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Abstract Fig. 1. First the user constrains some pixels to be fore- and

background using brushes (a). The segmentation by graph
Graph cut is a popular technique for interactive image cut (b) cuts off some of the legs of the insect. If we re-
segmentation. However, it has certain shortcomings. In duce the influence of the coherency term then the legs get
particular, graph cut has problems with segmenting thin segmented but the overall quality of the the segmentation is
elongated objects due to the “shrinking bias”. To overcome decreased (c). This shows the trade-off between data terms
this problem, we propose to impose an additional connectiv- and regularization, and it indicates that some form of co-
ity prior, which is a very natural assumption about objects. herency is crucial.

We formulate several versions of the connectivity constrai A |ternative segmentation models One approach to over-
and show that the corresponding optimization problems are ¢ome the shrinking bias is to add flux of some vector field
all NP-hard. _ ~_ tothe model [10, 25, 12, 15]. It has been shown to be ef-
For some of these versions we propose two optimizationsective for segmenting thin objects such as blood vessels in
algorlthms: 0] apr_actlcal heuristic technique which wdlca grayscale images [25]. The vector field was taken as the
DijkstraGG and (i) a slow method based on problem de- jmage gradient, which corresponds to the assumption that
composition which provides a lower bound on the problem. yhe opject is bright and the background is dark. However,
We use the second technique to verify that for some practi-extending this approach to arbitrary color images, which is
cal examples DijkstraGC is able to find the global minimum. 1o scenario considered in this paper, may be challenging.
To our knowledge it was not addressed so far. The difficulty
1. Introduction here is choosing the vector at each point and the sign of this

The task of interactive image segmentation has attractedveCtor' Imperfect vector field might lower the segmentation

a significant attention in recent years [10, 3, 18, 6, 24, 21]. quality. The issue of choosing the sign can be overcome In
) ) . ! " the level set framework [12], but at the expense of losing
The ultimate goal is to extract an object with as few user in-

teractions as possible. It is widely accepted that some prio global opt|mgl|ty. ) . )
on segmentations is needed for achieving this goal. Dif- One possible method to integrate flux into segmentation

ferent priors have a preference towards different types ofiS t0 optimize the ratio of flux over boundary length [10, 16].
shapes, as we discuss next. Thus, we are looking for the boundary with the highest aver-

Graph cut A very popular approach, which we also use age contrast. Arguably, this model has no bias toward_s any
in this paper, is based on graph cut [7, 3, 18]. It minimizes particular shape [10, 16]. However, the issue of choosing a

an energy function consisting of a data term (computed us-900d vector field for color images remains.

ing color likelihoods of foreground and background) and a  Other interesting approaches include the method in [21]
spatial coherency term. The latter term is the length of the Which imposes a prior on the curvature of the bound-
boundary modulated with the contrast in the image, there-ary, spectral techniques [22] and the random walker algo-
fore minimizing the energy with this term has a bias towards rithm [6]; results in [24] indicate that this method is slityh
shorter boundaries. (This behavior is sometimes refeored t more robust towards the shrinking bias.

asthe “Shrinking bias”.) In particular, itis hard fortheigh Our approach In this paper we propose a very differ-
cut approach to segment thin elongated structures. Cansideent way to solve the task of segmenting challenging objects

*Sara Vicente is supported by Microsoft Research Cambridgeigh Wi.th very thin, elongate'd' parts. V\'/e' bU”d'the_ coherency
its PhD Scholarship Programme. prior in form of anexplicit connectivity prior into the




(a) User input (b) Graph Cut (GC) (c) GC less coherency  (d)idaithl input (e) DijkstraGC

Figure 1.1 mage segmentation using graph cut with standard (b) and reduced coherency (c) based on input (a). Our new DijkstraGC
method (e) with additional user input (d).

model. Assume that the user has already segmented a paresults in [28] are shown for very different types of objects
of the object using graph cut [18] as in Fig. 1(b). In our in- .
teractive framework the user has to click only those pixels 2. Problem formulatlon o
which must be connected to the main object. As Fig. 1(d)  We use an energy function of the form which is standard
shows a few clicks are sufficient to obtain a satisfying resul for graph cut based image segmentation approaches [3, 18]:
(e). We believe that this is a new and very powerful user B
interface for segmenting challenging objects. E(x) = E;E”(xp) + Z Epq(p, 7q) @

We consider several versions of the connectivity con- e . (p.)ee
straint.  Unfortunately, the corresponding optimization Here (V,€) is an undirected graph whose nodes corre-
problems are all NP-hard, as we show. To enable the inter-s!oond to pixels.z;, € {0,1} is the segmentation label of
face shown in Fig. 1 we propose a heuristic algorithm which PiX€l p, where 0 and 1 correspond to the background and
we callDijkstraGC. On an abstract level it merges the Dijk- "€ foreground, respectively. We assume that the pairwise
stra algorithm and graph cut. Note that Dijkstra-like meth- ©€'MS Epq are submodular, i.e£,(0,0) + Epy(1,1) <
ods have already been used for extracting thin objects sucl‘EPq(O’ 1) + Epy(1,0).

as blood vessels [5], although without an explicit segmen- /S Statéd in the introduction, our goal is to minimize
tation. (A fast marching technique was used in [5], which function E(x) under certain connectivity constraints on the

can be viewed as a continuous analogue of the Dijkstra a|_segmentatiomc. Three possible constraints are formulated

gorithm for discrete graphs.) The key feature of our method P€lOW. In all of them we assume that we are given an

that distinguishes it from [5] is the addition of the graph cu Undirected grapi{V, ) defining the “connectivity” rela-
component. This allows to explicitly use the MAP-MRF tions between nodes M. This graph can be different from

formulation which proved to be very successful [3,18].  the graph(V, &) defining the structure of functiofi(x) in

We show that on some practical examples DijkstraGC is e?' (1). (In our expgnments we usually ta(l«%, £)tobean
able to find the global minimum. In order to verify this, we 8-connected 2D grid graph andf, ) to .b? 4 connegteq.)
developed a second (slow) technique basedua decom- Per_haps, the most natural connectivity constraint is the
position which provides a lower bound on the problem. following:
Related work Connectivity is automatically enforced in €O The sefz] corresponding to segmentatiarmust form
the classical “snakes” approach [11], since the segmenta- & Single connected component in the graph.7).

tion is represented by a simple closed contour. Han etal. [9] e denoted] to be the set of nodes with label 1, i.e.
proposed a topology preserving level set method which al- [z] = {p € V|, = 1}.) This constraint seems to be very
lows to specify more general topologies. A disadvantage of ysefy| for solving problems discussed in the introduction.
both techniques is that the objective is optimized via gradi However, minimizing function (1) under the constra@®

ent descent, which can easily get stuck in a local minimum. gnpears to be a very challenging task. This problem can be

a discrete graph-based formulation. After posing the prob- tarms (see below).

lem the authors of [28] proved an NP-hardness result and | this paper we will focus on different constrair@d

proposed to modify the maxflow algorithm in [4] so thatthe angc2. We will assume that the user specified two nodes

topology of the segmentation is preserved. However, de-¢ ; ¢ ) ConstrainC1 is then formulated as follows:
spite our best effort we were unable to compare it to our

approach for the task of segmenting thin objécté\ote, C1 Nodess,t must be connected in the segmentation set

[x], i.e. there must exist a path in the graph, F)
1We downloaded the source code (ver. 0.9) but did not succeap-i from s to ¢ such that all nodesg in the path belong to

plying it to our examples: sometimes user-provided hard caimsrwere the segmentationz:p =1.

not satisfied, or the segmented thin structure was cleartyiiect. Reim- . . . L
plementing the algorithm in [28] did not look straightfondarwe found We believe thaCl is very useful for interactive image seg-

that many details were missing. mentation. It suggests a natural user interface (Fig. 1). In




this interface node is assumed to lie in the largest con- (b) Suppose thaf C F. LetCy,...,Cr C V be the con-
nected component of the current segmentation. By clicking nected components of the $ef in the graph(V, F).
at pixelt the user would get a segmentation which connects Then there exists an optimal solutiari of PO such

t to the main object. We handle multiple clicks in an incre- that each componert; is either entirely included in

mental fashion. [x*] or entirely excluded. In other words, @; and
Unfortunately, minimizing (1) unde€1 is an NP-hard [x*] intersect ther; C [z*].

problem as well (see below). However, it appears that it is

easier to design good heuristic algorithms @i than for A proof is given in Appendix B. The theorem suggests

CO. In particular, if functionE(xz) has only unary terms  that as a first step we could run the maxflow algorithm to
then the problem witlC1 can be reduced to a shortest path mjnimize function (1) without any constraints and then con-
computation with a single source and a single sink and thustract connected components of the obtained:sletb single
can be solved in polynomial time (see section 3). nodes. However, it leaves open the most challenging ques-
Enforcing constrainC1 may result in a segmentation tijon: what to do if a minimum of function (1) does not sat-
which has a “width” of one pixel in certain places, which jsfy the desired connectivity constraint.
may be undesirable (see Fig. 7). One way to fix this prob-
lem is to allow the user to specify a parametavhich con- 3. Algorithms
trols the minimum “width” of the segmentation. Formally, The main algorithmic contribution of this paper is a
assume that for each noge= 1 we have a subse, C V. heuristic method for the proble®2 (and thus foP1 since
(This subset would depend a@n for example, for a grid  tne Jatter is a special case). This method, which weRall
graphQ, could be the set of all pixelg such that the dis-  jkstraGG is presented in section 3.1. Then in section 3.2 we
tance fromp to ¢ does not exceedl.) Using these subsets, propose an alternative method for a special case of problem
we define the following connectivity constraint: P1 based on the idea giroblem decompositionThe main
feature of the second technique is that it provides a lower
bound on the optimal value d¢¥1. We will use it for as-
sessing the performance of DijkstraGC: in the experimental
section it will help us to verify that for some instances Di-

C2 There must exist a path in the gragph, F) from s to
t such that for all nodeg in the path the subse®,
belongs tdz], i.e.z, = 1forq € Q,.

Clearly,C1is a special case &2 if we chooseQ, = {p} jkstraGC gives an optimal solution.
for all nodesp. . . .

Throughout the paper, we dend®, P1, P2 to be the -1 DijkstraGC: Merging Dijkstra and graph cuts
problems of minimizing function (1) under constrais, The idea of our first method is motivated by the Dijk-
C1, C2, respectively. The theorem below shows the diffi- stra algorithm [1]. Recall that the latter technique com-
culty of the problems; its proof is given in Appendix A. putes shortest distancégp) in a directed graph with non-

negative weights from a specified “source” nodéo all
Theorem 1. ProblemsP0, P1, P2 are NP-hard.PO and P2 other node9.
remain NP-hard even if the sétis empty, i.e. functiofl) Similar to the Dijkstra method, we will compute solu-
does not have pairwise terms. tions to the problenP2 for a fixed nodes and all nodes

Note, it was also shown in [28] that the following prob- P € V (only now these solutions will not necessarily be
lem is NP-hard: minimize function (1) on a planar 2D grid 9l0bal minima). The “distancell(p) will now indicate the
so that the foreground is 4-connected and the background €05t of the computed solution for the pair of nodesp}.
8-connected. It is straightforward to modify the argument  The algorithm is shown in Fig. 2. During the algorithm,
in [28] to show that the problem is NP-hard if only the 4- the current solutiore? for nodep with d(p) < +oo can
connectedness of the foreground is imposed (in other words e obtained as follows: usingA RENT pointers get path
PO is NP-hard even for planar 2D grids). P and corresponding sét = U,cp Q,, and then compute

To conclude this section, we will state some simple facts @ Minimum of function (1) under the constrait < [z].
about the relationship of problen®9-P2 and the problem Clearly, the obtained solutiow? satisfies the hard con-

of minimizing functionE () without any constraints. straintC2 for the pair of nodegs, p}.
The setS contains “permanently labeled” nodes: once

Theorem 2. Suppose that is a global minimum of func- & nodep has been added , its costd(p) and the corre-

tion (1) without any constraints. sponding solution will not change anymore.
Let us list some of the invariants that are maintained dur-
(a) There exists an optimal solutios” of P2 which in- ing DijkstraGC (they follow directly from the descriptian)

cludesz, i.e. [x] C [x*]. The same holds for the
problemP1 since the latter is a special case. 1 If d(p)=+o0 thenp#s and PARENT (p)=NULL.



initialize: S=@, PARENT (p)= NULL for all nodesp,
d(s) = min{ E(z) | Qs C [x]},
d(p) = +ocforpeV — {s}
whilet ¢ S andV — S contains nodeg with d(p) <+oo
e find nodep € V — S with the smallest distanaép)
eaddptoS
o for all nodesy € V — S which are neighbors af (i.e.
(p.q) € F) do
- using PARENT pointers, get pattP from s to ¢
throughp; compute corresponding sBt= U,.cp Q.
- compute a minimunz of function (1) under the cor
straintP C [z]
- if d(q) > E(x) setd(q):=E(x), PARENT (q):=p

Q. ={c,b,b'}, Qr = {t,b,b'}
Q,, = {p} for all other nodegp
(b) ProblemP2, no pairwise terms

(a) ProblenmP1

Figure 3.Suboptimality of DijkstraGC. Examples of problems
on which DijkstraGC give suboptimal results. Graphs shown in
the pictures are the connectivity grap¥, 7). Numberc, at
nodep gives the unary termz,, numberc,, at edge(p, q) gives
the pairwise termpq|z4 — x,|. Both in (a) and (b) DijkstraGC
will output solution{s,a,b,b’,t} or {s,a’,b,b’;t} with cost 7, while
the optimal solutior{ s,c,b,b’,t} has cost 6.

Figure 2.DijkstraGC algorithm.

12 If d(p) < 400 then PARENT pointers give the unique
pathP from s to p, andd(p) = min{E(z) | P C [x]}
whereP = U,.cp Q..

I3 If PARENT (q) = p thend(p) < d(q) < +oo.
14 d(p) < +oo for nodesp € S.

Theorem 3. If function E () does not have pairwise terms
and Q, = {p} for all nodesp (i.e we have an instance of
P1) then the algorithm in Fig. 2 produces an optimal solu-
tion.

A proof is given in Appendix C.
We also conjecture that the following statement holds:

Conjecture 1. Suppose thaR, = {p} for all nodesp,
graph (V, F) is planar, & = F, all pairwise terms have
the formE,, (z,, x4) = cpglzg — 25|, cpg > 0, and unary
terms for “inner” nodesp € V (i.e. nodes that do not border
the outer face) have no bias or a bhias towards label 1, i.e.
E,(1) < E,(0). Then the algorithm in Fig. 2 produces an
optimal solution.

If the conditions of theorem 3 are relaxed then the prob-
lem may become NP-hard, as theorem 1 states. Not surpris
ingly, DijkstraGC may then produce a suboptimal solution.
Two examples are shown in Fig. 3. Note that in these exam-
ples the “direction” of DijkstraGC matters: if we run it from
s tot then we obtain a suboptimal solution, but running Di-
jkstraGC fromt to s will give an optimal segmentation.

We now turn to the question of efficient implementation.
One computational component of the algorithm is finding
a nodep € V — S with the smallest value of(p) (same
as in the Dijkstra algorithm). We used a binary heap struc-
ture for implementing the priority queue which stores nodes
p € V — S with d(p) < +oo. The bottleneck, however, is
maxflow computations: DijkstraGC requires many calls to

initialize: S=@, PARENT (p)= NULL for all nodesp,
d(s) = min{E(x) | Qs C [x]},
d(p) = +ooforp eV —{s}
whilet ¢S andV — S contains nodeg with d(p) < +oo
find nodep € ¥V — S with the smallest distancgp)

e usingPARENT pointers, get pat® from s to p; com-
pute corresponding S&t = U,.cp Q.

compute a minimunme of function (1) under the cor
straint? C [x]

addpto S, setA = {p}, markp as “unprocessed”

while A has unprocessed nodes

- pick unprocessed nogé € A
- for all edgedp’, q) € Fwithq e V — S do
o if Q, C[x] setd(q) :=E(x), PARENT (q) =y,
addgq to S and to.4 as an unprocessed node
- markp’ as “processed”

for all nodesg € V — S which are neighbors ofl (i.e.
(p',q) € F for some node’ € A) do

pick nodep’ € Awith (p',q) € F

using PARENT pointers, get pathP from s to ¢
throughp’; compute corresponding sBt= U,.cp Q.
compute a minimurz of function (1) under the cor
straint? C [x]

if d(q)> E(x) setd(q):=E(x), PARENT (q):=p’

Figure 4.0ptimized version of the DijkstraGC algorithm.

the maxflow algorithm for minimizing function (1) under
the constraints:,, = 1 for nodesr € P. These computa-
tions are considered in the remainder of this section.

Optimized DijkstraGC  First, we will describe a tech-
nigue which allows to reduce the number of calls to
maxflow. Consider the step that adds ngd® the set of



permanently labeled nodé&s DenoteP to be the path from  for the original problem. The decomposition and the corre-
stop given by PARENT pointers, and leP = U,.cp Q,.. sponding lower bound will depend on a parameter vettor
Let us fix nodes irP to 1 and compute a minimum of we will then try to find a vecto# that maximizes the bound.
function (1) under these constraints. The segmentation set This approach is well-known in combinatorial opti-
[] will contain P, but it may include many other nodes mization; sometimes it is referred to as “dual decomposi-
as well. Then it might be possible to add several nodes totion” [2]. In vision the decomposition approach is probably
S using this single computation. Indeed, suppgpd®as a best known in the context of the MAP-MRF inference task.
neighborg € V — S, (p,q) € F, such thaQ, C [x]. The It was introduced by Wainwright et al. [26] who decom-
algorithm in Fig. 2 would setl(q) = d(p) = E(x) while posed the problem into a convex combination of trees and
exploring neighbors of. This would make the distance proposed message passing techniques for optimizing vector

d(q) to be the smallest among nodesir- S, so the node 0. These techniques do not necessarily find the best lower
could be the next node to be addedtoTherefore, we can  bound (see [14] or review article [27]). Schlesinger and
addq to S immediately. Giginyak [19, 20] and Komodakis et al. [17] proposed to

An algorithm which implements this idea is shown in use subgradient techniques [23, 2] for MRF optimization,
Fig. 4. Before exploring neighbors gf we check which  which guarantee to converge to a vedagrielding the best
nodes can be added &for “free”. The set of these nodes possible lower bound.
is denoted asl, clearly, it includes. After adding nodesin  Solving P1 via problem decomposition We now apply
Ato S, we explore neighbors ofl which are stillin) — S. this approach té1. To get tractable subproblems, we im-

Note that there is a certain freedom in implementing the pose the following simplifying assumptions. First, we as-
DijkstraGC algorithm: it does not specify which noges sume that the graptV, F) is planar, and® = F. Sec-

VY — S with the minimum distance to choose if there are ond, we assume that pixels on the image boundary are con-
several such nodes. It is not difficult to see that under astrained to be background, i.e. their label is 0. These as-
certain selection rule DijkstraGC becomes equivalentéo th sumptions are illustrated in Fig. 5. We argue that they rep-

algorithm in Fig. 4. resent an important practical subclass of the image segmen-
Flow and search tree recycling We used the maxflow tation task, and thus can be used for assessing the perfor-
algorithm in [4], and reused flows and search trees as de-mance of DijkstraGC for real problems. Note that the sec-

scribed in [13]. ond assumption encodes the prior knowledge that the object

In DijkstraGC we often need to fix/unfix nodes in differ- lies entirely inside the image, which is very often the case
ent parts of the graph in a rather chaotic order. We believein practice.
that this significantly reduces the effectiveness of flow and ~ We denoteC(x) to be the hard constraint term which
search tree recycling. Two ideas could potentially be usedis 0 if the segmentatior satisfies the connectivity con-
to overcome this drawback. The first one is based on the ob-straint C1 and the background boundary condition de-
servation that different “branches” are often independfent scribed above, and otherwi§gx) is +o0o. Some of these
a certain sense.This could allow to reorder maxflow com- hard constraints will also be included in functiéi{x) as
putations. To get the same type of result as DijkstraGC unary terms, namely the background boundary constraints
we would need to redo computations if we detect an in- and foreground constraints, = z; = 1, which follow
consistency, as in the Bellman-Ford label-correcting algo from C1. Our parameter vectof will have two parts:
rithm. The second idea is to maintain multiple graphs for § = (6*, 9%) where vectorg® and#? correspond to nodes
performing computations in different parts of the image, and edges of the grapfV, &), respectively ' < RY,
so that changes in each graph would be more “local”. It > ¢ R®). Given labelingz, let ¢(x) € {0,1}¢ be the
could also be feasible to store a small subset of the nodessector of indicator variables showing discontinuitiesagf
for each graph, increasing it “on demand”. Reduced mem-i.e. ¢,,(x) = |z, — z,| for an edg€gp, ¢q) € £. We will use
ory requirements could then allow to use a larger number ofthe following decomposition:

raphs. Exploring these ideas is left as a future work.
grapns. =xploring " E(x) + C(x) = E°(x | 0) + EX (x| 0) + E*(x | 0) (2)
3.2. Problem decomposition approach
In this section we propose a different technique for a spe-Where

cial case of problenPl; we will use it for assessing the E'xz]0) = E(x)—(x,0") —(6(x),0%) (2a)
performance of DijkstraGC. Bz |0) = C(z)+ (z,0") (2b)
Overview On the high level, the idea is to decompose EXz|0) = C(z)+ (¢(z),0°%) (2¢)

the original problem into several “easier” subproblems, fo

which we can compute efficiently a global minimum (or Let us discuss each subproblem in more detail.

obtain a good lower bound). Combining the lower bounds Subproblem 0 FunctionE®(zx | #) consists of unary and
for individual subproblems will then provide a lower bound pairwise terms. We will require this function to be submod-



ular; this is equivalent to specifying upper bounds on com-
ponentsQf,q. Since there are no connectivity constraints, we
can compute the global minimug () = ming: E°(x | 0)
using a maxflow algorithf

Subproblem 1 FunctionE!(z | 6) has only unary terms
and the connectivity constrair@l. As discussed in the
previous section, we can compute the global minimum
®!(0) = ming E*(x | 0) using, e.g. DijkstraGC algorithm.
Note, in this case it is essentially equivalent to the Dijkst
algorithm.

Subproblem 2 We will require vectorf? to be non-
negative. Instead, we compute a lower boupt{f) on
E?(x | 6%) using the following very fast technique. The
graphg = (V, ) is planar; thus, we can construct the dual
graphg* = (V*, £*) whose nodes are the faces(df, ).
GraphG* will be weighted: for each edgg, ¢) € £ in the
original graph there will be an eddg ;) € £* with weight
cij = Hz%q wherei, j € V* are the two faces that border the

edge(p, q)-

Figure 5.Solving P1 via problem decomposition. Blue pixels

at the image border have hard background constraints, nadées
have hard foreground constraints. Note tkat cover several pix-

els since before starting the algorithm we compute a minimum of
function (1) without the connectivity constraint and contract pix-
els connected te and tot to single nodes. (This is justified by
theorem 2.)

A possible segmentation satisfying all hard constraints is shown in
red. Its boundary in the dual grapfvV*,£*) is a simple closed
contour (shown in green) passing through face¥®in

s* andt* to be +2 and -2, respectively. Clearly, any integer
flow that sends two units fromto ¢ defines two paths from

We can assume without loss of generality that an optimal P to P; (an edge belongs to one of the paths iff it carries

segmentation is connected ¢h (If not, we could remove
all connected components except for the one contairing
andt; the hard constraints would still be satisfied, and the
cost would not increase.) Any connected segmentation
satisfying the hard constraint§'(x) = 0) defines an edge-
disjoint closed contour ig* whose interior contains and

t (Fig. 5). Furthermore, the cost of edges in the contour

equalsk? (z). Note that the contour cannot cross the image

border, therefore we can remove the outer face and incidenform E? (z,,, z,)

edges.

Let P, andP, be paths frons andt, respectively, to the
image border (Fig. 5).Ps andP; will be viewed as sub-
sets of edges of. Clearly, the contour corresponding to
x intersects bothP, andP; at least once. Thus, the con-
tour passes through one of the node®inand through one
of the nodes irP;, whereP; andP; are respectively the
subsets of faces iw* that border edges i, and P, on a

particular side, say left. Thus, we can obtain a lower bound ”"rq

on E?(x | §) by computing the minimum cost of two edge-
disjoint paths fron; to P;.

To solve the latter problem, we use a standard reduction

to the minimum cost network flow problem [1]. We con-
struct a graph with nodesg* U {s,t} wheres*, t* are two
new nodes. We add directed arcs freimto the nodes in

P with capacity 2 and cost 0, and arcs from the nodes in for components of vectof! andg,, = 2% —

some flow).

To compute a minimum cost flow, we used the successive
shortest path algorithm [1]. It works by iteratively rungin
the Dijkstra algorithm in a certain graph. Each iteration
sends one unit of flow, therefore there will be two Dijkstra
computations.

One possible extension of this framework is to allow di-
rected edges in subproblem 2, i.e. pairwise terms of the

= 912)(1(1 — Tp)Tg + 931)%(1 — Zq),
02,02, > 0. (The size of vecto#* would be doubled.)
This is left as a future work.
Maximizing the lower bound We described a lower
bound on problen®1 which can be written as

d(0) = °(9) + ' (0) + ¥%(h) < E(x) + C(x)

whered belongs to a convex s€t = {(6',6% |0 < 62, <
g2max1  Clearly, ® is a concave function of. Similar
to[19, 20, 17], we used a projected subgradient method [23,

2] for maximizing®(6). One iteration is given by
0 :=Pq(0+ \g)

wherePq, is the operator that projects a vectoi@ndg is
a subgradient ob(¢) computed as followsg, = z! — z°
#(x°) for

P; to t* with the same capacity and cost. For each edge components of vectdr. Here we denoted to be a global

(1,7) € £ we add two directed ard$ — j), (j — ¢) with
capacity 1 and cost;;. Finally, we set the flow excess of

2|nstead of restricting functio®° to be submodular, one could use the
roof duality approach [8] to get a lower bound &?(x | §). For sub-
modular functions this lower bound coincides with the glomahimum,
therefore the best lower bound on the original function caly become
better. We have not implemented this yet.

minimum of functionE®(-), z! to be a global minimum of
function E'(-) andz? € {0, 1}¢ to be the following vector:
zf;q = 1 iff the two shortest paths fro®> to P; that we
computed contain the eddg j) € £* corresponding to the
edge(p,q) € €.

An important issue in the subgradient method is the

choice of the step sizé. We used an adaptive technique



mentioned in [2]. We sex = o(®(0*) +§ — ®(9))/||g||? We now discuss how to integrate the DijkstraGC algo-
whereq is a constant (1 in our experiments}, is the best  rithm in an interactive system for image segmentation. Af-
vector found so far (i.e. the vector giving the best lower ter the user has provided scribbles a segmentation is com-
bound), and is a positive number which is updated as fol- puted with graph cut. As in [18] we iterate this process to
lows: if the last iteration improved the best lower bound further minimize the energy, where the segmentation of a
®(0*) then thery is increased by a certain factor (2 in our previous run is used to update color models. It can hap-
experiments), otherwise it is decreased by a certain factorpen that part of the foreground is missing or that the fore-
(0.95). ground region is disconnected. Then the user can specify
To conclude the description of the method, it remains with one click such a site that should be connected with the
to specify how to extract solutions from the subgradient  current result. DijkstraGC algorithm is used to compute the
method. In each iteration we used the minimaof sub- new segmentation. In this way the user only has to specify
problem 1 since it is guaranteed to satisfy the connectivity one node (from the two nodes necessary to run DijkstraGC)
constraintC1l. We maintain the solution with the small- since the other node is assumed to be contained within the
est energy computed so far, and output it as a result of thelargest connected component of the graph cut segmentation.
method. We have tested this approach bhimages with in total
4. Experimental results 40 connectivity problems, i.e. additional clicks for Dijk-

. . . straGC. Fig. 1 and 6 show some results, where we compare
In _the previous _se_ctlon we presented Dukstra_GC, a neWgraph cut, using scribbles only, with DijkstraGC, where the
"i"go”‘hm tha_\t minimizes energy (1.) under_certaln CONNEC- ;ser set additional clicks after obtaining the graph cuiltes
t!V|ty (_:onstralnts on the segme_ntauaz:w n th_|s sech_o NWE e see that usually graph cut based algorithms tend to cut
first discuss the advantages of including this algorithrmin a

: : for i , d q off thin elongated structures in the image. To retrievedhes
|r}teract|ve system orimage segmentanor_\ and second oMy structures using brush strokes can be very difficuttesin
sider the optimality properties of the algorithm.

they may only bel — 2 pixel wide. To obtain a satisfying
4.1. DijkstraGC for inter active ssgmentation result with DijkstraGC the user only needs some additional

The form of the energy (1) follows the approach of pre- clicks gnd the selectign qf a width parame@erw'hich is '
vious energy minimization techniques for interactive imag a considerable reduction in the amount of user interactions

segmentation [3, 18]. We defirig, (z,) as a data likelihood needed. For the last example in Fig_. 6 the r_1umber of _clicks
term and B, (z,, z,) as a contrast-dependent coherency N€cessary to extract the segmentation Wasince the thin
term. which are defined as follows. structures we want to segment (the legs of the spider) inter-

Hard constraints for background and foreground are sect each other and the path that DijkstraGC computes goes

specified in the form of brush strokes. Based on throwthe alr.eady segmented Ieg. .
this input a probabilistic model is computed for the  The running time presented in the last column of Fig. 6

colors of background ) and foreground &) us- includes all the clicks in the image, and it is, as to be ex-
ing two different Gaussian Mixture Models. E,(x,) pected, related to the number of clicks and image size. The
is then computed asE,(0) = —log(Pr(z,|Gg)) and optimized version of DijkstraGC (Fig. 4) improved the run-
E,(1) = —log(Pr(z,|GFr)) where z, contains the three time over the simple version (Fig. 2) from, e23.4 to 14.8

color channels of sitey (see details in [18]). The co- Seconds for the lastimage in Fig. 6.
herency term incorporates both an Ising prior and a contrast ~ Thewidth parameter § provides the possibility of spec-

dependent component and is computed as ifying a minimum desired width of the connection between
| | the two components. This parameter is not included directly
o ) . b .
B, (1, 0,) = 29— Tp ()\ T hvexp—Bllz — 2 2) in the formulation of the DijkstraGC algorithm. Instead we
(2 Ta) dist(p,q) \"* T 2P Bllzn =zl define for all nodeg a setQ, according tos. Ford = 1,

Q, = {p}; for § = 2, Q, is the set ofd nodes in & x 2
square that includes nogeand for§ = 3, Q, contains

1 p and its neighbors in a 4-connected grid. Fig. 7 shows
8= (2 <(z,, - zq)2>) , where (-) denotes expecta- that this parameter can be important in a practical system to
tion over an image sample (as motivated in [18]). A term avoid that the connectivity constraint is satisfied by a seg-
of this form encourages coherence in regions of similar mentation with a one pixel width only. Please note that in
color and also prevents isolated pixels to appear in thegenerab does not have to be the exact width of the structure
segmentation (see [3, 18]). In our experiments the numberwe want to segment. In fig. 7 setting the width parameter to
of components used fo&z and G were 5, we fixed 0 = 2 was sufficient to recover the thin leg which has a
A1 = 2.5 and ), = 47.5 (Which sums up t60, as in [18]).  larger width tharb pixels.

We used am-neighborhood system fdr. Direction of DijkstraGC. Swapping the nodesandt,

where A\; and )y are weights for the Ising
and contrast-dependent  prior respectively, and



(a) User input (b) Graph Cut [18]  (c) Additional user input ) Q@jkstraGC (e) Problem Specification

size = 481321
time=1.0
0=1

size = 568426
time =2.9
0=2

size = 64x 865
time = 14.8
0=3

Figure 6.Results of the DijkstraGC algorithm. (a) original images with user scribbles (blue background; green faagd); (b) Graph
Cut results using [18]; (c) Selection of sites for connectivity, where rarmpresent the input order; (d) DijkstraGC results; (e) Problem
specification: image size, running time for DijkstraGC @6 GHz CPU with2GB RAM), and minimum width specified by the user.

(a) User input (b) Graph Cut (c) DijkstraGC= 1 (d) DijkstraGCé = 2

Figure 7.Width parameter ¢. Two different results obtained with DijkstraGC algorithm for different valufe$ @inimum width).

i.e. changing the direction of DijkstraGC, may lead to two the results presented in Fig. 6 and 7.

different segmentations as seen in the example of fig. 3.4.2. Optimality of DijkstraGC

However we observed that the two segmentations usually The dual decomposition algorithm, described in sec-

only differ by a small number of pixels (on average less than tjon 3.2, gives both a solution for a special casébfand

1% of the number of pixels in s¢t]) and the difference is 5 jower bound on the optimal value BfL. Although this

often not visually significant. technique is not useful for a practical system, since the run
In contrast, the difference in speed can be substantial. Inning time is on average hours, it can be used to assess the

our examples the running time was on average reduced byoptimality of DijkstraGC.

half if the “source” nodes was in the smaller component We considered0 connectivity problems (i.e. user clicks)

(out of the two components that we want to connect). Ac- where the dual decomposition approach is applicable, i.e.

cordingly, we chose it as the default option and used it for all pixels at the image boundary are background. Another



restriction for this approach is that we have to use a pla- add a new node = (p, ¢) to V and two edge$p, ¢), (e, q)
nar graph (4-connected 2D grid) for maxflow computations. to 7. We also add a unary term,x. for the new node.

For 12 out of the40 problems the dual decomposition algo-

Let us call a labelinge € {0,1}Y “feasible” if (i) it

rithm gave the global optimum. It is a positive result that satisfiesCO, (i) E(x) < C, i.e.z, = 1 for all nodes
for all thesel2 cases also DijkstraGC returned the global p € S°, and (jii) e € [x] impliesp,q € [z] for nodes
optimum. One of such example is shown in Fig. 8. Another ¢ = (p, q) € £°. We can make any labeling satisfying (i)
example is the first image in Fig. 6; we obtained the global and (ii) feasible by removing nodes= (p, ¢q) from [x] for
optimum for all the connectivity constraints. (Note that in whichz, = 0 orz, = 0. This operation preserves the con-
the latter case the result was slightly different from Fig. 6 nectivity of [x] and does not increase the cé@3tr). Thus,
since for this optimality experiment we had to choose the PO has an optimal feasible solution.

graph to be planar, i.e. 4-connected.) For all the other{prob

There is a one-to-one mapping between feasible solu-

lems we observed that the result provided by DijkstraGC tions and subsetd®” C £° which form a single connected
was always better in terms of energy value than the result ofcomponents and cover all nodesSfA. FurthermoreE(x)

the dual decomposition method.

5. Conclusions and Future Work

equals the cost ot for such solutions. Thus, solving prob-
lem P1 will also solveVC.
NP-hardness of P1 Let us show that the minimum vertex

In this paper we proposed to overcome the “shrinking ¢qyer problemyC), which is known to be NP-hard, can be

bias” of graph cut methods by imposing connectivity con-

reduced tdP1. An instance o/ C is specified by an undi-

straints in the segmentation. We presented a new algorithmyoteq graplfy°, £°). (We assume that® = {1,2,...,n}

DijkstraGC that computes a segmentation satisfying those
constraints and we showed that integrating this algorithm i

wheren = |V°|.) The goal is to find a subsét C V of
minimum cardinality such that for each ed@ej) € £° at

an interactive system for image segmentation reduces conjgast one of the nodesj is in .
siderably the amount of user interaction necessary t0 s€g- \ye construct an instance Bl as follows. For each node

ment thin structures in the image.

i € V° we add two nodes, i to V. We say that solutior:

Although in general DijkstraGC is not guaranteed to specifies subset C V as follows: i € X iff 2; = 1.
compute the global minimum of our NP-hard optimization \yie a1so add the “source? and the “sink’t to V. Thus
problem, we believe that in practice it is not an issue. This V| = 2n + 2. For each pair of consecutive nodis _

claim is supported by two facts: (i) running DijkstraGC in i+1,1<i<n—1we addfour edge§,j), (i,7), (i, 5)

different directions gives almost the same result, andD{H)

(i,7) to the connectivity grapk), 7). We also add edges

jkstraGC computes the optimal solution for some particular (s,1), (s,1), (n,%), (1) to (V, F). Thus,|F| = 4n. The

instances (see sec. 4.2).

connectivity constrainC1 for the pair of nodegs, ¢} is

Currently, the speed of DijkstraGC is perhaps the main gqivalent to the following: for each nodec V° at least

drawback for a practical interactive segmentation system. .« of the nodes i € 1 must have label 1. The function
However, we believe that there is a large scope for improve—E(m) is constructed as follows:

ment via rearrangement of the order in which nodes are
visited during the algorithm, or the use of multiple graphs
for maxflow computations (sec. 3.1). We intend to explore

these ideas in the future.

Appendix A: proof of theorem 1

NP-har dness of PO without pairwiseterms Let us show
that the minimum Steiner tree problensT(), which is
known to be NP-hard, can be reducedP® with a func-
tion E(x) containing only unary terms. An instance $F
is given by an undirected weighted grapi°, £°, ¢) with
non-negative weights : £° — N and a subset of nodes
S° C V°. The goal is to find a subset of edg&sC £° of
minimum cost such that the s&t is connected irfV°, ).
(Clearly, there exists a minimum subset which is a tree.)
We construct an instance &0 as follows. We start
with the graph(V, F) = (V°, @) and the functiorE(xz) =
> pese C(1 —x;,) whereC'is a sufficiently large constant,
e.0.C > > .co ce. Then for every edgép,q) € £° we

e Add unary termC'z, for all nodesp € V — {s,t}
whereC' is a sufficiently large constant, e.g. > n.
(These terms will ensure that in the optimal solution
exactly one of the nodesi has label 1.)

¢ Add pairwise term&’(1 — x;)x; for all edges(i, j) €
£°. (These terms will ensure that sub&étorrespond-
ing to x satisfies the constraint of theC problem.)

e Add unary termdl - z; for all nodes: € V°. (These
terms will “count” the cardinality oft’.)

Let us call solutionr “feasible” if it satisfies the con-
nectivity constraintCl and E(z) < nC + C. Itis easy
to see that there is a one-to-one mapping between feasible
solutionsz and subsets’” C V satisfying the constraint of
theVC problem, and&(xz) = nC + |X| for such solutions.
Thus, solving problen1 will also solveVC.

NP-har dness of P2 without pairwiseterms We will use
areduction from the minimum vertex cover problem similar



(a) Image (b) User Input

(c) Graph Cut (d) DijkstraGC

Figure 8.0ptimality of DijkstraGC. An example of a problem for which both DijkstraGC and the decompositioroahgtize the optimal

result.

to the one described above. Given an instapi¢g £°) of
VC we start constructing the gragh’, 7) and the function

can assume without loss of generality that unary and pair-
wise terms of functiorE satisfyD,(0) = 0, V,,(0,0) = 0.

E(x) as before, except that instead of adding a pairwise ThenE(z) = E(x') + E(2”) since the set§r] and [2/]

termC(1 — x,)z, Wherep = 4, ¢ = i we do the following.
First, we add a new nodeto the graph. Second, we add
this node to the set®, and Q,. (We assume that in the
beginningQ, = {p} for all nodes.) Finally, we add unary
termsC/(z, — x,) to the function.

We claim that these operations “simulate” the pairwise
termC (1 — x,,)xz,. Indeed, ifz, =z, =0 then the connec-
tivity constraintC2 does not affect the node therefore the
contribution of the new term will benin, o1y C(z, —
0)=0. If z, = 1 orz, = 1 then the connectivity constraint
C2 will imply z, = 1, so the contribution of the new term
will be C'(1 — z,,) which equalsC(1 — z)z, if x,, 2, are
binary and(z,, z4) # (0,0).

Appendix B: proof of theorem 2

Part (a) Lety be a global minimum of problema2. Con-
sider solutionz* = y V x, with [z*] = [y] U [z]. Itis

a global minimum ofP2 since it satisfies the connectivity
constraintC2 and

E(z") < E(y) + [E(z) — E(y A2)] < E(y).

(The first inequality follows from submodularity of func-
tion E/, and the second inequality holds sincés a global
minimum of E.) It remains to notice thdtc] C [x*].
Part (b) Lety be a global minimum of0, Cy,...,C;
be all connected components of the et= [x] that in-
tersecty], andC;1,...,Cx be the connected components
of C that do not intersedty]. We denoter’ andx” to be
respectively the labelings corresponding to the géts=
CiU...CjandC”" =C —C',i.e.[2'] =C and[z"] =C".
Consider solutiom:* = y V 2/, and denote’ = y A «/,
z =2z’ V&”. We claim thate* is a global minimum of0.
Indeed, the s€tc*] = [y] UC; U...UC; is connected and

E(x") E(y) + [E(z') — E(2')]
E(y) +[E(z) - E(z)] < E(y).
(The first inequality follows from submodularity of func-

tion E, and the last inequality holds singds a global min-
imum of E. Let us show the equality in the middle. We

<

are disconnected in the graph, 7) and€ C F. Similarly,

E(z) = E(#') + E(z"). This implies the desired result.)
It remains to notice that’y,...,C; C [x*] and

Cj+1,-..,Ci do notintersecfr™].

Appendix C: proof of theorem 3
Suppose that function (1) has only unary terms, i.e. the
seté is empty. We can write it as
E(x) = const + Z Cpyp
peV

For the purpose of the proof the constant can be chosen ar-
bitrarily. Let us set it as follows:

E(x)=—-c + Z CpTp
peV
wherec™ = 3 ), min{c,,0}. Clearly, for any subset

P C VY we have

min{E(x) |P C [x]} = —c” +

>

PEP V ¢, <0

— +
6=

peP

where we denoted! = max{c,, 0}.

Let us prove by induction on the number of steps that
d(p) = d*(p) for allnodesp € S whered*(p) is the optimal
solution of problenP1 for nodes{s, p}. Itis clear that this
property holds after initialization. Consider the stepttha
adds a new nodg® to S. Let P* be an optimal path from
stop°, thend*(p°) = 3 .p. . Let(p,q) be an edge in
this path such that € S andg ¢ S. Let P, be the subset
of the pathP* which goes frons to p. We can write

e) @) L ® N
< d(q) < d(p)+c; =d*(p)+c]

(4) (5)
gl a-aw)

rePy rep*

d(p°)

(1) holds since nodg® was to added t& rather thary. (2)
holds since the edg@, q) was explored when nodewas



added toS, and the cost of the proposed solution for node [19] M. I. Schlesinger and V. V. Giginyak. Solution to structural

qwasd(p) + ¢ . (3) holds by the induction hypothesis. (4)

holds sinced*(p) is the optimal distance for node (5)
holds since pati®* containsP;; U {q}. Therefored(p°) =
d*(p°), as claimed.

Note that ifc, > 0 for all nodesp then DijkstraGC is

equivalent to the standard Dijkstra algorithm which looks
for minimum paths frons to all other nodes, if we define

the length of edgép — ¢) to bec,.
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