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Abstract

Stochastic context-free grammars (SCFGs) are applied to the problems of folding, aligning
and modeling families of homologous RNA sequences. SCFGs capture the sequences’ common
primary and secondary structure and generalize the hidden Markov models (HMMs) used in
related work on protein and DNA. The novel aspect of this work is that SCFG parameters
are learned automatically from unaligned, unfolded training sequences. A generalization of the
HMM forward-backward algorithm is introduced to do this. The new algorithm, Tree-Grammar
EM, based on tree grammars and faster than the previously proposed SCFG inside-outside
training algorithm, produced a model that we tested on the transfer RNA (tRNA) family.
Results show that after having been trained on as few as 20 tRNA sequences from only two tRNA
subfamilies (mitochondrial and cytoplasmic), the model can discern general tRNA from similar-
length RNA sequences of other kinds, can find secondary structure of new tRNA sequences, and
can produce multiple alignments of large sets of tRNA sequences. Our results suggest potential
improvements in the alignments of the D- and T-domains in some mitochdondrial tRNAs that
cannot be fitted into the canonical secondary structure.

1 Introduction

Both computer science and molecular biology are evolving rapidly as disciplines, and predicting the
structure of macromolecules by theoretical or experimental means remains a challenging problem.
Efforts to sequence the genomes of organisms (Sanger et al., 1982; Daniels et al., 1983; Sanger et al.,
1977; Sanger et al., 1978; Dunn & Studier, 1981; Dunn & Studier, 1983; Baer et al., 1984; Daniels
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et al., 1992; Plunkett 3d et al., 1993; Ogasawara, 1993; Oliver et al., 1992; Sulston et al., 1992;
Merriam et al., 1991; Joint NIH/DOE Mouse Working Group, 1993; Olson, 1993; Okada & Shimura,
1993; von Montagu et al., 1992; Minobe, 1993) and organelles (Hiratsuka et al., 1989; Hallick et al.,
1993; Crozier & C., 1993; Oda et al., 1992; Tzeng et al., 1992; Cummings et al., 1990; Cantatore
et al., 1989; Gadaleta et al., 1989; Sutcliffe, 1979) have heightened awareness of the use of computers
in data acquisition, management and analysis. The increasing numbers of DNA, RNA and protein
sequences yielded by these projects (Courteau, 1991) highlight a growing need for developing new
approaches in computational biology such as hidden Markov models (HMMs) (Lander & Green,
1987; Churchill, 1989; Rabiner, 1989; Haussler et al., 1993; Krogh et «al., 1994; Baldi et «al., 1993;
Cardon & Stormo, 1992) and other approaches (Hunter et al., 1993). In addition to the accelerated
discovery of sequences related by a natural phylogeny, the generation of “artificial” phylogenies by
experimental design for proteins (reviewed in Arnold’s paper (Arnold, 1993)) and RNA (reviewed in
an article by Burke and Berzal-Herranz (Burke & Berzal-Herranz, 1993)) serves only to exacerbate
the problem of growth in sequence data. Hence, determining common or consensus patterns among
a family of sequences, producing a multiple sequence alignment, discriminating members of the
family from non-members and discovering new members of the family will continue to be some of the
most important and fundamental tasks in mathematical analysis and comparison of macromolecular
sequences (Dahlberg & Abelson, 1989; Doolittle, 1990). In this paper, we apply stochastic context-
free grammars (SCFGs) to the problems of statistical modeling, multiple alignment, discrimination
and prediction of the secondary structure of RNA families. This approach is highly related to our
work on modeling protein families and domains with HMMs (Haussler et al., 1993; Krogh et al.,
1994).

In RNA, the nucleotides adenine (4), cytosine (C), guanine (G) and uracil (U) interact in specific
ways to form characteristic secondary-structure motifs such as helices, loops and bulges (Saenger,
1984; Wyatt et al., 1989). Further folding and hydrogen-bonding interactions between remote
regions orient these secondary-structure elements with respect to each other to form the functional
system. Higher-order interactions with other proteins or nucleic acids may also occur. In general,
however, the folding of an RNA chain into a functional molecule is largely governed by the formation
of intramolecular A-U and G-C Watson-Crick pairs as well as G-U and, more rarely, G-A base pairs.
Such base pairs constitute the so-called biological palindromes in the genome.

Comparative analyses of two or more protein or nucleic-acid sequences have been used widely in
detection and evaluation of biological similarities and evolutionary relationships. Several methods
for producing these multiple sequence alignments have been developed, most based on dynamic
programming techniques (for example, see works by Waterman (Waterman, 1989)). However,
when RNA sequences are to be aligned, both the primary and secondary structure need to be
considered since generation of a multiple sequence alignment and analysis of folding are mutually
dependent exercises. Elucidation of common folding patterns among two or more sequences may
indicate the pertinent regions to be aligned and vice versa (Sankoff, 1985).

Currently, there are two principal methods for predicting secondary structure of RNA, or which
nucleotides are base-paired. Phylogenetic analysis of homologous RNA molecules (Fox & Woese,
1975; Woese et al., 1983) ascertains structural features that are conserved during evolution. It is
based on the premise that functionally equivalent RNA molecules are also structurally equivalent
and relies on alignment and subsequent folding of many sequences into similar secondary structures
(see review papers (James et al., 1989; Woese et al., 1983)). Comparative methods have been used



to infer the structure of tRNA (Levitt, 1969; Holley et al., 1965; Madison et al., 1966; Zachau et al.,
1966; RajBhandary et al., 1966), 55 RNA (Fox & Woese, 1975), 16S ribosomal RNA (rRNA) (Woese
et al., 1980; Stiegler et al., 1980; Zwieb et al., 1981), 23S rRNA (Noller et al., 1991; Glotz et al.,
1981; Branlant et al., 1981), group I introns (Michel & Westhof, 1990; Michel et al., 1990), group 11
introns (Michel et al., 1989), RNAse P RNA (Brown et al., 1991; Tranguch & Engelke, 1993), small
nuclear RNAs (Guthrie & Patterson, 1988), 7S RNA (signal recognition particle RNA) (Zwieb,
1989), telomerase RNA (Romero & Blackburn, 1991), MRP RNA (Schmitt et al., 1993) and TAR
RNA of human and simian immunodeficiency viruses (Berkhout, 1992). The original procedure of
Noller and Woese (Noller & Woese, 1981) detected compensatory base changes in putative helical
elements: contiguous antiparallel arrangement of A-U, G-C and G-U pairings. Positions that covaried
were assumed to be base-paired. This procedure was subsequently formalized into an explicit
computer algorithm (Waterman et al., 1984; Waterman, 1988) that stores all “interesting” patterns,
a potential problem as the number of patterns increases. The algorithm of Sankoff (Sankoff, 1985)
for simultaneously aligning and folding sequences is generally impractical in terms of time and space
for large numbers of long sequences. Given an alignment of homologous RNA sequences, heuristic
methods have been proposed to predict a common secondary structure (Han & Kim, 1993; Chiu
& Kolodziejezak, 1991; Chan et al., 1991). However, there remains no reliable or automatic way
of inferring an optimal consensus secondary structure even if the related sequences are already
aligned. Because considerable manual intervention is still required to identify potential helices
that maintain base complementarity, automation and development of more rigorous comparative
analysis protocols are under continual development (Gutell et al., 1992; Lapedes, 1992; Klinger &
Brutlag, 1993; Waterman, 1989; Winker et al., 1990).

The second technique for predicting RNA secondary structure employs thermodynamics to
compare the free energy changes predicted for formation of possible secondary structure and relies
on finding the structure with the lowest free energy (Tinoco Jr. et al., 1971; Turner et al., 1988;
Gouy, 1987). Such energy minimization depends on thermodynamic parameters and computer
algorithms to evaluate the optimal and suboptimal free-energy folding of an RNA species (see
review papers (Jaeger et al., 1990; Zuker & Sankoff, 1984)). To obtain a common folding pattern
for a set of related molecules, Zuker has suggested predicting a folding for each sequence separately
using these algorithms and then searching for a common structure (Zuker, 1989). Limitations of
this method are partially due to the uncertainty in the underlying energy model, and the technique
may be overly sensitive to point mutations. Attempts are being made to combine both phylogenetic
and energetic approaches (Le & Zuker, 1991).

Using methods different from those described above, several groups have enumerated schemes
or programs to search for patterns in proteins or nucleic acid sequences (Staden, 1990; Lathrop
et al., 1987; Sibbald & Argos, 1990; Abarbanel et al., 1984; Saurin & Marliere, 1987; Gautheret
et al., 1990; Cohen et al., 1986; Presnell & Cohen, 1993). String pattern-matching programs based
on the UNIX grep function, developed in unpublished work by S. R. Eddy (Schneider et al., 1992)
and others (Macke et al., 1993), search for secondary structure elements in a sequence database.
If there is prior knowledge about sequence and structural aspects of an RNA family, this can be
employed to create a descriptor (discriminating pattern) for the family which can then be used for
database searching or generating an alignment for the family. This has been demonstrated most
clearly for tRNA (Fichant & Burks, 1991; Staden, 1980; Marvel, 1986), where approximate string
matching (locating all occurrences of substrings that are within a given similarity neighborhood of



an exact match to the pattern) proved to be important.

Our method of multiple alignment and folding differs markedly from the conventional techniques
because it builds a statistical model during rather than after the process of alignment and folding.
Such an approach has been applied successfully to modeling protein families with HMMs (Haussler
et al., 1993; Krogh et al., 1994).

Though in principle HMMs could be used for RNA, we strongly suspect that the more general
statistical models described here are required. Since base-pairing interactions, most notably A-U,
G-C and G-U, play such a dominant role in determining RNA structure and function, any statistical
method that does not consider this will eventually encounter insurmountable problems. The prob-
lem is that if two alignment positions are base-paired in the typical RNA, then the bases occurring
there will be highly correlated, whereas the standard HMM approach will treat them as having
independent distributions.

In this paper, we describe a means to generalize HMMs to model most of the interactions seen
in RNA using formal language theory. As in the elegant work of Searls (Searls, 1992), we view
the strings of characters representing pieces of DNA, RNA and protein as sentences derived from a
formal grammar. The simplest kind of grammar is a regular grammar, in which strings are derived
from productions (rewriting rules) of the forms § — a5 and S — a, where S is a nonterminal
symbol, which does not appear in the final string, and a is a terminal symbol, which appears as
a letter in the final string. Searls has shown base pairing in RNA can be described by a context-
free grammar (CFG), a more powerful class of formal grammars than the regular grammar (see
Section 2.1). CFGs are often used to define the syntax of programming languages. A CFG is
similar to a regular grammar but permits a greater variety of productions, such as those of the
forms § — 55 and S — aSa. As described by Searls, it is precisely these additional types of
productions that are needed to describe the base-pairing structure in RNA.! In particular, the
productions of the forms § — A 5 U, S = US A S —=GS5SCand S — C 5 G describe the structure
in RNA due to Watson-Crick base pairing. Using productions of this type, a CFG can specify the
language of biological palindromes.

Searls’ original work (Searls, 1992) argues the benefits of using CFGs as models for RNA folding,
but does not discuss stochastic grammars or methods for creating the grammar from training
sequences. One purpose of this paper is to provide an effective method for building a stochastic
context-free grammar (SCFG) to model a family of RNA sequences. Some analogues of stochastic
grammars and training methods do appear in Searls’ most recent work in the form of costs and
other trainable parameters used during parsing (Searls, 1993a; Searls, 1993b; Searls & Dong, 1993),
but we believe that our integrated probabilistic framework may prove to be a simpler and more
effective approach.

If we specify a probability for each production in a grammar, we obtain a stochastic grammar.
A stochastic grammar assigns a probability to each string it derives. Stochastic regular grammars
are equivalent to HMMs and suggest an interesting generalization from HMMs to SCFGs (Baker,
1979). In this paper, we pursue a stochastic model of the family of transfer RNAs (tRNAs) by using
a SCFG that is similar to our protein HMMs (Krogh et al., 1994) but incorporates base-pairing

'CFGs can not describe all RNA structure, but we believe they can account for enough to make useful models. In
particular, CFGs cannot account for pseudoknots, structures generated when a single-stranded loop region base pairs
with a complementary sequence outside the loop (ten Dam et al., 1992; Wyatt et al., 1989; Pleij, 1990). Similarly,
base triples involving three positions, as well as interactions in parallel (versus the more usual anti-parallel) are not
currently modeled.



information. (A representative tRNA sequence, a yeast tRNA, is shown in Figure 1.) We build a
SCFG forming a statistical model of tRNA sequences in much the same way that we constructed
an HMM representing a statistical model of a protein family. We use this model to discriminate
tRNA from other RNAs of similar length, and to obtain a multiple alignment in the same manner
as for proteins. We also use the model to fold unfolded tRNA sequences, determining the base
pairing that defines their secondary structure.
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Figure 1: A typical tRNA sequence contains four main domains: acceptor, D-, anticodon and TWC'-
or T. Watson-Crick base pairings are indicated as dashes and G-U as a dot. The superscripted
positions indicate modified bases. The D- or T-domains are sometimes deleted in mitochondrial
tRNAs, while the variable loop may be of different lengths.

In preliminary work (Sakakibara et al., 1993), we derived a SCF'G’s probabilities (parameters)
directly from an existing alignment of tRNA sequences to see how well the SCFG could model an
RNA family. Here, we design an algorithm that deduces the parameters automatically from a set
of unaligned primary sequences with a novel generalization of the forward-backward algorithm com-
monly used to train HMMs. Our algorithm, henceforth called Tree-Grammar EM, is based on tree
grammars, and is more efficient than the inside-outside algorithm (Lari & Young, 1990), a compu-
tationally expensive generalization of the forward-backward algorithm developed to train SCFGs



(Baker, 1979). We use Tree-Grammar EM to derive, from different training sets of tRNA sequences,
several trained grammars: MixedTRNA500, ZeroTrain, MT100, MT10CY10 and RandomTRNA618. Our
training and testing sequences were taken from the 1993 compilation of aligned tRNA sequences
(Steinberg et al., 1993b) maintained by EMBL Data Library (we converted all modifed bases to
their unmodified forms). We refer to the alignments in this compilation as TRUSTED alignments.

For the preliminary trained grammar, MixedTRNA500, we chose 500 unfolded and unaligned
sequences at random from 1477 tRN A sequences which can be fitted into a canonical tRNA structure
(Figure 1). We withheld the remaining 977 sequences in order to test the trained grammar on
data not used in training. For the remaining four grammars, we omitted duplicate sequences
and sequences containing unusual characters from the tRNA compilation. The remaining 1222
tRNA sequences were then split into six groups—archaea, cytoplasm, mitochondria, cyanelles and
chloroplasts, viruses and eubacteria. The four grammars were trained on subsets of these groups
and tested on all remaining tRNAs, as well as on 2016 fragments of RNA taken from non-tRNA
features in the NewGenBank and GenBank databases (we call these non-tRNA sequences). The
grammar MT10CY10 was trained with just 10 randomly selected mitochondrial sequences and 10
randomly selected cytoplasmic tRNA sequences; MT100 was trained with 100 randomly selected
mitochondrial tRNAs; and RandomTRNA618 was trained with 618 tRNA from various families. The
grammar ZeroTrain is a control that has no training, only prior probabilities as described in
Section 2.6.

We assess each grammar’s ability to perform three tasks: to discriminate tRNA sequences
from non-tRNA sequences, to produce multiple alignments and to ascertain the secondary struc-
ture of new sequences. The results show that all the grammars except ZeroTrain can perfectly
discriminate the nonmitochondrial tRNA sequences from the non-tRNA sequences. Some tRNAs
have secondary structures that cannot be fitted into the canonical structure shown in Figure 1.
These sequences, whose alignments differ from the conventional alignment, are treated separately
in the publicly available tRNA database (Steinberg et al., 1993b) and we refer to these as Part
IIT tRNAs. Belonging to this group are tRNAs from mitochdondria of parasitic worms lacking
the T- or D-domain, mammalian mitochondria lacking the D-domain, mitochondria of mollusc,
insect and echinoderm with extended anticodon and T-stems, single cell organisms and fungi and
Trypanosoma brucei.

Our trained grammars are able to discriminate regular mitochondrial tRNA from non-tRNA
quite well. However, only 50% of the Part III tRNAs can be reliably distinguished from non-tRNAs
even by our most heavily trained grammars. Here “reliably distinguished” means having a score
that is more than 5 standard deviations from that of a typical non-tRNA of the same length, as
described in Section 3.4. The majority of the sequences that could not be discriminated are parastic
worm and mammalian mitochondrial tRNAs lacking the D-domain. In addition, these sequences
cannot be aligned in the same manner as TRUSTED but inspection of their alignments indicates
that a revision around the T-domain would create a T-stem with a greater number of Watson-Crick
base pairs than in TRUSTED. However, PART III mitochondrial sequences lacking the T-domain
can be both discriminated from non-tRNAs and their alignment is the same as TRUSTED.

We also compare the alignments and secondary structures predicted by our grammars to the
TrUSTED alignments. For each tRNA sequence, we compute the percentage of base pairs present
in the secondary structure from the TRUSTED alignment that are also present in the secondary
structure predicted by the grammar. We find that all three trained grammars have approximately



98-99% base-pair agreement with both trusted alignments for all but the Part III sequences. As
mentioned earlier, there are examples of plausible alternative alignments for some of these mito-
chondrial sequences.

We recently discovered that Sean Eddy and Richard Durbin have independently done work
closely related to ours, obtaining comparable results (Eddy & Durbin, 1994). It appears that our
basic grammar training algorithm, which is quite different from theirs, may be somewhat faster, and
that our custom-designed grammars and greater emphasis on learned, as opposed to constructed,
Bayesian prior probability densities (Brown et al., 1993b) may allow us to train with fewer training
sequences. However, they have developed an exciting new technique to learn the structure of the
grammar itself from unaligned training sequences, rather than just learn the probabilities of the
productions and rely on prior information to specify the structure of the grammar (as we do). Both
investigations serve to demonstrate that SCFGs are a powerful tool for RNA sequence analysis.
Such tools will become increasingly important as in vitro evolution and selection techniques produce
greater numbers of “novel” RNA families (Burke & Berzal-Herranz, 1993; Bartel & Szostak, 1993;
Ellington & Szostak, 1992; Lehman & Joyce, 1993; Beaudry & Joyce, 1992; Tuerk & Gold, 1990;
Schneider et al., 1992; Brenner & Lerner, 1992).

2 Methods

2.1 Context-free grammars for RNA

A grammar is principally a set of productions (rewrite rules) that is used to generate a set of
strings, a language. The productions are applied iteratively to generate a string, a process called
derivation. For example, application of the productions in Figure 2 could generate the RNA
sequence CAUCAGGGAAGAUCUCUUG by the following derivation:

Beginning with the start symbol Sp, any production with Sy left of the arrow can be chosen to
have its right side replace Sy. If the production Sy — 57 is selected (in this case, this is the only
production available), then the symbol Sy replaces So. This derivation step is written Sy = 51,
where the double arrow signifies application of a production. Next, if the production 57 — C 53 G
is selected, the derivation step is 57 = C 53 G. Continuing with similar derivation steps, each
time choosing a nonterminal symbol and replacing it with the right-hand side of an appropriate
production, we obtain the following derivation terminating with the desired sequence:

So 51 = CS9G = CAS3UG = CAS4S54UG
CAUS5AS9UG = CAUCSsGAS9UG
CAUCAS7GASgUG = CAUCAGSgGAS9UG
CAUCAGGGASgUG = CAUCAGGGAAS:oUUG
CAUCAGGGAAGS1CUUG
CAUCAGGGAAGA.S1,UCUUG
CAUCAGGGAAGAUS3UCUUG
CAUCAGGGAAGAUCUCUUG.

T TV TANN TN}

A derivation can be arranged in a tree structure called a parse tree (Figure 3, left). A parse tree
represents the syntactic structure of a sequence produced by a grammar. For an RNA sequence,
this syntactic structure corresponds to the physical secondary structure (Figure 3, right).
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Figure 2: This set of productions P generates RNA sequences with a certain restricted structure.
So0,51,...,5913 are nonterminals; A, U, G and C are terminals representing the four nucleotides.

Formally, a context-free grammar G consists of a set of nonterminal symbols N, a terminals
alphabet 3, a set of productions P, and the start symbol Sy. For a nonempty set of symbols X,
let X* denote the set of all finite strings of symbols in X. Every CFG production has the form
S — o where S € N and a € (N U X)*, thus the left-hand side consists of one nonterminal and
there is no restriction on the number or placement of nonterminals and terminals on the right-hand
side. The production S — « means that the nonterminal S can be replaced by the string a. If
S — ais a production in P, then for any strings v and ¢ in (N U X)*, we define 56 = yaé and
we say that v56 directly derives vaé in G. We say the string 8 can be derived from «, denoted
a > 0, if there exists a sequence of direct derivations ag = a1, @1 = as,...,q,_1 = «, such
that ag = a, a,, = #, a; € (N UX)*, and n > 0. Such a sequence is called a derivation. Thus,
a derivation corresponds to an order of productions applied to generate a string. The grammar
generates the language {w € X* | Sg = w}, the set of all terminal strings w that can be derived
from the grammar.

Our work in modeling RNA uses productions of the following forms: S — 55, 5 — aSa,
S — a5, 55— 5Sand 5 — a, where S is a nonterminal and « is a terminal. 5 — aSa productions
describe the base pairings in RNA; S — a5 and § — a describe unpaired bases; S — 55 describe
branched secondary structures, and S — 8 (called skip productions) are used iy the context of
multiple alignments.
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Figure 3: For the RNA sequence CAUCAGGGAAGAUCUCUUG, the grammar whose productions are given
in Figure 2 yields this parse tree (left), which reflects a specific secondary structure (right).



As in our protein HMM (Krogh et al., 1994), we distinguish two different types of nonterminals:
match and insert. The match nonterminals in a grammar correspond to important structural
positions in an RNA or columns in a multiple alignment. Insert nonterminals generate nucleotides
in the same way, but have different distributions. These are used to insert extra nucleotides between
important (match) positions. Skip productions are used to skip a match nonterminal, so that no
nucleotide appears at that position in a multiple alignment (equivalent to deletions).

2.2 Stochastic context-free grammars

In a SCFG, every production for a nonterminal S has an associated probability value such that
a probability distribution exists over the set of productions for S. (Any production with the
nonterminal S on the left side is called “a production for 5.”) We denote the associated probability
for a production S — a by P(S5 — «).

A stochastic context-free grammar (G generates sequences and assigns a probability to each
generated sequence, and hence defines a probability distribution on the set of sequences. The
probability of a derivation (parse tree) can be calculated as the product of the probabilities of the
production instances applied to produce the derivation. The probability of a sequence s is the sum
of probabilities over all possible derivations that GG could use to generate s, written as follows:

Prob(s | G) = Z Prob(Sg 4 g | &)
all  derivations
(or parse trees) d

> Prob(S = a1 | G)- Prob(a; = a3 | G)- -+ - Prob(a, = s|G)

s

1,

Efficiently computing Prob(s | G) presents a problem because the number of possible parse trees

for s is exponential in the length of the sequence. However, a dynamic programming technique
analogous to the Cocke-Younger-Kasami or Early parsing methods (Aho & Ullman, 1972) for non-
stochastic CF'Gs can complete this task in polynomial time (specifically, in time proportional to
the cube of the length of sequence s). We define the negative logarithm of the probability of a
sequence given by the grammar G, —log(Prob(s | (7)), as the negative log likelihood (NLL) score
of the sequence. The NLI score quantifies how well the sequence s fits the grammar—how likely it
is that the grammar with its production probabilities could produce the sequence s.

Since CFGs are generally ambiguous in that the grammar gives more than one parse tree for a
sequence, and alternative parse trees reflect alternative secondary structures (foldings), a grammar
often gives several possible secondary structures for one RNA sequence. An advantage of a SCFG
is that it can provide the most likely parse tree from this set of possibilities. If the productions
are carefully chosen and the probabilities are carefully designed, the correct secondary structure
will appear as the most likely parse tree among the alternatives produced by the grammar G.
As discussed in Section 3.2, the most likely parse trees given by the tRNA-trained grammar give
exactly the accepted secondary structures for most of the tRNA sequences we test.

We can compute the most likely parse tree efficiently using a variant of the above procedure for
calculating Prob(s | ). To obtain the most likely parse tree for the sequence s, we calculate

max  Prob(Sp 4y | G).

parse trees d



The dynamic-programming procedure to do this resembles the Viterbi algorithm for HMMs (Ra-
biner, 1989). We also use this procedure to obtain multiple alignments: the grammar aligns each
sequence by finding the most likely parse tree, after which the mutual alignment of the sequences
among themselves is determined.

2.3 Estimating SCFGs from sequences

All parameters in the SCFG (the productions in the grammar as well as the production probabili-
ties) could in principle be chosen using an existing alignment of RNA sequences. Results using this
approach were reported in our previous work (Sakakibara et al., 1993) and in recent work of Eddy
and Durbin (Eddy & Durbin, 1994). However, as is also discussed in those papers, it is possible
to estimate many aspects of the grammar directly from unaligned tRNA training sequences. Eddy
and Durbin report results in which nearly all aspects of the grammar are determined solely from
the training sequences (Eddy & Durbin, 1994). In contrast, we make more use of prior informa-
tion about the structure of tRNA to design an appropriate initial grammar, and then use training
sequences only to refine our estimates of the probabilities of the productions used in this grammar.

2.3.1 The Tree-Grammar EM training algorithm

To estimate the SCFG parameters from unaligned training tRNA sequences, we introduce Tree-
Grammar EM, a new method for training SCFGs that is a generalization of the forward-backward
algorithm commonly used to train HMMs. Tree-Grammar EM is more efficient than the inside-
outside algorithm, which was previously proposed to train SCFGs.

The inside-outside algorithm (Lari & Young, 1990; Baker, 1979) is an Estimation Maximization
(EM) algorithm that calculates maximum likelihood estimates of a SCFG’s parameters based on
training data. However, it requires the grammar to be in Chomsky normal form, which is possible
but inconvenient for modeling RNA (and requires more nonterminals). Further, it takes time at least
proportional to n®, whereas the forward-backward procedure for HMMs takes time proportional
to n?, where n is the length of the typical training sequence. There are also many local minima
in which the method can get caught, and this presents a problem when the initial grammar is not
highly constrained.

To avoid such problems, we have developed a method to obtain a SCFG for an RNA family
with an inner loop that takes only time n? per training sequence, and hence may be practical on
RNA sequences somewhat longer than tRNA. Tree-Grammar EM requires folded RNA as training
examples, rather than unfolded ones. Thus, some tentative “base pairs” in each training sequence
have to be identified before the inner loop of the algorithm can begin iteratively reestimating the
grammar parameters. When actual or trusted base-pair information is not available, base pairs
themselves are estimated in the outer loop of our algorithm, as described in Section 2.5.

The Tree-Grammar EM procedure is based on the theory of stochastic tree grammars. Tree
grammars are used to derive labeled trees instead of strings. Labeled trees can be used to rep-
resent the secondary structure of RNA easily (Shapiro & Zhang, 1990) (see Figure 3). When
working with a tree grammar for RNA, one is explicitly working with both the primary sequence
and the secondary structure of each molecule. Since these are given explicitly in each training
molecule, Tree-Grammar EM does not have to (implicitly) sum over all possible interpretations of
the secondary structure of the training examples when reestimating the grammar parameters, as

10



the inside-outside method must do. The Tree-Grammar EM algorithm iteratively finds the best
parse for each molecule in the training set and then readjusts the production probabilities to maxi-
mize the probability of these parses. The new algorithm also tends to converge faster because each
training example is much more informative (Sakakibara et al., 1993).

Figure 4: The folded RNA sequence (AA(GUC)U) can be represented as a tree t (left), which can
be broken into two parts such as ¢/3 (middle) and ¢\3 (right). The root, 1%, and the internal node,
3%, represent A-U and G-C base pairs, respectively.

To avoid unnecessary complexity, we describe this new algorithm in terms of CFGs instead
of tree grammars (Thatcher & Wright, 1968; Sakakibara, 1992). A tree is a rooted, directed,
connected acyclic finite graph in which the direct successors of any node are linearly ordered from
left to right. The predecessor of a node is called the parent; the successor, a child; and a child of the
parent, a sibling. A folded RNA sequence can be represented by a labeled tree ¢ as follows. Each
leaf node is labeled by one of four nucleotides {4,U, G,C} and all internal nodes are labeled by one
special symbol, say $. The sequence of nucleotides labeled at leaf nodes traced from left to right
exactly constitutes the RNA sequence, and the structure of the tree represents its folding structure.
See Figure 4 for an example of a tree representation of the folded RNA sequence (AA(GUC)U). We
assume all internal nodes in ¢ are numbered from 1 to 7' (the number of internal nodes) in some
order. For an internal node n (1 < n < T), let t/n denote the subtree of ¢ with root n (Figure 4,
center) and let #\n denote the tree obtained by removing a subtree ¢/n from ¢ (Figure 4, right).

The probability of any folded sequence ¢ given by a SCFG G' = (N,X, P, Sy) is efficiently
calculated using a dynamic programming technique, as is done with the forward algorithm in
HMMs. A labeled tree t representing a folded RNA sequence has the shape of a parse tree, so to
parse the folded RNA, the grammar GG needs only to assign nonterminals to each internal node
according to the productions. Let the quantity in,(5) define the probability of the subtree t/n
given that the nonterminal 5 is assigned to node n and given grammar &, for all nonterminals 5
and all nodes n such that 1 <n <7T. We can calculate in,(59) inductively as follows:

1. Initialization:  in,(X) = 1, for all leaf nodes n and all terminals X (each nucleotide).

This extension of in,(5) is for the convenience of the inductive calculation of in, ().

2. Induction:

i (8) = D ing (Y1) o ing, (Yi) - P(S =Yy - Vi),

Yi,.... Y
€ (Nux)
for all nonterminals 5, all internal nodes m and all m’s children nodes nq, ..., ng.
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3. Termination: For the root node n and the start symbol S,

Prob(t | G) = in,(S0). (1)

This calculation enables us to estimate the new parameters of a SCFG in time proportional to the
square of the number of nonterminals in the grammar multiplied by the total size of all the folded
training sequences. We need one more quantity, out,(.5), which defines the probability of t\n given
that the nonterminal 5 is assigned to node n and given grammar G, which we obtain similarly.

1. Initialization:  For the root node n,
1 for § = 5y (start symbol),
out,(5) =
0 otherwise.
2. Induction:
out,,(5) = > ing, (Y1) <+ g, (Yi) - P(S" =Yy -+ S -2 Vi) outy(5),
Yi,..., Y
€ (Nux),

S'eN

for all nonterminals 5, all internal nodes [ and m such that [ is the parent of m, and all
nodes ny,...,n; are m’s siblings. (There is no termination step given in this case because
the calculation of Prob(t | ) is given in the termination step for in,(5).)

Given a set of folded training sequences ¢(1),..., t{(n), we can determine how well a grammar
fits the sequences by calculating the probability that the grammar generates them. This probability
is simply a product of terms of the form given by (1), i.e.,

Prob(sequences | ) = ﬁ Prob(t(j) | &), (2)

where each term Prob(#(j) | G) is calculated as in Equation (1). The goal is to obtain a high value
for this probability, called the likelihood of the grammar. The mazimum likelihood (ML) method
of model estimation finds the model that maximizes the likelihood (2). There is no known way to
directly and efficiently calculate the best model (the one that maximizes the likelihood) without
the possibility of getting caught in suboptimal solutions during the search. However, the general
EM method, given an arbitrary starting point, finds a local maximum by iteratively reestimating
the model such that the likelihood increases in each iteration, and often produces a solution that
is acceptable if not optimal. This method is often used in statistics. Here we present a version of
the EM method to estimate the parameters of a SCFG from folded training RNA sequences. The
inner loop of our Tree-Grammar EM algorithm proceeds as follows:

1. An initial grammar is created by assigning values to the production probability
P(S — Yy -+ V) forall S and all Y3, ... .Yy, where S is a nonterminal and Y; (1 <i < k)
is a nonterminal or terminal. If some constraints or features present in the folded sequences
are known, these are encoded in the initial grammar. The current grammar is set to this
initial grammar.

12



2. Using the current grammar, the values in,(5) and out,(5) for each nonterminal S and
each node n for each folded training sequence are calculated in order to get a new estimate

of each production probability, P(S — Yy --- Yi)=

Zj( Z:w%w)mseﬂ-~nyimﬁ@~-mﬂnHPmMﬂ®)

sequences t \ nodes m

norm ’

where (G is the old grammar and “norm” is the appropriate normalizing constant such that

3. A new current grammar is created by replacing P(S — Y7 ---Yy) with the reestimated prob-

ability P(S — Yy ---Y3).
4. Steps 2 and 3 are repeated until the parameters of the current grammar change only insignif-
icantly.

2.4 Overfitting and regularization

A grammar with too many free parameters cannot be estimated well from a relatively small set of
training sequences. Attempts to estimate such a grammar will encounter the problem of overfitting,
in which the grammar fits the training sequences well, but poorly fits related (test) sequences not
included in the training set. One solution is to control the effective number of free parameters
by regularization. We regularize our grammars by taking a Bayesian approach to the parameter
estimation problem, similar to the approach we took in modeling proteins with HMMs (Krogh
et al., 1994; Brown et al., 1993a).

Before we began the training of our grammars, we constructed a prior probability density for
each of the important sets of parameters in our stochastic grammars. The form of this prior
density is that of a Dirichlet distribution (Santner & Duffy, 1989). There were two important types
of productions in our CFGs for which we had to estimate probabilities: productions of the form
S — aSb which generate base pairs (these come in groups of 16, one for each of the 16 possibilities
for terminals a,b € {A,C,G,U}), and productions of the form S — a5 which generate nucleotides
in loop regions (these come in groups of four, one for each terminal a € {4,C,G,U}). For the base-
pairing productions, we employed sources of prior information about which productions are most
likely. For instance, the Watson-Crick pairs are much more frequently observed than other base
pairs. In order to calculate more precise prior information about base-pair probabilities, we used
a large alignment of 16S rRNA sequences (Larsen et al., 1993), to obtain the 16 parameters of a
Dirichlet density over possible base-paired position distributions. We similarly used the alignment
to calculate a four-parameter Dirichlet prior for nucleotide distributions in loop region positions.
Further details of this method are presented elsewhere (Brown et al., 1993a). We then used these
parameters as a regularizer, adding them as “pseudocounts” during each reestimation step of Tree-
Grammar EM (Figure 5). This means that at each iteration we compute mean posterior estimates
of the parameters of the model rather than maximum likelihood estimates.

The probability distributions for other types of productions of the grammars were also regular-
ized in a Bayesian manner analogous to that in our previous HMM work (Krogh et al., 1994). These
include chain rules of the form S5 — 5, branch productions S — 5.5 and productions of the form
S — ab that are used to insert extra nucleotides into the loop regions to adjust the loop length.
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3/
C G U A

0.134879  3.403940 0.162931 0.176532
1.718997 0.246768 0.533199 0.219045
0.152039 0.784135 0.249152 2.615720
0.135167 0.192695 1.590683 0.160097

5/

= a0 Q

C G U A

0.21 0.18 0.20 0.26

Figure 5: Helix (top) and loop (bottom) pseudocounts are added to actual observed frequencies to
reflect prior information. These counts are based upon estimated Dirichlet distributions for helix
regions and loop regions. The matrix is asymmetric because the distributions differ with the base
ordering in a base pair (ex., 5’ C paired with 3’ G has higher probability than 5 G paired with 3’ C).

The latter we regularized with very large uniform pseudocounts over the four possible nucleotides
so that their probability distributions would be fixed at uniform values rather than estimated from
the training data, again as in our previous HMM work (Krogh et al., 1994). This further reduced
the number of parameters to be estimated, helping to avoid overfitting.

2.5 Using the new Tree-Grammar EM algorithm

As mentioned above, since Tree-Grammar EM uses folded rather than unfolded RNA for training
examples, approximate “base pairs” in each training sequence must be identified before the EM
iteration begins. If only unfolded training sequences are available, we iteratively estimate the
folding of the training sequences as follows:

1. Design a rough initial grammar that may only represent a portion of the base-pairing
interactions and parse the unfolded RNA training sequences to obtain a set of partially folded
RNA sequences.

2. FEstimate a new SCFG using the partially folded sequences and the inner loop of Tree-
Grammar EM. Further productions might be added to the grammar at this stage, although we
have not yet experimented with this possibility.

3. Use the trained grammar to obtain more accurately folded training sequences.

4. Repeat Steps 2 and 3 until the folding stabilizes.

2.6 The initial grammar

Represented pictorially in Figure 6 and textually in Figure 7 is the high-level description for the
initial grammar we designed for our tRNA experiments (we call it the meta-grammar). This meta-
grammar is based on tRNA structure previously described (Steinberg et al., 1993b). The meta-
grammar text has strings such as “d-arm” and “anti-codon” (we call these meta-nonterminals)
corresponding to tRNA structures illustrated in Figure 6. Fach of these meta-nonterminals has a
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Figure 6: This shows graphi-

cally the high-level abstracted
! [ ° description for a desired ini-
< tial grammar for tRNA. The

@ same description is shown in

" a text form in Figure 7.

further set of productions associated with it (not shown). We have written a program that auto-
matically generates actual productions given only the meta-grammar, greatly simplifying grammar
specification.

In Figure 6, BRANCH meta-nonterminals are depicted approximately as lines connecting helices
and loops. Each of the remaining meta-nonterminals is either of type LOOP or of type HELIX, and
each has an associated length, given by a numeric parameter. For a meta-nonterminal Loopr(n),
the grammar generating program creates a subgrammar that is equivalent to an HMM model with
n match states as described in our previous work on proteins (Krogh et al., 1994), except that the
four-letter alphabet of nucleic acids replaces the twenty-letter alphabet of amino acids. Thus, this
subgrammar derives strings with no base pairs that typically have length n, and the distributions
of the nucleotides in these strings are defined by the probabilities of the productions for n match
nonterminals. Longer or shorter strings can be derived using special nonterminals and productions
that allow position-specific insertions and deletions.

For a meta-nonterminal HELIX(n), the grammar generating program creates a subgrammar
consisting of n nonterminals, each of which has 16 productions that derive possible base pairs for
its position in the helix, each nonterminal having its own probability distribution over these 16
possible productions. These probability distributions, like those above for the match nonterminals
in the loops, are initially defined using the Dirichlet priors (Section 2.4). In addition, further
nonterminals and productions are added to allow deletions of base pairs, enabling length variations
in the helix. Currently this program does not generate special insertion productions to allow for
bulges as in the grammars of Durbin and Eddy (Eddy & Durbin, 1994), but it is straightforward
to add this capability. There is sometimes a tradeoff between more complex grammars that may
better model the data, and simpler grammars that are faster to train and do not overfit the training
data. However, in this case it appears that both approaches work well.

Finally, all the subgrammars for the various structures in the model are combined according to
the high-level specification to produce the complete initial grammar. At this point additional special
treatment of nonterminals involved in branch productions of the form S — 55 can be included.
In particular, we specify that certain branch productions may also, with some probability, omit
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S 2BranchR init-ins restl
init-ins Loop 1

restl 2BranchRNec molecule end

end 2BranchL end1 end3

end1 Loop 1

end3 Loop 3

molecule Helix 7 rest2
rest2 2BranchR btwil2 rest3
btwil2 Loop 2

rest3 2BranchR d-arm rest4
d-arm Helix 4 d-arm-loop
d-arm-loop Loop 8

rest4 2BranchR btw23 restb
btw23 Loop 1

restb 2BranchRNec anti-codon rest6
anti-codon Helix 5 anti-codon-loop
anti-codon-loop Loop 7

rest6 2BranchR variable rest?
variable Loop 7

rest? 2BranchL nothing t-arm
t-arm Helix 5 t-arm-loop
t-arm-loop Loop 7

nothing Loop 1

Figure 7: This meta-grammar was used to generate the productions and probabilities for an initial
grammar to model tRNA. The loop and helix descriptions (ex., Loop 3) are referred to in small
capitals in the text (ex., LOOP(3)).

one of the nonterminals on the right-hand side. This allows the grammar to derive tRNAs that
are missing either the D-arm or the T-arm. In general, any substructure in the grammar can be
specified to be absent with some probability. These probability values are initialized to default
prior values and then reestimated during training on actual sequences, as are all the parameters of
the grammar.

3 Experimental results

As described in the previous section, we used Tree-Grammar EM to deduce three trained grammars
from training sets of unfolded and unaligned tRNA sequences (Figure 8). A primary training phase
was performed to determine the reliability and utility of our Tree-Grammar EM algorithm, and
generated MixedTRNAS00 (Sakakibara et al., 1994). This grammar was trained on 500 randomly
chosen tRNA from TRUSTED and incorporated only rudimentary knowledge about RNA secondary
structure into its initial production probabilities.? Nonetheless, it was able to discriminate perfectly
between previously unseen complete® tRNA and non-tRNA sequences. The experiments discussed

?The MixedTRNA500 grammar was rudimentary in that the initial grammar had simply a uniform distribution over
each set of same-type productions (where the types are S — a, S — a S a and so forth), but with Watson-Crick base
pairs weighted twice as heavily.

FtRNA sequences that we term Part 111, namely those with missing arms, were not included.
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here focused on honing the initial grammar used by Tree-Grammar EM-—determining which pro-
ductions and nonterminals should be included and what their initial probabilities should be. Using
this refined initial grammar before training (Step 1 of Section 2.5), Tree-Grammar EM produced
the remaining three trained grammars: MT10CY10, MT100 and RandomTRNA618. ZeroTrain is also
“trained” in the sense that it embodies pseudocount information as detailed in Section 2.6.

The Tree-Grammar EM algorithm was used to refine the initial grammar with varying numbers
of training sequences (Figure 8). The run time for training was around 30 CPU minutes for 100
training sequences on a Sun Sparcstation 10/30 for a single step through the inner loop of Tree-
Grammar EM. Finding the best parse for each sequence given a partially trained grammar required
2-3 CPU seconds for a typical tRNA sequence on a DEC AXP 3000/400 running OSF /1. During the
training process, only the probabilities of the productions were reestimated and no nonterminals or
productions were added or deleted, unlike “model surgery” in our HMM work (Krogh et al., 1994).

3.1 Data

The experiments for generating the trained grammars used data from two sources:

1. We obtained our tRNA training sets from EMBL Data Library’s tRNA database maintained
by Mathias Sprinzl and co-workers (Steinberg et al., 1993b). In particular, we obtained 1477 aligned
and folded sequences for training and testing. We refer to these as TRUSTED alignments and most of
these sequences can be fitted into a canonical tRNA structure (Figure 1). The compilation includes
tRNAs from virus, archaea, eubacteria, cyanelle, chloroplast, cytoplasm and mitochondria. We
changed several specific symbols used for representing modified bases to the usual A, C, G and U
symbols. We omitted duplicate primary sequences and sequences containing unusual characters to
obtain 1222 unique sequences, each between 51 and 93 bases long (Figure 8). Included in this set
were h8 tRNAs with unusual secondary structure which are called Part III tRNAs in the database.
This group includes tRNAs from mitochondria of parasitic worms lacking the T- or D-domain,
mammalian mitochondria lacking the D-domain, mitochondria of mollusc, insect and echinoderm
with extended anticodon and T-stems, single cell organisms and fungi and Trypanosoma brucei.
More recently, Steinberg and co-workers (Steinberg et al., 1993a) have updated and revised this
tRNA database (we refer to this version as TRUSTEDNEW); these alignments were provided to us
by Robert Cedergren.

2. From the National Center for Biotechnology Information’s (NCBI) NewGenBank database
(version 75.0+, dated 18 February 1993) and GenBank database (version 75.0, dated 10 February
1993), we generated about 2020 non-tRNA test sequences by cutting non-tRNA features—including
mRNA, rRNA, and CDS—into tRNA-sized lengths. In particular, we created 20 non-tRNA se-
quences for each sequence length between 20 to 120 bases.*

3.2 Multiple alignments and secondary structure

From a grammar it is possible to obtain a multiple alignment of all sequences. The grammar can
produce the most likely parse tree for the sequences to be aligned, yielding an alignment of all the
nucleotides that align to the match nonterminals in the grammar. Between match nonterminals

*The actual size of the final data set was 2016 because we discarded four anomalous tRNAs that appeared in
the set of 2020 non-tRNAs through unusual labeling in GenBank. We discovered these when the trained grammars
“misclassified” them in discrimination experiments.
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Number of Sequences

Data Set Type of tRNA Total ZT MT10CY10 MT100 R618
ARCHAE archaea 103 0 0 0 50
cy cytoplasm 230 0 10 0 100
CYANELCHLORO cyanelle and chloroplast 184 0 0 0 100
EUBACT eubacteria 201 0 0 0 100
VIRUS viruses 24 0 0 0 10
MT mitochondria 422 0 10 100 200
Part 111 Part 111 5% 0 0 0 58

Totals 1222 0 20 100 618

Figure 8: We organized the tRNA sequences (Steinberg et al., 1993b) into seven groups and then
used randomly chosen subsets of these groups to train and test our three trained grammars. The
ZeroTrain grammar (abbreviated ZT) was trained on no tRNA sequences, but was invested with
prior information about tRNA (Section 2.6). RandomTRNA618 (abbreviated R618) was trained on
the most tRNA sequences—about half the total sequences per group and all of the Part III.

there can be insertions of varying lengths, but by inserting enough spaces in all the sequences to
accommodate the longest insertion, an alignment is obtained.

Once the RandomTRNA618 grammar was completed, a multiple alignment was produced for the
entire set of 1222 tRNA sequences. The TRUSTED alignment agrees substantially with the trained
grammar’s predicted alignment. Boundaries of helices and loops are the same; the major difference
between the two alignments is the extra arm, which is highly variable in its length and sequence.
Figure 9 shows the TRUSTED alignment of selected tRNA sequences with the alignment predicted
by the trained grammar RandomTRNA618 for the same sequences.

To assess the accuracy of the four trained grammars’ predicted foldings, for each set of se-
quences, we counted the fraction of base pairs specified by the TRUSTED alignment that matched
in our grammars’ predicted multiple alignments. These counts are tabulated by group (rows)
and grammar (columns) in Figure 11. In the sequence sets ARCHAE and VIRUS, every one of the
three trained grammars captures all the base pairing present in TRUSTED. In the case of cv,
CYANELCHLORO, EUBACT and MT, the agreement between TRUSTED and grammar-predicted base
pairings is extremely good, but for ParT III it is considerably poorer. We examined in detail
all cases where the fraction of base pairs specified by TRUSTED that matched in our predicted
alignment was less than 100% for MT10CY10, MT100 and RandomTRNA618. The results are summa-
rized in Figure 17. (Six mammalian mitochdondrial serine tRNAs/tDNA sequences with anticodon
UGA/TGA (sequences denoted with $) were included in PArT III in TRUSTED but were reclassified as
MT in TRUSTEDNEW.) One EUBACT, two CYANELCHLORO, 12 MT and 30 PART III sequences were
so “misaligned” by all three grammars (sequences with ... in the three columns under Align). It
can be seen that disagreements are not distributed globally across the entire length of the sequence,
but are confined to specific helices (note the large number of <==> “helices”). In some sequences,
the misalignment merely reflects differences in location of a gap between TRUSTED and grammar
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[ 1 < D-domain > < Anticodon >< Extra >< T-domain >[ ]
e cec 2))) (CCCC === NN CC((C NN

1 DC0380 -GCCAAGGTGGCAGAGTTCGGCCTAACGCGGCGGCCTGCAGAGCCGCTC———-ATCGCCGGTTCAAATCCGGCCCTTGGCT——-
2 DA6281 -GGGCGTGTGGCGTAGTC-GGT--AGCGCGCTCCCTTAGCATGGGAGAG----GTCTCCGGTTCGATTCCGGACTCGTCCA---
3 DE2180 --GCCCCATCGTCTAGA--GGCCTAGGACACCTCCCTTTCACGGAGGCG----A-CGGGGATTCGAATTCCCCTGGGGGTA---
4 DC2440 -GGCGGCATAGCCAAGC--GGT--AAGGCCGTGGATTGCAAATCCTCTA-——-TTCCCCAGTTCAAATCTGGGTGCCGCCT——-
5 DK1141 -GTCTGATTAGCGCAACT-GGC--AGAGCAACTGACTCTTAATCAGTGG----GTTGTGGGTTCGATTCCCACATCAGGCACCA
6 DA0260 -GGGCGAATAGTGTCAGC-GGG--AGCACACCAGACTTGCAATCTGGTA----G-GGAGGGTTCGAGTCCCTCTTTGTCCACCA
7 DA3880 -GGGGCTATAGTTTAACT-GGT--AAAACGGCGATTTTGCATATCGTTA----T-TTCAGGATCGAGTCCTGATAACTCCA---
8 DH4640 -AGCTTTGTAGTTTATGTG----- AAAATGCTTGTTTGTGATATGAGTGAAAT——-————-——--————————— TGGAGCTT-—-
CCCCCCC CC(( 2))) (CCCC === )N CC(C 233333300
1 DC0380 -GCCAAGGUGGCAG.AGUUcGGccUAACGCGGCGGCCUGCAGAGCCGCUC---AUCGCCGGUUCAAAUCCGGCCCUUGGCU——-
2 DA6281 -GGGCGUGUGGCGU.AGUC.GG..UAGCGCGCUCCCUUAGCAUGGGAGAGG---UCUCCGGUUCGAUUCCGGACUCGUCCA—--
3 DE2180 -GCCCC-AUCGUCU.AGAG.GCc.UAGGACACCUCCCUUUCACGGAGGCG----ACGGGGAUUCGAAUUCCCCU-GGGGGU--A
4 DC2440 -GGCGGCAUAGCCA.AGC-.GG..UAAGGCCGUGGAUUGCAAAUCCUCUA---UUCCCCAGUUCAAAUCUGGGUGCCGCCU——-
5 DK1141 -GUCUGAUUAGCGC.AACU.GG..CAGAGCAACUGACUCUUAAUCAGUGGG---UUGUGGGUUCGAUUCCCACAUCAGGCACCA
6 DA0260 -GGGCGAAUAGUGUCAGCG.GG..-AGCACACCAGACUUGCAAUCUGGUA----GGGAGGGUUCGAGUCCCUCUUUGUCCACCA
7 DA3880 -GGGGCUAUAGUUU.AACU.GG..UAAAACGGCGAUUUUGCAUAUCGUUA----UUUCAGGAUCGAGUCCUGAUAACUCCA--~-
8 DH4640 -AGCUUUGUAGUUU.A--U.GU..GAAAAUGCUUGUUUGUGAUAUGAGUGA--AAU--—-————————————— UGGAGCUU---

Figure 9: Shown are two sets of alignments of several representative tRNAs identified by their
database code. The top set is from TRUSTED (Steinberg et al., 1993b); the bottom set was produced
by trained grammar RandomTRNA618. Parentheses indicate which columns (positions) form base
pairs (=== locates the anticodon). “[” and ]” denote the 5 and 3’ sides of the acceptor helix,
respectively. For RandomTRNA618, capital letters correspond to nucleotides aligned to the match
nonterminals of the grammar, lowercase to insertions, - to deletions by skip produtions and . to fill
characters required for insertions. The sequences are from the seven groups in Figure 8: 1. ARCHAE
(Halobacterium cutirubrum), 2. ¢y (Saccharomyces cerevisiae), 3. CYANELCHLORO (Cyanophora
paradoza), 4. CYANELCHLORO ( Chlamydomonas reinhardtii), 5. EUBACT (Mycoplasma capricolum),
6. VIRUS (phage T5), 7. MT (Aspergillus nidulans) and 8. PArT 111 (Ascaris suum).

alignments in one or both sides of a helix. Other instances are examples of alternative, but equally
plausible, base-pairing schemes in the various helices (indicated by <::>). However, there are
cases where the grammar-generated alignments suggest (small) improvements over the TRUSTED
alignments, principally in the base pairing of the D- or T-helices. A selection of such sequences is
shown in Figure 10. A notable example are the PART III class of mammalian mitochondrial tRNAs
lacking the D-domain and mollusc, insect and echinoderm mitochondrial tRNAs with extended an-
ticodons and T-stems. Here, readjustment of residues in the 5’ side of the T-helix and flanking
unpaired residues would create a T-stem with a greater number of Watson-Crick base pairs than
in TRUSTED. It should be noted that in both the mammalian and parastic worm mitochondrial
PART III sequences that lack the D-domain, the 5’ side of the D-stem is absent in the TRUSTED
alignments. Interestingly, these tRNAs lacking the D-domain are the only sets that can neither be
“aligned” in the same manner as TRUSTED nor discriminated from non-tRNAs (see Section 3.4).
The alignments produced by the three trained grammars were also compared to those in the
revised and updated alignments TRUSTEDNEW. In these cases as well, the predicted alignments
were nearly identical to the trusted alignments. Base-pair counts also were very similar to those
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[ ] < D-domain > < Anticodon domain > < T-domain > [ ]

Base pairing ((((((( 444 NN 14444 ) 14444 2332 NN
1 Trusted {GGGCUAU}--------- ua{GCUC}agcgguaga{gcgc}--g{CGCCCl--——-——-- cugauaa{GGGCG}--—-- agguc{UCUGG}-uucaaau{CCAGG}{AUAGCCC}a---
MT100%* {GGGCUAU}---------ua{GCUC}--agcggua{gagc}rgcg{CGCCC}--————--- cugauaa{GGGCG}--—-- agguc{UCUGG}-uucaaau{CCAGG}{AUAGCCC}a---
2 Trusted {GCCCCUA}---------ua{GUUG}---aaacac{aacc}--a{AGAGC}--—-----~- uuuucac{GCUCU}----- uaagu{UUGAG}-uuaaaau{CUCAA}{UAGGAGC}u——-
MT100%* {GCCCCUA}---------ua{GUUG}----aaaca{caac}-ca{AGAGC}--—-----~- uuuucac{GCUCU}----- uaagu{UUGAG}-uuaaaau{CUCAA}{UAGGAGC}u——-
3 Trusted {GUUUCAU}---------ga{GUAU}----- agca{GUAC}--a{UUCGG}--—------ cuuccaa{CCGAA}----- agguu{uuugu}-aaacaac{CAAAA}{AUGAAAU}a---
MT100%* {GUUUCAU}---------ga{GUAU}----- agca{GUAC}--a{UUCGG}--—------ cuuccaa{CCGAA}--—--- aggu{uuuugluaaacaac{CAAAA}{AUGAAAU}a-—-
4 Trusted {aggacgu}---------ua{aauva}---gauaag{CUAU}--g{CCUAG}-—------~ uuacggu{CUGGG}---aagagag{--——-- }-——— {-——- Hucgucuu}tu---
MT100*  {aggacgu}-------- uaa{auag}----auvaag{CUAU}--g{CCUAG}-———-——-~— uuacggu{CUGGG}---aagagag{--——-- }-——— {-——- Hucgucuu}tu---
MT10CY10 {ag-gacg}---——-—- uuaa{aunag}----auvaag{CUAU}--g{CCUAG}-—--—---~ uuacggu{CUGGG}--aagagagu{----- }-——— {-——- Hcguc-uu}tu---
5 Trusted {aacgagu}---------- u{cana}--------- {--aa}--g{CAAGU}--—--———- cuucuaa{AUUUG}------ uucu{-agg-}--unaaau{--ccu}{gcucguulu---
MT100*  {aacgagu}----ucanaaa{----}--------- {----}--g{CAAGU}-----———- cuucuaa{AUUUG}------ uucu{--agg}--unaaau{ccu--}{gcucguutu---
RND618 {aacga-g}---uucauaaa{----}--------- {----}--g{CAAGU}-----———- cuucuaa{AUUUG}------- uuc{-uagg}--uuaaau{ccug-}{c-ucguulu---
6 Trusted {AAGAAAG}-------—--—- {--—-}------- {auug}--c{AAGAA}-———-———- cugcuaa{UUCAU}---gcuucca{ug-uu}--uaaaaa{CAUGG}{CUUUCUU}a--~
MT100%* {AAGAAAG}-----—- avug{----}--—------ {----}--c{AAGAA}-----———- cugcuaa{UUCAU}------ gcuu{ccaugluuuaaaaa{CAUGG}{CUUUCUU}a--~
7 Trusted {GAGAAAG}---------—- {--—-}------- {cuca}--c{aagaa}--—--—--- cugcuaa{cucau}---gccccca{ug-uc}--uaacaa{CAUGG}{CUUUCUC}acca
MT100%  {GAGAAAG}-----—- cuca{----}--—------ {----}--c{aagaa}--——-—--- cugcuaa{cucau}------ gccc{ccauglucuaacaa{CAUGG}{CUUUCUC}acca
RND618  {GAGAAAG}------—- cuc{----}--------- {----}--a{caaga}--——--—- acugcuaac{ucaug}------- ccc{ccauglucuaacaa{CAUGG}{CUUUCUC}acca
8 Trusted {-aaaucu}----------- {auu-}----gguuu{accu}---{UAGUC}-----—--- cugcuaa{GUCUA}---aaggcuu{gcggul-ucaaucc{cguug}{aguuuuc}----
MT100** {aaaucua}--------- uwu{ggu-}------—- uu{-acc}--u{UAGUC}--—------ cugcuaa{GUCUA}----aaggcu{ugcgg}-uucaauc{ccguult{gaguuuu}c---
9 Trusted {GAAAUAU}---------—- {guu-}----- gauc{-aag}---{AAAAG}-—--———-- cugcuaa{CUUUU}----ucuuna{auggu}-uuaanuc{cauuna}{uaunucu}-cca
MT100 {GAAAUAU}-----——-—- gl{-uug}---—---- au{caa-}--g{AAAAG}-——-———-- cugcuaa{CUUUU}----- ucuuu{aaugg}-uuuaaunu{ccauu}{anaunuclucca
MT10CY10*{GAAAUAU}--——-——--- gluug-}---—---- au{-caa}--g{AAAAG}-—--———-- cugcuaa{CUUUU}----- ucuuu{aaugg}-uuuaaunu{ccauu}{anaunuclucca
10 Trusted {GAAAAAG}--------—- u{caug}---gaggcc{augg}--g{GUUGG}--——----- cuugaaa{CCAGC}------ uuug{GGGGG}-uucgauu{ CCUUCH{CUUUUUU}g--~
MT100%* {GAAAAAG}--—-—----- uc{augg}------ agg{ccau}ggg{GUUGG}--——------ cuugaaa{CCAGC}------ uuug{GGGGG}-uucgauu{ CCUUCH{CUUUUUU}g--~
11 Trusted {AAAAUUA}------—--- ua{uauu}---uucuag{uuug}--af{ucgaat--------- aaugcuu{uucgaluuugaaaauu{uaaau}-vuaaavuu{AAGUU}{UAAUUUU}c--~
MT100%  {AAAAUUA}---—------ ua{uauuluucuaguuu{gauc}--g{aaaaulgcuunucgavuugaaa{anunal------ aauu{aaanu}------- u{AAGUU}{UAAUUUU}c--~
MT10CY10 {AAAAUUA}uauvauuuucua{guuu}---gaucga{aaau}--g{cuuuu}--------- cgaunuug{aaaau}---uvaaanu{aaauu}------- u{AAGUU}{UAAUUUU}c--~



Sequence Set ZeroTrain  MT10CY10 MT100  RandomTRNA618
ARCHAE 94.87% 100.00% 100.00% 100.00%
cY 98.28% 99.76% 99.89% 99.87%
CYANELCHLORO 96.22% 99.64% 99.64% 99.79%
EUBACT 99.69% 99.86% 99.86% 99.86%
VIRUS 96.83% 100.00% 100.00% 100.00%
MT 89.19% 98.33% 98.91% 98.93%
Part III 55.98% 81.10% 83.21% 83.00%

Figure 11: Shown for each tRNA class and each grammar are the fraction of base pairs specified
by the TRUSTED alignment that matched in our grammars’ predicted multiple alignments. For
comparison, the first column shows statistics for the pre-training initial grammar ZeroTrain.
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Figure 12: After training on 618 randomly chosen tRNA examples (Figure 8), the RandomTRNA618
grammar produced these foldings for two unaligned and unfolded tRNA sequences: a cy (left) and
a Part III (right). XRNA generated these diagrams.

reported for TRUSTED in Figure 11.

3.3 Displaying folded RN A sequences

XRNA is an X Windows-based program for editing and display of RNA primary, secondary and
tertiary structure (Weiser et al., 1993). Using simple filters, we were able to transform the secondary
structure predicted by our trained grammars into XRNA format. Figure 12 shows two foldings
predicted by the RandomTRNA618 grammar: a Y tRNA and a Part III tRNA.
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3.4 Discriminating tRINAs from non-tRNAs

As described in Section 2.2, we calculate a NLL score for each test sequence and use it to measure
how well the sequence fits the grammar. This raw NLL score depends too much on the test
sequence’s length to be used directly to decide whether a sequence belongs to the family modeled
by the grammar. We normalize the raw scores by calculating the difference between the NLL
score of a sequence and the average NLL score of a typical non-tRNA sequence of the same length
measured in standard deviations. This number is called the Z score for the sequence (Krogh et al.,
1994). We then choose a Z-score cutoff, and sequences with Z scores above the cutoff are classified
as tRNAs. While we cannot prove that our normalized scores actually exhibit Gaussian tails for
non-tRNAs, this kind of Gaussian approximation has worked well previously (Krogh et al., 1994).

To test the ability of our grammars to discriminate tRNA from other RNA sequences of similar
length, for each of our trained grammars, we computed the 7 score of every sequence in our tRNA
database and every sequence in our set of 2016 non-tRNAs. Although the highest 7 score of any
non-tRNA is never much greater than 4, we do not consider a tRNA sequence to be succesfully
discriminated from the non-tRNAs unless its Z score is greater than 5. For each grammar, Figure 13
shows the number of tRNAs in each family that are succesfully discriminated from the non-tRNAs
using this criterion. Figures 14, 15, and 16 are histograms of the Z scores for selected grammars.

The results show that training on as few as 20 sequences yields a dramatic improvement in
discrimination over what is acheived with an untrained grammar. Note in particular how the Z-
scores histogram for non-MT, non-PART III tRNAs “slides” from left to right when the grammar
producing the most likely parses is ZeroTrain versus when it is MT10CY10 (Figure 14); whereas
the ZeroTrain grammar shows poor discrimination between non-MT and non-PART III tRNA from
non-tRNA, the MT10CY10 already shows perfect discrimination.

The MT10CY10 grammar also does well in the more difficult task of discriminating mitochondrial
tRNA from non-tRNA. Setting aside the Part III sequences, MT10CY10 is able to discriminate 399
out of 422 mitochondrial sequences from non-tRNA, performing nearly as well as the grammars
trained on many more tRNA sequences, MT100 and RandomTRNA618 (Figures 13 and 15). However,
good discrimination of the Part III sequences from non-tRNA sequences is not acheived by any of
the grammars, even the RandomTRNA618 grammar, which is trained on these sequences. It can be
seen from the histograms in Figure 16 that this training improves discrimination of some Part 111
sequences, but half of these sequences still have 7 scores below 5. Figure 17 tabulates all Part II1
tRNA sequences and all other tRNA sequences that were scored below the Z-score cutoff of 5 by
some trained grammar or that were incorrectly aligned (with respect to the TRUSTED alignment)
by all three trained grammars.

A total of 29 ParT IIT tRNAs could not be discriminated from non-tRNA sequences by either
MT100, MT10CY10 or RandomTRNA618 (8 of these have a Z score between 4 and 5 in at least one
grammar). Interestingly, 19 of the 29 sequences could neither be discriminated nor “aligned” by
all three grammars in the same manner as TRUSTED (Section 3.2 and see Figurel0). All but three
of these sequences are mammalian and parasitic tRNAs that lack the D-domain. However, the
grammars are able to discriminate PART III tRNAs lacking the T-domain. Overall, the trained
grammars are able to generalize well in that they require few training examples to perform dis-
crimination. As can be seen from the case of PART III tRNAs, however, a grammar clearly gains
discriminative power from being trained on a large and varied sequence set.
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Number of Sequences with Z Scores

Above 5 Standard Dev. Between 4 and 5 Std. Dev. Below 4 Standard Dev.
Test Set ZT MT10 MT100 R618 ZT MT10 MT100 R618 ZT MT10 MTh R618
ARCHAE 66 103 103 103 19 0 0 0 18 0 0 0
cY 135 230 230 230 | 53 0 0 0 42 0 0 0
CYANELCHLORO 61 184 184 184 52 0 0 0 71 0 0 0
EUBACT 160 201 201 201 30 0 0 0 11 0 0 0
VIRUS 16 24 24 24 4 0 0 0 4 0 0 0
MT (train) N/a 10 99 193 | N/a 0 1 6 | N/a 0 0 1
MT (test) 64 389 313 218 | 89 10 7 3 269 13 2 1
Part 111 0 9 7 29 1 15 14 8 57 34 37 21
NON-TRNA 0 0 0 0 0 0 1 1 2016 2016 2015 2015
Totals 502 1150 1161 1182 | 248 25 23 18 2488 2063 2054 2038

7 Scores for Boundary Sequences

ZeroTrain MT10CY10 MT100 RandomTRNA618
Highest NON-TRNA 3.954 3.341 4.018 4.080
Lowest non-MT non-Part III tRNA 1.220 6.791 6.211 8.759
Group of the lowest tRNA CYANELCHLORO CYANELCHLORO cy cy

Figure 13: The top table shows how each grammar partitions the 3238 total sequences (1222 tRNA
and 2016 non-tRNA) based on their Z scores. The columns correspond to the four grammars
(ZeroTrain is abbreviated as ZT, MT10CY10 as MT10 and RandomTRNA618 as R618) such that the
sum of each grammar’s three “Totals” entries is 3238. The first grouping of four columns indicates
the number of tRNAs correctly discriminated from non-tRNA by each grammar. (Because all
three grammars perfectly discriminated all nonmitochondrial tRNA sequences, only the results for
mitochondrial tRNA sequences are partitioned into separate discrimination results for the training
and test sets.) The bottom table shows the Z scores for the highest-scoring non-tRNA sequence
and lowest-scoring tRNA sequence (excluding the mitochondrial and Part III tRNA sequences),
listing the group to which the lowest-scoring tRNA belongs, for each grammar.

4 Discussion

The method we have proposed represents a significant new direction in computational biosequence
analysis. SCFGs provide a flexible and highly effective statistical method for solving a number
of RNA sequence analysis problems including discrimination, multiple alignment and prediction
of secondary structures. In addition, the grammar itself may be a valuable tool for representing
an RNA family or domain. The present work demonstrates the usefulness of SCFGs with tRNA
sequences and could prove useful in maintaining, updating and revising compilations of their align-
ments. For example, our results suggest potential improvements in the aligments of the D- and
T-domains in mitochondrial tRNAs from parastic worms and mammals that lack the D-domain,
and mollusc, insect and echinoderm tRNAs with extended T-stems. Further classes of RNA se-
quences potentially appropriate to model using this method include group I introns (Michel &
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Disc

Align.

EUBACT (Eubacteria)
DL1141 # # #

Grammar
MT10CY10

MT100

RandomTRNAG18

<1 id<H=0K==0K=) 0 i oKEEdE=dKE==) L dKH=EnKE=NKEs

CYANELCHLORO (Chloroplast)
DA2620 # # #

<1 >K==0K==><==

<= 5><K==>LK==><==>

<1 >K==0K==0<==

Anticodon & Organism

TAG

TGC

MYCOPLASMA CAPRIC.

COLEOCHAETE ORBIC.

DI2620* # # # K==><K=+><==><== <==><=+><==><== K==><=+><K==><== GAT COLEOCHAETE ORBIC.
MT (Animal mitochondria)
DC5080 . % % A A A GCA STRONGYLOCEN.PURP.
DC5100 . % % A A A GCA GADUS MORHUA
DC5120 . . % A A A GCA XENOPUS LAEVIS
DC5160 % # # A A A GCA RANA CATESBETANA
DD5000 . % . A A A GTC ASTERINA PECTINT.
DE5080* # # # K==><K=+><==><== <==><=+><==><== K==><=+><==><== TTC STRONGYLOCEN.PURP.
DG5000* # # # K==2K==0K==0K+=0 K==0K==0K==0K+=>  K==><==><==><+=> TCC ASTERINA PECTINT.
DG5020 . % . ce . L==0K—=><L==><K== <K== : >K==><K== <==><-=-><==><::> TCC ASTERIAS FORBESII
DH4880 . # # A A A GTG DROSOPHILA YAKUBA
DH5440 % # # A GTG MACACA FUSCATA
DE5280 . # % A A A TTT RAT
DE5281 % # # A A A TTT RAT
DK6320 % # # A . TTT MOUSE
DL5081 # # # K1 2K==0<K==0<0 1> K1 :0K==0K==0< > < :><==><==><::> TAA STRONGYLOCEN.PURP.
DN5320 # # # .. <==><::><K==><K== <==><==><==><== <==><::><K==><K== GTT MOUSE
DP5360 % # # A A A TGG BOVINE
DQR5080 # # # . . <1 >K==0<K==0<== <1 i5K==0K==0<K0 1> < oK=E=OLK==LK== TTG STRONGYLOCEN.PURP.
DR4880 . % % A A A TCG DROSOPHILA YAKUBA
DT4980 % # # . ==K 2K==><K++> ==K  1 DK==><K++> <—=-><::><==><++> TGT PISASTER OCHRACEUS
DT5880 % # # A A A TGT HUMAN
DV4980 % # # A A A TAC PISASTER OCHRACEUS
DV5040 # # # <==><=:><==><== <==><=:><==><== <==><K=:>L==><K== TAC PARACENTROTUS LIV.
DV5080 # # # <==><=:><==><== <==><=:><==><== <==><K=:>L==><K== TAC STRONGYLOCEN.PURP.
DW5020 % # # . L==0K—=><K+=><K== L<==5K==><+=><== <==><: 1 ><+=><K== TCA ASTERIAS FORBESII
DW5280 . # % A A A TCA RAT
DW5281 %“% ALA TCA RAT
DW5320 #9% A A TCA MOUSE
MT (Single cell or fungal mitochondria)
DC3920 # # # K==L+ 45K==0< 1 1> <==>LHHDK=E=DC 1> K==0<K-=><==><::> GCA NEUROSPORA CRASSA

DS3960 # # # . K==5K-=0K==0K==>  K==5K--0<K==0<K==)> <==><K--><==><==> GCT PODOSPORA ANSERINA
DX3720 . . % A A . CAT PARAMECIUM PRIM.

DX3800 . % # A& . . CAT TETRAHYMENA PYRIF.
DX3840 % % % A A A CAT TETRAHYMENA THERM.

Figure 17: This table shows all Part III sequences and all other sequences that either were below
the Z-scores cutoff of 5 for some grammar, or were “incorrectly” aligned by all three grammars.
The three columns each under Disc., Align. and Grammar are ordered MT10CY10, MT100 and
RandomTRNA618 (left to right). The first column lists the identifier; the last two columns list the
anticodon and source organism. The three Disc. columns indicate which grammars correctly
discriminated the sequence from non-tRNA sequences (7 score > 5, #), which grammars did not
discriminate the sequence from non-tRNA (Z score < 5, “.”), and grammars for which the Z-score
was between 4 and 5 (%). The three Align. columns show which grammars aligned the sequence
the same as the EMBL trusted alignment TRUSTED(4), and which grammars did not (continued)
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Disc. Align. Grammar

MT10CY10 MT100 RandomTRNA618 Anticodon & Organism

PART III (Parasitic worm mitochondrial tRNAs lacking the T-domain)

DA4640 . . # A A A TGC ASCARIS SUUM
DC4640 . . % A A A GCA ASCARIS SUUM
DC4680 % % # A A A GCA CAENORHABDI.ELEG.
DD4640 # % # A A A GTC ASCARIS SUUM
DD4680 # # # A A A GTC CAENORHABDI.ELEG.
DE4640 . % AAA TTC ASCARIS SUUM
DF4640 . . . A A A GAA ASCARIS SUUM
DG4640 Y% % # A A A TCC ASCARIS SUUM
DG4680 # # # A A A TCC CAENORHABDI.ELEG.
DH4640 % . % A A A GTG ASCARIS SUUM
DH4680 . . # A A A GTG CAENORHABDI.ELEG.
DI4640 # % # A A A GAT ASCARIS SUUM
DK4640 % % # A A A TTT ASCARIS SUUM
DE4680 # # # A A A TTT CAENORHABDI. ELEG.
DL4640 % # # A A A TAG ASCARIS SUUM
DL4641 . . # A A A TAA ASCARIS SUUM
DL4680 % # # A A A TAG CAENORHABDI. ELEG.
DL4681 % . # A A A TAA CAENORHADBI. ELEG.
DN4640 % . # A . . TGG ASCARIS SUUM
DN4680 # % # A A A GTT CAENORHABDI. ELEG.
DP4640 % % # A A A TGG ASCARIS SUUM
DQR4640 # AAA TTG ASCARIS SUUM

DR4640* . . . N K1 i2KHOK==04K==0 (==0K+H0K==04K==0 (==0K+H+0<K==0LK== ACG ASCARIS SUUM

DR4680 . . % A . . ACG CAENORHABDI. ELEG.
DT4640 . . % A A A TGT ASCARIS SUUM
DT4680 # % # A A A TGT CAENORHABDI.ELEG.
DV4640 % . # A A A TAC ASCARIS SUUM
DW4640 % % # A A A TCA ASCARIS SUUM
DW4680 % % # A A A TCA CAENORHABDI. ELEG.
DX4640 % % % A A A CAT ASCARIS SUUM
DX4680 % % # A A A CAT CAENORHABDI.ELEG.
DY4640 # % # A A A GTA ASCARIS SUUM

Figure 17: align (“.”) the sequence the same. The three Grammar columns indicate how the
alignments produced by all three grammars differed from TRUSTED. The 5" and 3’ sides of each of
the four helices in a typical tRNA are represented as a pair of symbols enclosed in angled brackets
< and >. These “helices” are ordered acceptor arm, D-arm, anticodon arm and T-arm, respectively
(left to right). For each, we codify the difference between each grammar’s predicted alignment
and the trusted alignment as follows: - means the predicted alignment is worse than TRUSTED; =,
identical to TRUSTED; :, equivalent to TRUSTED (shift of a gap, etc.) (continued)

Westhof, 1990; Michel et al., 1990), group II introns (Michel et al., 1989), RNAse P RNA (Brown
et al., 1991; Tranguch & Engelke, 1993), small nuclear RNAs (Guthrie & Patterson, 1988) and 7S
RNA (signal recognition particle RNA) (Zwieb, 1989).

The main difficulties in applying this work to other families of RNA will be the development
of appropriate initial grammars and the computational cost of parsing longer sequences. The
latter problem can only be solved by the development of fundamentally different parsing methods,
perhaps relying more on branch-and-bound methods (Lathrop & Smith, 1994) or heuristics. It
is currently not clear which approach will be best. The former problem might be solved by the
development of effective methods for learning the grammar itself from training sequences. The
work of Eddy and Durbin is an important step in this direction (Eddy & Durbin, 1994). Their
method relies on correlations between columns in a multiple alignment (Gutell et al., 1992; Lapedes,
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Disc. Align. Grammar

MT10CY10 MT100 RandomTRNA618 Anticodon & Organism
PART III (Parasitic worm mitochondrial tRNAs lacking the D-domain)
Ds4640 . . . . . . ==K >KE=>K==D> K=K 3= > <—=>< i ><==><++> TCT ASCARIS SUUM
DS4680* . . . . . . K==>K:i>K==0<0 > K=K 3= 1> <—=><: 1 ><==><++> TCT CAENORHABDI. ELEG.
Ds4681 . . . . . . C==DKH>C—=D<==>  K==DK-=><==><: > <==><--><==>}<--> TGA CAENORHABDI. ELEG.

PART III (Mammalian mitochondrial tRNAs (anticodon GCU) lacking the D-domain)

DS5321* . . . . . . <==3<1 1 5K==0KEE> K==040 K==y =204 >K==0<+=>  GCT MOUSE

Ds5440 . . . . . . K==3<0 1 2K==0KH=> K==0K0 1 0K==0K+=> K==5<1 1 ><==><+=> GCT MACACA FUSCATA
Ds54s80 . . . . . . K==3<0 1 2K==0KH=> K==0K0 1 0K==0K+=> 0 K==5< 1 ><==><+=> GCT MACACA MULATTA
Ds&520 . . . . . . K==3<0 1 2K==0<KH=> K==0K0 1 0K==0K+=> K==5< 1 ><==><+=> GCT MACACA FASCICULA.

Dssk60 . . . . . . <==D<0 1 2K=mdKHE> =m0 dLEENKHED> 1 :><==><+=> GCT MACACA SYLVANUS
Dss600 . . . . . . <==D<0 1 2K=mdKHE> =m0 dLEENKHED> :><=-=-><+=> GCT SAIMIRI SCIUREUS
Dss640 . . . . . . <==0< 1 DK==0KH> ==K DK==+ =ED> 1 :><==><++> GCT TARSIUS SYRICHTA
Dss720 . . . . . . <==D<0 1 2K=mdKHE> =m0 dLEENKHED> :><==><+=> GCT CHIMPANZEE
Dss760 . . . . . . <==D<0 1 2K=mdKHE> =m0 dLEENKHED> 1 :><==><+=> GCT GIBBON

Dss5800 . . . . . . <==D<0 1 2K=mdKHE> =m0 dLEENKHED> :><==><+=> GCT GORILLA

Ds5840 . . . . . . <==5<0 < 0KH=E> ==K 10K i O<+=> ::><::><+=> GCT ORANG UTAN
RS5240 . . . . . . <==0<0 15K KHE> K==L dLEENKHE> :><==><+=> GCU HAMSTER

RS5880% . . . . . . K==3<0 1 2K==0KH=> K==0K0 1 0K==0K+=> K==5<0 < i ><+=> GCU HUMAN

PART III (Mollusc, insect and echinoderm mitochondrial tRNAs with extended anticodon and T-stems)

DsS4800 . %W . . . K==5K==0<-=><++> K==5K==0K==0<K++D> GCT AEDES ALBOPICTUS
Ds4880 . . % . . . <==3<1 1 5>K==0K++> <1 2K==2<K==0K+H0> GCT DROSOPHILA YAKUBA
psso001 . . . . . . K==5LK-=><K==0<++> K==><K==><K==0K++> GCT ASTERINA PECTINT.
DS5041* . . % . . . <1 2K LK==0K+H> <1 2<KHHDLK==0KHD> GCT PARACENTROTUS LIV.
Ds5081 . . # . . . L SEPL SRS i SR SEPLERPIC LIS & DI SR SRS Satd & & 24 GCT STRONGYLOCEN.PURP.
RS4800* # # # . . . <=4><: 1 >K==>LK== K=+5<: 1 2K==0K++D> <=45<K0 i OK==0K+H+> GCU AEDES ALBOPICTUS

PART IIT (Mammalian mitochondrial serine tRNAs/tDNA sequences with Anticodon UGA/TGA)

$DS5280 # # # . . . K==2LKF=0K==0K==0 K==0LKH=0K==0K==0 K==0LK+=0<K==>LK== TGA RAT
$DS5282 # # # . . . K==2LKF=0K==0K==0 K==0LKH=0K==0K==0 K==0LK+=0<K==>LK== TGA RAT
$DS5360 # # # . . . KP=DLKH=0K==0K==0 K?=0LKH=0K==0K==>  KP=0<K+=><K==><K== TGA BOVINE
$DS5880* # # # . . . K==2KHH2K==0K==0 K==0KHH0K==0K==0 (==0LK++><K==>LK== TGA HUMAN

PART IITI (Sequences for which the secondary structure is especially unusual or is not established)

DA368O . . . . . . K==2KH+5<0 1 2<KH+> K==0K==0K= 0 0K+H> . K==5K--0<K--5<K--> TGC TRYPANOSOMA BRUCEI
DA3681* . . % . . . K==2KH+5<0 1 2<KH=> K==0KHH0K--0<K+=> K==5KH+0<K--0<K+=0> TGC TRYPANOSOMA BRUCEI
DS5100 . . . A AA GCT GADUS MORHUA
DF4720 % # % . . . K==2K==0K==0KH> K==0K==0K==0K+H> . (==5K==0K==0K--0> GAA ARTEMIA SP.

Figure 17: and +, improvement over TRUSTED. An asterisk * indicates a sequence for which the
predicted and trusted alignments are shown in Figure 9. $ preceding a sequence identifier indicates
sequences that were included in PART III of TRUSTED, but in PART I in TRUSTEDNEW.

1992; Klinger & Brutlag, 1993; Waterman, 1989; Winker et al., 1990; Sankoff, 1985; Waterman,
1988) to discover the essential base-pairing structure in an RNA family. Another approach would
be to use a method like that proposed by Waterman (Waterman, 1989) to find helices in a rough
initial multiple alignment, use these helices to design a simple initial grammar in a semi-automated
fashion using our high-level RNA grammar specification language, then use the grammar to obtain
a better multiple alignment, and iterate this process until a suitable result is obtained. We are
currently exploring this approach.

Another important direction for further research is the development of stochastic grammars for
tRNA and other RNA families that can be used to search databases for these structures at the DNA
level. In order to do this, the grammar must be modified to allow for the possibility of introns in
the sequence, and the parsing method must be modified so that it can efliciently search for RN As
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that are embedded within larger sequences. Durbin and FEddy have done the latter modifications
in their tRNA experiments and report good results in searching the GenBank structural RNA
database and 2.2 Mb of C. elegans genomic sequence for tRNAs, even without using special intron
models. In our earlier work (Sakakibara et al., 1994), we reported some very preliminary results on
modifying tRNA grammars to accommodate introns. We are currently planning to do further work
in this direction. We see no insurmountable obstacles in developing effective stochastic grammar-
based search methods, but predict that the main practical problem will be dealing with the long
computation time required by the present methods.

Finally, there is the question of what further generalizations of hidden Markov models, beyond
SCFGs, might be useful. The key advantage of our method over the HMM method is that it allows
us to explicitly deal with the secondary structure of the RNA sequence. By extending stochastic
models of strings to stochastic models of trees, we can model the base-pairing interactions of the
molecule, which determine its secondary structure. This progression is similar to the path taken by
the late King Sun Fu and colleagues in their development of the field of syntactic pattern recognition
(Fu, 1982). Modeling pseudoknots and higher-order structure would require still more general
methods. One possibility would be to consider stochastic graph grammars (see the introductory
survey by Engelfriet and Rozenberg (Engelfriet & Rozenberg, 1991)) in hopes of obtaining a more
general model of the interactions present in the molecule beyond the primary structure. If a
stochastic graph grammar framework could be developed that included both an efficient method of
finding the most probable folding of the molecule given the grammar and an efficient EM method
for estimating the grammar’s parameters from folded examples, then extensions of our approach
to more challenging problems, including RNA tertiary structure determination and protein folding,
would be possible. This is perhaps the most interesting direction for future research suggested by
the results of this paper.
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