
Graph cut based image segmentation with connectivity priors

Technical report

Sara Vicente∗ Vladimir Kolmogorov
University College London

{s.vicente,vnk}@adastral.ucl.ac.uk

Carsten Rother
Microsoft Research Cambridge

carrot@microsoft.com

Abstract

Graph cut is a popular technique for interactive image
segmentation. However, it has certain shortcomings. In
particular, graph cut has problems with segmenting thin
elongated objects due to the “shrinking bias”. To overcome
this problem, we propose to impose an additional connectiv-
ity prior, which is a very natural assumption about objects.
We formulate several versions of the connectivity constraint
and show that the corresponding optimization problems are
all NP-hard.

For some of these versions we propose two optimization
algorithms: (i) a practical heuristic technique which we call
DijkstraGC, and (ii) a slow method based on problem de-
composition which provides a lower bound on the problem.
We use the second technique to verify that for some practi-
cal examples DijkstraGC is able to find the global minimum.

1. Introduction
The task of interactive image segmentation has attracted

a significant attention in recent years [10, 3, 18, 6, 24, 21].
The ultimate goal is to extract an object with as few user in-
teractions as possible. It is widely accepted that some prior
on segmentations is needed for achieving this goal. Dif-
ferent priors have a preference towards different types of
shapes, as we discuss next.
Graph cut A very popular approach, which we also use
in this paper, is based on graph cut [7, 3, 18]. It minimizes
an energy function consisting of a data term (computed us-
ing color likelihoods of foreground and background) and a
spatial coherency term. The latter term is the length of the
boundary modulated with the contrast in the image, there-
fore minimizing the energy with this term has a bias towards
shorter boundaries. (This behavior is sometimes referred to
as the “shrinking bias”.) In particular, it is hard for the graph
cut approach to segment thin elongated structures. Consider

∗Sara Vicente is supported by Microsoft Research Cambridge through
its PhD Scholarship Programme.

Fig. 1. First the user constrains some pixels to be fore- and
background using brushes (a). The segmentation by graph
cut (b) cuts off some of the legs of the insect. If we re-
duce the influence of the coherency term then the legs get
segmented but the overall quality of the the segmentation is
decreased (c). This shows the trade-off between data terms
and regularization, and it indicates that some form of co-
herency is crucial.

Alternative segmentation models One approach to over-
come the shrinking bias is to add flux of some vector field
to the model [10, 25, 12, 15]. It has been shown to be ef-
fective for segmenting thin objects such as blood vessels in
grayscale images [25]. The vector field was taken as the
image gradient, which corresponds to the assumption that
the object is bright and the background is dark. However,
extending this approach to arbitrary color images, which is
the scenario considered in this paper, may be challenging.
To our knowledge it was not addressed so far. The difficulty
here is choosing the vector at each point and the sign of this
vector. Imperfect vector field might lower the segmentation
quality. The issue of choosing the sign can be overcome in
the level set framework [12], but at the expense of losing
global optimality.

One possible method to integrate flux into segmentation
is to optimize the ratio of flux over boundary length [10, 16].
Thus, we are looking for the boundary with the highest aver-
age contrast. Arguably, this model has no bias towards any
particular shape [10, 16]. However, the issue of choosing a
good vector field for color images remains.

Other interesting approaches include the method in [21]
which imposes a prior on the curvature of the bound-
ary, spectral techniques [22] and the random walker algo-
rithm [6]; results in [24] indicate that this method is slightly
more robust towards the shrinking bias.

Our approach In this paper we propose a very differ-
ent way to solve the task of segmenting challenging objects
with very thin, elongated parts. We build the coherency
prior in form of an explicit connectivity prior into the



(a) User input (b) Graph Cut (GC) (c) GC less coherency (d) Additional input (e) DijkstraGC

Figure 1.Image segmentation using graph cut with standard (b) and reduced coherency (c) based on input (a). Our new DijkstraGC
method (e) with additional user input (d).

model. Assume that the user has already segmented a part
of the object using graph cut [18] as in Fig. 1(b). In our in-
teractive framework the user has to click only those pixels
which must be connected to the main object. As Fig. 1(d)
shows a few clicks are sufficient to obtain a satisfying result
(e). We believe that this is a new and very powerful user
interface for segmenting challenging objects.

We consider several versions of the connectivity con-
straint. Unfortunately, the corresponding optimization
problems are all NP-hard, as we show. To enable the inter-
face shown in Fig. 1 we propose a heuristic algorithm which
we callDijkstraGC. On an abstract level it merges the Dijk-
stra algorithm and graph cut. Note that Dijkstra-like meth-
ods have already been used for extracting thin objects such
as blood vessels [5], although without an explicit segmen-
tation. (A fast marching technique was used in [5], which
can be viewed as a continuous analogue of the Dijkstra al-
gorithm for discrete graphs.) The key feature of our method
that distinguishes it from [5] is the addition of the graph cut
component. This allows to explicitly use the MAP-MRF
formulation which proved to be very successful [3, 18].

We show that on some practical examples DijkstraGC is
able to find the global minimum. In order to verify this, we
developed a second (slow) technique based ondual decom-
position, which provides a lower bound on the problem.
Related work Connectivity is automatically enforced in
the classical “snakes” approach [11], since the segmenta-
tion is represented by a simple closed contour. Han et al. [9]
proposed a topology preserving level set method which al-
lows to specify more general topologies. A disadvantage of
both techniques is that the objective is optimized via gradi-
ent descent, which can easily get stuck in a local minimum.
Recently, Zeng et al. [28] followed a similar approach with
a discrete graph-based formulation. After posing the prob-
lem the authors of [28] proved an NP-hardness result and
proposed to modify the maxflow algorithm in [4] so that the
topology of the segmentation is preserved. However, de-
spite our best effort we were unable to compare it to our
approach for the task of segmenting thin objects.1 (Note,

1We downloaded the source code (ver. 0.9) but did not succeed in ap-
plying it to our examples: sometimes user-provided hard constraints were
not satisfied, or the segmented thin structure was clearly incorrect. Reim-
plementing the algorithm in [28] did not look straightforward - we found
that many details were missing.

results in [28] are shown for very different types of objects.)

2. Problem formulation
We use an energy function of the form which is standard

for graph cut based image segmentation approaches [3, 18]:

E(x) =
∑

p∈V

Ep(xp) +
∑

(p,q)∈ℰ

Epq(xp, xq) (1)

Here (V, ℰ) is an undirected graph whose nodes corre-
spond to pixels.xp ∈ {0, 1} is the segmentation label of
pixel p, where 0 and 1 correspond to the background and
the foreground, respectively. We assume that the pairwise
termsEpq are submodular, i.e.Epq(0, 0) + Epq(1, 1) ≤
Epq(0, 1) + Epq(1, 0).

As stated in the introduction, our goal is to minimize
functionE(x) under certain connectivity constraints on the
segmentationx. Three possible constraints are formulated
below. In all of them we assume that we are given an
undirected graph(V,ℱ) defining the “connectivity” rela-
tions between nodes inV. This graph can be different from
the graph(V, ℰ) defining the structure of functionE(x) in
eq. (1). (In our experiments we usually take(V, ℰ) to be an
8-connected 2D grid graph and(V,ℱ) to be 4-connected.)

Perhaps, the most natural connectivity constraint is the
following:

C0 The set[x] corresponding to segmentationx must form
a single connected component in the graph(V,ℱ).

(We denoted[x] to be the set of nodes with label 1, i.e.
[x] = {p ∈ V ∣ xp = 1}.) This constraint seems to be very
useful for solving problems discussed in the introduction.
However, minimizing function (1) under the constraintC0
appears to be a very challenging task. This problem can be
shown to be NP-hard even if function (1) has only unary
terms (see below).

In this paper we will focus on different constraintsC1
andC2. We will assume that the user specified two nodes
s, t ∈ V. ConstraintC1 is then formulated as follows:

C1 Nodess, t must be connected in the segmentation set
[x], i.e. there must exist a path in the graph(V,ℱ)
from s to t such that all nodesp in the path belong to
the segmentation:xp = 1.

We believe thatC1 is very useful for interactive image seg-
mentation. It suggests a natural user interface (Fig. 1). In



this interface nodes is assumed to lie in the largest con-
nected component of the current segmentation. By clicking
at pixelt the user would get a segmentation which connects
t to the main object. We handle multiple clicks in an incre-
mental fashion.

Unfortunately, minimizing (1) underC1 is an NP-hard
problem as well (see below). However, it appears that it is
easier to design good heuristic algorithms forC1 than for
C0. In particular, if functionE(x) has only unary terms
then the problem withC1 can be reduced to a shortest path
computation with a single source and a single sink and thus
can be solved in polynomial time (see section 3).

Enforcing constraintC1 may result in a segmentation
which has a “width” of one pixel in certain places, which
may be undesirable (see Fig. 7). One way to fix this prob-
lem is to allow the user to specify a parameter� which con-
trols the minimum “width” of the segmentation. Formally,
assume that for each nodep ∈ V we have a subsetQp ⊆ V.
(This subset would depend on�; for example, for a grid
graphQp could be the set of all pixelsq such that the dis-
tance fromp to q does not exceed�.) Using these subsets,
we define the following connectivity constraint:

C2 There must exist a path in the graph(V,ℱ) from s to
t such that for all nodesp in the path the subsetQp

belongs to[x], i.e.xq = 1 for q ∈ Qp.

Clearly,C1 is a special case ofC2 if we chooseQp = {p}
for all nodesp.

Throughout the paper, we denoteP0, P1, P2 to be the
problems of minimizing function (1) under constraintsC0,
C1, C2, respectively. The theorem below shows the diffi-
culty of the problems; its proof is given in Appendix A.

Theorem 1. ProblemsP0, P1, P2 are NP-hard.P0 andP2
remain NP-hard even if the setℰ is empty, i.e. function(1)
does not have pairwise terms.

Note, it was also shown in [28] that the following prob-
lem is NP-hard: minimize function (1) on a planar 2D grid
so that the foreground is 4-connected and the background is
8-connected. It is straightforward to modify the argument
in [28] to show that the problem is NP-hard if only the 4-
connectedness of the foreground is imposed (in other words,
P0 is NP-hard even for planar 2D grids).

To conclude this section, we will state some simple facts
about the relationship of problemsP0-P2 and the problem
of minimizing functionE(x) without any constraints.

Theorem 2. Suppose thatx is a global minimum of func-
tion (1) without any constraints.

(a) There exists an optimal solutionx∗ of P2 which in-
cludesx, i.e. [x] ⊆ [x∗]. The same holds for the
problemP1 since the latter is a special case.

(b) Suppose thatℰ ⊆ ℱ . LetC1, . . . , Ck ⊆ V be the con-
nected components of the set[x] in the graph(V,ℱ).
Then there exists an optimal solutionx∗ of P0 such
that each componentCi is either entirely included in
[x∗] or entirely excluded. In other words, ifCi and
[x∗] intersect thenCi ⊆ [x∗].

A proof is given in Appendix B. The theorem suggests
that as a first step we could run the maxflow algorithm to
minimize function (1) without any constraints and then con-
tract connected components of the obtained set[x] to single
nodes. However, it leaves open the most challenging ques-
tion: what to do if a minimum of function (1) does not sat-
isfy the desired connectivity constraint.

3. Algorithms
The main algorithmic contribution of this paper is a

heuristic method for the problemP2 (and thus forP1 since
the latter is a special case). This method, which we callDi-
jkstraGC, is presented in section 3.1. Then in section 3.2 we
propose an alternative method for a special case of problem
P1 based on the idea ofproblem decomposition. The main
feature of the second technique is that it provides a lower
bound on the optimal value ofP1. We will use it for as-
sessing the performance of DijkstraGC: in the experimental
section it will help us to verify that for some instances Di-
jkstraGC gives an optimal solution.

3.1. DijkstraGC: Merging Dijkstra and graph cuts
The idea of our first method is motivated by the Dijk-

stra algorithm [1]. Recall that the latter technique com-
putes shortest distancesd(p) in a directed graph with non-
negative weights from a specified “source” nodes to all
other nodesp.

Similar to the Dijkstra method, we will compute solu-
tions to the problemP2 for a fixed nodes and all nodes
p ∈ V (only now these solutions will not necessarily be
global minima). The “distance”d(p) will now indicate the
cost of the computed solution for the pair of nodes{s, p}.

The algorithm is shown in Fig. 2. During the algorithm,
the current solutionxp for nodep with d(p) < +∞ can
be obtained as follows: usingPARENT pointers get path
P and corresponding set̄P = ∪r∈PQr, and then compute
a minimum of function (1) under the constraintP̄ ⊆ [x].
Clearly, the obtained solutionxp satisfies the hard con-
straintC2 for the pair of nodes{s, p}.

The setS contains “permanently labeled” nodes: once
a nodep has been added toS, its costd(p) and the corre-
sponding solution will not change anymore.

Let us list some of the invariants that are maintained dur-
ing DijkstraGC (they follow directly from the description):

I1 If d(p)=+∞ thenp ∕=s andPARENT (p)=NULL.



initialize: S=∅, PARENT (p)=NULL for all nodesp,
d(s) = min{E(x) ∣ Qs ⊆ [x]},
d(p) = +∞ for p ∈ V − {s}

while t /∈S andV − S contains nodesp with d(p)<+∞

∙ find nodep ∈ V − S with the smallest distanced(p)

∙ addp to S

∙ for all nodesq ∈ V − S which are neighbors ofp (i.e.
(p, q) ∈ ℱ) do

- usingPARENT pointers, get pathP from s to q
throughp; compute corresponding setP̄ = ∪r∈PQr

- compute a minimumx of function (1) under the con-
straintP̄ ⊆ [x]

- if d(q)>E(x) setd(q) :=E(x), PARENT (q) :=p

Figure 2.DijkstraGC algorithm.

I2 If d(p)<+∞ thenPARENT pointers give the unique
pathP from s to p, andd(p) = min{E(x) ∣ P̄ ⊆ [x]}
whereP̄ = ∪r∈PQr.

I3 If PARENT (q) = p thend(p) ≤ d(q) < +∞.

I4 d(p) < +∞ for nodesp ∈ S.

Theorem 3. If functionE(x) does not have pairwise terms
andQp = {p} for all nodesp (i.e we have an instance of
P1) then the algorithm in Fig. 2 produces an optimal solu-
tion.

A proof is given in Appendix C.
We also conjecture that the following statement holds:

Conjecture 1. Suppose thatQp = {p} for all nodesp,
graph (V,ℱ) is planar, ℰ = ℱ , all pairwise terms have
the formEpq(xp, xq) = cpq∣xq − xp∣, cpq ≥ 0, and unary
terms for “inner” nodesp ∈ V (i.e. nodes that do not border
the outer face) have no bias or a bias towards label 1, i.e.
Ep(1) ≤ Ep(0). Then the algorithm in Fig. 2 produces an
optimal solution.

If the conditions of theorem 3 are relaxed then the prob-
lem may become NP-hard, as theorem 1 states. Not surpris-
ingly, DijkstraGC may then produce a suboptimal solution.
Two examples are shown in Fig. 3. Note that in these exam-
ples the “direction” of DijkstraGC matters: if we run it from
s to t then we obtain a suboptimal solution, but running Di-
jkstraGC fromt to s will give an optimal segmentation.

We now turn to the question of efficient implementation.
One computational component of the algorithm is finding
a nodep ∈ V − S with the smallest value ofd(p) (same
as in the Dijkstra algorithm). We used a binary heap struc-
ture for implementing the priority queue which stores nodes
p ∈ V − S with d(p) < +∞. The bottleneck, however, is
maxflow computations: DijkstraGC requires many calls to

2

2

21

1 23 3

a

s

a′

b

t

b′

c

2 2

1

2 2

1

a

s c

a′

b

t

b′
Qc = {c, b, b′}, Qt = {t, b, b′}

Qp = {p} for all other nodesp
(a) ProblemP1 (b) ProblemP2, no pairwise terms

Figure 3.Suboptimality of DijkstraGC. Examples of problems
on which DijkstraGC give suboptimal results. Graphs shown in
the pictures are the connectivity graphs(V,ℱ). Numbercp at
nodep gives the unary termcxp, numbercpq at edge(p, q) gives
the pairwise termcpq∣xq − xp∣. Both in (a) and (b) DijkstraGC
will output solution{s,a,b,b′,t} or {s,a′,b,b′,t} with cost 7, while
the optimal solution{s,c,b,b′,t} has cost 6.

initialize: S=∅, PARENT (p)=NULL for all nodesp,
d(s) = min{E(x) ∣ Qs ⊆ [x]},
d(p) = +∞ for p ∈ V − {s}

while t /∈S andV − S contains nodesp with d(p)<+∞

∙ find nodep ∈ V − S with the smallest distanced(p)

∙ usingPARENT pointers, get pathP from s to p; com-
pute corresponding set̄P = ∪r∈PQr

∙ compute a minimumx of function (1) under the con-
straintP̄ ⊆ [x]

∙ addp to S, setA = {p}, markp as “unprocessed”

∙ while A has unprocessed nodes

- pick unprocessed nodep′ ∈ A

- for all edges(p′, q) ∈ ℱ with q ∈ V − S do
⋄ if Qq ⊆ [x] setd(q) :=E(x), PARENT (q) :=p′,

addq to S and toA as an unprocessed node

- markp′ as “processed”

∙ for all nodesq ∈ V − S which are neighbors ofA (i.e.
(p′, q) ∈ ℱ for some nodep′ ∈ A) do

- pick nodep′ ∈ A with (p′, q) ∈ ℱ

- usingPARENT pointers, get pathP from s to q
throughp′; compute corresponding setP̄ = ∪r∈PQr

- compute a minimumx of function (1) under the con-
straintP̄ ⊆ [x]

- if d(q)>E(x) setd(q) :=E(x), PARENT (q) :=p′

Figure 4.Optimized version of the DijkstraGC algorithm.

the maxflow algorithm for minimizing function (1) under
the constraintsxr = 1 for nodesr ∈ P̄. These computa-
tions are considered in the remainder of this section.

Optimized DijkstraGC First, we will describe a tech-
nique which allows to reduce the number of calls to
maxflow. Consider the step that adds nodep to the set of



permanently labeled nodesS. DenoteP to be the path from
s to p given byPARENT pointers, and let̄P = ∪r∈PQr.
Let us fix nodes inP̄ to 1 and compute a minimumx of
function (1) under these constraints. The segmentation set
[x] will contain P̄, but it may include many other nodes
as well. Then it might be possible to add several nodes to
S using this single computation. Indeed, supposep has a
neighborq ∈ V − S, (p, q) ∈ ℱ , such thatQq ⊆ [x]. The
algorithm in Fig. 2 would setd(q) = d(p) = E(x) while
exploring neighbors ofp. This would make the distance
d(q) to be the smallest among nodes inV−S, so the nodeq
could be the next node to be added toS. Therefore, we can
addq to S immediately.

An algorithm which implements this idea is shown in
Fig. 4. Before exploring neighbors ofq, we check which
nodes can be added toS for “free”. The set of these nodes
is denoted asA; clearly, it includesp. After adding nodes in
A toS, we explore neighbors ofA which are still inV −S.

Note that there is a certain freedom in implementing the
DijkstraGC algorithm: it does not specify which nodep ∈
V − S with the minimum distance to choose if there are
several such nodes. It is not difficult to see that under a
certain selection rule DijkstraGC becomes equivalent to the
algorithm in Fig. 4.
Flow and search tree recycling We used the maxflow
algorithm in [4], and reused flows and search trees as de-
scribed in [13].

In DijkstraGC we often need to fix/unfix nodes in differ-
ent parts of the graph in a rather chaotic order. We believe
that this significantly reduces the effectiveness of flow and
search tree recycling. Two ideas could potentially be used
to overcome this drawback. The first one is based on the ob-
servation that different “branches” are often independentin
a certain sense.This could allow to reorder maxflow com-
putations. To get the same type of result as DijkstraGC
we would need to redo computations if we detect an in-
consistency, as in the Bellman-Ford label-correcting algo-
rithm. The second idea is to maintain multiple graphs for
performing computations in different parts of the image,
so that changes in each graph would be more “local”. It
could also be feasible to store a small subset of the nodes
for each graph, increasing it “on demand”. Reduced mem-
ory requirements could then allow to use a larger number of
graphs. Exploring these ideas is left as a future work.

3.2. Problem decomposition approach
In this section we propose a different technique for a spe-

cial case of problemP1; we will use it for assessing the
performance of DijkstraGC.
Overview On the high level, the idea is to decompose
the original problem into several “easier” subproblems, for
which we can compute efficiently a global minimum (or
obtain a good lower bound). Combining the lower bounds
for individual subproblems will then provide a lower bound

for the original problem. The decomposition and the corre-
sponding lower bound will depend on a parameter vector�;
we will then try to find a vector� that maximizes the bound.

This approach is well-known in combinatorial opti-
mization; sometimes it is referred to as “dual decomposi-
tion” [2]. In vision the decomposition approach is probably
best known in the context of the MAP-MRF inference task.
It was introduced by Wainwright et al. [26] who decom-
posed the problem into a convex combination of trees and
proposed message passing techniques for optimizing vector
�. These techniques do not necessarily find the best lower
bound (see [14] or review article [27]). Schlesinger and
Giginyak [19, 20] and Komodakis et al. [17] proposed to
use subgradient techniques [23, 2] for MRF optimization,
which guarantee to converge to a vector� yielding the best
possible lower bound.
Solving P1 via problem decomposition We now apply
this approach toP1. To get tractable subproblems, we im-
pose the following simplifying assumptions. First, we as-
sume that the graph(V,ℱ) is planar, andℰ = ℱ . Sec-
ond, we assume that pixels on the image boundary are con-
strained to be background, i.e. their label is 0. These as-
sumptions are illustrated in Fig. 5. We argue that they rep-
resent an important practical subclass of the image segmen-
tation task, and thus can be used for assessing the perfor-
mance of DijkstraGC for real problems. Note that the sec-
ond assumption encodes the prior knowledge that the object
lies entirely inside the image, which is very often the case
in practice.

We denoteC(x) to be the hard constraint term which
is 0 if the segmentationx satisfies the connectivity con-
straint C1 and the background boundary condition de-
scribed above, and otherwiseC(x) is +∞. Some of these
hard constraints will also be included in functionE(x) as
unary terms, namely the background boundary constraints
and foreground constraintsxs = xt = 1, which follow
from C1. Our parameter vector� will have two parts:
� = (�1, �2) where vectors�1 and�2 correspond to nodes
and edges of the graph(V, ℰ), respectively (�1 ∈ ℝ

V ,
�2 ∈ ℝ

ℰ ). Given labelingx, let �(x) ∈ {0, 1}ℰ be the
vector of indicator variables showing discontinuities ofx,
i.e.�pq(x) = ∣xq − xp∣ for an edge(p, q) ∈ ℰ . We will use
the following decomposition:

E(x) + C(x) = E0(x ∣ �) + E1(x ∣ �) + E2(x ∣ �) (2)

where

E0(x ∣ �) = E(x)− ⟨x, �1⟩ − ⟨�(x), �2⟩ (2a)

E1(x ∣ �) = C(x) + ⟨x, �1⟩ (2b)

E2(x ∣ �) = C(x) + ⟨�(x), �2⟩ (2c)

Let us discuss each subproblem in more detail.
Subproblem 0 FunctionE0(x ∣ �) consists of unary and
pairwise terms. We will require this function to be submod-



ular; this is equivalent to specifying upper bounds on com-
ponents�2pq. Since there are no connectivity constraints, we
can compute the global minimumΦ0(�) = minxE0(x ∣ �)
using a maxflow algorithm2.

Subproblem 1 FunctionE1(x ∣ �) has only unary terms
and the connectivity constraintC1. As discussed in the
previous section, we can compute the global minimum
Φ1(�) = minxE1(x ∣ �) using, e.g. DijkstraGC algorithm.
Note, in this case it is essentially equivalent to the Dijkstra
algorithm.

Subproblem 2 We will require vector�2 to be non-
negative. Instead, we compute a lower boundΦ2(�) on
E2(x ∣ �2) using the following very fast technique. The
graphG = (V, ℰ) is planar; thus, we can construct the dual
graphG∗ = (V∗, ℰ∗) whose nodes are the faces of(V, ℰ).
GraphG∗ will be weighted: for each edge(p, q) ∈ ℰ in the
original graph there will be an edge(i, j) ∈ ℰ∗ with weight
cij = �2pq wherei, j ∈ V∗ are the two faces that border the
edge(p, q).

We can assume without loss of generality that an optimal
segmentation is connected inG. (If not, we could remove
all connected components except for the one containings
andt; the hard constraints would still be satisfied, and the
cost would not increase.) Any connected segmentationx

satisfying the hard constraints (C(x) = 0) defines an edge-
disjoint closed contour inG∗ whose interior containss and
t (Fig. 5). Furthermore, the cost of edges in the contour
equalsE2(x). Note that the contour cannot cross the image
border, therefore we can remove the outer face and incident
edges.

Let Ps andPt be paths froms andt, respectively, to the
image border (Fig. 5).Ps andPt will be viewed as sub-
sets of edges ofℰ . Clearly, the contour corresponding to
x intersects bothPs andPt at least once. Thus, the con-
tour passes through one of the nodes inP∗

s and through one
of the nodes inP∗

t , whereP∗
s andP∗

t are respectively the
subsets of faces inV∗ that border edges inPs andPt on a
particular side, say left. Thus, we can obtain a lower bound
onE2(x ∣ �) by computing the minimum cost of two edge-
disjoint paths fromP∗

s toP∗
t .

To solve the latter problem, we use a standard reduction
to the minimum cost network flow problem [1]. We con-
struct a graph with nodesV∗ ∪ {s, t} wheres∗, t∗ are two
new nodes. We add directed arcs froms∗ to the nodes in
P∗
s with capacity 2 and cost 0, and arcs from the nodes in

P∗
t to t∗ with the same capacity and cost. For each edge

(i, j) ∈ ℰ∗ we add two directed arcs(i → j), (j → i) with
capacity 1 and costcij . Finally, we set the flow excess of

2Instead of restricting functionE0 to be submodular, one could use the
roof duality approach [8] to get a lower bound onE0(x ∣ �). For sub-
modular functions this lower bound coincides with the globalminimum,
therefore the best lower bound on the original function can only become
better. We have not implemented this yet.

s
t

s

t

Figure 5.Solving P1 via problem decomposition. Blue pixels
at the image border have hard background constraints, nodess, t
have hard foreground constraints. Note thats, t cover several pix-
els since before starting the algorithm we compute a minimum of
function(1) without the connectivity constraint and contract pix-
els connected tos and to t to single nodes. (This is justified by
theorem 2.)
A possible segmentation satisfying all hard constraints is shown in
red. Its boundary in the dual graph(V∗, ℰ∗) is a simple closed
contour (shown in green) passing through faces inV∗.

s∗ andt∗ to be +2 and -2, respectively. Clearly, any integer
flow that sends two units froms to t defines two paths from
P∗
s to P∗

t (an edge belongs to one of the paths iff it carries
some flow).

To compute a minimum cost flow, we used the successive
shortest path algorithm [1]. It works by iteratively running
the Dijkstra algorithm in a certain graph. Each iteration
sends one unit of flow, therefore there will be two Dijkstra
computations.

One possible extension of this framework is to allow di-
rected edges in subproblem 2, i.e. pairwise terms of the
form E2

pq(xp, xq) = �2pq(1 − xp)xq + �2qpxp(1 − xq),
�2pq, �

2
pq ≥ 0. (The size of vector�2 would be doubled.)

This is left as a future work.
Maximizing the lower bound We described a lower
bound on problemP1 which can be written as

Φ(�) = Φ0(�) + Φ1(�) + Φ2(�) ≤ E(x) + C(x)

where� belongs to a convex setΩ = {(�1, �2 ∣ 0 ≤ �2pq ≤
�2max
pq }. Clearly, Φ is a concave function of�. Similar

to [19, 20, 17], we used a projected subgradient method [23,
2] for maximizingΦ(�). One iteration is given by

� := PΩ(� + �g)

wherePΩ is the operator that projects a vector toΩ andg is
a subgradient ofΦ(�) computed as follows:gp = x

1 − x
0

for components of vector�1 and gpq = z
2 − �(x0) for

components of vector�2. Here we denotedx0 to be a global
minimum of functionE0(⋅), x1 to be a global minimum of
functionE1(⋅) andz2 ∈ {0, 1}ℰ to be the following vector:
z2pq = 1 iff the two shortest paths fromP∗

s to P∗
t that we

computed contain the edge(i, j) ∈ ℰ∗ corresponding to the
edge(p, q) ∈ ℰ .

An important issue in the subgradient method is the
choice of the step size�. We used an adaptive technique



mentioned in [2]. We set� = �(Φ(�∗) + � − Φ(�))/∣∣g∣∣2

where� is a constant (1 in our experiments),�∗ is the best
vector found so far (i.e. the vector giving the best lower
bound), and� is a positive number which is updated as fol-
lows: if the last iteration improved the best lower bound
Φ(�∗) then then� is increased by a certain factor (2 in our
experiments), otherwise it is decreased by a certain factor
(0.95).

To conclude the description of the method, it remains
to specify how to extract solutionsx from the subgradient
method. In each iteration we used the minimumx1 of sub-
problem 1 since it is guaranteed to satisfy the connectivity
constraintC1. We maintain the solution with the small-
est energy computed so far, and output it as a result of the
method.

4. Experimental results
In the previous section we presented DijkstraGC, a new

algorithm that minimizes energy (1) under certain connec-
tivity constraints on the segmentationx. In this section we
first discuss the advantages of including this algorithm in an
interactive system for image segmentation and second con-
sider the optimality properties of the algorithm.

4.1. DijkstraGC for interactive segmentation
The form of the energy (1) follows the approach of pre-

vious energy minimization techniques for interactive image
segmentation [3, 18]. We defineEp(xp) as a data likelihood
term andEpq(xp, xq) as a contrast-dependent coherency
term, which are defined as follows.

Hard constraints for background and foreground are
specified in the form of brush strokes. Based on
this input a probabilistic model is computed for the
colors of background (GB) and foreground (GF ) us-
ing two different Gaussian Mixture Models. Ep(xp)
is then computed asEp(0) = − log(Pr(zp∣GB)) and
Ep(1) = − log(Pr(zp∣GF )) where zp contains the three
color channels of sitep (see details in [18]). The co-
herency term incorporates both an Ising prior and a contrast-
dependent component and is computed as

Epq(xp, xq) =
∣xq − xp∣

dist(p, q)

(

�1 + �2 exp−� ∥zp − zq∥
2
)

where �1 and �2 are weights for the Ising
and contrast-dependent prior respectively, and

� =
(

2
〈

(zp − zq)
2
〉)−1

, where ⟨⋅⟩ denotes expecta-

tion over an image sample (as motivated in [18]). A term
of this form encourages coherence in regions of similar
color and also prevents isolated pixels to appear in the
segmentation (see [3, 18]). In our experiments the number
of components used forGB and GF were 5, we fixed
�1 = 2.5 and�2 = 47.5 (which sums up to50, as in [18]).
We used an8-neighborhood system forE.

We now discuss how to integrate the DijkstraGC algo-
rithm in an interactive system for image segmentation. Af-
ter the user has provided scribbles a segmentation is com-
puted with graph cut. As in [18] we iterate this process to
further minimize the energy, where the segmentation of a
previous run is used to update color models. It can hap-
pen that part of the foreground is missing or that the fore-
ground region is disconnected. Then the user can specify
with one click such a site that should be connected with the
current result. DijkstraGC algorithm is used to compute the
new segmentation. In this way the user only has to specify
one node (from the two nodes necessary to run DijkstraGC)
since the other node is assumed to be contained within the
largest connected component of the graph cut segmentation.

We have tested this approach on15 images with in total
40 connectivity problems, i.e. additional clicks for Dijk-
straGC. Fig. 1 and 6 show some results, where we compare
graph cut, using scribbles only, with DijkstraGC, where the
user set additional clicks after obtaining the graph cut result.
We see that usually graph cut based algorithms tend to cut
off thin elongated structures in the image. To retrieve these
thin structures using brush strokes can be very difficult since
they may only be1 − 2 pixel wide. To obtain a satisfying
result with DijkstraGC the user only needs some additional
clicks and the selection of a width parameter�, which is
a considerable reduction in the amount of user interactions
needed. For the last example in Fig. 6 the number of clicks
necessary to extract the segmentation was11 since the thin
structures we want to segment (the legs of the spider) inter-
sect each other and the path that DijkstraGC computes goes
throw the already segmented leg.

The running time presented in the last column of Fig. 6
includes all the clicks in the image, and it is, as to be ex-
pected, related to the number of clicks and image size. The
optimized version of DijkstraGC (Fig. 4) improved the run-
time over the simple version (Fig. 2) from, e.g.28.4 to 14.8
seconds for the last image in Fig. 6.

The width parameter � provides the possibility of spec-
ifying a minimum desired width of the connection between
the two components. This parameter is not included directly
in the formulation of the DijkstraGC algorithm. Instead we
define for all nodesp a setQp according to�. For � = 1,
Qp = {p}; for � = 2, Qp is the set of4 nodes in a2 × 2
square that includes nodep and for � = 3, Qp contains
p and its neighbors in a 4-connected grid. Fig. 7 shows
that this parameter can be important in a practical system to
avoid that the connectivity constraint is satisfied by a seg-
mentation with a one pixel width only. Please note that in
general� does not have to be the exact width of the structure
we want to segment. In fig. 7 setting the width parameter to
� = 2 was sufficient to recover the thin leg which has a
larger width than5 pixels.

Direction of DijkstraGC. Swapping the nodess andt,



(a) User input (b) Graph Cut [18] (c) Additional user input (d) DijkstraGC (e) Problem Specification

size = 481×321
time = 1.0
� = 1

size = 568×426
time = 2.9
� = 2

size = 640×865
time = 14.8
� = 3

Figure 6.Results of the DijkstraGC algorithm. (a) original images with user scribbles (blue background; green foreground); (b) Graph
Cut results using [18]; (c) Selection of sites for connectivity, where numbers present the input order; (d) DijkstraGC results; (e) Problem
specification: image size, running time for DijkstraGC (on2.16 GHz CPU with2GB RAM), and minimum width specified by the user.

(a) User input (b) Graph Cut (c) DijkstraGC� = 1 (d) DijkstraGC� = 2

Figure 7.Width parameter �. Two different results obtained with DijkstraGC algorithm for different values of � (minimum width).

i.e. changing the direction of DijkstraGC, may lead to two
different segmentations as seen in the example of fig. 3.
However we observed that the two segmentations usually
only differ by a small number of pixels (on average less than
1% of the number of pixels in set[x]) and the difference is
often not visually significant.

In contrast, the difference in speed can be substantial. In
our examples the running time was on average reduced by
half if the “source” nodes was in the smaller component
(out of the two components that we want to connect). Ac-
cordingly, we chose it as the default option and used it for

the results presented in Fig. 6 and 7.

4.2. Optimality of DijkstraGC
The dual decomposition algorithm, described in sec-

tion 3.2, gives both a solution for a special case ofP1 and
a lower bound on the optimal value ofP1. Although this
technique is not useful for a practical system, since the run-
ning time is on average3 hours, it can be used to assess the
optimality of DijkstraGC.

We considered40 connectivity problems (i.e. user clicks)
where the dual decomposition approach is applicable, i.e.
all pixels at the image boundary are background. Another



restriction for this approach is that we have to use a pla-
nar graph (4-connected 2D grid) for maxflow computations.
For12 out of the40 problems the dual decomposition algo-
rithm gave the global optimum. It is a positive result that
for all these12 cases also DijkstraGC returned the global
optimum. One of such example is shown in Fig. 8. Another
example is the first image in Fig. 6; we obtained the global
optimum for all the connectivity constraints. (Note that in
the latter case the result was slightly different from Fig. 6,
since for this optimality experiment we had to choose the
graph to be planar, i.e. 4-connected.) For all the other prob-
lems we observed that the result provided by DijkstraGC
was always better in terms of energy value than the result of
the dual decomposition method.

5. Conclusions and Future Work
In this paper we proposed to overcome the “shrinking

bias” of graph cut methods by imposing connectivity con-
straints in the segmentation. We presented a new algorithm
DijkstraGC that computes a segmentation satisfying those
constraints and we showed that integrating this algorithm in
an interactive system for image segmentation reduces con-
siderably the amount of user interaction necessary to seg-
ment thin structures in the image.

Although in general DijkstraGC is not guaranteed to
compute the global minimum of our NP-hard optimization
problem, we believe that in practice it is not an issue. This
claim is supported by two facts: (i) running DijkstraGC in
different directions gives almost the same result, and (ii)Di-
jkstraGC computes the optimal solution for some particular
instances (see sec. 4.2).

Currently, the speed of DijkstraGC is perhaps the main
drawback for a practical interactive segmentation system.
However, we believe that there is a large scope for improve-
ment via rearrangement of the order in which nodes are
visited during the algorithm, or the use of multiple graphs
for maxflow computations (sec. 3.1). We intend to explore
these ideas in the future.

Appendix A: proof of theorem 1

NP-hardness of P0 without pairwise terms Let us show
that the minimum Steiner tree problem (ST), which is
known to be NP-hard, can be reduced toP0 with a func-
tion E(x) containing only unary terms. An instance ofST
is given by an undirected weighted graph(V∘, ℰ∘, c) with
non-negative weightsc : ℰ∘ → ℕ and a subset of nodes
S∘ ⊆ V∘. The goal is to find a subset of edgesX ⊆ ℰ∘ of
minimum cost such that the setS∘ is connected in(V∘,X ).
(Clearly, there exists a minimum subset which is a tree.)

We construct an instance ofP0 as follows. We start
with the graph(V,ℱ) = (V∘,∅) and the functionE(x) =
∑

p∈S∘ C(1− xp) whereC is a sufficiently large constant,
e.g.C >

∑

e∈ℰ∘ ce. Then for every edge(p, q) ∈ ℰ∘ we

add a new nodee = (p, q) to V and two edges(p, e), (e, q)
toℱ . We also add a unary termcpqxe for the new node.

Let us call a labelingx ∈ {0, 1}V “feasible” if (i) it
satisfiesC0, (ii) E(x) < C, i.e. xp = 1 for all nodes
p ∈ S∘, and (iii) e ∈ [x] implies p, q ∈ [x] for nodes
e = (p, q) ∈ ℰ∘. We can make any labelingx satisfying (i)
and (ii) feasible by removing nodese = (p, q) from [x] for
whichxp = 0 or xq = 0. This operation preserves the con-
nectivity of [x] and does not increase the costE(x). Thus,
P0 has an optimal feasible solution.

There is a one-to-one mapping between feasible solu-
tions and subsetsX ⊆ ℰ∘ which form a single connected
components and cover all nodes inS∘. Furthermore,E(x)
equals the cost ofX for such solutions. Thus, solving prob-
lem P1 will also solveVC.
NP-hardness of P1 Let us show that the minimum vertex
cover problem (VC), which is known to be NP-hard, can be
reduced toP1. An instance ofVC is specified by an undi-
rected graph(V∘, ℰ∘). (We assume thatV∘ = {1, 2, . . . , n}
wheren = ∣V∘∣.) The goal is to find a subsetX ⊆ V of
minimum cardinality such that for each edge(i, j) ∈ ℰ∘ at
least one of the nodesi, j is inX .

We construct an instance ofP1 as follows. For each node
i ∈ V∘ we add two nodesi, ī to V. We say that solutionx
specifies subsetX ⊆ V as follows: i ∈ X iff xi = 1.
We also add the “source”s and the “sink”t to V. Thus,
∣V∣ = 2n + 2. For each pair of consecutive nodesi,j =
i+ 1, 1 ≤ i ≤ n− 1 we add four edges(i, j), (i, j̄), (̄i, j),
(̄i, j̄) to the connectivity graph(V,ℱ). We also add edges
(s, 1), (s, 1̄), (n, t), (n̄, t) to (V,ℱ). Thus,∣ℱ∣ = 4n. The
connectivity constraintC1 for the pair of nodes{s, t} is
equivalent to the following: for each nodei ∈ V∘ at least
one of the nodesi, ī ∈ V must have label 1. The function
E(x) is constructed as follows:

∙ Add unary termsCxp for all nodesp ∈ V − {s, t}
whereC is a sufficiently large constant, e.g.C > n.
(These terms will ensure that in the optimal solution
exactly one of the nodesi, ī has label 1.)

∙ Add pairwise termsC(1− xi)xj̄ for all edges(i, j) ∈
ℰ∘. (These terms will ensure that subsetX correspond-
ing tox satisfies the constraint of theVC problem.)

∙ Add unary terms1 ⋅ xi for all nodesi ∈ V∘. (These
terms will “count” the cardinality ofX .)

Let us call solutionx “feasible” if it satisfies the con-
nectivity constraintC1 andE(x) < nC + C. It is easy
to see that there is a one-to-one mapping between feasible
solutionsx and subsetsX ⊆ V satisfying the constraint of
theVC problem, andE(x) = nC + ∣X ∣ for such solutions.
Thus, solving problemP1 will also solveVC.
NP-hardness of P2 without pairwise terms We will use
a reduction from the minimum vertex cover problem similar



(a) Image (b) User Input (c) Graph Cut (d) DijkstraGC

Figure 8.Optimality of DijkstraGC. An example of a problem for which both DijkstraGC and the decomposition method give the optimal
result.

to the one described above. Given an instance(V∘, ℰ∘) of
VC we start constructing the graph(V,ℱ) and the function
E(x) as before, except that instead of adding a pairwise
termC(1− xp)xq wherep = i, q = ī we do the following.
First, we add a new noder to the graph. Second, we add
this node to the setsQp andQq. (We assume that in the
beginningQp = {p} for all nodesp.) Finally, we add unary
termsC(xr − xp) to the function.

We claim that these operations “simulate” the pairwise
termC(1 − xp)xq. Indeed, ifxp=xq=0 then the connec-
tivity constraintC2 does not affect the noder, therefore the
contribution of the new term will beminxr∈{0,1} C(xr −
0)=0. If xp = 1 or xq = 1 then the connectivity constraint
C2 will imply xr = 1, so the contribution of the new term
will be C(1 − xp) which equalsC(1 − xp)xq if xp, xq are
binary and(xp, xq) ∕= (0, 0).

Appendix B: proof of theorem 2

Part (a) Let y be a global minimum of problemP2. Con-
sider solutionx∗ = y ∨ x, with [x∗] = [y] ∪ [x]. It is
a global minimum ofP2 since it satisfies the connectivity
constraintC2 and

E(x∗) ≤ E(y) + [E(x)− E(y ∧ x)] ≤ E(y).

(The first inequality follows from submodularity of func-
tion E, and the second inequality holds sincex is a global
minimum ofE.) It remains to notice that[x] ⊆ [x∗].
Part (b) Let y be a global minimum ofP0, C1, . . . , Cj
be all connected components of the setC = [x] that in-
tersect[y], andCj+1, . . . , Ck be the connected components
of C that do not intersect[y]. We denotex′ andx′′ to be
respectively the labelings corresponding to the setsC′ =
C1 ∪ . . . Cj andC′′ = C − C′, i.e. [x′] = C′ and[x′′] = C′′.

Consider solutionx∗ = y ∨x
′, and denotez′ = y ∧x

′,
z = z

′ ∨ x
′′. We claim thatx∗ is a global minimum ofP0.

Indeed, the set[x∗] = [y] ∪ C1 ∪ . . . ∪ Cj is connected and

E(x∗) ≤ E(y) + [E(x′)− E(z′)]
= E(y) + [E(x)− E(z)] ≤ E(y).

(The first inequality follows from submodularity of func-
tionE, and the last inequality holds sincex is a global min-
imum of E. Let us show the equality in the middle. We

can assume without loss of generality that unary and pair-
wise terms of functionE satisfyDp(0) = 0, Vpq(0, 0) = 0.
ThenE(x) = E(x′) + E(x′′) since the sets[x] and [x′]
are disconnected in the graph(V,ℱ) andℰ ⊆ ℱ . Similarly,
E(z) = E(z′) + E(x′′). This implies the desired result.)

It remains to notice thatC1, . . . , Cj ⊆ [x∗] and
Cj+1, . . . , Ck do not intersect[x∗].

Appendix C: proof of theorem 3

Suppose that function (1) has only unary terms, i.e. the
setℰ is empty. We can write it as

E(x) = const+
∑

p∈V

cpxp

For the purpose of the proof the constant can be chosen ar-
bitrarily. Let us set it as follows:

E(x) = −c− +
∑

p∈V

cpxp

where c− =
∑

p∈V min{cp, 0}. Clearly, for any subset
P ⊆ V we have

min{E(x) ∣ P ⊆ [x]} = −c− +
∑

p∈P ∨ cp<0

cp =
∑

p∈P

c+p

where we denotedc+p = max{cp, 0}.
Let us prove by induction on the number of steps that

d(p) = d∗(p) for all nodesp ∈ S whered∗(p) is the optimal
solution of problemP1 for nodes{s, p}. It is clear that this
property holds after initialization. Consider the step that
adds a new nodep∘ to S. Let P∗ be an optimal path from
s to p∘, thend∗(p∘) =

∑

r∈P∗ c+r . Let (p, q) be an edge in
this path such thatp ∈ S andq /∈ S. Let P∗

p be the subset
of the pathP∗ which goes froms to p. We can write

d(p∘)
(1)

≤ d(q)
(2)

≤ d(p) + c+q
(3)
= d∗(p) + c+q

(4)

≤
∑

r∈P∗

p

c+r + c+q
(5)

≤
∑

r∈P∗

c+r = d∗(p∘)

(1) holds since nodep∘ was to added toS rather thanq. (2)
holds since the edge(p, q) was explored when nodep was



added toS, and the cost of the proposed solution for node
q wasd(p) + c+q . (3) holds by the induction hypothesis. (4)
holds sinced∗(p) is the optimal distance for nodep. (5)
holds since pathP∗ containsP∗

p ∪{q}. Therefore,d(p∘) =
d∗(p∘), as claimed.

Note that ifcp ≥ 0 for all nodesp then DijkstraGC is
equivalent to the standard Dijkstra algorithm which looks
for minimum paths froms to all other nodes, if we define
the length of edge(p → q) to becp.

References

[1] R. Ahuja, T. Magnanti, and J. Orlin.Network Flows: Theory,
Algorithms, and Applications. Prentice Hall, 1993.

[2] D. Bertsekas.Nonlinear Programming. Athena Scientific,
1999.

[3] Y. Boykov and M.-P. Jolly. Interactive graph cuts for optimal
boundary and region segmentation of objects in N-D images.
In ICCV, 2001.

[4] Y. Boykov and V. Kolmogorov. An experimental comparison
of min-cut/max-flow algorithms for energy minimization in
vision. PAMI, 26(9), Sept. 2004.

[5] T. Deschamps and L. D. Cohen. Fast extraction of minimal
paths in 3D images and applications to virtual endoscopy.
Medical Image Analysis, 5(4):281–299, 2001.

[6] L. Grady. Random walks for image segmentation.PAMI,
28(11):1768–1783, Nov. 2006.

[7] D. Greig, B. Porteous, and A. Seheult. Exact maximum a
posteriori estimation for binary images.J. of the Royal Sta-
tistical Society, Series B, 51(2):271–279, 1989.

[8] P. L. Hammer, P. Hansen, and B. Simeone. Roof duality,
complementation and persistency in quadratic 0-1 optimiza-
tion. Mathematicl Programming, 28:121–155, 1984.

[9] X. Han, C. Xu, and J. L. Prince. A topology preserving
level set method for geometric deformable models.PAMI,
25(6):755–768, 2003.

[10] I. Jermyn and H. Ishikawa. Globally optimal regions and
boundaries as minimum ratio weight cycles.PAMI, 23(10),
Oct. 2001.

[11] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active
contour models.IJCV, 1(4):321–331, 1987.

[12] R. Kimmel and A. M. Bruckstein. On regularized Lapla-
cian zero crossings and other optimal edge integrators.IJCV,
53(3):225–243, 2003.

[13] P. Kohli and P. H. S. Torr. Efficiently solving dynamic
Markov random fields using graph cuts. InICCV, 2005.

[14] V. Kolmogorov. Convergent tree-reweighted message pass-
ing for energy minimization.PAMI, 28(10), 2006.

[15] V. Kolmogorov and Y. Boykov. What metrics can be approx-
imated by geo-cuts, or global optimization of length/area and
flux. In ICCV, 2005.

[16] V. Kolmogorov, Y. Boykov, and C. Rother. Applications of
parametric maxflow in computer vision. InICCV, 2007.

[17] N. Komodakis, N. Paragios, and G. Tziritas. MRF optimiza-
tion via dual decomposition: Message-passing revisited. In
ICCV, 2005.

[18] C. Rother, V. Kolmogorov, and A. Blake. Grabcut - inter-
active foreground extraction using iterated graph cuts.SIG-
GRAPH, August 2004.

[19] M. I. Schlesinger and V. V. Giginyak. Solution to structural
recognition (MAX,+)-problems by their equivalent transfor-
mations. Part 1.Control Systems and Computers, (1):3–15,
2007.

[20] M. I. Schlesinger and V. V. Giginyak. Solution to structural
recognition (MAX,+)-problems by their equivalent transfor-
mations. Part 2.Control Systems and Computers, (2):3–18,
2007.

[21] T. Schoenemann and D. Cremers. Introducing curvature into
globally optimimal image segmentation: Minimum ratio cy-
cles on product graphs. InICCV, Oct. 2007.

[22] J. Shi and J. Malik. Normalized cuts and image segmenta-
tion. PAMI, 22(8):888–905, Aug. 2000.

[23] N. Z. Shor.Minimization methods for nondifferentiable func-
tions. Springer-Verlag, 1985.

[24] A. K. Sinop and L. Grady. A seeded image segmentation
framework unifying graph cuts and random walker which
yields a new algorithm. InICCV, Oct. 2007.

[25] A. Vasilevskiy and K. Siddiqi. Flux maximizing geometric
flows. PAMI, 24(12), 2002.

[26] M. Wainwright, T. Jaakkola, and A. Willsky. MAP estima-
tion via agreement on trees: Message-passing and linear-
programming approaches.IEEE Trans. Information Theory,
51(11):3697–3717, 2005.

[27] T. Werner. A linear programming approach to max-sum
problem: A review.PAMI, 29(7), 2007.

[28] Y. Zeng, D. Samaras, W. Chen, and Q. Peng. Topology cuts:
A novel min-cut/max-flow algorithm for topology preserving
segmentation in N-D images. Technical report, 2007.


