
Constructing the Views Framework

(yes, again! ☺)

Stephan van Staden

Outline

• The Views framework

• The motivation for constructing it again

• Formal languages

• Constructing the program logic

• Constructing operational calculi

• Soundness

• Conclusion

2

The Views framework (1)

Unifies several compositional program logics for

reasoning about concurrent programs

– Concurrent separation logic

– Concurrent abstract predicates

– Rely-guarantee

– Owicki-Gries

Views are abstract versions of the assertions of a

program logic

– They can be composed and satisfy certain laws

– They are mapped to sets of states
3

The Views framework (2)

The abstract properties of views justify the

soundness of inference rules

– E.g. the “frame rule” and “concurrency rule”

Program logics use different instantiations of views.

Their inference rules look rather different, BUT deep

down the reasoning is the same

In this sense, the views framework captures the

essence of these seemingly different techniques in a

unified formalism - imo a beautiful result!

4

Its metatheory in the POPL’13 paper

5

Programming language

Operational semantics

Program logic

But I wanted to show it differently…

6

Model

(denotations)

Algebra

Program

logic

Operational

semantics

A complementary view of Views Framework

More semantic and simpler in a sense:

– No fixed syntax for programs: treat them as semantic

objects (formal languages over state pairs)

– All judgements have direct definitions; all inference

rules are theorems:

• Views program logic is constructed from Hoare logic in a

stepwise fashion. Completely decoupled from operational rules

• Operational judgements also defined directly. Rules are derived

and not postulated

– Soundness is independent of the choice of operational

rules; views logic is sound because Hoare logic is

– Proofs do not inspect syntax or derivations
7

Formal languages (1)

Operators / notions:

– skip the language {[]} does nothing

– ; language concatenation sequencing

– || language shuffle concurrency

– u language union nondet choice

– ⊆ language inclusion refinement

8

Formal languages (2)

We mostly consider formal languages over pairs of

states (i.e. the alphabet is Σ x Σ)

– a word is called a trace

– an atom is a language whose traces have length 1

– a trace is consistent when the states between adjacent

pairs are equal, e.g. [(σ,σ1),(σ1,σ2),(σ2,σ’)]

– Incon is the set of all inconsistent traces

– end(σ) is the set of all consistent traces that end

 in state σ

– end(S) is the set of all consistent traces that end

 in some state in S

9

Constructing the program logic

Stepwise, from first principles:

• Hoare logic

• Basic views calculus

• Framing calculus

• Full views calculus

10

Hoare logic

S {P} S’ ≡ end(S) ; P ⊆ end(S’) u Incon

Direct semantic definition. Rules are theorems:

S {skip} S

Proof: end(S);skip = end(S) ⊆ (end(S) u Incon)

S {P} S’ & S’ {Q} S’’ ⇒ S {P;Q} S’’

Proof: end(S);(P;Q) ⊆ (end(S);P);Q ⊆ (end(S’) u Incon);Q

⊆ (end(S’);Q u Incon;Q) ⊆ (end(S’);Q u Incon)

⊆ (end(S’’) u Incon u Incon) = end(S’’) u Incon

11

Basic views calculus

Assume a set Views

Each view v is mapped to a set of states Lv˩

The basic views calculus uses views for assertions:

v <P> v’ ≡ Lv˩ {P} Lv’˩

Rules of the basic calculus follow immediately from

those of Hoare logic

E.g. v <P> v’ & v’ <Q> v’’ ⇒ v <P;Q> v’’

12

Framing calculus

Views can be combined with 

 is associative and commutative

The framing calculus requires “frame preservation”:

v [P] v’ ≡ v <P> v’ & ∀v’’. vv’’ <P> v’v’’

Stronger judgement: v [P] v’ ⇒ v <P> v’

New rule: v [P] v’ ⇒ vv’’ [P] v’v’’
Proof: By the associativity of  and elementary logic

13

Full views calculus (1)

For compositional reasoning about concurrency, the

intermediate steps should also preserve views

– programs can’t interfere to invalidate each other’s views

To this end, the full views calculus reasons about

commands = formal languages over atoms

{v} C {v’} ≡ ∀as ϵ C. v #as# v’, where

v #[]# v’ ≡ v [skip] v’

v #a:as# v’ ≡ ∃v’’. v [a] v’’ & v’’ #as# v’

Stronger judgement than framing calculus 14

Full views calculus (2)

New rule: {v1} C1 {v1’} & {v2} C2 {v2’} ⇒

 {v1v2} C1||C2 {v1’v2’}
Proof: The frame and sequence rules of the framing calculus

and the commutativity of  imply

v1 #as1# v1’ & v2 #as2# v2’ & as ϵ as1⊗as2 ⇒

 (v1v2) #as# (v1’v2’)

Corollary: {v} C {v’} ⇒ {vv’’} C {v’v’’}

Proof: Apply the concurrency rule to {v}C{v’} and {v’’}skip{v’’}.

The result follows by C||skip = C.

15

Constructing operational calculi (1)

Operational calculi help to discover executions

Not special or somehow fundamental here

Define each operational judgment directly and prove

that inference rules are valid (no postulation!)

Big-step operational judgement:

<P, σ> ➔ σ’ ≡ ∃t ϵ end(σ), t’ ϵ end(σ’). {t};P ⊇ {t’}

Example theorems: 1) <skip, σ> ➔ σ

2) <P, σ> ➔ σ’ & <Q, σ’> ➔ σ’’ ⇒ <P;Q, σ> ➔ σ’
16

Constructing operational calculi (2)

Small-step operational judgement:

<P, σ> ➔ <P’,σ’> ≡

∃Q ϵ Actions. P ⊇ Q;P’ & <Q, σ> ➔ σ’

Stronger: <P, σ> ➔* <skip,σ’> ⇒ <P, σ> ➔ σ’

Example theorems:

•<P, σ> ➔ <P’,σ’> ⇒ <P||Q, σ> ➔ <P’||Q, σ’>

•<P, σ> ➔ <skip ,σ’> ⇒ <P||Q, σ> ➔ <Q, σ’>

•<P, σ> ➔ <P’,σ’> ⇒ <P;Q, σ> ➔ <P’;Q, σ’>

17

Partial correctness

The construction of the program logics never

referred to operational rules. Nonetheless:

S {P} S’ ⇔ (∀σ ϵ S. ∀σ’. <P, σ> ➔ σ’ ⇒ σ’ ϵ S’)

S {P} S’ ⇒ (∀σϵS. ∀σ’. <P, σ>➔*<skip,σ’> ⇒ σ’ϵS’)

The other program logic judgements are stronger,

and hence also correct w.r.t. execution!

No coinduction, no mention of particular rules, no

inspection of the program syntax

18

Summary

Explained the foundations of the Views Framework

in a different way

– semantic: programs are not syntactic objects; they are

modelled as sets of traces

– all the laws of CKA are valid

– incremental development of calculi from first principles

– program logic and operational semantics are decoupled

– partial correctness holds - reduced to the soundness of

Hoare logic

Complements the POPL treatment
19

Final comments

That it could be explained in this way adds to the

credit of the Views Framework

– elegant and general

Similar ideas could be used in the future to construct

new program logics

– prototype them in a lightweight semantic setting

– use basic logics as a foundation for advanced ones

Is it practical? To which extent can generic semantic

settings help to construct/explain program logics?

E.g. weak memory, message passing, … 20

