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Abstract—We provide a fundamental treatment of the
molecular communication channel wherein “inscribed matter”
is transmitted across a spatial gap to provide reliable signaling
between a sender and receiver. Inscribed matter is defined as an
ensemble of “tokens” (biotic/abiotic objects) and is inspired, at
least partially, by biological systems where groups of individually
constructed discrete particles ranging from molecules to viruses
and organisms are released by a source and travel to a target—
for example, morphogens or semiochemicals diffuse from one
cell, tissue, or organism to another. For identical-tokens that are
neither lost nor modified, we consider messages encoded using
three candidate communication schemes: 1) token timing (timed
release); 2) token payload (composition); and 3) token timing
plus payload. We provide capacity bounds for each scheme and
discuss their relative utility. We find that under not unreason-
able assumptions, megabit per second rates could be supported
at 100 femtoWatt transmitter powers. Since quantities such as
token concentration or token counting are derivatives of token
arrival timing, token timing undergirds all molecular commu-
nication techniques. Thus, our modeling and results about the
physics of efficient token-based information transfer can inform
investigations of diverse theoretical and practical problems in
engineering and biology. This paper, Part I, focuses on the infor-
mation theoretic bounds on capacity. Part II develops some of the
mathematical and information theoretic machinery that support
the bounds presented here.

Index Terms—Biological communication, molecular chan-
nels, molecular communication, molecular information theory,
inscribed matter, timing channels.

I. INTRODUCTION

SCALE-APPROPRIATE signaling methods become
important as systems shrink to the nanoscale. For systems

with feature sizes of microns and smaller, electromagnetic
and acoustic communication become increasingly inefficient
because energy coupling from the transmitter to the medium
and from the medium to the receiver becomes difficult at
usable frequencies. Biological systems, with the benefit of
lengthy evolutionary experimentation, seem to have arrived at
a ubiquitous solution to this signaling problem at small and
not so small scales: use of “inscribed matter” (an ensemble
of discrete particles) which travels through some material
bearing a message from one entity to another. Broad classes
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of such particles and some illustrative examples include but
are not limited to

• Molecules: electronically activated species, ions, chemi-
cals, biopolymers, and macromolecular complexes.

• Membrane-bound structures: intra- and extracellular
vesicles (exosomes, microvesicles, apoptotic bodies,
ectosomes, endosomes, lysosomes, autophagosomes,
vacuoles) and intracellular organelles (nuclei, mitochon-
dria, chloroplasts).

• Cells: stem cells, tumor cells, and hematocytes.
• Acellular, unicellular and multicellular life forms

(“organisms”): viruses, viroids, phages, plasmids, bac-
teria, archaea, fungi, protists, plants, and animals.

• Objects: matter in the natural world (pollen grains, seeds,
proteinaceous aggregates such as prions), and human
artifacts (Voyager Golden Record).

Studies of engineered nano-scale communication systems
have focused on the encoding, transmission, and decoding of
information using patterns of one class of discrete particles.
A large portion of this work in “molecular communica-
tion” has considered the time-varying concentration profile
of molecules as the fundamental signal measurement [1]–[7].
However, concentration is a collective property and masks
the underlying physics of molecule release by the sender
and capture by the receiver. This begs the questions of truly
fundamental limits for communication using ensembles of
molecules in particular, discrete particles more broadly, and
what we term “tokens” in general.

This paper is organized as follows.
First, we discuss communication using inscribed matter

from biological and engineering perspectives. We illustrate
how scenarios spanning a wide range of spatial and temporal
scales and from seemingly disparate disciplines can be under-
stood within a unified framework: the token timing and/or
token payload channel, a communication scheme wherein
information is carried from sender to receiver by tokens via
their timed release, their composition, or both. We will assume
tokens always (eventually) arrive, and are removed from cir-
culation upon first seizure by the receiver. This abstraction
encompasses not only token timing but also the token concen-
tration and token counting models prevalent in the molecular
communication literature [1]–[9].

Next, we describe the token timing channel wherein infor-
mation is encoded only in the release times of identical tokens
rather than inscribed onto tokens (token payload) or in the
number of tokens released (token counting). Though seem-
ingly limited, this pure timing model enables precise analysis

2332-7804 c© 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/
redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



210 IEEE TRANSACTIONS ON MOLECULAR, BIOLOGICAL, AND MULTI-SCALE COMMUNICATIONS, VOL. 2, NO. 2, DECEMBER 2016

of all molecular communication schemes with indepen-
dent stochastic (but asymptotically assured, one-time) token
arrivals. The requisite formalized signaling model is carefully
derived so that the usual energy-dependent asymptotic sequen-
tial channel use coding results based on mutual information
between input and output can be employed [10, Ch. 8 and 10].
We then show how these results can be applied to token
counting and tokens with payloads. We focus on molecu-
lar tokens, particularly DNA and protein sequences since
their energy requirements (and information content) are fairly
well-understood, but the ideas are generalizable. We find that
information transfer using inscribed matter can be extremely
energy efficient with potentially megabit per second rates at
100fW transmitter power.

Finally, we explore how our studies and the attendant
insights could aid biological understanding of and inform
engineering approaches to inscribed matter communication.

II. INSCRIBED MATTER

A. Communication via Discrete Particles: A Natural
World Perspective

Networks of intercommunicating biological entities occur at
whatever level one cares to consider: (macro)molecules, cells,
tissues, organisms, populations, microbiomes, ecosystems, and
the Earth. An ancient yet still widespread method for one
entity to convey a message to another is via inscribed matter.
Typically, information bearing-discrete particles are released
by a source, travel through a material, and are captured by
a target where they are interpreted. The following are exem-
plars of the diversity and complexity of such inscribed matter
communication (particles are italicized).

• Electrons produced as part of a metabolic process in
one microorganism travel to another through bacterial
nanowires (electrically conductive appendages), bacte-
rial cables (thousands of individuals lined up end-to-end
with electron donors located in the deeper regions of
marine sediment and electron acceptors positioned in its
upper layers where oxygen is more abundant), and an
extracellular matrix of self-produced polymers [11].

• Free radicals generated by the action of ionizing radiation
on molecules in the nucleoplasm diffuse to the genome
where they alter/damage nucleotide bases and sugars.

• Messenger RNA (mRNA) molecules transcribed from a
eukaryotic genome in a nucleus migrate to ribosomes in
the cytoplasm where they are translated into proteins.

• Acetylcholine (ACh) molecules released by a vertebrate
motor neuron diffuse across the synaptic cleft to a muscle
cell where their binding to plasma membrane nicotinic
ACh receptors triggers fiber contraction.

• A homing endonuclease produced from an allele (one of
a pair of genes) encoding this “DNA scissor” finds the
other allele in the same or a different genome where the
“parasitic element” reinserts itself.

• Ions, molecules, organelles, bacteria and viruses in one
cell travel through a thin membrane channel (tunneling
nanotube) to the physically connected cell where they
elicit a response.

• Semiochemicals (chemical substances or mixtures of
volatile molecules) emitted by one individual travel
to another of the same (pheromones) or different
species (allelochemicals) where they elicit a response –
allomones benefit only the sender, kairomones benefit
only the receiver, and synomones benefit both.

• Vesicles secreted by one cell traverse the extracellular
space or body fluids to another cell where their bioactive
contents (viruses, molecules) are unloaded.

• Vesicles at one location in a cell are transported by
molecular motors along a track system of cytoskeletal
filaments to another point where their freight (organelles,
molecules) are unloaded.

• Single and clusters of metastatic cells that have escaped
from a primary tumor circulate through the blood or
lymph to a secondary organ site where, after extravasa-
tion, they can seed a new tumor.

• Organic particles such as microorganisms, fungal spores,
small insects, and pollen grains associated with one
macroorganism, geological site or geographic location
relocate to another host or region where they influence
the local biochemistry, geochemistry and climate [12];
long distance transport (including movement within and
between continents and oceans) can occur via the same
meteorological phenomena and processes, such as jet-
streams and hurricanes, that translocate non-biological
particles such as sea salt and dust.

• Crustal material ejected by one Solar System body travels
to another where it has the potential to seed life if it
carries microbial spores or building blocks such as amino
acids, nucleobases and lipids [13], [14].

Regardless of the precise components of the communication
system – the particles (information carriers), source (sender),
spatial gap (transmission medium), and target (receiver) – two
key questions arise: How reliable is communication? and How
is useful information conveyed given constraints on resources?
Here, we investigate token timing (particle release and capture
times) and token payload (energy required to manufacture par-
ticles, to assemble symbolic strings from a set of building
blocks – we neglect the energy required for de novo synthe-
sis of the building blocks). Although not stated explicitly, our
energy model could include also token sequestration, ejection,
and transport (see aforementioned vesicle-related exemplars).

Tokens in the timing channel model are neither lost nor
modified: the number and makeup of the tokens emitted by
the source are the same as the ones arriving at the target.
All that differs are their times of emission and their times of
arrival. While accommodating tokens that are delayed tem-
porarily, our mathematical model does not consider directly
tokens that are detained permanently, removed entirely, never
arrive, or are changed en route. In the natural world, par-
ticles often interact with the material through which they
travel resulting in their immurement and ultimate removal
or detention and eventual discharge. For instance, free rad-
icals may react chemically with other particles, mRNAs may
be modified post-transcriptionally, ACh can be degraded by
the enzyme acetylcholine esterase, and circulating tumor cells
may be destroyed by the immune system. The random path of
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a semiochemical diffusing through air, soil or water may result
in a trajectory that leads away from the destined individual.
Organic particles may be immobilized within the mucus that
covers the inner linings of the body. Bacteria in the atmo-
sphere, particularly plant pathogens, may be diverted because
they can nucleate the formation of ice in clouds resulting in
snow, rain and hail [12].

Despite such shortcomings, our model provides an organizing
principle for all forms of molecular communications because
token loss or corruption can only decrease the capacity of the
system we analyze. Furthermore, the analysis is “compartmen-
tal” in that token corruption and loss can be treated separately
without invalidating the fundamental “outer bound” results.

B. Communication via Physical Objects: An
Engineering Perspective

Inscribed matter can often be the most energy efficient
means of communication when delay can be tolerated. Indeed,
a once popular communication networks textbook [15] states,

Never underestimate the bandwidth of a station
wagon full of tapes hurtling down the highway.

– A.S. Tanenbaum, Computer Networks, 4th ed.,
p. 91

This somewhat tongue-in-cheek “folklore” should come as
no surprise. From early antiquity, private persons, govern-
ments, the military, press agencies, stockbrokers and others
have used carrier pigeons to convey messages. Today, “sneak-
ernets” [16] have been proposed as a low-latency high-fidelity
network architecture for quantum computing across global dis-
tances: ships carry error-corrected quantum memories installed
in cargo containers [17].

Previous work on mobile wireless communication found
that network capacity could be increased if delay-tolerant traf-
fic was queued until the receiver and sender were close to
one another, perhaps enough to exchange physical storage
media [18]–[30]. This observation prompted a careful con-
sideration of the energetics involved in delivery of physical
messages, and a series of papers [31]–[33] revealed the sur-
prising results that inscribed matter can be many orders of
magnitude more efficient than radiative methods, even with
moderate delay constraints and over a variety of size scales.
In fact, [33] showed that over interstellar distances (10k light
years), inscribed matter could be on the order of 1015 times
more energy-efficient than radiated messages, suggesting that
evidence of extraterrestrial civilizations would more likely
come from artifacts than from radio messages if energy
requirements are a proxy for engineering difficulty [34].

At the other end of the size scale is biologically inspired
inscribed matter communication [?] which ranges from timed
release of identical signaling agents to specially constructed
information carriers [1]–[7], [35]–[38]. Although this nascent
field of molecular communication is replete with seemingly
futuristic applications such as in vivo biological signaling and
surgical/medicinal/environmental microbot swarms, the theo-
retical rates and energy efficiencies (especially through media
unfriendly to radiation) are sufficiently large [39] to warrant
careful theoretical and practical consideration.

Fig. 1. An abstraction of an inscribed matter communication channel. A
sender transmits an ensemble of tokens (“inscribed matter”) to a receiver
across a spatial gap (of length R in the figure). The tokens are released
at (unordered) times {Tm}, propagate through a transmission medium and
are captured at corresponding times {Sm}. For identical-tokens, the receiver
sees ordered arrivals {�Sm} which may differ in index from the unordered
arrivals {Sm}.

From an engineering perspective, the basic idea of inscribed
matter communication is very simple (see FIGURE 1).
Information is coded in the structure of the signaling agent
and/or its release time at the sender. These agents stochas-
tically traverse some spatial gap to the receiver where
they are captured and the information decoded. Of course,
there are many details and variations on the theme. Like
biological systems, the signaling agents (or tokens as we
call them) could be identical, implying that timing (which
includes time varying concentration) is the only way to con-
vey information. Alternatively, tokens could themselves carry
data payloads (in addition to, or in lieu of timing) simi-
lar to packets traveling the Internet. The “gap” (channel)
could be a medium through which tokens diffuse stochasti-
cally, or some form of active transport might be employed.
In addition, tokens could be deliberately “eaten” by get-
tering agents injected by the sender, channel or receiver.
Tokens could also be corrupted during passage through the
channel or might simply get “lost” and never reach the
receiver [9], [37].

Upon arrival at the receiver, tokens are captured. If we
sought to mimic the reception process in biological systems,
noise is just one factor to consider. Typically, the structure of
a receptor is matched stereochemically to its ligand (token).
The kinetics of receptor-ligand interactions is important as
are the number, density and spatiotemporal organization of
receptors. While a given receptor may bind preferentially to
a particular ligand, there may be other different or identical
(but from another source) interfering ligands which bind to
the same receptor. If one considers networks of molecular
transceivers, this sort of “cross talk” or outright interference
can be functionally important.

C. Inscribed Matter Communication: Model Distillation

While the various engineering and biological scenarios
require slightly different information theoretic formulations,
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they can all be understood within a unified framework: the
identical-token timing channel wherein

• Token release and capture timing is the only mechanism
for information transfer.

• Tokens always (eventually) arrive at the receiver.
• Tokens are removed promptly from circulation (or deac-

tivated) after first reception.
The identical-token timing channel abstraction [8], [19],

[39]–[41] encompasses token concentration or token count-
ing models since time-varying concentration (or token counts
in “bit intervals”) at a receiver is a coarse-time approxi-
mation to our precise individual token timing model. The
timing channel is also important for understanding informa-
tion carriage via payload-charged tokens whose information
packets may need resequencing at the receiver. That is, timing
channel results provide tight bounds on resequencing over-
head and are especially important if it is technologically
difficult to construct tokens with large payloads. The timing
channel analysis applies also to channels where the number
of tokens sent during signaling intervals is the information
carrier [8].

A version of the timing channel has been consid-
ered previously in the award-winning paper “Bits Through
Queues” by Anantharam and Verdú [42] and later by
Sundaresan and Verdú [43], [44]. A key difference is that
the molecular communication problem is explicitly an infinite-
”server” system where each token enters “service” (transport)
immediately upon “arrival” (release), making direct applica-
tion of single-server [42]–[44] and finite-server [46, Sec. III]
results difficult.

Our timing channel analysis provides outer bounds. By the
data processing theorem [10, Ch. 2], token re-capture aris-
ing from ligand-receptor binding/unbinding [37] and token
loss (erasure) cannot increase channel capacity. Likewise, pro-
cessing, corruption and loss of payload bearing tokens cannot
increase channel capacity. Thus, the timing channel not only
allows upper limits on capacity to be obtained, but also per-
mits the overall channel to be treated as a compartmentalized
cascade, each constituent of which can be analyzed sepa-
rately and compared to identify potential information transfer
bottlenecks.

III. MATHEMATICAL FORMULATION

Following [19], [39]–[41], and [45], assume emission of
M identical-tokens at times {Tm}, and their capture at times
{Sm}, m = 1, 2, . . . , M. The duration of token m’s first-passage
between source and destination is Dm. These Dm are assumed
i.i.d. with fDm(d) = g(d) = G′(d) where g(·) is some causal
probability density with mean 1

μ
and cumulative distribution

function (CDF) G(·). We also assume that g(·) contains no
singularities. Thus, the first portion of the channel is modeled
as a sum of random M-vectors

S = T + D (1)

as shown in FIGURE 2 prior to the sorting operation.

Fig. 2. The token release with reordering inscribed matter communication
channel. For token m released at time Tm, the duration of its first-passage
between the sender and receiver is Dm so it arrives at time Sm. The {Sm} are
then sorted by order of arrival. Since the M tokens are identical, the ordered
arrival time �Sm may not correspond to Sm.

We therefore have

fS(s) =
∫ ∞

0
fT(t)fS|T(s|t) dt

=
∫ s

0
fT(t)

M∏
m=1

g(sm − tm) dt

=
∫ s

0
fT(t)g(s − t) dt (2)

where

g(s − t) =
M∏

m=1

g(sm − tm)

We impose a launch (emission) deadline, Tm ≤ τ , ∀m ∈
{1, 2, . . . , M}. The associated emission time ensemble proba-
bility density fT(t) is assumed causal, but otherwise arbitrary.
Had we imposed a mean launch time constraint instead of a
deadline, the channel between T and S would be the parallel
version of Anantharam and Verdú’s Bits Through Queues [42].
However, since the tokens are identical we cannot necessar-
ily determine which arrival corresponds to which emission
time. That is, the final output of the channel is a reorder-
ing of the {sm} to obtain a set {�sm} where �sm ≤ �sm+1,
m = 1, 2, . . . , M − 1, as shown on the right hand side of
FIGURE 2 after the sorting operation.

We write this relationship as

�S = P�(S) (3)

where P�(·), � = 1, 2, . . . , M!, is a permutation operator and
� is that permutation index which produces ordered �S from
the argument S. We define P1(·) as the identity permutation
operator, P1(s) = s.

We note that the event Si = Sj (i �= j) is of zero measure
owing to the no-singularity assumption on g(·), Thus, for ana-
lytic convenience we will assume that fS(s) = 0 whenever
two or more of the sm are equal and therefore that the {�sm}
are strictly ordered wherever f�S(·) �= 0 (i.e., �sm < �sm+1).

Thus, the density f�S(�s) can be found by “folding” the density
fS(s) about the hyperplanes described by one or more of the
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TABLE I
A GLOSSARY OF KEY QUANTITIES CONSIDERED/DEFINED IN THE

ANALYSIS. FOR CONTINUITY AND CLARITY, THE IDENTICAL

TABLE IS INCLUDED IN THE COMPANION PAPER, PART II [46]

sm equal until the resulting probability density is non-zero
only on the region where sm < sm+1, m = 1, 2, . . . , M − 1.
Analytically we have

f�S
(�s) =

M!∑
n=1

fS
(
Pn
(�s)) (4)

Then, since fS|T(s|t) = g(s − t), we can likewise describe
f�S|T(s|t) as

f�S|T(s|t) =
M!∑

n=1

g(Pn(s) − t)
M∏

m=1

u([Pn(s)]m − tm) (5)

again for s1 < s2 < · · · < sm and zero otherwise where u(·)
is the unit step function. With exponential first-passage,

g(d) = μe−μdu(d), becomes

f�S|T(s|t) = μMe−μ
∑M

i=1(si−ti)

(
M!∑

n=1

u(Pn(s) − t)

)
(6)

again assuming s1 < s2 < · · · < sm and u(·) the
multidimensional step function (u(x) = �i=1u(xi)). It is
worth mentioning explicitly that equation (6) does not assume
arguments si ≥ ti as might be implicit in equation (2).

Finally, the problem structure will allow us to make use of
multi-dimensional function symmetry (hypersymmetry) argu-
ments, f (x) = f (Pn(x)) ∀ permutations n. The following
property of expectations of hypersymmetric functions over
hypersymmetric random variables will later prove useful.

Theorem 1 (Hypersymmetric Expectation): Suppose Q(x) is
a hypersymmetric function, Q(x) = Q(Pk(x)) ∀k, and X is a
hypersymmetric random vector. Then, when �X is the ordered
version of random vector X we have

E�X
[
Q
(�X
)]

= EX[Q(X)] (7)

Proof: Theorem 1 X̃ is a deterministic function of X; i.e.,
θ(X) = X̃. Thus,

E
[
Q
(

X̃
)]

= E[Q(θ(X))] = E[Q(X)] (8)

where the last equality results from the hypersymmetry of
Q(·).

With these preliminaries done, we can now begin to exam-
ine the mutual information between the unordered emission
times T, the unordered arrival times S, and the ordered (sorted)
arrival times �S.

IV. INFORMATION THEORETIC ANALYSIS

A. Formalizing the Signaling Model

To determine whether the mutual information between T
the input and �S the output is a measure of channel capacity, it
suffices to have a signaling model which patently supports the
usual asymptotically large block length and repeated indepen-
dent sequential channel uses paradigm [10, Ch. 8 and 10]. In
addition, we must also pay attention to the channel use ener-
getics since lack of energy constraints can lead to unrealistic
results. Thus, we have defined a channel use as the launch and
capture of M tokens under an emission deadline constraint, τ ,
with the further constraint that

λτ = M (9)

where λ, the token launch average intensity, has units of
tokens per time. Equation (9) is implicitly a constraint on
average power assuming a fixed per-token energy cost for con-
struction/sequestration/release/delivery. We also note that the
signaling interval τ is now an explicit function of M as in

τ = τ(M) = M

λ

So, consider FIGURE 3 where successive M-token trans-
missions – channel uses – are depicted. We will assume a
“guard interval” of some duration γ (M, ε) between succes-
sive transmissions so that all M tokens are received before the
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Fig. 3. Successive M-emission channel k successive M-emission channel
uses. timing channel, the sender emits M tokens over the transmission interval
τ(M) = M

λ
. γ (M, ε) is the waiting period (guard interval) before the next

channel use.

beginning of the next channel use with probability (1 − ε) for
arbitrarily small ε > 0. We further require that the average
token emission rate, M/(τ(M) + γ (M, ε)) satisfies

lim
ε→0

lim
M→∞

M

τ(M) + γ (M, ε)
= λ (10)

We then require that the last token arrival time �SM occurs
before the start of the next channel use with probability 1.
That is, given arbitrarily small ε we can always find a finite
M∗ such that

Prob
{�SM ≤ τ(M) + γ (M, ε)

}
> 1 − ε (11)

∀M ≥ M∗. We now derive a sufficient condition on first-
passage time densities for which equation (11) is true.

Calculating a CDF for �SM is in general difficult since emis-
sion times Tm might not be independent. However, for a fixed
emission interval [0, τ (M)] we can readily calculate a worst
case CDF for �SM and thence an upper bound on the guard
interval duration that satisfies the arrival condition of equa-
tion (11). That is, for a given emission schedule t, the S are
conditionally independent and the CDF for the final arrival is

F�SM |t(s|t) =
M∏

m=1

G(s − tm)u(s − tm) (12)

so that

F�SM
(s) =

∫ τ(M)

0
fT(t)

M∏
m=1

G(s − tm)u(s − tm) dt (13)

However, it is easy to see that

F�SM
(s) ≥ GM(s − τ(M))u(s − τ(M)) (14)

since G(s − t) is monotone decreasing in t.
The end of the guard interval is τ(M) + γ (M, ε), so the

probability that the last arrival time �SM occurs before the next
signaling interval obeys

F�SM
(τ (M) + γ (M, ε)) ≥ GM(γ (M, ε)) (15)

And to meet the requirement of equation (11) we must have

lim
M→∞ GM(γ (M, ε)) = 1 (16)

which for convenience, we rewrite as

lim
M→∞ M log G(γ (M, ε)) = 0 (17)

If rewrite log G(γ (M, ε)) in terms of the complementary
CDF (CCDF) Ḡ(·) (which must be vanishingly small in large

M if we are to meet the conditions of equation (11)) and note
that log(1 − x) ≈ −x for x small, we have

− log
(
1 − Ḡ(γ (M, ε))

) ≈ Ḡ(γ (M, ε))

for sufficiently large M. Thus, a first-passage distribution
whose CCDF satisfies

lim
M→∞ MḠ(γ (M, ε)) = 0 (18)

with some suitable γ (M, ε) will also allow satisfaction of
equation (11). However, the satisfaction of equation (18)
requires that 1/Ḡ(γ (M, ε)) be asymptotically supralinear
in M.

We then note that since all first-passage times are non-
negative random variables, the mean first-passage time is given
by [47]

E[D] =
∫ ∞

0
Ḡ(x)dx (19)

The integral of equation (19) exists iff 1/Ḡ(x) is asymptot-
ically supralinear in x. Thus, the existence of E[D] in turn
implies that choosing γ (M, ε) = εM allows satisfaction of
equation (18). So, in the limit of vanishing ε we then have

lim
ε→0

lim
M→∞

M

τ(M) + γ (M, ε)
≥ lim

ε→0

λ

1 + ε
= λ

and the energy requirement of equation (10) is met in the limit
while assuring asymptotically independent sequential channel
uses.

The above development proves the following theorem.
Theorem 2 (E[D] < ∞ Permits Asymptotically

Independent Sequential Channel Uses): Consider the
channel use discipline depicted in FIGURE 3 where tokens
are emitted on an interval [0, τ (M)] with τ(M) = M

λ
and

guard intervals of duration γ (M, ε) are imposed between
channel uses. If the mean first-passage time E[D] is finite,
then guard intervals can always be found such that the
sequential channel uses approach asymptotic independence
as ε → 0, and the relative duration of the guard interval,
γ (M, ε) vanishes compared to τ(M) as M → ∞.

Proof: Theorem 2 See the development leading to the
statement of Theorem 2.

Now, suppose the transport process from source to desti-
nation has infinite first-passage time, implying that 1/Ḡ(x)
is linear or sublinear in x. Is asymptotically independent
sequential channel use possible? The answer seems to be no.

As a best case, the minimum probability of tokens arriving
outside τ(M) + γ (M, ε) is obtained if all emissions occur at
t = 0 (see equation (13)). Any other token emission distri-
bution must have larger probability of interval overrun. For
asymptotically independent sequential channel use we then
must have, following equation (10) and equation (18),

lim
M→∞ MḠ

(
M

λ
+ γ (M, ε)

)
= 0 (20)

We notice that the argument of Ḡ(·) is at least linear in M, and
a linear-in-M argument will not drive Ḡ(·) to zero faster than
1/M because 1/Ḡ(·) is not supralinear. Thus, the argument of
Ḡ(·) must be supralinear in M to drive Ḡ(M

λ
+ γ (M, ε)) to
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zero faster than 1/M which in turn implies that γ (M, ε) must
be supralinear in M. However, if γ (M, ε) is supralinear in M,
then equation (10) cannot be satisfied and we have proved the
following theorem:

Theorem 3 (E[D] = ∞ Does Not Permit Asymptotically
Independent Sequential Channel Uses): Consider the channel
use discipline depicted in FIGURE 3 where tokens are emitted
on an interval [0, τ (M)] with τ(M) = M

λ
and guard inter-

vals of duration γ (M, ε) are imposed between channel uses.
If the mean first-passage time E[D] is infinite, then guard inter-
vals can never be found such that the sequential channel uses
approach asymptotic independence as ε → 0, and the relative
duration of the guard interval, γ (M, ε) vanishes compared to
τ(M) as M → ∞.

Proof: Theorem 3 See the development leading to the
statement of Theorem 3.

To summarize, if the mean first-passage time exists, then
asymptotically independent sequential channel uses are possi-
ble and the mutual information I(�S; T) is the proper measure
of information transport through the channel. Conversely, if
the mean first-passage time is infinite, then asymptotically
independent sequential channel uses are impossible and the
associated channel capacity problem is ill-posed. It is worth
noting that free-space diffusion (without drift) has infinite
E[D]. However, since all physical systems have finite extent,
E[D] is always finite for any realizable ergodic token transport
process.

B. Channel Capacity Definitions

The maximum I(�S; T) is the channel capacity in units of
bits/nats per channel use. However, we will find it useful to
define the maximum mutual information between T and �S per
token. That is, the channel capacity per token Cq is

Cq(M, τ (M)) ≡ 1

M
max
fT(·)

I(�S; T) (21)

Since τ(M) = M/λ, it is easy to see that Cq(M, τ (M)) will be
monotone increasing in M since concatenation of two emission
intervals with durations τ(M/2) and M/2 tokens each is more
constrained than a single interval of twice the duration τ(M)

with M tokens. We can thus say that

Cq(M, τ (M)) ≥ 2Cq(M/2, τ (M/2)) (22)

We can then define the limiting capacity in nats per
token as

Cq ≡ lim
M→∞ Cq(M, τ (M)) (23)

with no stipulation as yet to whether the limit exists or is
bounded away from zero.

Now consider the capacity per unit time. The duration
of a channel use (or signaling epoch) is τ(M) + γ (M, ε)

(see FIGURE 3). Thus, for a given number M of emissions
per channel use and a probability (1−ε) that all the tokens are

received before the next channel use, we define the channel
capacity in nats per unit time as

Ct(M, ε) ≡ max
fT(·)

I(�S; T)

τ (M) + γ (M, ε)

= Cq(M, τ (M))

(
M

τ(M) + γ (M, ε)

)

which in the limits of ε → 0 and M → ∞ becomes

lim
ε→0

lim
M→∞ Ct(M, ε) = λCq (24)

via equation (10) and equation (23).
The above development proves the following theorem:
Theorem 4 (Identical-Token Timing Channel Capacity): If

the mean first-passage time E[D] exists, then the channel
capacity in nats per unit time obeys

Ct = λCq (25)

where Cq is the capacity per token defined in equation (23)
and λ is the average token emission rate.

Proof: Theorem 4 See Theorem 2 and the development
leading to the statement of Theorem 4.

It is worth noting that Theorem (4) is general and applies
to any system with finite first-passage time. Now, we more
carefully examine the mutual information I(�S; T) to determine
whether the limits implied by equation (23) and equation (24)
exist and are bounded away from zero.

C. Mutual Information Between Input T and Output �S
The mutual information between T and S is

I(S; T) = h(S) − h(S|T) = h(S) − Mh(S|T) (26)

Since the Si given the Ti are mutually independent, h(S|T)

does not depend on fT(t). Thus, maximization of equation (26)
is simply a maximization of h(S) which is in turn a maximiza-
tion of the marginal h(S) over the marginal fT(t), a problem
explicitly considered and solved in closed form for a mean
launch time Tm constraint by Anantharam and Verdú [42] and
for a launch deadline constraint in [45] and [46], both for
exponential first-passage.

The corresponding expression for the mutual information
between T and �S is

I(�S; T) = h(�S) − h(�S|T) (27)

Unfortunately, h(�S|T) now does depend on the input distribu-
tion and the maximization of h(�S) is non-obvious. So, rather
than attempting a brute force optimization of equation (27) by
deriving order distributions f�S(·) [37], we explore – with no
loss of generality – simplifying symmetries.

Consider that an emission vector t and any of its permuta-
tions Pn(t) produce statistically identical outputs �S owing to
the reordering operation as depicted in FIGURES 1 and 2.
Thus, any fT(·) which optimizes equation (27) can be
“balanced” to form an optimizing input distribution which
obeys

fT(t) = fT(Pn(t)) (28)
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for n = 1, 2, . . . , M! and Pn(·) the previously defined permu-
tation operator (see equation (3)). We can therefore restrict
our search to hypersymmetric densities fT(t) as defined by
equation (28).

Now, hypersymmetric T implies hypersymmetric S which
further implies that fS(s) = fS(Pn(s)). The same non-zero cor-
ner and folding argument used in the derivation of equation (4)
produces the following key theorem:

Theorem 5 (The Entropy of �S): If fT(·) is a hypersym-
metric probability density function on emission times {Tm},
m = 1, 2, . . . , M, and the first-passage density g(·) is
non-singular, then the entropy of the time-ordered outputs
�S is

h(�S) = h(S) − log M!

Proof: Theorem 5 The hypersymmetry of fS(s) implies

h(�S) = −
∫
�s

M!fS
(�s) log

(
M!fS

(�s))d�s

= − log M! −
∫
�s

M!fS
(�s) log fS

(�s)d�s

= − log M! −
∫

s
fS(s) log fS(s)ds

= − log M! + h(S) (29)

It is worth noting that hypersymmetric densities on T are
completely equivalent (from a mutual information maximiza-
tion standpoint) to their “unbalanced” cousins. Remember that
each and every I(�S; T)-maximizing fT(·) can be “balanced”
and made into a hypersymmetric density without affecting
the resulting value of I(�S; T). Likewise, any hypersymmet-
ric density has a corresponding ordered density that produces
the same I(�S; T). So, the assumption of hypersymmetric input
densities is simply an analytic aid.

Next we turn to h(�S|T). A zero-measure edge-folding argu-
ment on the conditional density is not easily applicable here,
so we resort to some information-theoretic sleight of hand. As
before we define � as the permutation index number that pro-
duces an ordered output from S so that P�(S) = �S. We first
note the equivalence {

�, �S
}

⇔ S (30)

That is, specification of {�, �S} specifies S and vice versa
because as in our derivation of h(�S), this equivalence requires
that we exclude the zero-measure “edges” and “corners” of
the density where two or more of the si are equal. Thus, there
is no ambiguity in the S → �S map.

We then have,

h(S|T) = h(�, �S|T) = h(�S|T) + H(�|�S, T) (31)

which also serves as an en passant definition for the entropy of
a joint mixed distribution (� is discrete while �S is continuous).
We then rearrange equation (31) to prove a key theorem:

Theorem 6 (The Ordering Entropy, H(Ω|�S, T)):

h(�S|T) = h(S|T) − H(�|�S, T) (32)

where H(�|�S, T), the ordering entropy, is the uncertainty
about which Sm corresponds to which �Sm given both T and �S.

Proof: Theorem 6 See equation (31).
We note that

0 ≤ H(�|�S, T) ≤ log M! (33)

with equality on the right for any singular density, fT(·),
where all the Tm are equal with probability 1. We can then,
after assuming that fT(·) is hypersymmetric, write the ordered
mutual information in an intuitively pleasing form.

Theorem 7 (The Mutual Information I(�S; T) Relative to the
Mutual Information I(S; T)): For a hypersymmetric density
fT(t) = fT(Pn(t)), k = 1, 2, . . . , M!, the mutual information
between launch times T and ordered arrival times �S satisfies

I(�S; T) = I(S; T) −
(

log M! − H(�|�S, T)
)

(34)

Proof: Theorem 7 Combine Theorem 5 and Theorem 6 with
equation (27).

Put another way, an average information degradation of
log M!−H(�|�S, T) ≥ 0 is introduced by the sorting operation,
S → �S.

Mutual information is convex in fT(t) and the space F T of
feasible hypersymmetric fT(t) is convex. That is, for any two
hypersymmetric probability functions f (1)

T and f (2)
T we have

κf (1)
T (t) + (1 − κ)f (2)

T (t) ∈ FT (35)

where 0 ≤ κ ≤ 1. Thus, we can in principle apply varia-
tional [48] techniques to find that hypersymmetric fT(·) which
attains the unique maximum of equation (34). However, in
practice, direct application of this method leads to grossly
infeasible fT(·), implying that the optimizing fT(·) has singular
portions which lie along some “edges” or in some “corners”
of the convex search space.

D. An Analytic Bound for Ordering Entropy H(Ω|�S, T)

The maximization of equation (34) hinges on specifica-
tion of H(�|�S, T), the ordering entropy given �S and T. To
determine analytic expressions for H(�|�S, T), consider that
given t and �s, the probability that �s was produced by the kth

permutation of the underlying s is

Prob
(
� = k

∣∣�s, t
) =

fS|T
(

P−1
k

(�s)∣∣t)
∑M!

n=1 fS|T
(
Pn
(�s)∣∣t) (36)

where �s = Pk(s). Some permutations will have zero probability
(are inadmissible) since the specific �s and t may render them
impossible via the causality of g(·).

Using equation (5), the definition of entropy, and equa-
tion (36) we have

H
(
�|�s, t

) = −
M!∑

n=1

[
g
(
Pn
(�s)−t

)
∑M!

j=1g
(
Pj
(�s)−t

)
]

log

[
g
(
Pn
(�s)−t

)
∑M!

j=1g
(
Pj
(�s)−t

)
]

(37)

and as might be imagined, equation (37) is difficult to work
with in general. Nonetheless, let us define the number of
non-zero terms in the sum of equation (37) as |�|�s,t.
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Now, consider that for exponential g(·), we can use equa-
tion (6) to write equation (36) as

Prob
(
� = k|�s, t

) =
u
(

P−1
k

(�s)− t
)

∑M!
n=1u

(
Pn
(�s)− t

) (38)

where u(·) is the multidimensional unit step function as
previously defined. Equation (38) is a uniform probability mass
function with

∑M!
n=1 u(Pn(�s)− t) = |�|�s,t elements – the same

as the number of non-zero terms in the sum of equation (37).
Thus,

H(�|�s, t) ≤ log
M!∑

n=1

u
(
Pn
(�s)− t

)
(39)

for all possible causal first-passage time densities, g(·). In
addition, it can be shown that exponential first-passage time
is the only first-passage density which maximizes H(�|�s, t), a
result we state as a theorem.

Theorem 8 (A General Upper Bound for H(Ω|�s, t)): If we
define the number of admissible combinations {Pn(�s), t} as

|�|�s,t ≡
M!∑

n=1

u
(
Pn
(�s)− t

)

where u(·) is the multidimensional unit step function, then

H
(
�|�s, t

) ≤ log|�|�s,t
with equality iff g(·) is exponential.

Proof: Theorem 8 We have already shown via equa-
tion (38) that exponential first-passage renders Prob(� =
k|�s, t) uniform.

Now, consider that the probability mass function (PMF) of
equation (36) can be written as

Prob
(
� = k|�s, t

) = g(P−1
k

(�s)− t)∑M!
j=1g

(
Pj
(�s)− t

)

This PMF is uniform iff for all n and k where Pn(�s) and Pk(�s)
are both causal with respect to t we have

g
(
Pn
(�s)− t

) = g
(
Pk
(�s)− t

)
(40)

That is, equation (40) must hold for all pairs (Pn(�s), t) and
(Pk(�s), t) that are admissible. Since the maximum number of
non-zero probability � is exactly the cardinality of admissible
(Pn(�s), t), any density which produces a uniform PMF over
admissible � thereby maximizes H(�|�s, t), which proves the
inequality.

We then note that any given permutation of a list can be
achieved by sequential pairwise swapping of elements. Thus,
equation (40) is satisfied iff

g(x1 − t1)g(x2 − t2) = g(x2 − t1)g(x1 − t2) (41)

∀ admissible {(x1, x2), (t1, t2)}. Rearranging equation (41) we
have

g(x1 − t1)

g(x1 − t2)
= g(x2 − t1)

g(x2 − t2)

which implies that

g(x − t1)

g(x − t2)
= Constant w.r.t. x

Differentiation with respect to x yields

g′(x − t1)

g(x − t2)
− g(x − t1)g′(x − t2)

g2(x − t2)
= 0

which we rearrange to obtain

g′(x − t1)

g(x − t1)
= g′(x − t2)

g(x − t2)

which further implies that

g′(x − t1)

g(x − t1)
= c (42)

since t1 and t2 are free variables. The only solution to
equation (42) is

g(x) ∝ ecx

Thus, exponential g(·) is the only first-passage time density
that can produce a maximum cardinality uniform distribution
over � given �s and t – which completes the proof.

Now consider that |�|�s,t, as defined in Theorem 8, is a
hypersymmetric function of �s and t and thus invariant under
any permutation of its arguments �s or t. That is,

M!∑
n=1

u
(
Pn
(�s)− t

) =
M!∑

n=1

u
(
Pn
(�s)−�t)

=
M!∑

n=1

u
(
Pn(s) −�t)

=
M!∑

n=1

u(Pn(s) − t)

because the summation is over all M! permutations. Therefore,

|�|�s,t = |�|�s,�t = |�|s,�t = |�|s,t (43)

We must now enumerate this number of admissible per-
mutations. Owing to equation (43) and Theorem 1 we can
assume time-ordered inputs �t with no loss of generality. So,
let us define contiguous “bins” Bk = {t|t ∈ [�tk,�tk+1)},
k = 1, 2, . . . , M (�tM+1 ≡ ∞) and then define σm as bin occu-
pancies. That is, σm = q if there are exactly q arrivals in Bm.
The benefit of this approach is that the σm do not depend on
whether �s or s is used to count the arrivals. Thus, expectations
can be taken over S whose components are mutually inde-
pendent given the t and no order distributions for �S need be
derived.

To determine the random variable |�|S,�t we start by defining

ηm =
m∑

j=1

σj

the total number of arrivals up to and including bin Bm. Clearly
ηm is monotonically increasing in m with η0 = 0 and ηM =
M. We then observe that the σm arrivals on [�tm,�tm+1) can
be assigned to any of the �t1,�t2, . . . ,�tm known emission times
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except for those ηm−1 previously assigned. The number of
possible new assignments is (m − ηm−1)!/(m − ηm)! which
when applied iteratively leads to

|�|S,�t =
M∏

m=1

(m − ηm−1)!

(m − ηm)!
=

M−1∏
m=1

(m + 1 − ηm) (44)

We then define the random variable

X(m)
i =

{
1 Si < �tm+1
0 otherwise

for i = 1, 2, . . . m. The PMF of X(m)
i is then

p
X(m)

i
(x) =

{
G
(�tm+1 −�ti

)
x = 1

Ḡ
(�tm+1 −�ti

)
x = 0

(45)

where we note that for a given m, X(m)
i and X(m)

j are inde-
pendent, i �= j, and as previously defined, G(·) is the CDF of
the causal first-passage density g(·). Ḡ(·) = 1 − G(·) is the
corresponding CCDF. We can then write

ηm =
m∑

i=1

X(m)
i

It is then convenient to define X̄i = 1 − Xi which allows us
to define η̄m = m − ηm. We can then write

|�|S,�t =
M−1∏
m=1

(1 + η̄m) (46)

Since we seek the expected value of |�|S,�t, we can use
equation (45) to calculate each individual ES|�t[ log(1+ η̄m)] as

∑
x̄

log

(
1 +

m∑
i=1

x̄i

)
m∏

j=1

Ḡx̄j
(�tm+1 −�tj

)
G1−x̄j

(�tm+1 −�tj
)

(47)

which allows us to define H↑(t), an upper bound on
H(�|�S, t), as

H↑(t) ≡
M−1∑
m=1

∑
x̄

log

(
1 +

m∑
i=1

x̄i

)

×
m∏

j=1

Ḡx̄j
(�tm+1 −�tj

)
G1−x̄j

(�tm+1 −�tj
)

(48)

where an ordering permutation on t provides the {�tj} in
equation (48) which can then be rearranged as

H↑(t) =
M−1∑
=1

log(1 + )

×
M−1∑
m=

∑
|x̄|=

m∏
j=1

Ḡx̄j
(�tm+1 −�tj

)
G1−x̄j

(�tm+1 −�tj
)

(49)

We then note that

H
(
�|�S, T

)
≡ ET

[
E�S|T

[
H
(
�|�s, t

)]]

≤ ET

[
E�S|�T

[
log|�|�s,t

]]

= E�T
[
ES|�T

[
log|�|s,�t

]]

follows from equation (49) in conjunction with Theorem 8 and
through hypersymmetric expectations (Theorem 1) of hyper-
symmetric functions |�|s,�t (equation (43)). Adding in the
result of Theorem 8 we have proven the following theorem.

Theorem 9 (A General and Computable Upper Bound for
H(Ω|�S, T)):

E
[
H
(
�|�s, t

)] ≡ H
(
�|�S, T

)
≤ H↑(T) (50)

with equality iff the first-passage time density g(·) is expo-
nential.

Proof: Theorem 9 See the development leading to the state-
ment of Theorem 9. Theorem 8 establishes equality iff the
first-passage density is exponential.

Theorem 9 gives us H↑(T), a computable analytic upper
bound for H(�|�S, T), and an exact expression if the first-
passage time is exponential.

E. Capacity Bounds for Timing Channels

Despite significant effort, direct optimization of mutual
information, I(�S; T) (see equation (34)) remained elusive. The
key issue is that h(S) and H(�|T, �S) are “conflicting” quan-
tities with respect to fT(·). That is, independence of the {Tm}
favors larger h(S) (i.e., h(S) ≤ ∑

m h(Sm)) while tight corre-
lation of the {Tm} (as in Ti = Tj, i, j = 1, 2, . . . , M) produces
the maximum H(�|�S, T) = log M!. In light of these difficul-
ties, we sought analytic expressions in the companion to this
paper (Part II [46]) for the maximum h(S) and I(S; T) which
we restate here as Theorem 10 and Theorem 11 without proof,
recalling that τ = τ(M).

Theorem 10 (Maximum h(S) for Exponential First-Passage
Under a Launch Deadline Constraint): For first-passage time
D with density fD(d) = g(d) = μe−μd, and launch time T
constrained to [0, τ ], the maximum entropy of S = T + D is

max
fT (·)

h(S) = log

(
e + μτ

μ

)
(51)

The input density fT(·) which produces the maximum h(S) is

fT(t) = δ(t)
1

e + μτ
+ δ(t − τ)

1 − e

e + μτ

+ μ

e + μτ
(u(t) − u(t − τ)) (52)

Theorem 11 (Maximum I(S; T) for Exponential First-
Passage Under a Launch Deadline Constraint): For first-
passage time D with density fD(d) = g(d) = μ−μd, and launch
time T constrained to [0, τ ], the maximum mutual information
between S = T + D and T is

max
fT

I(S; T) = log
(

1 + μτ

e

)
(53)

The definition of Cq and Ct in Theorem 4 requires we con-
sider the asymptotic value of H(�|�S, T)/M. A lower bound
is provided in Part II [46] assuming exponential first-passage,
a result we restate here as Theorem 12 without proof.

Theorem 12 (Asymptotic H(Ω|�S,T)/M for Exponential
First-Passage Under a Launch Deadline Constraint T ∈
[0, τ ]): For exponential first-passage with mean 1/μ, token
launch intensity λ, and i.i.d. input distribution fT(t) =
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∏M
m=1 fT(t) where fT(·) maximizes I(S; T) as in Theorem 11,

the asymptotic ordering entropy per token is

lim
M→∞

H
(
�|�S, T

)

M
=

∞∑
k=2

e−ρ ρk

k!

(
k

ρ
− 1

)
log k! (54)

where ρ = λ/μ is defined as a measure of system token “load”
similar to a queueing system.

We can rewrite the summation term in equation (54) more
compactly noting that

∞∑
k=1

ρk

k!

(
k

ρ
− 1

)
log k! =

∞∑
=1

log 

∞∑
k=

ρk

k!

(
k

ρ
− 1

)
(55)

Then
∞∑

k=

ρk 1

k!
= eρ −

−1∑
k=0

ρk 1

k!
(56)

and
∞∑

k=

k

ρ
ρk 1

k!
=

∞∑
k=−1

ρk 1

k!

can be used to obtain
∞∑

k=

ρk

k!

(
k

ρ
− 1

)
= 1

( − 1)!
ρ−1 = ρ 1

!ρ

We then note that

p = e−ρ ρ

!
(57)

 = 0, 1, . . . ,∞ is a Poisson probability mass function with
parameter ρ and obtain the more compact

∞∑
k=1

ρk(k/ρ − 1)
log k!

k!
= 1

ρ
E

[
 log 

]
(58)

Now turning toward capacity, equation (34) and Theorem 11
are easily combined to show

1

M
I(S; T) − 1

M
log M! ≥ log

(
1 + μτ

e

)
− 1

M
log M!

Then, since τ = M/λ we have

lim
M→∞

1

M
I(S; T) − 1

M
log M! ≥ log

1

ρ
(59)

Noting that I(�S; T) = I(S; T) − log M! + H(�|�S, T) and
H(�|�S, T) ≥ 0 proves the following theorem:

Theorem 13 (A Simple Lower Bound for Cq under
Exponential First-Passage): Given a token launch intensity
λ = M/τ and exponential first-passage time distribution with
mean 1/μ, the identical-token timing channel capacity Cq(ρ)

in nats per token obeys

Cq(ρ) ≥ max{− log ρ, 0} (60)

where ρ = λ
μ

Proof: Theorem 13 See the development leading to the
statement of Theorem 13.

We can, however, combine equation (59), Theorem 12 and
equation (58) to obtain a better lower bound on capacity.

Theorem 14 (Lower Bound for Cq and Ct for Exponential
First-Passage): In the limit of large M, with mean 1/μ expo-
nential first-passage, the identical-token channel capacities, Cq

and Ct must obey

Cq(ρ) ≥ log
1

ρ
+ 1

ρ
E
[
 log 

]
(61)

and

Ct(ρ) ≥ λ

(
log

1

ρ
+ 1

ρ
E
[
 log 

])
(62)

where  is Poisson with PMF

p = e−ρ ρ

!
(63)

where ρ = λ/μ.
Proof: Theorem 14 Combine equation (59), Theorem 12

and equation (58).
Finally, from Part II [41], [46] we have the following upper

bound on Cq and the concomitant bound on Ct = λCq as.
Theorem 15 (Upper Bound for Cq and Ct for Exponential

First-Passage): If the first-passage density fD(·) is exponential
with parameter μ and the rate at which tokens are released is
λ, then the capacity per token, Cq is upper bounded by

Cq ≤ log

(
1

ρ
+ 4

)
(64)

and the capacity per unit time is upper bounded by

Ct ≤ λ log

(
1

ρ
+ 4

)
(65)

where ρ = λ
μ

Proof: Theorem 15 Theorem 11 in Part II [46] provides
the bound for Cq and application of Theorem 4 provides the
bound for Ct.

We have now concluded our information-theoretic treatment
of identical-token timing channel. In the next sections we show
how these results can be applied to molecular communication
channels where tokens can carry information payloads.

F. Tokens With Payloads

In Sections IV-A to IV-E we developed all the machin-
ery necessary to provide capacity bounds for channels with
identical-tokens where timing is the only means of informa-
tion carriage. However, one can also imagine scenarios where
the token itself carries information, much as a “packet” car-
ries information over the Internet. For example, consider a
token that is a finite string of symbols over a finite alpha-
bet. Having constructed tokens from these “building blocks,”
a sender launches them into the channel and they are captured
by a receiver. In this scenario a DNA sequence is a sym-
bolic string drawn from a 4-character alphabet so that each
nucleotide could carry 2 bits of information. Similarly, a pro-
tein sequence is a symbolic string drawn from a 20-character
alphabet so that each amino acid could carry a little over
4 bits of information. Thus, a DNA token constructed from
100 nucleotides would carry 200 bits whereas a corresponding
protein token would carry > 400 bits.
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However, there are myriad other possibilities for coding
information in structure. For example, a third major class of
biological macromolecules, carbohydrates (polysaccharides),
are linear and branched structures where the polymers are
constructed from a much larger alphabet of monosaccharides.
In addition to the composition information inherent in the
makeup of a linear or non-linear concatenations of building
blocks, one could imagine a layer of structural information
as well [49] – as is the case with biological macromolecules
where the spatiotemporal architecture of a polymer is as
important as the order and frequencies of nucleotide, amino
acid or monosaccharide residues of which it is composed.
However, as the issue of “structural” information (the amount
of information contained in an arbitrary 3-dimensional object)
is as yet an open problem, we will not consider such con-
structions in detail. Yet and still, the bounds we will derive
are applicable to any method of information transfer wherein
tokens carry information payload, either as string sequences
or in some other structural way.

So, for now consider only string tokens – as exempli-
fied by DNA and protein sequences – where each token in
the ensemble released by the sender carries a portion of the
message. Thus, irrespective of their individual lengths, such
“inscribed matter” tokens must be “strung together” to recover
the original message, which implies that each token must be
identifiable. Just as in human engineered systems like the
Internet where information packets could arrive out of order,
a sequence number could be appended to each token to ensure
proper reconstruction at the destination. Thus, given M tokens
per channel use, we could append log M bits to each token. We
will defer detailed discussion of this scenario until Section VI
as this approach is asymptotically impractical with log M
tending toward ∞. Alternatively, one could employ gross
differences to convey sequence information such as sending
tokens of distinct lengths 1, 2, . . . , K where M = K(K +1)/2.
And there may be other clever ways to embed structural side-
information to establish token order. Nonetheless, the myriad
possibilities notwithstanding, H(�|�S, T) provides the measure
of essential token “overhead” or “side-information” (of any
form) necessary to maintain proper sequence.

Consider that operation of the timing channel involves con-
struction of “blocks” {t1, . . . , tN} where each tn represents the
launch schedule for M tokens (a channel use). These blocks,
“codewords” of blocklength N, are launched into the chan-
nel. If capacity is not exceeded, the receiver can reliably
recover the information embedded in the codewords and since
we generally assume the receiver has access to the coding
method, a correctly decoded message implies knowledge of the
codewords {t1, . . . , tN}. However, the channel imposes resid-
ual uncertainty about the mapping S → �S – the ambiguity
about which �si is associated with which sj. For this reason,
the payload-inscribed tokens cannot yet be correctly strung
together to recover the message.

However, given the observed arrivals �s and the correctly
decoded t, H(�|�s, t) is the definition of the uncertainty
about that ordering, �. Likewise, the average uncertainty is
H(�|�S, T). Thus, the source coding theorem implies that at
least H(�|�S, T) bits must be used, on average, to resolve the
mapping ambiguity.

So, consider a message P to be carried as token payload
that we break into equal size ordered submessages pm, m =
1, 2, . . . , M. We can summarize the previous discussion as a
theorem.

Theorem 16 (Sequencing Tokens With Payload): If a mes-
sage P is broken into equal size “payload” submessages {pm},
m = 1, 2, . . . , M and inscribed into otherwise identical-tokens
launched at times {tm}, we must provide, on average, addi-
tional “sequencing information” 1

M H(�|�S, T) per token at
the receiver to assure recovery of the full payload message
P = p1p2 · · · pM .

Proof: Theorem 16 Given arrivals �s and known departures
t, the uncertainty about the mapping between the {�sm} and
the {sm} (and thus the associated {tm}) is exactly the ordering
entropy H(�|�s, t). Considering � as a letter from a random
i.i.d. source, the source coding theorem [10], [50] requires
at least H(�|�s, t) bits on average to uniquely specify � – or
asymptotically over many channel uses, at least H(�|�S, T) bits
on average. Therefore the information necessary at the receiver
to recover the proper sequence and thence the message P is
greater than or equal to 1

M H(�|�S, T) per token.
It is important to note that we have not actually provided

a method for message reconstruction, only a lower bound on
the amount of “side information” necessary at the receiver
to assure proper reconstruction. However, as a practical mat-
ter, the quantity 1

M H(�|�S, T) does provide some guidance. In
the worst case where the order of token arrival is completely
random, H(�|�S, T) = log M! which amounts to each packet
carrying a header of size 1

M log M! ≈ log M for large M –
essentially numbering the packets from 1 to M. If 1

M H(�|�S, T)

is much smaller, then one could imagine some type of cyclic
packet numbers since smaller 1

M H(�|�S, T) implies that some
sets of packets are unlikely to arrive out of order. The sequence
header could then be commensurately smaller. In either case,
the total amount information necessary to resolve the ordering
� is 1

M H(�|�S, T) per packet on average.

G. Energy Costs

System energy is a critical resource which limits capacity
in all communication systems. In the case of molecular com-
munication, there are a variety of potential costs, most notably
manufacture, launch and transport. So, assume the minimum
cost of fabricating a token without a payload is c0 Joules
and with a payload c1 Joules. Symbolic string tokens incur
a “per character” cost which we define as �c1 per character
per token. For example, adding a nucleotide to double-stranded
DNA requires 2 ATP (1.6 × 10−19 J) while adding an amino
acid to a protein requires 4 ATP (3.2 × 10−19 J) [51]. Apart
from the per residue per token cost, there may be other energy
involved in sequestration, release and/or token transport across
a gap. However, the key assumption is constant energy use per
token. Without considering the details as in [52] we will denote
the combination of these and any other relevant energies as ce

Joules per token. Thus, the power required for the timing-only
channel is

PT = λ(c0 + ce) (66)
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Fig. 4. Lower bound (dashed line: Theorem 14) and upper bound (solid
line: Theorem 15) for the identical-token timing channel capacity Ct (in nats
per passage time 1/μ) as a function of channel load ρ, the ratio of the token
launch rate λ to the token uptake rate μ. Exponential first-passage assumed.

and for the timing-plus-payload channel,

PT+P ≤ λ

(
c1 + ce +

(
H↑(T)

log b
+ K

)
�c1

)
(67)

where K is the string length of information-laden tokens, and b
is the alphabet size used to construct the strings. The inequality
in equation (67) results from the fact that H↑(T) is an upper
bound on the ordering entropy H(�|�S, T) over all possible
first-passage distributions (Theorem 9).

We also note that detailed timing information could be
ignored so that information is conveyed by payload using
embedded sequencing information. The power budget would
be identical to that of equation (67) except that H↑(T) would
be replaced by limM→∞ mint H(�|�S, t)/M. However, since
H(�|�S, T) ≥ mint H(�|�S, t), equation (67) provides an upper
bound for the payload-only power as well.

V. RESULTS

We can now define the capacities for the token-timing
(only), token-timing+payload and token-payload (only) chan-
nels as follows:

CT = λCq(ρ) (68)

CT+P = λ
(
Cq(ρ) + K log b

)
(69)

and

CP = λK log b = CT+P − CT (70)

In FIGURE 4 we use Theorem 14 and Theorem 15 (expo-
nential first-passage) to plot lower and upper bounds for CT

versus ρ, a proxy for power budget, P , assuming some unit
cost per token (c0 + ce = 1). It is important to note that first-
passage time variance (jitter) produces disordered tokens. That
is, the mean first-passage time is only a measure of channel
latency – the “propagation delay” so to speak – and does not
itself impact token order uncertainty. However, for exponential
first-passage the standard deviation also happens to be the first-
passage time 1/μ. At small values of ρ the bounds are tight.
At larger ρ the bounds diverge and the upper bound offers the

Fig. 5. Lower bounds for the capacities of the token timing (ρCT ) and token
timing plus token payload (ρCP+T ) channels as a function of power budget
(PT and PP+T ) for DNA string tokens with exponential first-passage times
(Theorem 14). Capacity is in units bits per first-passage time 1/μ. Power is in
units of 2-ATP (1.6×10−19 J) per passage time 1/μ and a nucleotide residue is
assumed to carry 2-bits of information. Solid lines: aggregate capacity of n =
1, 2, 4 separate (independent or parallel) token timing channels where DNA
string tokens carry no information payload. Dashed/Dotted lines: aggregate
capacity of token timing plus token payload channels for DNA string tokens
of different lengths, K = 1, 2, 4-residue payloads. Exponential first-passage
assumed.

tantalizing hint that timing channel capacity increases with
increased token load ρ (see also [8], [9]). Unfortunately, we
have as yet been unable to find an empirical density fT(t)
which displays capacity growth similar to the upper bound
and suspect that timing capacity flattens with increasing ρ

owing to a more rapidly increasing probability of token order
confusion at the output.

In FIGURE 5, we use Theorem 14 to plot lower bounds
in bits per first-passage time, 1/μ, as a function of power
budget P assuming DNA-based tokens. For token timing plus
token payload signaling we show plots for K = 1, 2, 4 DNA-
residue tokens. For timing-only signaling we also include plots
where different identifiable tokens (different molecule types
or physically separate channels) are used (i.e., n = 1, 2, 4
parallel timing channels as shown) for comparison with pay-
load channels. We have assumed costs c0 = �c1 = 2 ATP.
Furthermore, we assume c1 = ce = �c1 since it seems likely
that the absolute minimum energy for token release, ce, in a
purely diffusive channel is probably comparable to the cost
of creating (or breaking) the covalent bond used to append a
nucleotide residue. If we assume 1/μ = 1ms, then the ordi-
nate of FIGURE 5 is in kbit/s and the abscissa is in units
of 1.6 × 10−16W. If 1/μ = 1μs, (as might be the case for
smaller gaps in a nano-system) the ordinate is in Mbit/s and
the abscissa is in units of 1.6 × 10−13W. These data rates are
many orders of magnitude larger than the fractional bit/second
data rates previously reported for simple demonstrations of
molecule communication [53], and the predicted power effi-
ciencies are startling. Comparison of our results to [53] and
others would be relatively straightforward if passage time jit-
ter for the experimental setup were provided, although in [53]
Avogradrian numbers of molecules were released with each
alcohol “puff” so precise timing at the molecular level was
not attempted.
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Finally, it is worth noting that increasing the rate at which
tokens with payload are launched will increase the bit rate but
not increase the required energy per bit. Of particular note,
at low power, timing-only signaling provides the best rates
while at higher power, inscribed matter tokens may be pre-
ferred. However, if it is difficult to synthesize long strings
(heavily information-laden tokens), even a single bit of pay-
load information (two distinguishable species used in parallel)
markedly increases capacity.

VI. DISCUSSION AND CONCLUSION

We have provided a general and fundamental mathematical
framework for molecular channels and derived some associ-
ated capacity bounds. We now discuss the results in the context
of selected prior work and touch upon ideas for further work.
First, we examine the engineering implications: how molecular
communication can be extended to other known communica-
tion scenarios as well where we might look for inspiration
from biology that has had eons to evolve solutions. Then, we
examine the biological implications: how the results might
impact/support known biology and suggest new avenues for
investigation.

A. Engineering Implications

1) Capacity Bounds and Coding Methods: Our upper
bound on capacity Ct, the timing capacity for identical-tokens,
is tight for low token load ρ but diverges for large ρ. However,
no empirical distributions which provide rates higher than the
lower bound have yet been found. So, does the capacity of
the timing-only channel truly flatten with increasing ρ as in
FIGURES 5 and 4, or is there a benefit to increasing the
intensity of timing token release as suggested in [8] and [9]?
Intriguingly, this rate flattening of the lower bound seems to
comport almost exactly with a result in [44, Sec. III] which
considers a related system where only a finite number of
tokens can be simultaneously in flight (a finite “server” system
in the parlance of [42] and [44]). More careful exploration of
these parallels may reveal launch densities which cause Ct to
grow without bound with ρ.

Since exponential first-passage is not the worst case cor-
ruption, what is the minmax capacity of the molecular timing
channel? Likewise, how much better than exponential might
other first-passage densities imposed by various physical chan-
nels be, and what are good codes for reliable transmission of
information over molecular channels?

While we have focused on tokens that are linear strings
(DNA and protein sequences), what benefits might strings with
a branched structure (exemplified by carbohydrates) confer
for token ordering and/or payload? Should we pursue tech-
nology to produce large payload tokens (strings with many
residue) [54], or should a pool of smaller pre-fabricated pay-
loads be used to deliver information? The bunching seen in
FIGURE 5 for payload tokens with increasing K may suggest
the latter when rapid token construction is difficult. That is, the
capacity per power output does not scale linearly in K owing
to the increased power required to add more bases to tokens.
This implies a tradeoff between timing only and increasingly

larger payloads – completely aside from the fact that payload
size, shape and composition can affect token transport and
capture.

2) Precise Timing, Fuzzy Timing and Concentration:
It is important to quantify the relationship between our
fine grain timing model and other less temporally precise
ones [1]–[7], [35]–[38]. Our model seems to imply infinitely
precise control over the release times T and infinitely precise
measurement of the arrival times �S. However, imprecision in
both times can be incorporated easily into the transit time
vector D. Thus, applying our model to the “fuzzier” release
and detection times associated with practical/real systems
is straightforward. That is, first-passage time jitter already
imposes limits on timing precision. So long as launch and cap-
ture timing precision is significantly better than passage time
jitter, the bounds presented here will be moderately tight. In
addition, we are hopeful that the upper bound of Theorem 15
will be useful for evaluating molecular timing channel capacity
for arbitrary first-passage time distributions since it requires
only knowledge of the timing channel capacity coupled to
average properties of the corresponding input distribution.

Concentration is derived from counting arrivals within tem-
poral windows. The data processing theorem indicates that
our precise timing model must undergird all concentration
based methods which, even with perfect concentration detec-
tion, cannot possibly exceed the capacity of the fine grain
timing model presented here. Given the asymptotic nature of
our analysis, an individual emission schedule t for large M is
exactly a temporal emission concentration profile as time res-
olution coarsens. Thus, the results here provide crisp upper
bounds on the capacities derived from concentration based
models.

Consider channel models where information is carried by
the number of molecules released and received (for recent
examples, see [9], [55]). In this case, the capacity per channel
use, CN , is upper bounded by log(M + 1) since between 0
and M tokens can be released during a symbol interval of
duration τ(M). Smaller τ(M) increases the capacity in bits
per second whereas larger M increases the capacity in bits per
channel use.

If we assume a fixed signaling interval τ(M) during which
m = 0, 1, . . . M tokens are emitted, we can use the average
token launch rate λ as a proxy for power. Assuming a uniform
distribution on the number of tokens sent, we have

τ(M) = M

2λ
(71)

since the average number of tokens released is M/2.
Assuming exponential first-passage, the probability that all

tokens arrive by τ(M) is minimized when all tokens are
launched at t = 0. For exponential first-passage and with
arrival probability criterion 1 − ε as in Section IV-A, we have

τ(M) = − 1

μ
log
(

1 − (1 − ε)
1
M

)
(72)

which assures that even when M tokens are emitted, they will
all arrive before τ(M) with probability 1 − ε.
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However, equation (72) in combination with the power limit
of equation (71) sets λ to

λ(M) = − μM

2 log
(

1 − (1 − ε)
1
M

) (73)

Then, since CN ≤ log(M+1), after setting a successful channel
use criterion of 1 − ε we have

CN(M)

τ (M)
≤ − μ log(M + 1)

log
(

1 − (1 − ε)
1
M

) (74)

which we rewrite as

CN(M)

μτ(M)
≤ − log(M + 1)

log
(

1 − (1 − ε)
1
M

) (75)

with normalized power constraint

P (M) = λ(M)

μ
= − M

2 log
(

1 − (1 − ε)
1
M

) (76)

However, except for small ε, CN (M)
μτ(M)

is not a reliable indicator
of capacity since with increased ε, τ(M) decreases but the
probability of intersymbol interference (ISI) increases. Since
calculating the capacity of this channel with ISI is difficult,
we roughly approximate by normalizing CN (M)

μτ(M)
by the expected

number of intervals over which a given emission burst of M
tokens will span (thereby potentially corrupting them). Noting
that (1 − εz)M is the probability that all tokens arrive before
the end of the z + 1st interval after emission we have

z̄(M) =
∞∑

z=0

(
1 − (

1 − εz)M)

= −
M∑

n=1

(
M

n

)
(−1)n

1 − εn
(77)

and we obtain

C̃N(M) ≡ CN(M)

z̄(M)μτ(M)

≤ log(M + 1)

−z̄(M) log
(

1 − (1 − ε)
1
M

) (78)

as an approximation to capacity for the number/concentration
channel.

In FIGURE 6 we plot the upper bound of C̃N(M) in
equation (78) versus P (M) (i.e., parametrized in M) for a
range of ε as compared to the timing channel lower bound
in FIGURE 4. The timing channel capacity lower bound is
always significantly greater than C̃N(M). Nonetheless, the
coding simplicity of the number/concentration channel could
make it an attractive option.

3) Identifiable Tokens Without Payload: In Section IV-F we
mentioned the possibility of uniquely identifying each of M
emitted tokens with a sequence number of length log M bits.
We treat this scenario as distinct from ensemble timing chan-
nel coding which resolves residual orderering ambiguity (see
Section IV-F) because if the tokens are individually identi-
fiable, the potential emission schedules are not constrained

Fig. 6. Lower bound for ρCt versus tokens per passage (dashed line) com-
pared to C̃N vs. tokens per passage for different values of ε as shown. Token
construction and emission are assumed unit energy for both the timing channel
and the number/concentration channel. Exponential first-passage assumed.

to ensemble timing channel coding. Thus, the M identifi-
able tokens constitute M parallel single-token timing channels,
which for exponential first-passage have aggregate capacity
M log(1 + M

ρe ).
However, because each token requires log M bits of

sequencing information, ρ is limited by the power budget P
(in units of energy per passage, 1/μ)

ρlog M ≤ P (79)

Following Section IV-A we have λτ(M) = M so the capacity
in nats per passage time is

C = ρ log

(
1 + M

ρe

)
≤ ρ log

⎛
⎝1 + e

P
ρ

ρe

⎞
⎠ (80)

the last inequality owed to equation (79). However, in the limit
of M → ∞ we have ρ → 0 so we have

lim
ρ→0

C = P (81)

in units of nats per passage time (and assuming unit per-bit
cost of the token identifer string). Thus, the identifiable token
timing channel capacity exceeds the identical-token timing
channel lower bound with increasing power budget and scales
linearly in power as does the timing channel upper bound
(see FIGURE 4) – while still lying below it.

4) Token Corruption and Receptor Noise: The potential for
lost or corrupted tokens and potential binding noise at receptor
sites must eventually be considered. However, as previously
stated, token erasure (tokens which do not arrive) or pay-
load token corruption (tokens which are altered in passage)
or receptor noise (tokens bind stochastically to the receptor)
cannot increase capacity (data processing theorem). Thus, the
results here provide upper bounds. Nonetheless it is worth
considering how the analytic machinery developed might be
modified to accommodate such impediments.

First, consider alteration of payload-carrying tokens en
route. If the corruption is i.i.d. for each token, then error
correcting codes can be applied individually, or to the token
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ensemble. The resulting overall channel capacity will be
degraded by the coding overhead necessary to preserve pay-
load message integrity (including the sequencing headers).

Then consider token erasure where a token never arrives
(and is assumed to not arrive in a later signaling interval).
Since each signaling interval uses M tokens, we will know
whether tokens get “lost” in transit and can arbitrarily assign
a faux arrival time to such tokens. However, the problem this
poses for our analysis is two-fold. First, tokens released later in
the signaling interval are more likely to be lost which implies
that the first-passage density is not identical for each token.
Second, the first-passage density for each token would then
contain a singularity equal to the probability of loss, violat-
ing one of our key assumptions and making hypersymmetric
probability density folding arguments invalid. That said, an
erasure channel approach where arriving tokens were deleted
randomly could be pursued, providing a worst case scenario
since the information associated with erasures being more
likely for later emissions would be absent.

Finally, we have previously mentioned that a token may
“arrive” multiple times owing to ligand/token binding kinet-
ics. It was previously shown that given the first binding
(first-passage) time the information content of subsequent
bindings by the same token is nil [37]. In addition, as shown
in Section IV-A, information-theoretically patent channel use
requires that tokens from a given emission interval be even-
tually cleared at the receiver. Otherwise, lingering tokens can
interfere with subsequent emission intervals.

So, one could imagine the rebinding process producing a
characteristic finite-mean arrival “burst” associated with each
token which could perhaps be resolved into a single first-
arrival time estimate – effectively adding more jitter to the
first-passage time D. If so, our model applies directly with
appropriate modification. However, we have not attempted
to analyze this scenario nor quantify the associated estima-
tion noise. Thus, our results are most appropriately applied
to systems where ligands bind tightly or where tokens are
removed with high probability after first capture/detection.

5) Interference and Multiple Users: Multi-user communi-
cation in a molecular setting is a critical question, and a better
understanding of the single-user channel will certainly help
with multi-user studies where transmissions interfere. There is
some prior work which may provide an information-theoretic
foundation [56] similar to how our work builds on [42], but the
multi-user molecular signaling problem has not yet been rig-
orously considered. Of particular interest would be a version
of MIMO since FIGURE 5 shows capacity benefits to parallel
channels. One could imagine apposed arrays of emitters and
receivers which could be engineered to collaborate to encode
and decode information in a variety of ways, from parallel
non-interfering channels to grossly interfering channels where
joint/distributed coding might be employed.

6) Other Applications: Although our work is motivated
by molecular communication, the notion of token inscription
applies to any system where discrete emissions experience ran-
dom transport delay between sender and receiver. The most
obvious example is the Internet where packets experience vari-
able delay and may arrive out of order. Our results provide

crisp bounds on the amount of sequencing overhead neces-
sary for proper message reconstruction and even suggest that
(at least for low payload packets traveling over independent
routes) timing information could be an interesting adjunct to
payload, depending upon the timing jitter between the source
and destination.

There is also the potential for cross pollination from biol-
ogy to communication systems. As a simple example, there
may be some selective benefit to hiding information from
competitors. So, perhaps biological systems, where signal-
ing chemicals are often detectable by other organisms, convey
secrets over molecular communication channels in ways that
can be mimicked in engineered systems. An obvious applica-
tion, biosteganography [57], comes to mind in the context of
tokens with payloads, but time-coding could also be used to
obscure information.

B. Biological Implications

The natural world offers a dizzying array of processes
and phenomena through which the same and different
tasks, communication or otherwise, are accomplished (for
example, [58]–[63]). Hence, communication theorists have
plied their trade heavily in this domain (reviewed rela-
tively recently in [64]). Identifying the underlying mecha-
nisms (signaling modality, signaling agent, signal transport,
etc.) as well as the molecules and structures implement-
ing the mechanisms is no small undertaking. Consequently,
experimental biologists use a combination of prior knowl-
edge and what can only be called instinct to choose those
systems on which to expend effort. Guidance may be sought
from evolutionary developmental biology – a field that com-
pares the developmental processes of different organisms to
determine their ancestral relationship and to discover how
developmental processes evolved. Insights may be gained
by using statistical machine learning techniques to analyze
heterogeneous data such as the biomedical literature and
the output of so-called “omics” technologies – genomics
(genes, regulatory, and non-coding sequences), transcriptomics
(RNA and gene expression), proteomics (protein expres-
sion), metabolomics (metabolites and metabolic networks),
pharmacogenomics (how genetics affects hosts’ responses to
drugs), physiomics (physiological dynamics and functions of
whole organisms).

Frequently, the application of communication theory to
biology starts by selecting a candidate system whose com-
ponents and operations have been elucidated to varying
degrees using the experimental/computational biology tool-
box [65], [66] and then applying communication/information
theoretic methods [63], [64], [67]–[72]. However, we believe
that communication theory in general and information theory
in particular are not mere system analysis tools for biology but
new lenses on the natural world [73]. Here, we have sought to
demonstrate the potential of communication theory as an orga-
nizing principle for biology. That is, given energy constraints
and some general physics of a problem, an information-
theoretic treatment can be used to provide outer bounds
on information transfer in a mechanism-blind manner. Thus,



ROSE AND MIAN: INSCRIBED MATTER COMMUNICATION: PART I 225

rather than simply elucidating and quantifying known biology,
communication theory can winnow the plethora of possibil-
ities (or even suggest new ones) amenable to subsequent
pursuit.

Examples of the implications of our main communication
theoretic results are as follows:

• We have derived a model and methodology for determin-
ing the amount of information a system using chemical
signaling can convey under given power constraints. Do
(or How do) biological systems achieve this extremely –
even outrageously – low value?

• Using tokens with large payloads can be very efficient. Is
one exemplar transmission of hereditary material such as
a genome over evolutionary time scales (periods spanning
the history of groups and species)?

• If it is difficult to synthesize long strings (information-
laden tokens), even a single bit of information (two
distinguishable species) increases capacity. Is one exem-
plar the alternative versions of a given gene (alleles)
that are found at the same position on a chromosome?
Different alleles can result in different observable phe-
notypic traits, for example, the gene that codes for the
shape of a pea has two alleles, wrinkled and round.

• Although the production rate of tokens can be increased,
the channel capacity might not increase if tokens are emit-
ted at intervals smaller than the variability of arrival
time. How are release and arrival times modulated by
the physicochemical properties of the material through
which discrete particles travel, environmental factors such
as temperature, pH, pressure and light and crowding at
the source and target? In its natural milieu, a molecule
lives and operates in an extremely structured, complex
and confining environment: one where it is surrounded
by other molecules of the same or different chemical
nature, the bystanders in the crowd having positive or neg-
ative effects on its mobility, biochemistry and cell biol-
ogy [74], [75]. The plants and animals in agroecosystems
exist in similarly challenging environments.

Our results could guide studies aimed at answering three
key questions biologists ask of a living organism: How does it
work?, How is it built?, and How did it get that way? [76]. This
is because our models of token timing, payload and timing plus
payload channels are inspired, at least in part, by fundamental
“systems” problems about the dynamic and reciprocal com-
munication between diverse biological entities. These include
elucidating the origins (evolutionary developmental biology),
generation (embryogenesis, and morphogenesis), maintenance
(homeostasis, tolerance, and resilience), subversion (infectious
and chronic diseases such as cancer and immune disor-
ders), and decline (aging) of complex biological form and
function [73].
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