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Dirichlet mixtures: a method for improved
detection of weak but significant protein
sequence homology
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Abstract

We present a method for condensing the information in
multiple alignments of proteins into a mixture of Dirichlet
densities over amino acid distributions. Dirichlet mixture
densities are designed to be combined with observed amino
acid frequencies to form estimates of expected amino acid
probabilities at each position in a profile, hidden Markov
model or other statistical model. These estimates give a
statistical model greater generalization capacity, so that
remotely related family members can be more reliably
recognized by the model. This paper corrects the previously
published formula for estimating these expected probabil-
ities, and contains complete derivations of the Dirichlet
mixture formulas, methods for optimizing the mixtures to
match particular databases, and suggestions for efficient
implementation.

Introduction

One of the main techniques used in protein sequence
analysis is the identification of homologous proteins—
proteins which share a common evolutionary history
and almost invariably have similar overall structure
and function (Doolittle, 1986). Homology is straight-
forward to infer when two sequences share 25% residue
identity over a stretch of 80 or more residues (Sander
and Schneider, 1991). Recognizing remote homologs, with
lower primary sequence identity, is more difficult. Finding
these remote homologs is one of the primary motivating
forces behind the development of statistical models for
protein families and domains, such as profiles and their
many offshoots (Waterman and Perlwitz, 1986; Gribskov
el al. 1987, 1990; Altschul et al., 1990; Barton and
Steinberg, 1990; Bowie et al., 1991; Luthy et al., 1991;
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Thompson et al., 1994a,b; Bucher et al., 1996), Position-
Specific Scoring Matrices (Henikoff et al., 1990), and
hidden Markov models (HMMs) (Churchill, 1989; Baldi
et al., 1992; Asai et al., 1993; Stultz et al., 1993; Baldi
and Chauvin, 1994; Krogh et al., 1994; White et al., 1994;
Eddy, 1995, 1996; Eddy et al., 1995; Hughey and Krogh,
1996).

We address this problem by incorporating prior
information about amino acid distributions that typi-
cally occur in columns of multiple alignments into the
process of building a statistical model. We present a
method to condense the information in databases of
multiple alignments into a mixture of Dirichlet densities
(Berger, 1985; Santner and Duffy, 1989; Bernardo and
Smith, 1994) over amino acid distributions, and to
combine this prior information with the observed
amino acids to form more effective estimates of the
expected distributions. Multiple alignments used in these
experiments were taken from the Blocks database
(Henikoff and Henikoff, 1991). We use Maximum
Likelihood (Duda and Hart, 1973; Dempster et al.,
1977; Nowlan, 1990), to estimate these mixtures, i.e. we
seek to find a mixture that maximizes the probability of
the observed data. Often, these densities capture some
prototypical distributions. Taken as an ensemble, they
explain the observed distributions in columns of multiple
alignments.

With accurate prior information about which kinds
of amino acid distributions are reasonable in columns
of alignments, it is possible with only a few sequences to
identify which prototypical distribution may have gener-
ated the amino acids observed in a particular column.
Using this informed guess, we adjust the expected amino
acid probabilities to include the possibility of amino acids
that may not have been seen but are consistent with
observed amino acid distributions. The statistical models
produced are more effective at generalizing to previously
unseen data, and are often superior at database search
and discrimination experiments (Brown et al., 1993;
Tatusov et al., 1994; Bailey and Elkan, 1995; Karplus,
1995a; Hughey and Krogh, 1996; Henikoff and Henikoff,
1996; Wang et al., 1996).
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Database search using statistical models

Statistical models for proteins capture the statistics
defining a protein family or domain. These models have
two essential aspects: (i) parameters for every position in
the molecule or domain that express the probabilities of
the amino acids, gap initiation and extension, and so
on; and (ii) a scoring function for sequences with respect
to the model.

Statistical models do not use percentage residue
identity to determine homology. Instead, these models
assign a probability score [some methods report a cost
rather than a probability score; these are closely related
(Altschul, 1991)] to sequences, and then compare the
score to a cutoff. Most models (including HMMs and
profiles) make the simplifying assumption that each
position in the protein is generated independently. Under
this assumption, the score for a sequence aligning to a
model is equal to the product of the probabilities of
aligning each residue in the protein to the corresponding
position in the model. In homolog identification by
percentage residue identity, if a protein aligns a previously
unseen residue at a position it is not penalized; it loses
that position, but can still be recognized as homologous
if it matches at a sufficient number of other positions in
the search protein. However, in statistical models, if a
protein aligns a zero-probability residue at a position, the
probability of the sequence with respect to the model
is zero, regardless of how well it may match the rest of the
model. Because of this, most statistical models rigorously
avoid assigning residues probability zero, and accurate
estimates for the amino acids at each position are
particularly important.

Using prior information about amino acid distributions

The parameters of a statistical model for a protein family
or domain are derived directly from sequences in the
family or containing the domain. When we have few
sequences, or a skewed sample, the raw frequencies are
a poor estimate of the distributions which we expect
to characterize the homologs in the database. Skewed
samples can arise in two ways. In the first, the sample is
skewed simply from the luck of the draw. This kind of
skew is common in small samples, and is akin to tossing
a fair coin three times and observing three heads in a row.
The second type of skew is more insidious, and can occur
even when large samples are drawn. In this kind of skew,
one subfamily is over-represented, such that a large
fraction of the sequences used to train the statistical
model are minor variants of each other. In this kind of
skew, sequence weighting schemes are necessary to
compensate for the bias in the data. Models that use
these raw frequencies may recognize the sequences used

to train the model, but will not generalize well to
recognizing remoter homologs.

It is illuminating to consider the analogous problem
of assessing the fairness of a coin. A coin is said to be fair
if Prob (heads) = Prob (tails) — 1/2. If we toss a coin
three times, and it comes up heads each time, what should
our estimate be of the probability of heads for this coin?
If we use the observed raw frequencies, we would set the
probability of heads to one, but, if we assume that most
coins are fair, then we are unlikely to change this a priori
assumption based on only a few tosses. Given little data,
we will believe our prior assumptions remain valid. On
the other hand, if we toss the coin an additional thousand
times and it comes up heads each time, few will insist that
the coin is indeed fair. Given an abundance of data, we will
discount any previous assumptions, and believe the data.

When we estimate the expected amino acids in each
position of a statistical model for a protein family, we
encounter virtually identical situations. Fix a numbering
of the amino acids from 1 to 20. Then, each column in
a multiple alignment can be represented by a vector of
counts of amino acids of the form n = (n\,... ,n2o), where
nt is the number of times amino acid i occurs in the column
represented by this count vector, and |w| = 52, n,. The
estimated probability of amino acid i is denoted p,. If the
raw frequencies are used to set the probabilities, then
p, := n,-/|n|. Note that we use the symbol ' :=' to denote
assignment, to distinguish it from equality, since we
compute fa differently in different parts of the paper.

Consider the following two scenarios. In the first, we
have only three sequences from which to estimate the
parameters of the model. In the alignment of these three
sequences, we have a column containing only isoleucine,
and no other amino acids. With such a small sample, we
cannot rule out the possibility that homologous proteins
may have different amino acids at this position. In
particular, we know that isoleucine is commonly found
in buried /?-strand environments, and leucine and valine
often substitute for it in these environments. Thus, our
estimate of the expected distribution at this position
would sensibly include these amino acids, and perhaps
the other amino acids as well, albeit with smaller
probabilities.

In a second scenario, we have an alignment of 100
varied sequences and again find a column containing only
isoleucine, and no other amino acids. In this case, we have
much more evidence that isoleucine is indeed conserved at
this position, and thus generalizing the distribution at this
position to include similar residues is probably not a good
idea. In this situation, it makes more sense to give less
importance to prior beliefs about similarities among
amino acids, and more importance to the actual counts
observed.
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Table I.

q

A

c
D
E
F

G
H
I
K
L

M
N
P
Q
R

S
T
V
W
Y

Parameters

Comp. 1

0.1829
1.1806

0.2706
0.0398
0.0175
0.0164
0.0142

0.1319
0.0123
0.0225
0.0203
0.0307

0.0153
0.0482
0.0538
0.0206
0.0236

0.2161
0.0654
0.0654
0.0037
0.0096

of mixture prior

Comp. 2

0.0576
1.3558

0.0214
0.0103
0.0117
0.0108
0.3856

0.0164
0.0761
0.0353
0.0139
0.0935

0.0220
0.0285
0.0130
0.0230
0.0188

0.0291
0.0181
0.0361
0.0717
0.4196

Blocks9

Comp. 3

0.0898
6.6643

0.5614
0.0454
0.4383
0.7641
0.0873

0.2591
0.2149
0.1459
0.7622
0.2473

0.1186
0.4415
0.1748
0.5308
0.4655

0.5834
0.4455
0.2270
0.0295
0.1210

Comp. 4

0.0792
2.0814

0.0701
0.0111
0.0194
0.0946
0.0131

0.0480
0.0770
0.0329
0.5766
0.0722

0.0282
0.0803
0.0376
0.1850
0.5067

0.0737
0.0715
0.0425
0.0112
0.0287

Comp. 5

0.0831
2.0810

0.0411
0.0147
0.0056
0.0102
0.1536

0.0077
0.0071
0.2996
0.0108
0.9994

0.2101
0.0061
0.0130
0.0197
0.0145

0.0120
0.0357
0.1800
0.0127
0.0264

Comp. 6

0.0911
2.5681

0.1156
0.0373
0.0124
0.0181
0.0517

0.0172
0.0049
0.7968
0.0170
0.2858

0.0758
0.0145
0.0150
0.0113
0.0126

0.0275
0.0883
0.9443
0.0043
0.0167

Comp. 7

0.1159
1.7660

0.0934
0.0047
0.3872
0.3478
0.0108

0.1058
0.0497
0.0149
0.0942
0.0277

0.0100
0.1878
0.0500
0.1100
0.0386

0.1194
0.0658
0.0254
0.0032
0.0187

Comp. 8

0.0660
4.9876

0.4521
0.1146
0.0624
0.1157
0.2842

0.1402
0.1003
0.5502
0.1439
0.7006

0.2765
0.1185
0.0974
0.1266
0.1436

0.2789
0.3584
0.6617
0.0615
0.1993

Comp. 9

0.2340
0.0995

0.0051
0.0040
0.0067
0.0061
0.0034

0.0169
0.0036
0.0021
0.0050
0.0059

0.0014
0.0041
0.0090
0.0036
0.0065

0.0031
0.0036
0.0029
0.0027
0.0026

This table contains the parameters defining a nine-component mixture prior estimated on unweighted columns from the Blocks database. The first row
gives the mixture coefficient (q) for each component. The second row gives the \a\ = J2i ai f°r ^ch component. Rows A (alanine) through Y (tyrosine)
contain the values of each of the components' a parameters for that amino acid. See the section 'What is a Dirichlet mixture', in the Introduction, for
details on how to interpret these values.
It is informative to examine this table and Table II in unison. The mixture coefficients (q) of the densities reveal that, in this mixture, the components
peaked around the aromatic and the uncharged hydrophobic residues (components 2 and 8) represent the smallest fraction of the columns used to train
the mixture, and the component representing all the highly conserved residues (component number 9) represents the largest fraction of the data captured
by any single component.
Examining the |<3| of each component shows that the two components with the largest values of \a\ (and so the most mixed distributions) represent the
polars (component 3) and the uncharged hydrophobics (component 8), respectively. The component with the smallest |5 | (component 9) gives
probability to pure distributions.
This mixture prior is available via anonymous ftp at our ftp site, ftp://ftp.cse.ucsc.edu/pub/protoin/diriclilet/ and at our World-Wide Web
site http: //www. cso.ucsc.edu/reseaxch/compbio/dirichlet.html.

The natural solution is to introduce prior information
into the construction of the statistical model. The method
we propose interpolates smoothly between reliance on
the prior information concerning likely amino acid
distributions, in the absence of data, and confidence in
the amino acid frequencies observed at each position,
given sufficient data.

What is a Dirichlet density?

A Dirichlet density p (Berger, 1985; Santner and Duffy,
1989) is a probability density over the set of all probability
vectors p (i.e. p, > 0 and £^ pt — 1). Proteins have a 20
letter alphabet, with/?, = Prob (amino acid /). Each vector
p represents a possible probability distribution over the 20
amino acids.

A Dirichlet density has parameters a = a , , . . . ,a-^,
with a, > 0. The value of the density for a particular vector

p is
20

P(P) =
1 = 1

(1)

where Z is the normalizing constant that makes p sum to
unity. The mean value of /?, given a Dirichlet density with
parameters a is

EPi = a,/\S\ (2)

where | 5 | = £], Q r
The second moment Ep, pp for the case / ^ j , is given by

When / = j , the second moment Ep) is given by
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TaWe U. Preferred amino acids of Blocks9

Component Ratio (r) of amino acid frequency relative to background frequency

1
2
3
4
5
6
7
8
9

8 < r

Y

4 < r < 8

FW

KR
LM
IV
D

2 < r < 4

SAT
H
QE
Q
1

EN
M
PGW

1 <r< 2

CGP

K.NRSHDTA
H
FV
LM
QHS
IVLFTYCA
CHRDE

1/2 < r < 1

NVM
LM
MPYG
NETMS

CTA
KGPTA
WSHQRNK
NQKFYTLAM

l / 4 < r < 1/2

QHRIKFLDW
NQICVSR
VLIWCF
PWYALGVCI
WYCTQ
F
RY
PEG
SVI

1/8 <r< 1/4

EY
TPAKDGE

DF
APHR
YSPWN
MVLFWIC
D

r < 1/8

K.SENDG
EQKRDGH

The function used to compute the ratio of the frequency of amino acid i in component^ relative to the background frequency predicted by the mixture as
a whole is (a/,(/|a|)/(£*<7*Q*,//l"*l)-
An analysis of the amino acids favored by each component reveals the following-
Component I favors small neutral residues.
Component 2 favors the aromatics.
Component 3 gives high probability to most of the polar residues (except for C, Y and W).
Component 4 gives high probability to positively charged amino acids and residues with NH2 groups.
Component 5 gives high probability to residues that are aliphatic or large and non-polar.
Component 6 prefers I and V (aliphatic residues commonly found in /? sheets), and allows substitutions with L and M.
Component 7 gives high probability to negatively charged residues, allowing substitutions with certain of the hydrophilic polar residues.
Component 8 gives high probability to uncharged hydrophobics, with the exception of glycine.
Component 9 gives high probability to distributions peaked around individual amino acids (especially P, G, W and C).

We chose Dirichlet densities because of their mathe-
matical convenience: a Dirichlet density is a conjugate
prior, i.e. the posterior of a Dirichlet density has the same
form as the prior (see, for example, section A.4 in the
Appendix).

What is a Dirichlet mixture?

A mixture of Dirichlet densities is a collection of
individual Dirichlet densities that function jointly to
assign probabilities to distributions. For any distribution
of amino acids, the mixture as a whole assigns a
probability to the distribution by using a weighted
combination of the probabilities given the distribution
by each of the components in the mixture. These weights
are called mixture coefficients. Each individual density
in a mixture is called a component of the mixture.

A Dirichlet mixture density p with / components has
the form

i i / ĉ

where each p} is a Dirichlet density specified by
parameters 5, = ( a y i , . . . ,0,20) and the numbers
<7i,..., ql are the mixture coefficients and sum to one.

The symbol 0 refers to the entire set of parameters
defining a prior. In the case of a mixture, 0 =
(5 [ , . . . ,<3/,<7i . . . ,<?/), whereas in the case of a single
density, 0 = (a).

Interpreting the parameters of a Dirichlet mixture. Since
a Dirichlet mixture describes the typical distributions of
amino acids in the data used to estimate the mixture, it

is useful to look in some detail at each individual
component of the mixture to see what distributions of
amino acids it favors. We include in this paper a nine-
component mixture estimated on the Blocks database
(Henikoffand Henikoff, 1991), a close variant of which
has been used in experiments elsewhere (Tatusov et ah,
1994; Henikoffand Henikoff, 1996).

A couple of comments about how we estimated this
mixture density are in order.

First, the decision to use nine components was
somewhat arbitrary. As in any statistical model, a
balance must be struck between the complexity of the
model and the data available to estimate the parameters
of the model. A mixture with too few components will
have a limited ability to represent different contexts for
the amino acids. On the other hand, there may not be
sufficient data to estimate precisely the parameters of
the mixture if it has too many components. We have
experimented with mixtures with anywhere from one to
30 components; in practice, nine components appears
to be the best compromise with the data we have
available. Also, a nine-component mixture uses 188
parameters, slightly fewer than the 210 of a symmetric
substitution matrix, so that better results with the
Dirichlet mixture cannot be attributed to having more
parameters to fit to the data.

Second, there are many different mixtures having the
same number of components that give basically the same
results. This reflects the fact that Dirichlet mixture
densities attempt to fit a complex space, and there are
many ways to fit this space. Optimization problems such
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Improved detection of weak protein sequence homology

TaMe III. The posterior probability of each component in Dirichlet mixture Blocks9 [equation (16)] given 1-10 isoleucines. Initially, component 6, which
prefers I and V found jointly, is most likely, followed by components 5 and 8, which like aliphatic residues in general. As the number of observed
isoleucines increases, component 9, which favors pure distributions of any type, increases in probability, but component 6 remains fairly probable. The
more mixed distributions become increasingly unlikely as the number of observed isoleucines increases

# He Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5 Comp. 6 Comp. 7 Comp. 8 Comp. 9

1
2
3
4
5
6
7
8
9
10

I I

0.00 0.25 0.50

as this are notoriously difficult, and we make no claim that
this mixture is globally optimal. This mixture works quite
well, however, and is better than many other nine-
component local optima that we have found.

Table I gives the parameters of this mixture. Table II
lists the preferred amino acids for each component in
the mixture, in order by the ratio of the mean probability
of the amino acids in a component to the background
probability of the amino acids. An alternative way to
characterize a component is by giving the mean expected
amino acid probabilities and the variance around the
mean. Formulas to compute these quantities were given
in the previous section 'What is a Dirichlet density?'.

The value \a\ = Ylf^=\ at ls a measure of the variance
of the component about the mean. Higher values of |<3
indicate that distributions must be close to the mean of
the component in order to be given high probability by
that component. In mixtures we have estimated, compo-
nents having high | 5 | tend to give high probability to
combinations of amino acids which have similar physio-
chemical characteristics and are known to substitute
readily for each other in particular environments. By
contrast, when \a\ is small, the component favors pure
distributions conserved around individual amino acids. A
residue may be represented primarily by one component
(as proline is) or by several components (as isoleucine and
valine are). When we estimate mixtures with many
components, we sometimes find individual components
with high \a\ that give high probability to pure distribu-
tions of particular amino acids. However, this is unusual
in mixtures with relatively few components.

Comparison with other methods for computing these
probabilities

In this section, we compare the different results obtained
when estimating the expected amino acids using three
methods: Dirichlet mixture priors, substitution matrices
and pseudocounts. A brief analysis of the differences

0.75 1.00

is contained in the subsections below. In addition, we give
examples of the different results produced by these
methods in several tables. Tables IV-VII show the
different amino acid estimates produced by each method
for the cases where 1-10 isoleucines are aligned in a
column, with no other amino acids.

Substitution matrices. The need for incorporating prior
information about amino acid distributions into protein
alignment motivated the development of amino acid
substitution matrices. These have been used effectively in
database search and discrimination tasks (George et al.,
1990; Altschul, 1991; Henikoff and Henikoff, 1992; Jones
et al., 1992; Henikoff and Henikoff, 1993; Claverie, 1994;
Rodionov and Johnson, 1994).

There are two drawbacks associated with the use of
substitution matrices. First, each amino acid has a fixed
substitution probability with respect to every other amino
acid. In any particular substitution matrix, to paraphrase
Gertrude Stein, a phenylalanine is a phenylalanine is a
phenylalanine. However, a phenylalanine seen in one
context, for instance, a position requiring an aromatic
residue, will have different substitution probabilities than
a phenylalanine seen in a context requiring a large non-
polar residue. Second, only the relative frequency of amino
acids is considered, while the actual number observed is
ignored. Thus, in substitution matrix-based methods, the
expected amino acid probabilities are identical for any
pure phenylalanine column, whether it contains 1, 3 or 100
phenylalanines. All three situations are treated identically,
and the estimates produced are indistinguishable.

Pseudocount methods. Pseudocount methods can be viewed
as a special case of Dirichlet mixtures, where the mixture
consists of a single component. In these methods, a fixed
value is added to each observed amino acid count, and then
the counts are normalized. More precisely, the formula
used is Pi := (n, + z,)/(J2j n} + ij), where each Zj is some
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TaMe IV. Estimated amino acid probabilities using various methods,
given one isoleucine

Table V. Estimated amino acid probabilities using various methods,
given three isoleucines. See the caption to Table IV for details

A
C
D
E
F

G
H
I
K
L

M
N
P
Q
R

S
T
V

w
Y

Substitution

Blosum62

0.055
0.018
0.020
0.020
0.044

0.022
0.010
0.253
0.027
0.147

0.037
0.017
0.018
0.016
0.019

0.027
0.048
0.171
0.006
0.024

matrices

SM-Opt.

0.028
0.008
0.006
0.011
0.025

0.011
0.005
0.517
0.011
0.117

0.026
0.009
0.008
0.008
0.010

0.015
0.025
0.146
0.003
0.011

Pseudocount

PC-Opt.

0.046
0.010
0.026
0.031
0.021

0.033
0.014
0.495
0.031
0.046

0.017
0.025
0.018
0.023
0.027

0.039
0.033
0.042
0.006
0.017

Dirichlet mixture

Blocks?

0.037
0.010
0.008
0.012
0.027

0.012
0.006
0.472
0.014
0.117

0.030
0.010
0.008
0.010
0.012

0.020
0.028
0.149
0.004
0.013

A
C
D
E
F

G
H
I
K
L

M
N
P
Q
R

S
T
V

w
Y

Substitution

Blosum62

0.055
0.018
0.020
0.020
0.044

0.022
0.010
0.253
0.027
0.147

0.037
0.017
0.018
0.016
0.019

0.027
0.048
0.171
0.006
0.024

matrices

SM-Opt.

0.028
0008
0.006
0.011
0.025

0.011
0.005
0.517
0 011
0.117

0.026
0.009
0.008
0.008
0.010

0.015
0.025
0.146
0.003
0.011

Pseudocount

PC-Opt.

0.024
0.005
0.014
0.016
0.011

0.017
0.007
0.737
0.016
0.024

0.009
0.013
0.009
0.012
0.014

0.020
0.017
0.022
0.003
0.009

Dirichlet mixture

Blocks9

0.018
0.005
0.003
0.004
0.013

0.006
0.002
0.737
0.005
0.059

0.015
0.004
0.004
0.004
0.004

0.008
0.013
0.089
0.002
0.006

Tables IV—VII give amino acid probability estimates produced by
different methods, given a varying number of isoleucines observed (and
no other amino acids). Methods used to estimate these probabilities
include two substitution matrices: Blosum62, which does Gribskov
average score (Gribskov et al., 1987) using the Blosum-62 matrix
(Henikoffand Henikoff, 1992), and SM-Opt, which does matrix multiply
with matrix optimized for the Blocks database (Karplus, 1995a); one
pseudocount method, PC-Opt, which is a single-component Dirichlet
density optimized for the Blocks database (Karplus, 1995a); and the
Dinchlet mixture Blocks9, the nine-component Dirichlet mixture given
in Tables I and II.

In order to interpret the changing amino acid probabilities produced by
the Dirichlet mixture, Blocks9, we recommend examining this table in
conjunction with Table III which shows the changing contnbution of
the components in the mixture as the number of isoleucines increases.
In the estimate produced by the Dirichlet mixture, isoleucine has a
probability just under 0.5 when a single isoleucine is observed, and
the other aliphatic residues have significant probability. This reveals the
influence of components 5 and 6, with their preference for allowing
substitutions with valine, leucine and methionine. By 10 observations,
the number of isoleucines observed dominates the pseudocounts added
for other amino acids, and the amino acid estimate is peaked around
isoleucine.
The pseudocount method PC-Opt also converges to the observed
frequencies in the data, as the number of isoleucines increases, but does
not give any significant probability to the other aliphatic residues when
the number of isoleucines is small.
By contrast, the substitution matrices give increased probability to
the aliphatic residues, but the estimated probabilities remain fixed as the
number of isoleucines increases.

constant. Pseudocount methods have many of the
desirable properties of Dirichlet mixtures—in particular,
that the estimated amino acids converge to the observed
frequencies as the number of observations increases—but
because they have only a single component, they are
unable to represent as complex a set of prototypical
distributions.

Dirichlet mixtures. Dirichlet mixtures address the problems
encountered in substitution matrices and in pseudocounts.

The inability of both substitution matrices and
pseudocount methods to represent more than one context
for the amino acids is addressed by the multiple compo-
nents of Dirichlet mixtures. These components enable a

Table VI. Estimated amino acid probabilities using various methods,
given five isoleucines. See the caption to Table IV for details

A
C
D
E
F

G
H
I
K.
L

M
N
P
Q
R

S
T
V

w
Y

Substitution

Blosum62

0.055
0.018
0.020
0.020
0.044

0.022
0.010
0.253
0.027
0.147

0.037
0.017
0.018
0.016
0.019

0.027
0.048
0.171
0.006
0.024

matrices

SM-Opt.

0.028
0.008
0.006
0.011
0.025

0.011
0.005
0.517
0.011
0.117

0.026
0.009
0.008
0.008
0.010

0.015
0.025
0.146
0.003
0.011

Pseudocount

PC-Opt.

0.016
0.004
0.009
0.011
0.008

0.012
0.005
0.822
0.011
0.016

0.006
0.009
0.006
0.008
0.009

0.014
0.012
0.015
0.002
0.006

Dirichlet mixture

Blocks9

0.010
0.003
0.002
0.002
0.007

0.004
0.001
0.846
0.003
0.034

0.008
0.002
0.002
0.002
0.002

0.004
0.007
0.054
0.001
0.003
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Table VII. Estimated amino acid probabilities using various methods,
given 10 isoleucines. See the caption to Table IV for details

A
C
D
E
F

G
H
I
K
L

M
N
P
Q
R

S
T
V

w
Y

Substitution

Blosum62

0.055
0.018
0.020
0.020
0.044

0.022
0.010
0.253
0.027
0.147

0.037
0.017
0.018
0.016
0.019

0.027
0.048
0.171
0.006
0.024

matrices

Blocks-Opt.

0.028
0.008
0.006
0.011
0.025

0.011
0.005
0.517
0.011
0.117

0.026
0.009
0.008
0.008
0.010

0.015
0.025
0.146
0.003
0.011

Pseudocount

Blocks-Opt.

0.009
0.002
0.005
0.006
0.004

0.006
0.003
0.902
0.006
0.009

0.003
0.005
0.003
0.005
0.005

0.008
0.006
0.008
0.001
0.003

Dirichlet mixture

Blocks9

0.004
0.001
0.001
0.001
0.003

0.002
0.001
0.942
0.001
0.012

0.003
0.001
0.001
0.001
0.001

0.002
0.003
0.020
0.001
0.001

mixture to represent a variety of contexts for each amino
acid. It is important to note that the components in the
mixture do not always represent prototypical distributions
and are, instead, used in combination to give high
probability to these commonly found distributions.
Sometimes a component will represent a prototypical
distribution, at other times such a distribution is repre-
sented by a combination of components; in some cases,
multiple distributions will be represented by a single
component.

For example, the mixture density shown in Tables I
and II presents several contexts for isoleucine. A pure
isoleucine distribution would be given high probability
by component 9, which gives high probability to all
conserved distributions. Components 5, 6 and 8 prefer
isoleucine found in combination with other amino acids.
In producing an estimate for the expected amino acids,
the formula [equation (15)] gives those components that
are most likely to have generated the observed amino
acids the greatest impact on the estimation. Table III
shows the change in the posterior probabilities of the
components as a variable number of isoleucines are
observed (with no other amino acids).

DirichJet mixtures also address the second drawback
associated with substitution matrices—the importance of
the actual number of residues observed—in the formula
used to compute the expected amino acids. In this formula,
given no observations, the estimated amino acid prob-
abilities approximate the background distribution, but as

more data become available, the estimate for a column
becomes increasingly peaked around the maximum like-
lihood estimate for that column (i.e. pt approaches ni/\n\
as \n\ increases). Importantly, when the data indicate that
a residue is conserved at a particular position, the expected
amino acid probabilities produced by this method will
remain focused on that residue, instead of being modified
to include all the residues that substitute on average for
the conserved residue.

Dirichlet mixtures were shown to give superior results
in encoding multiple alignments and in database discrimi-
nation experiments in comparison with various pseudo-
count and substitution matrix-based methods in (Brown
et ah, 1993; Tatusov et al., 1994; Karplus, 1995a; Henikoff
and Henikoff, 1996).

Algorithm

Computing amino acid probabilities

The raw frequencies in small samples are often poor
approximations to the distribution of amino acids among
all proteins which the model is supposed to represent. This
section will show how to use Dirichlet priors to form pt

estimates that are good approximations of the actual p,
values.

A Dirichlet density with parameters 6 = (au...,au

q\...,qt) defines a probability distribution p e over all
the possible distributions of amino acids. Given a
column in a multiple alignment, we can combine the
prior probabilities for each amino acid distribution
with the observed amino acid counts to form estimates,
p,, of the probabilities of each amino acid i at that
position.

We assume that the distribution of amino acids can
be modeled by the following generative stochastic
process:

1. First, a component j from the mixture 6 is chosen
at random according to the mixture coefficient <jy.

2. Then a probability distribution p is chosen independ-
ently according to Prob (p\aj), the probability defined
by component j over all such distributions.

3. Finally, the observed amino acids are generated
independently according to the distribution p. Thus,
the count vector n summarizing the observed amino
acids in a column will be distributed according to the
multinomial distribution with parameters p.

When 8 consists of a single component, the probability
of the components is one, and the stochastic process
consists of steps 2 and 3.

We can now define the estimated probability of amino
acid i, ph given a Dirichlet density with parameters 6 and
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observed amino acid counts n, as follows:

Pi : = Prob (amino acid i |0 ,n) (6)

= Prob (amino acid i\p) Prob (p\Q,n)dp (7)
ip

The first term in the integral, Prob (amino acid i\p),
is simply /?,, the /th element of the distribution vector p.
The second term, Prob (p\Q,n), represents the posterior
probability of the distribution p under the Dirichlet
density with parameters 0 , given that we have observed
amino acid counts n. The integral represents the
contributions from each probability distribution p,
weighted according to its posterior probability, of
amino acid /. An estimate of this type is called a mean
posterior estimate.

Computing probabilities using a single density (pseudo-
counts). In the case of a single-component density with
parameters a, the mean posterior estimate of the
probability of amino acid / is defined

pi = Prob (amino acid i\p) Prob (p\a,n)dp (8)

By Lemma 4 (the proof of which is found in the
Appendix), the posterior probability of each distribution
p, given the count data n and the density with parameters
a, is

Lemma 4:

where T is the Gamma function, the continuous
generalization of the integer factorial function (i.e.
T ( J C + ! ) = * ! ) .

Here we can substitute/?, for Prob (amino acid i\p) and
the result of Lemma 4 into equation (8), giving

Pi '•= 20

Y[T(ak+nk)
(9)

Now, noting the contributions of the pt term within the
integral, and using equation (47) from Lemma 2, giving
bill P°'~^P = Uir(a,)/r(|a|), we have

Pi •=• 20

IT
* = i

(10)

+

Since T(n + \)/T(n) = n\/(n - 1)! = n, we obtain

Pi := f p , Prob (p\a,n)dp = p±^- (11)

The method in the case of a single Dirichlet density can
thus be seen as adding a vector a of pseudocounts to
the vector n of observed counts, and then normalizing
so that J2i Pi = 1 •

Note, when \n\ = 0, the estimate produced is simply
a,-/|a|, the normalized values of the parameters a, which
are the means of the Dirichlet density. While not
necessarily the background frequency of the amino
acids in the training set, this mean is often a close
approximation. Thus, in the absence of data, our estimate
of the expected amino acid probabilities will be close to
the background frequencies. The computational simpli-
city of the pseudocount method is one of the reasons why
Dirichlet densities are so attractive.

Computing probabilities using mixture densities. In the
case of a mixture density, we compute the amino acid
probabilities in a similar way:

Pi := Prob (amino acid i\Q,n)

- Prob (amino acid i\p) Prob (p\Q,n)dp (12)
Jp

As in the case of the single density, we can substitute
p, for Prob (amino acid i\p). In addition, since 0 is
a mixture of Dirichlet densities, by the definition of a
mixture [equation (5)], we can find Prob (p\Q,n)
obtaining

P'
= \-p'( J2 (P\SJ>") P r o b W (13)

In this equation, Prob (a, \n, 0 ) is the posterior
probability of the yth component of the density, given
the vector of counts n [equation (16) below]. It captures
our assessment that the y'th component was chosen in
step 1 of the stochastic process generating these observed
amino acids. The first term, Prob (p\Sj,n), then
represents the probability of each distribution p, given
component j and the count vector n.

Pulling out terms not depending on p from inside the
integral gives us

p, := Prob (Sj\n,0) [ Prob {p\Sj,n)dp (14)
Jp

Substituting equation (11) [equation (15) was mis-
reported in previous work (Brown et al., 1993; Karplus,
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1995a,b)]:

A := (15)
j=\

Thus, instead of identifying one single component of the
mixture that accounts for the observed data, we determine
how likely each individual component is to have produced
the data. Then, each component contributes pseudocounts
proportional to the posterior probability that it produced
the observed counts. This probability is calculated using
Bayes' Rule:

prob^'"'e)-CSf (16)

Prob {n\3j, \n\) is the probability of the count vector n
given the y'th component of the mixture, and is derived
in section A.3 in the Appendix. The denominator,
Prob (n | 6 , \n |), is defined

Prob (n\e, | ( " !<**> I" I (17)

Equation (15) reveals a smooth transition between
reliance on the prior information, in the absence of
sufficient data, and confidence in the observed frequencies
as the number of observations increases. When \n\ = 0, />,
is simply ^2j qjaj,i/\aj\, the weighted sum of the mean
of each Dirichlet density in the mixture. As the number
of observations increases, the n, values dominate the a,
values, and this estimate approaches the maximum
likelihood estimate, pt := nt/\n\.

When a component has a very small \a\, it adds a very
small bias to the observed amino acid frequencies. Such
components give high probability to all distributions
peaked around individual amino acids. The addition of
such a small bias allows these components to not shift the
estimated amino acids away from conserved distributions,
even given relatively small numbers of observed counts.

By contrast, components having a larger |<3| tend to
favor mixed distributions, i.e. combinations of amino
acids. In these cases, the individual a,, values tend to be
relatively large for those amino acids / preferred by the
component. When such a component has high probability
given a vector of counts, these a} ,• have a corresponding
influence on the expected amino acids predicted for that
position. The estimates produced may include significant
probability for amino acids not seen at all in the count
vector under consideration.

Estimation of Dirichlet densities

In this section, we give the derivation of the procedure to
estimate the parameters of a mixture prior. Much

statistical analysis has been done on amino acid distribu-
tions found in particular secondary structural environ-
ments in proteins. However, our primary focus in
developing these techniques for protein modeling has
been to rely as little as possible on previous knowledge
and assumptions, and instead to use statistical techniques
that uncover the underlying key information in the data.
Consequently, instead of beginning with secondary
structure or other column labeling, our approach takes
unlabeled training data (i.e. columns from multiple
alignments with no information attached) and attempts
to discover those classes of distributions of amino acids
that are intrinsic to the data. The statistical method
directly estimates the most likely Dirichlet mixture density
through clustering observed counts of amino acids. In
most cases, the common amino acid distributions we find
are easily identified (e.g. aromatic residues), but we do not
set out a priori to find distributions representing known
environments.

As we will show, the case where the prior consists of
a single density follows directly from the general case
of a mixture. In the case of a mixture, we have two sets
of parameters to estimate: the a parameters for each
component and the q, or mixture coefficient, for
each component. In the case of a single density, we need
only estimate the a parameters. In our practice, we
estimate these parameters in a two-stage process: first we
estimate the a, keeping the mixture coefficients q fixed,
then we estimate the q, keeping the a parameters fixed.
This two-stage process is iterated until all estimates
stabilize. (This two-stage process is not necessary; we
have also implemented an algorithm for mixture esti-
mation that optimizes all parameters simultaneously.
However, the performance of these mixtures is no better,
and the math is more complex.)

As the derivations that follow can become some-
what complex, we provide two tables in the Appendix to
help the reader: Table VIII summarizes our notation,
and Table IX contains an index to key derivations and
definitions.

Given a set of m columns from a variety of multiple
alignments, we tally the frequency of each amino acid in
each column, with the end result being a vector of counts
of each amino acid for each column in the data set. Thus,
our primary data is a set of m count vectors. Many
multiple alignments of different protein families are
included, so m is typically in the thousands.

We have used Maximum Likelihood to estimate the
parameters 6 from the set of count vectors, i.e. we seek
those parameters that maximize the probability of
occurrence of the observed count vectors. We assume
that the three-stage stochastic model described in the
section on computing amino acid probabilities was used
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independently to generate each of the count vectors in our
observed set of count vectors. Under this assumption of
independence, the probability of the entire set of observed
frequency count vectors is equal to the product of their
individual probabilities. Thus, we seek to find the model
that maximizes Y[7=\ P r o b («rl©> I«»D- If w e t a k e t n e

negative logarithm of this quantity, we obtain the
encoding cost of all the count vectors under the mixture.
Since the encoding cost of the count vectors is inversely
related to their probability, we can equivalently seek a
mixture density with parameters 6 that minimizes the
encoding cost

Prob(n,|e,|n,|) (18)
1 = 1

In the simplest case, we fix the number of components /
in the Dirichlet mixture to a particular value and then
estimate the 2 1 / - 1 parameters (20 a, values for each
of the components, and / - 1 mixture coefficients). In
other experiments, we attempt to estimate / as well. The
simplest method to estimate / involves estimating several
Dirichlet mixtures for each number of components,
and choosing the smallest mixture that performs well
enough for our purposes. Unfortunately, even for fixed
/, there does not appear to be an efficient method of
estimating these parameters that is guaranteed to find
the maximum likelihood estimate. However, a variant of
the standard expectation-maximization (EM) algorithm
for mixture density estimation works well in practice: EM
has been proved to result in closer and closer approxima-
tions to a local optimum with every iteration of the
learning cycle; a global optimum, unfortunately, is not
guaranteed (Dempster et al., 1977). [An introduction to
this method of mixture density estimation is given in
Duda and Hart (1973). We have modified their procedure
to estimate a mixture of DirichJet rather than Gaussian
densities.] Since there are many rather different local
optima with similar performance, no optimization
technique is likely to find the global optimum. The
mixture described in Tables I and II is the best local
optimum we have found in many different optimizations.

Deriving the a parameters. Since we require that the a, be
strictly positive, and we want the parameters upon which
we will do gradient descent to be unconstrained, we
reparameterize, setting ay, = eKyi, where wJt, is an
unconstrained real number. Then, the partial derivative
of/ [equation (18)] with respect to wy ,• is

>fllog Prob(«,|0,|/rt|) &*,,,
(19)

We will use two lemmas in this section, the proofs for
which are given in the Appendix:

Lemma 5:

9 log Prob (n|0,

9log Prob (n\5j, \n\)
= Prob (5, \n, 6)

Lemma 6:

dlog Prob (n\a, \n\)

fa,

where 9(x) = T'(x)/T(x). Using Lemma 5, we obtain

df(S)_ y>

~d»J7~~h Prob aj""e

fllogProbfalSy.KI) fajy, (20)

Using Lemma 6, and the fact that fajj/dwJtl = a,,, we
obtain

= ~Ylaj<> Prob ("yl""

(21)

To optimize the a parameters of the mixture, we do
gradient descent on the weights iv, taking a step in the
direction of the negative gradient (controlling the size of
the step by the variable 7], 0 < r\ <s^ 1) during each
iteration of the learning cycle. Thus, the gradient descent
rule in the mixture case can now be defined as follows:

(22)

a , v ) - ,,)) (23)

Now, letting Sj = Y1T=\ P ro r j (<2/|«,,0), this gives us

Prob(5,|«,,0)
r=l

x(*K, + ay.,.) - * ( | » , | + |5,|)) (24)
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In the case of a single density, Prob (a | n, 9 ) = 1 for all
vectors n; thus, Sj = J2T= 1 P r°b ("I"/!©) = m> ar>d the
gradient descent rule for a single density can be written as

a , - ) - (25)

After each update of the weights, the a parameters are
reset, and the process continued until the change in the
encoding cost [equation (18)] falls below some pre-defined
cutoff.

Mixture coefficient estimation. In the case of a mixture
of Dirichlet densities, the mixture coefficient, q, of the
component is also estimated. However, since we require
that the mixture coefficients must be non-negative and
sum to one, we first reparameterize, setting qj — Qj/\Q\,
where the Q, are constrained to be strictly positive, and
\Q\ = J2j= i Qj- As in the first stage, we want to maximize
the probability of the data given the model, which is
equivalent to minimizing the encoding cost [equation (18)].
In this stage, we take the derivative of / with respect to
Qj. However, instead of having to take iterative steps in
the direction of the negative gradient, as we did in the
first stage, we can set the derivative to zero, and solve for
those qj = Qj/\Q\ that maximize the probability of the
data. As we will see, however, the new qj are a function
of the previous qf, thus, this estimation process must also
be iterated.

Taking the gradient of/ with respect to Qj, we obtain

dQj = -£a log Prob(f?,|e,|B,|)
(26)

We introduce Lemma 8 (the proof for which is found
in section A.8 in the Appendix).

Lemma 8:

d log Prob (n |0, | n |) _ Prob (a, | n, 6) 1

Qj \Q\

Using Lemma 8, we obtain

0/(6) ^ / P r o b ( a > - , , 8 ) 1

M Qj \Q\) ( '

m
\Q\

Prob (a, | «„ 6)

(28)

Since the gradient must vanish for those mixture
coefficients giving the maximum likelihood, we set the
gradient to zero, and solve. Thus, the maximum likelihood
setting for qj is

• Ifil
1 v^-v

:= — Yj Prob (5j \n,, 0)

(29)

(30)

Here, the re-estimated mixture coefficients are func-
tions of the old mixture coefficients, so we iterate this
process until the change in the encoding cost falls below
the predefined cutoff. (It is easy to confirm that these
coefficients sum to one, as required, since ^ / = l 2~̂ J">= I Prob
(aj\n,,e) = £7Li Ej=. Prob («,!«„6) = E"-! 1 = m.)

In summary, when estimating the parameters of a
mixture prior, we alternate between re-estimating the a
parameters of each density in the mixture, by gradient
descent on the w, resetting a, , = eWjJ, after each
iteration, followed by re-estimating and resetting the
mixture coefficients as described above, until the process
converges.

Implementation

Implementing Dirichlet mixture priors for use in HMMs
or other stochastic models of biological sequences is not
difficult, but there are many details that can cause
problems if not handled carefully.

This section splits the implementation details into two
groups: those that are essential for getting working
Dirichlet mixture code (next section), and those that
increase efficiency, but are not essential (section on
'Efficiency improvements').

Essential details

In the section 'Computing amino acid probabilities', we
gave the formulas for computing the amino acid prob-
abilities in the cases of a single density [equation (11)] and
of a mixture density [equation (15)].

For a single Dirichlet component, the estimation
formula is trivial:

(31)

and no special care is needed in the implementation.
For the case of a multi-component mixture, the implemen-
tation is not quite so straightforward.

As we showed in the derivation of equation (15),

(32)
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The interesting part for computation comes in
computing Prob (a,|n, 8) [see equation (16)]. We can
expand Prob (n\Q, \n\) using equation (17) to obtain

Prob (a , | n , e ) = —
Prob (n\Sj, \n\)

(n\ak,\n\)

(33)

k=\

Note that this is a simple normalization of qj Prob
(n\dj, \n\) to sum to one. Rather than carry the normali-
zation through all the equations, we can work directly
with Prob (n\aj, \n\), and put everything back together at
the end.

First, we can expand Prob (n\dj, \n\) using Lemma 3
(the proof of which is found in section A.3 in the
Appendix):

(34)

If we rearrrange some terms, we obtain

20

Prob(«|5/,|«|) =

T(\n\
20 (35)

The first two terms are most easily expressed using the
Beta function: B(x) = n ^ i r(jc/)/r(|jc|), where, as
usual, .v| = i xi- This simplifies the expression to

'

( 3 6 )

The remaining Gamma functions are not easily
expressed with a Beta function, but they do not need to
be. Since they depend only on n and not on j , when we do
the normalization to make the Prob (a, | n, 6 ) sum to one,
this term will cancel out, giving us

Prob (5j\n,e) =
B(a,)

(37)

k=\

Plugging this formula into equation (32) gives us

Pi '•= ——i T^

n + a
(38)

k=\

Since the dominator of equation (38) is independent of
/, we can compute p, by normalizing

7 = 1

to sum to one. That is

Pi = 20

(39)

(40)

The biggest problem that implementers run into is that
these Beta functions can get very large or very small—
outside the range of the floating-point representation
of most computers. The obvious solution is to work with
the logarithm of the Beta function:

Most libraries of mathematical routines include the
lgamma function which implements logr(.x), and so
using the logarithm of the Beta function is not difficult.

We could compute each X, using only the logarithmic
notation, but it turns out to be slightly more convenient
to use the logarithms just for the Beta functions:

a, + n

Some care is needed in the conversion from the
logarithmic representation back to floating point, since
the ratio of the Beta functions may be so large or so small
that it cannot be represented as floating-point numbers.
Luckily, we do not really need to compute X,, only
Pi = XJ £ j tL | Xk. This means that we can divide X, by
any constant and the normalization will eliminate the
constant. Equivalently, we can freely subtract a constant
(independent of j and /') from logB(ay + n) — logB(5,)
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before converting back to floating point. If we choose
the constant to be max, ( l o g B ^ + n) — logB(5,)), then
the largest logarithmic term will be zero, and all the terms
will be reasonable. (We could still get floating-point
underflow to zero for some terms, but the p computation
will still be about as good as can be done within floating-
point representation.)

Efficiency improvements

The previous section gave simple computation formulas
for pi [equations (39) and (40)]. When computations of
pt are done infrequently (e.g. for profiles, where pt only
needs to be computed once for each column of the profile),
those equations are perfectly adequate.

When recomputing pt frequently, as may be done in a
Gibbs sampling program or training a hidden Markov
model, it is better to have a slightly more efficient
computation. Since most of the computation time is
spent in the lgamma function used for computing the log
Beta functions, the biggest efficiency gains come from
avoiding the lgamma computations.

If we assume that the ajti and qj values change less
often than the values for n (which is true of almost every
application), then it is worthwhile to pre-compute
logB(oy), cutting the computation time almost in half.

If the rij values are mainly small integers (zero is
common in all the applications we've looked at), then
it is worth pre-computing logr(o / J ) , logr(ay , •+1),
logr(ay ( + 2), and so on, out to some reasonable value.
Pre-computation should also be done for logr(|ay|),
logrfla/l + 1), logrf la j + 2), and so forth. If all the n
values are small integers, this pre-computation almost
eliminates the lgamma function calls.

In some cases, it may be worthwhile to build a special-
purpose implementation of log F(x) that caches all calls
in a hash table, and does not call lgamma for values of x
that it has seen before. Even larger savings are possible
when x is close to previously computed values, by using
interpolation rather than calling lgamma.

Discussion

The methods employed to estimate and use Dirichlet
mixture priors are shown to be firmly based on Bayesian
statistics. While biological knowledge has been intro-
duced only indirectly from the multiple alignments used
to estimate the mixture parameters, the mixture priors
produced agree with accepted biological understanding.
The effectiveness of Dirichlet mixtures for increasing the
ability of statistical models to recognize homologous
sequences has been demonstrated experimentally (Brown
et al., 1993; Tatusov et al., 1994; Bailey and Elkan, 1995;

Karplus, 1995a; Henikoff and Henikoff, 1996; Hughey and
Krogh, 1996; Wang et al., 1996).

The mixture priors we have estimated thus far have been
on unlabeled multiple alignment columns—columns with
no secondary structure or other information attached.
Previous work deriving structurally informed distri-
butions, such as that by Luthy et al. (1991), has been
shown to increase the accuracy of profiles in both database
search and multiple alignment by enabling them to take
advantage of prior knowledge of secondary structure
(Bowie et al., 1991). However, these distributions cannot
be used in a Bayesian framework, since there is no measure
of the variance associated with each distribution, and
Bayes' rule requires that the observed frequency counts be
modified inversely proportional to the variance in the
distribution. Thus, to use these structural distributions
one must assign a variance arbitrarily. We plan to estimate
Dirichlet mixtures for particular environments, and to
make these mixtures available on the World-Wide Web.

Dirichlet mixture priors address two primary weak-
nesses of substitution matrices: considering only the
relative frequency of the amino acids while ignoring
the actual number of amino acids observed, and having
fixed substitution probabilities for each amino acid. One
of the potentially most problematic consequences of these
drawbacks is that substitution matrices do not produce
estimates that are conserved, or mostly conserved, where
the evidence is clear that an amino acid is conserved. The
method presented here corrects these problems. When
little data are available, the amino acids predicted are
those that are known to be associated in different contexts
with the amino acids observed. As the available data
increase, the amino acid probabilities produced by this
method converge to the observed frequencies in the data.
In particular, when evidence exists that a particular
amino acid is conserved at a given position, the expected
amino acid estimates reflect this preference.

Because of the sensitivity of Dirichlet mixtures to the
number of observations, any significant correlation
among the sequences must be handled carefully. One
way to compensate for sequence correlation is by the use
of a sequence weighting scheme (Sibbald and Argos, 1990;
Thompson et al., 1994a,b; Henikoff and Henikoff, 1996).
Dirichlet mixtures interact with sequence weighting in two
ways. First, sequence weighting changes the expected
distributions somewhat, making mixed distributions more
uniform. Second, the total weight allotted the sequences
plays a critical role when Dirichlet densities are used. If
the data are highly correlated, and this is not compensated
for in the weighting scheme (by reducing the total counts),
the estimated amino acid distributions will be too close
to the raw frequencies in the data, and not generalized to
include similar residues. Since most sequence weighting
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methods are concerned only with relative weights, and
pay little attention to the total weight allotted the
sequences, we are developing sequence weighting
schemes that coordinate the interaction of Dirichlet
mixtures and sequence weights.

Since the mixture presented in this paper was estimated
and tested on alignments of fairly close homologs [the
BLOCKS (Henikoff and Henikoff, 1991) and HSSP
(Sander and Schneider, 1991) alignment databases], it
may not accurately reflect the distributions we would
expect from more remote homologs. We are planning to
train a Dirichlet mixture specifically to recognize true
remote homologies, by a somewhat different training
technique on a database of structurally aligned sequences.

Finally, as the detailed analysis of Karplus (1995a,b)
shows, the Dirichlet mixtures already available are
close to optimal as far as their capacity for assisting in
computing estimates of amino acid distributions, given a
single-column context, and assuming independence
between columns and between sequences for a given
column. Thus, further work in this area will perhaps
profit by focusing on obtaining information from
relationships among the sequences (for instance, as
revealed in a phylogenetic tree) or in inter-columnar
interactions.

The Dirichlet mixture prior from Table I is available
electronically at our World-Wide Web site h t t p : / /
www.c8e.uc8c.edu/research/compbio/. In addition to
the extensions described above, we plan to make
programs for using and estimating Dirichlet mixture
densities available on our World-Wide Web and ftp
sites later this year. See our World-Wide Web site for
announcements.
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Appendix

Table VIII. Summary of notation

|J?| = 52/ xit where J? is any vector.
n = « ) , . . . ,ri2o is a vector of counts from a column in a multiple alignment. The symbol n, refers to the number of amino acids /in the column. The lib

such observation in the data is denoted n,.
P= (P\ i • • • i Pw)» JlPt = 1, /»/ > 0, are the parameters of the multinomial distributions from which the n are drawn.
9 is the set of all such p.
a = (et\,... ,Q2o) s t - ai > 0, are the parameters of a Dirichlet density. The parameters of thejth component of a Dinchlet mixture are denoted 3j. The

symbol otjj refers to the /'th parameter of theyth component of a mixture.
q, = Prob (aj) is the mixture coefficient of (hejth component of a mixture.
8 = ( ? i , . . . , q/, Si,..., 3;) = all the parameters of the Dirichlet mixture.
if — (H>| , . . . , H'20), are weight vectors, used during gradient descent to train the Dinchlet density parameters a. After each training cycle, <*y, is set to e"1-'.

The symbol Wjt is the value of the /th parameter of theyth weight vector. The nomenclature weights comes from artificial neural networks.
m = the number of columns from multiple alignments used in training.
/ = the number of components in a mixture.
7) = eta, the learning rate used to control the size of the step taken during each iteration of gradient descent.
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Table IX. Index to key derivations and definitions

T(\n

*(.v)

Prob

Prob

Prob

Prob

(A.

+ 1)

(n\p,

(«|5,

(a\e

(5j\n

1*1)

1*1)

1*1)

• 8 )

') Lemma 1

= - £ log (Prob (n,|9,K,|))
i - i

(the encoding cost of all the count vectors given the mixture—the function minimized)
= n\ (for integer n > 0)
(Gamma function)

a log r(.r) r'(.v)

dx r(x)
(Psi function)

20 _ i

(the probability of n under the multinomial distribution with parametersp)

r(H + |S|) fJi I>, + 1)I>()
(the probability of ff under the Dirichlet density with parameters 5)

Prob (»fo, |
t - i

(the probability of n given the entire mixture prior)

= <?y Prob (n|o,, |n|)

Prob(/?|e, |n|)

(shorthand for the posterior probabiuty of theyth component of the mixture given the vector of counts n)

20

Prob («! Pi

equivalent form

Piob(n\p,\n\)=r(\n\ + l)f[

Proof:
For a given vector of counts n, with pt being the
probability of seeing the /th amino acid, and |n| =
5^/«/, there are |n|!/(/i,!«2! • • -"MO distinct permutations
of the amino acids which result in the count vector n.
If we allow for the simplifying assumption that each
amino acid is generated independently (i.e. the sequences
in the alignment are uncorrelated), then each such
permutation has probability \\ fL\p"'- Thus, the prob-
ability of a given count vector n given the multinomial
parameters p is

(A.2) Lemma 2

Prob (p\a)= ^aU T[P?
20n

, i=i

1 = 1

(18)

(43)

(64)

(44)

(51)

(17)

(16)

(44)

Proof:
Under the Dirichlet density with parameters a, the
probability of the distribution p (where p, > 0 and
J2i Pi = 1) is defined as follows:

n <
20

n x \ n 2 \ .

20

HP?'
20 m

?rob{p\a)=T±
(42)

To enable us to handle real-valued data (such as
those obtained from using a weighting scheme on the
sequences in the training set), we introduce the Gamma
function, the continuous generalization of the integer
factorial function,

r ( / i+ l ) = n! (43)

Substituting the Gamma function, we obtain the

Jpesr

(45)

We introduce two formulas concerning the Beta
function—its definition (Gradshteyn and Ryzhik, 1965,
p. 948)

Jo
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and its combining formula (Gradshteyn and Ryzhik, 1965,
p. 285)

f = bx+y-l B(x,y).

This allows us to write the integral over all p vectors
as a multiple integral, rearrange some terms, and obtain

...B(al9,a20) (46)

( 4 7 )

We can now given an explicit definition of the
probability of the amino acid distribution p given
the Dirichlet density with parameters a:

(48)
1=1

(A3) Lemma 3

Prnh (S\rt\S\\

Prob(n|a,M) =
I + 1) A (n, + a,

Proof:
We can substitute equations (44) and (48) into the identity

Prob (n\S, \n\) = [ Prob {n\p, \n\) Prob (p\a)dp,
Jpes>

(49)

rearranging terms, we obtain

r(|g|) TT _J>/ + «/)
\Z\\ 1 1 Pin, .

(51)

(A.4) Lemma 4

Prob (p\3,n) = ^ 1 + 1"̂  YlP'+n'
20

Proof:
By repeated application of the rule for conditional
probability, the probability of the distribution p, given
the Dirichlet density with parameters a, and the observed
amino acid count vector n is defined

Prob (p\a,n) —
Prob {p,a,n\\n\)

Prob (a,n\ \n\)

Prob (n\p,a,\n\) Prob (p,a)

Prob (n\a,\n\) Prob (a)

Prob (n\p,a, \n\) Prob (p\a)

Prob (n\3, \n\)

(52)

(53)

(54)

However, once the point p is fixed, the probability of n
no longer depends on a. Hence,

Prob (p\a,n) =
Prob (n\p, \n\) Prob (p\a)

Prob(n|a,|i?|)
(55)

At this point, we apply the results from previous
derivations for quantities Prob (n\p, \n\) [equation (44)],
Prob (p\S) [equation (48)] and Prob («|a, \n\) [equation
(51)]. This gives us

Prob (p\3,n) = (56)

giving

20

20n
, 1 = 1

— IN ZU

-\>-Y[p^+a'-idp. (50)

Most of the terms cancel, and we have

Prob (p\a,n) =
20

/ = i

Note that this is the expression for a Dirichlet density
Pulling out terms not depending on p from inside the with parameters a + n. This property, that the posterior

integral, using the result from equation (47), and density of p is from the same family as the prior,
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characterizes all conjugate priors, and is one of the
properties that make Dirichlet densities so attractive.

(A.5) Lemma 5

Prob («|e,|/?|)

= Prob (Sj\n,Q)
Slog Prob (n |a , , \n\)

Proof:
The derivative with respect to a}, of the log likelihood
of each count vector n given the mixture is

d log Prob (n\Q,\n\)

1 d Prob (n|e, |n |)
Prob («|0, |«|) dajj

Applying equation (17), this gives us

dlog Prob (»|e,|w|)

(58)

1
P r o b

Prob(«|0, |« |) ft*/,l
(59)

Since the derivative of Prob (n\ak, \n\) with respect to
otjj is zero for all k ^j, and the mixture coefficients (the
qk) are independent parameters, this yields

d log Prob(w|9,|w|)

q} Prob (/T|q,-, \n\)

Prob(«|0, |n |)
(60)

We rearrange equation (16) somewhat, and replace
(n|0, |«|) by its equivalent, obtaining

dlog Prob(n |e , |n | )

_ Prob (a,, |n,0) 9 Prob (w|(a,, |n|

Prob {n\ap \n\) daJt,
(61)

Here, again using the fact that dlog(f(x))/dx =
df{x)/f{x)dx, we obtain the final form

Slog Prob (#?|e,|n|)

Prob (a, n, 8 ) — '- . 62)

ft*/,.

Lemma 6

d log Prob («|a,

a,) -

/'TOO/-

In this proof, we use Lemma 3, giving

Prob (n\a, \n\) =

Since the derivative of terms not depending on a, are
zero, we obtain that for a single vector of counts n

dlog Prob {n\a,\n\) 51ogr(|a|)
da, da,

01ogr(|n|
• +

da, ' da,

Now, if we substitute the shorthand

r'(x)

we have

eta/
- • (63)

w " dx ~ T(x) '

dlog Prob (n\a, \n\)

(64)

= *(|5|) - *(|>i| + |5|) + *(«, + «,) - *(a,-). (65)

(A.7) Lemma 7

d Prob ( « | 0 , |« | ) Prob (n\at, \n\) - Prob ( M | 0 , |W|)

dQ, \Q\

Proof-
Substituting equation (17), giving Prob («|0, |n|) =
^ ' = i q} Prob (n\Sj, \n\) and replacing q} by Qj/\Q\, we
obtain

d Prob (n|0,

dQi dQ,
(66)

As the derivative of a sum is the sum of the derivatives,
we can use the standard product rule for differentiation,
and obtain

9 Prob («|8,|n|) ^

(67)
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Since <9Prob (n\Sj, \n\)/dQt = 0 for ally, this gives us

./=>
(68)

Taking the derivative of the fraction {Qj/\Q\) with
respect to Q,, we obtain

(A.8) Lemma 8

dlog Prob (n |9 , \n\) _ Prob {5j\n, 9 ) 1

dQj ~ Qj Ifii

Proof:
Using Lemma 7, we can derive

a log Prob (n |e , |n | )

d(Qj/\Q\) i
(69)

Prob (n |0 , |n | )

The first term, | g | xdQj/dQt, is zero when y ^ ;', and
is l / | g | when ./ = /. The second term, Qjd\Q\~l/dQh is
simply —Qj/\Q\2- Thus, this gives us

d Prob (n\S,\n\) Prob (n|a,-, |n |)

Prob (/r|e,|«|) dQj

I

Prob(/?|e,|n|)
Prob (n|a,-, |«|) - Prob (/T|e, |n|

x iel

lei

(n\ah\n\)-Q^. (70)

Here, q} = Qj/\Q\ allows us to replace Qj/\Q\2 with

(71)

(73)

(74)

(75)

If we rearrange equation (16), we obtain
Prob(«|a, , |n |) /Prob(/f |8, |n|) = Prob{a]\n,Q)lq]. This
allows us to write

Prob(w|9,H)

Prob (n\a,, \n\) -^qj Prob (n\5j,
j=\

\Q\

At this point, we use equation (17) and obtain

d Prob (« |0, |«|) Prob (n\an \n\) - Prob (» |6, |« |

\Q\

(76)

Now we can use the identity qj = Qj/\Q\, obtaining
the equivalent

dlog Prob (f?|e,|»|) Prob (q,|w,0) 1

3 2 , G, IGI* l '
(72)
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