tanenbaum [Mullen84] have proposed an interesting scheme using 
only one-way cryptography to overcome this. In the simplest case where all rights are 
granted the scheme is similar to that above, i.e. the server key is used to encrypt the 
constant fields of the capability.     This is stored in the check (random) field, and is 
also saved by the server for future reference.  For each bit in the rights field, Ri, there 
is a corresponding one-way algorithm, Ai.   In order to reduce the rights by Rj, the 
appropriate rights bit is cleared, and the algorithm is applied to the check field.  
Clearly applying the algorithms must be commutative, i.e. 

Ai (Aj(X)) = Aj(Ai (X)) 

so that rights can be diminished in any order to yield the same value in the check 
field. 

With this scheme it is possible for all machines to have an agreed set of Ai, and for 
clients to reduce the rights before passing the capabilities to others, without recourse 
to the issuing server. 
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4.3 Cryptographic Sealing 
The capability scheme above is suitable where an object-oriented approach is being 
used, i.e. we are trying to prevent access to objects by limiting access to the legal 
functions.  An alternative approach was suggested by Gifford [Gifford82]  to deal 
with access control to data items.  Rather than enforcing access control by active 
means close to where the item is stored, it is cryptographically sealed, and made 
freely available to anyone.  However, keys are distributed only to legitimate users.  
Let us look at how this might be achieved.  We shall use the notation: 

{x}k  

to mean that the plaintext x has been encrypted with the key k, this being our basic 
"sealing" operation.  To unseal x the decryption algorithm is applied with key k. Thus 
in the simplest case the data is sealed into Sx, i.e. 

Sx = {x}k 

and only possessors of key k can access it. 

An indirect key I can be made as follows: 

I = { k1 } k2 
 Sx = { x }k1 

Thus, to unseal Sx it is first necessary to unseal I to obtain k1.  Only possessors of k2 
can do this.  Indirect keys allow more powerful sealing to be performed.  For 
example, if it is desired to seal x so that either k1 or k2 can unseal it then two indirect 
keys can be used: 

I1  =  {k} k1 
 I2  =  {k} k2 
 Sx =  {x}k 

A logical AND functional can be achieved by double sealing of data (or an indirect 
key), e.g. 

I  = {{k} k1} k2 
 Sx = {x}k 

In an ideal case the double encryption would be commutative so that sealing or 
unsealing could be applied in any order. 

Clearly access control mechanisms can be built using this technique and it is ideal for 
read access.  However, there are two problems which need to be dealt with: 

• key distribution 
• update access 

Key distribution is a problem because keys may be compromised and it is necessary 
to distribute a new key to legitimate users.  The free read-access that this system uses 
does not work so well with updates.  If all users can freely overwrite files, interlopers 
can replace data items with garbage and at least deny others the legitimate service.  
With an asymmetric cipher such as a public key system it would be possible to give 
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some users both read and write access by giving them both keys, and to give others 
only read access by providing them with only one of the keys.  However, an 
additional mechanism is needed to prevent unauthorised overwriting of the data by 
non-key holders. 

4.4 Authentication 

4.4.1 SKC Approach 
Let us suppose that a client, A, wishes to prove its authenticity to a server, B, and also 
wishes to satisfy itself that B is not a Trojan Horse.  The normal scheme for this is due 
to Needham and Schroeder [Needha78] and includes a trusted authentication server, 
AS.  Before data is transferred between A and B a dialogue of the following form is 
needed; we shall deal with SKC first. 

1. A → AS: A, B, Ia 

2. AS → B: {Ia, B, Kc, {Kc, A} Kb} Ka 

3. A → B: (Kc, A) Kb 

4. B → A: (Ib) Kc 

5. A → B: {f(Ib)} Kc 

The client sends message 1 to the AS  in clear  text.  This message  can  be intercepted 
and replayed, and Ia is included to prevent frauds. Ia and Ib are called nonces and are 
integers which are only used once, so replay of previous copies of message 2 will 
serve no purpose.  The components A and B in the message are essentially the 
identifiers of the relevant principals at the client and server, so A may be the name of 
the client's user, and B may be the server’s name. 

The authentication server is trusted and contains the keys of all principals.  Thus it can 
generate messages sealed with such keys, and only the relevant principal can unseal 
the message.  Message 2 is sealed so that only the client can unwrap the outer seal to 
reveal Ia, B, and Kc.  The remainder is sealed for "the eyes of B only".  At this point 
the client checks that the values for Ia and B match those of the request and if so it 
picks up the session or conversation key Kc for later use.  The remainder of the 
message is sent to the server as message 3. 

When message 3 arrives the server can unwrap it and can obtain the name of A and 
the session key.  The name of A is included in the wrapping in case a Trojan Horse 
diverted the message.  By using the unwrapped return address rather than the one in 
the protocol packet header obvious frauds can be minimised. 

The server now sends a message (4) back to the client containing a nonce encrypted 
with Kc.  To prove that A is A it returns a message with a simple transformation of Ib, 
e.g. Ib-1, also encrypted.  Only the possessor of Kc would be able to do this thus 
proving its identity.  Client and server may now exchange data encrypted with Kc. 

The reason for the session key is that there is potential for key discovery every time 
the key is used.  Thus the personal keys of users are only used to distribute the session 
keys to each party.  Thereafter the session key is used.  For each interaction a different 
session key may be used for the same reason, i.e. session keys will be changed at 
irregular intervals. 
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The above scheme can be extended to multiple authentication servers, for cases where 
client and server may be in different administrations.  In such cases one AS may know 
the key of the client, another may know the key of the server.  We assume that the 
ASs have already established a secure channel using the session key, Kas.  The 
protocol would be: 

1. A → AS1:   A, B, Ial 

2. AS1 → AS2:   {Kc, A, B, Ia2, A}Kas 

3. AS2 → AS1:   { {Kc, A}Ka, Ia2, A}Kas 

4. AS1 → A:   {Ial, B, Kc, {Kc, A}Kb } ka 

then, as before.  Note that to the client and server this protocol is indistinguishable 
from the single authentication server case.  Note also that AS1 chooses a conversation 
key and passes it to AS2 which seals it with B's key.  Thus, AS2 does not need to trust 
AS1 with B's key.  However, AS1 does have to trust AS2 not to disclose the 
conversation key.  Different nonces are used for the interactions between A and AS1, 
and between ASI and AS2 to minimise the potential for faking. 

4.4.2 PKC Approach 
The scheme for a single AS using public keys is as follows: 

1. A → AS: A, B 

2. AS → A: {PKb, B}SKas 

3. A → B: {Ia, A}PKb 

4. B → AS: B, A 

5. AS → B: {PKa, A)SKas 

6. B → A: {Ia, Ib}PKa 

7. A → B: {Ib}PKb 

Data phase: 

a) A → B: {  {Mab}SKa  }  Pkb 

b) B → A: { {Mba} SKb}PKa 

Messages 1, 2, 4 and 5 are merely to obtain the public key of the other party.  The 
reason for encryption is not for secrecy, since they are public keys, but for 
authentication, i.e. proving that they did actually come from the authentication server 
whose public key is widely and unforgeably published.  Other than that the protocol is 
straightforward.  Double encryption is used in the data phase to both authenticate and 
seal messages. 

4.4.3 Asynchronous Communication 
The above cases of authentication have been synchronous systems in that a dialogue 
was possible in order to establish to their mutual satisfaction that A and B were 
authentic.  In some cases e.g. electronic mail systems, this is not possible because the 
delays may be very great or the parties may not be available simultaneously.  The 
scheme suggested by Needham and Schroeder is not the only possible one, but it is 
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workable.  It uses self-authenticating messages and timestamps. When A wishes to 
send to B it asks its As to create a conversation key and wrap it up in B's key, i.e.: 

Token = {Kc, A}Kb 

The body of the message is then sent along with this token, but encrypted with Kc in 
the following way: 

Seg1 = Token, {TS, S1, Mess1)Kc 
Seg2 = {S2, Mess2}Kc 
Seg3 = (S3, Mess3}Kc 
etc . 

where: TS is a unique timestamp added by A, 
 Mess1, Mess2 etc are the fragments of the message, 
 Seg1, Seg2, etc. are transport service packets, and, S1, S2, etc. are 
sequence numbers. 

All distinct messages originating from the source are given a unique TS, and the 
recipient keeps a table of TS values and corresponding sources for a limited time 
related to the expected transit time of messages through the network.  Any very old or 
replayed (duplicate) messages can thus be discarded. 

4.5 Message Integrity 
It is often required that a message be verified to be authentic, i.e. that it is intact and 
has come from the specified source.  Depending on the application it may not be 
necessary to encrypt the whole message, i.e. secrecy is not always required.  In order 
to prove authenticity of messages, a code or signature is attached to it, often known as 
a Message Authentication Code (MAC).  Such a MAC can be computed by applying 
an encryption algorithm such as DES to the message with a key unique to the sender, 
and choosing the most significant k bits of the last block of the ciphertext.  Such a 
check provides a probability of 2-k that the message is authentic.  k can be chosen to 
provide the required degree of integrity [Davies84, Juenem85].  If secrecy is also 
required the message may be encrypted again, with a different key. 

It is possible that under some circumstances changes may be made to the ciphertext 
which are normally undetectable when the message is decrypted.  To counter this a 
Manipulation Detection Code (MDC) is appended to the cleartext before 
encipherment.  This may be a simple CRC or similar function.  Changes to the 
ciphertext will produce an invalid MDC when the message is decrypted. 

An alternative approach is given in [Needha78].  There a one-way function F is 
applied to the message M to produce F(M), with significantly fewer bits than the 
original message.  A property of F must also be that it is difficult to find another 
message M', such that F(M') = F(M), i.e. it must be difficult to find another message 
with the same integrity code.  Since both the client and server (and the world at large) 
must know F, it is necessary to enlist the aid of a trusted third party to wrap the 
integrity code up securely.  The authentication server may be suitable, and the 
protocol might be: 
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1. A: Sig =  F (Mess) 

2. A → AS: A, {Sig}Ka 

3. AS → A: {A, Sig}Kas 

4. A → B: Mess, {A, Sig} Kas 

5. B: Bsig = F{Mess}  

6. B → AS: B, {A, Sig}Kas 

7. AS →  B: {A, Sig}Ka 

8. B: Bsig = Sig ==> Authentic 

Note that the signature is transported from A to B encapsulated in the authentication 
server’s key (Kas), and this token also verifies the sender's authenticity as well as the 
message's.   Kn and Ka are the private keys of the sender and recipient resp.. 

In the case of Public Key Cryptography the message from A to B would be encrypted 
thus: 

A → B:  {  { Mess } Ksa  } Kpb 

where Ksa  is the secret key of A, and Kpb is the public key of B. Thus, if B retains 
both Mess and {Mess}Ksa it can verify with the aid of a trusted third party that the 
message has not been tampered with and that it came from A. This is particularly 
useful where A might try to wriggle out of a contract made electronically. 

5 Key Distribution 
The previous section has dealt with some of the mechanisms for key distribution.  
Initial key distribution is often done by out-of-band means, e.g. using the postal 
service or face-to-face meetings.  Once initial keys have been distributed, it may be 
possible to use the data distribution mechanism (encrypted) to transmit new keys.  
However, weaknesses are usually human, and it is best to prevent users from ever 
being able to see their keys, or they may be tempted to send the clear text via 
electronic mail! 

Storage of keys must be similarly controlled, and it is wise to ensure that even inside a 
program keys are kept encrypted, so that if there is a program, machine, or file store 
crash, cleartext keys cannot be easily discovered in the ruins. 
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