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Moler, E. J., D. C. Radisky, and I. S. Mian. Integrating
naive Bayes models and external knowledge to examine
copper and iron homeostasis in S. cerevisiae. Physiol Genom-
ics 4: 127–135, 2000.—A novel suite of analytical techniques
and visualization tools are applied to 78 published transcrip-
tion profiling experiments monitoring 5,687 Saccharomyces
cerevisiae genes in studies examining cell cycle, responses to
stress, and diauxic shift. A naive Bayes model discovered and
characterized 45 classes of gene profile vectors. An enrich-
ment measure quantified the association between these
classes and specific external knowledge defined by four sets
of categories to which genes can be assigned: 106 protein
functions, 5 stages of the cell cycle, 265 transcription factors,
and 16 chromosomal locations. Many of the 38 genes in class
42 are known to play roles in copper and iron homeostasis.
The 17 uncharacterized open reading frames in this class
may be involved in similar homeostatic processes; human
homologs of two of them could be associated with as yet
undefined disease states arising from aberrant metal ion
regulation. The Met4, Met31, and Met32 transcription fac-
tors may play a role in coregulating genes involved in copper
and iron metabolism. Extensions of the simple graphical
model used for clustering to learning more complex models of
genetic networks are discussed.

molecular profile matrix; gene profile vectors; naive Bayes
model; copper and iron metabolism; Bayesian networks

METHODS FOR THE ANALYSIS of transcription profile data
obtained from high density oligonucleotide or cDNA
microarrays include hierarchical clustering (6), gene
shaving (9), self-organizing maps (SOMs) (26, 28),
Boolean networks (13, 14, 24), linear modelling (5),
principal component analysis (21), nonlinear modeling
(29), Bayesian networks (BNs) (7), dynamic Bayesian
networks (DBNs) (18), Support Vector Machines (SVMs)
(3, 17)), and Petri nets (8, 15). Recently, a modular
framework that combines generative and discrimina-
tive methods was proposed for the analysis of profile
data and domain knowledge with the goal of elucidat-
ing basic mechanisms and pathways and developing
decision support systems for diagnosis, prognosis, and

monitoring (17). A molecular profile matrix was de-
fined as the concatenation of multiple profiling exper-
iments in which each row, a molecule profile vector, is
the profile of a molecule under different conditions, and
each column, an experiment profile vector, is an indi-
vidual experiment.

Working prototypes of techniques and tools that
address tasks in specific modules were applied to tran-
scription profile data from human colon adenocarci-
noma tissue specimens, namely sixty-two 1,988-fea-
ture experiment profile vectors labeled tumor or
nontumor (2). A naive Bayes model discovered and
characterized three classes (clusters) of profile vectors
and thus subtypes of the specimens (unsupervised
learning). SVMs distinguished tumor from nontumor
specimens and assigned the label of profile vectors not
used for training (supervised learning). Fifty to 200
genes were identified that distinguished the two types
of specimens as well as or better than the 1,988 as-
sayed originally (feature relevance, ranking, and selec-
tion). This small subset of marker genes defined bio-
logically plausible candidates for subsequent studies.

Clustering gene profile vectors has shown that genes
encoding proteins with related functions tend to have
similar expression patterns (2, 6, 25, 26, 30). For ex-
ample, one cluster may be associated with genes in-
volved in DNA repair and another with transcription.
However, because proteins often have multiple func-
tions and/or roles, it should be possible for a gene
profile vector to belong more than one class and for this
membership to be quantifiable. The widely used hier-
archical clustering approach (6) has sharp rather than
smooth cluster boundaries and cannot assign a new
profile vector to an existing class. Methods such as
SOMs require the number of classes to be specified a
priori. The AutoClass (4) implementation of a naive
Bayes model clustered the 62 aforementioned experi-
ment profile vectors using a mixture of Gaussian prob-
ability distributions and employed Bayesian methods
to derive both the maximum posterior probability of
classification and the optimum number of classes.

Here, a novel suite of tools developed for the analy-
sis, display, and visualization of genome wide features
are applied to 5,687 seventy-eight-feature gene profile
vectors from a published Saccharomyces cerevisiae mo-
lecular profile matrix (25). The eight studies (78 exper-
iments) examined the cell cycle, responses to stress
(heat and cold shock), and diauxic shift. AutoClass is
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used to discover and characterize classes of gene profile
vectors (raw intensity measurements are transformed
in a manner that differs from the standard log-ratio). A
feature relevance measure different from that pro-
posed earlier (17) is employed to identify experiments
that are most important in defining each class. The
fraction of genes assigned to a known biological cate-
gory that belong to a given class is used to pinpoint
classes most associated with specific functions. This
novel enrichment measure allows external knowledge
to be incorporated into the analysis and interpretation
procedure in a systematic and quantitative manner.
The results are utilized to make inferences about cop-
per and iron homeostasis, a problem that encompasses
pathway and mechanisms that were not the primary
subject of the original studies. Classes of coexpressed
genes suggest those that may be regulated by common
factors and thus provide constraints for learning ge-
netic networks within the same graphical model for-
malism as that used for clustering (17). Future direc-
tions for the methodology are discussed.

METHODS

Molecular Profile Matrix

The 78 published cDNA microarray experiments each pro-
vide the relative mRNA concentrations for ;6,000 S. cerevi-
siae open reading frames (ORFs) (25). The 8 studies exam-
ined the cell division cycle after synchronization with
a-factor (abbreviated to Alp, 18 experiments); the cell divi-
sion cycle measured using a temperature-sensitive cdc15
mutant (cdc, 25 experiments); the cell division cycle after
synchronization by centrifugal elutriation (elu, 14 experi-
ments); sporulation (spo, 10 experiments); diauxic shift (dia,
7 experiments); and three mutants (Clb, 1 experiment; Cln, 2
experiments; and gal, 1 experiment). For 636 ORFs, expres-
sion measurements were missing in 7 or more of the 78
experiments, so these were excluded from further analysis.
Of the 5,687 3 78 5 443,586 remaining measurements, 2,846
are “missing” data points. MATLAB (www.mathworks.
com) was employed for all data management, transforma-
tion, analysis, visualization and application development. All
computations were performed on a Sun Ultra 60 workstation.

A Naive Bayes Model

Graphical models are highly structured stochastic systems
that provide a compact, intuitive, and probabilistic frame-
work capable of learning complex relations between variables
(for reviews see Refs. (11, 12, and 19) and the introductory
tutorial on Bayesian Networks at www.cs.berkeley.edu/
;murphyk/Bayes/bayes.html). A naive Bayes model is a
simple graphical model in which a single unobserved variable
C is assumed to generate the observed data (here, 5,687
seventy-eight-feature gene profile vectors). The hidden vari-
able is discrete, and its possible states correspond to the
underlying classes in the data. Profile vectors are believed to
be generated by K models or data-generating mechanisms.
These K models correspond to K clusters or classes of biolog-
ical interest (Fig. 1). This model-based approach to clustering
can handle missing data, noisy data, and uncertainty about
class membership in a probabilistic manner. There is direct
control over the variability allowed within each class (the
variance characteristics of each data-generating mecha-
nism). The question of how many classes the data suggest

can be treated in an objective manner. Finding the optimal
weights, locations, and shapes of the component classes can
be performed in a principled manner.

The observed data D used to train a model M to discover
and characterize classes of gene profile vectors can be repre-
sented as D 5 [XL

1, . . . , XL
N], where N and L are the num-

ber of genes and experiments respectively. XL
n 5 [x1

n, . . . , xL
n]

is an input gene profile vector; xl
n is the “expression level” of

gene n in experiment l calculated in some manner. The
section below (Intensity Transformation) describes one
method for transforming raw intensity measurement to ar-
rive at a value for this quantity. Here, the functional form for
the data-generating mechanism is taken to be a Gaussian.
For experiment l, the likelihood of expression level xl

n given
class k can be determined from the mean mk,l and standard
deviation sk,l of the Gaussian modelling class k

P~xl
nuck,l, M! 5

1

Î2psk,l

exp 2
1
2Fxl

n 2 mk,l

sk,l
G 2

(1)

Given the relationships depicted in Fig. 1, the likelihood of
profile vector XL

n given class k is

P~XL
nuck, M! 5 P~ckuM! )

l51

L

P~xl
nuck,l, M! (2)

where P(ckuM) is the prior probability of class k, ¥k 5 1
K

P(ckuM) 5 1 and 0 # P(ckuM) # 1. The likelihood of the
profile vector given the model P(XL

nuM) is a sum over all K
classes. If the N genes are assumed to be identical and
independently distributed, then the likelihood of the data D
given model M is

P~DuM! 5 )
n51

N

P~XL
nuM! 5 )

n51

N

(
k51

K

P~XL
nuck, M! (3)

Fig. 1. A graphical model representation of a naive Bayes model and
its relationship to N L-feature gene profile vectors. The graph topol-
ogy is a directed acyclic graph in which nodes represent the variables
of interest. C is the hidden classification node that generates K
classes present in the N 5 5,687 L 5 78-feature gene profile vectors
(XL

n is a gene profile vector). Each Fl node represents the expression
levels in experiment l. Influences between variables are encoded
explicitly by the presence of edges between nodes. The edges have
directionality and thus semantic meaning. The absence of an edge
provides information about the independence between concepts:
when two variables lack a connecting edge, nothing about the state
of one variable can be inferred from the state of the other. The
network topology shown makes minimal assumptions about relation-
ships in the data: the experiment Fl variables are conditionally
independent given the class C.
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Given only the observed data D and a functional form for
the mechanism that generates D, the task is to find a model
M that best describes D and hence the classes. Since the
network topology shown in Fig. 1 is fixed, the learning prob-
lem becomes one of estimating the parameters of M. For L
observed variables, these are the number of classes K and
K 3 L local probability models and conditional probability
distributions. Here, the probability parameters are the
Gaussian mean and standard deviation, so K 3 L 3 2
parameters need to be determined. Estimating these param-
eters from data involves finding a maximum a posteriori
model: a model which maximizes the posterior probability of
the model given the data (Bayes rule)

P~MuD! 5
P~DuM!P~M!

P~D!
(4)

If the space of models is assumed to be fixed, then P(D) is
constant. Introducing a uniform prior over models, assuming
that all models are equally likely, leads to P(MuD) } P(DuM).
Thus, model estimation reduces to finding the model that
maximizes P(DuM) (Eq. 3). A trained model assigns a profile
vector to one of K existing classes by determining the class
which maximizes Eq. 2.

AutoClass Implementation of Naive Bayes Models

AutoClass C version 3.3 (4) models the continuous exper-
iment Fl nodes in Fig. 1 using Gaussians and the discrete
classification C node using a Bernoulli distribution. Starting
from random initial descriptions for a specified number of
classes, a gradient descent search through the space of de-
scriptors is performed. At each step of the search procedure,
the current descriptions are used to assign probabilistically
each profile vector to each class. The observed values for each
profile vector are used to update class descriptions, and the
procedure is repeated until a specified convergence criterion
is reached. A variant of the expectation-maximization (EM)
algorithm is employed with the additional assumption that
each profile vector belongs to some class (the sum of all class
probabilities is one). There is a penalty for adding more
classes and thus overfitting the data. Increasing the number
of classes will decrease the prior probability of each class
unless the additional class improves the likelihood of the
data (Eq. 3). AutoClass iterates through different numbers of
classes to determine the best taxonomy.

The model-space that needs to be searched can be con-
strained by setting a lower bound on the variance of the
data-generating mechanism. For each experiment l, the level
of observation noise (measurement error) and/or the natural
variation in expression between genes can be used to set this
value in a data-dependent manner. However, since neither
the noise nor intrinsic variability are known, a lower bound
on the standard deviations of Gaussians modeling classes is
set to 1⁄10 of the standard deviation of N expression levels
{xl

1, . . . , xl
N}. Thousands of models are estimated, each start-

ing from different random number seeds. Each resultant
model, a locally optimum solution in the parameter space, is
scored. The model marginals are compared to find the model
that best describes the data. The results do not depend on the
order in which profile vectors are entered into a model.

The input data for AutoClass are the 5,687 seventy-eight-
feature gene profile vectors [X78

1 , . . . , X78
5687], where X78

n 5
[x1

n, . . . , x78
n ]. The output consists of 1) K, the number of

classes, 2) an N 3 K likelihood matrix where each element
is the likelihood of a gene profile vector n given class k
P(XL

nuck, M), and 3) a K 3 L parameter matrix where each
element is the mean and standard deviation of the Gaussian

modeling class k and experiment l, (mk,l, sk,l). The marginal
for the best model, the one used in all subsequent analyses, is
significantly higher than the next nine models. Since all L 5
78 experiments are used, the gene profile vector classes
discovered and characterized by the best model capture the
expression behavior of genes across this specific range of
conditions. Although some of the 8 studies consisted of more
than one experiment, the topology of the naive Bayes model
treats the 78 experiments as being independent. The notion
of conditional independence of gene profile vectors given a
class does not mean independence from the experimental
conditions, an unlikely assumption (1).

Intensity Transformation

Frequently, the “expression level” of gene n in experiment
l, xl

n, is taken to be the log of the background-corrected
intensity measurements for samples tagged with the Cy5
and Cy3 dyes, xl

n 5 log (ICy5/ICy3). Here, the expression level
is calculated by normalising background corrected intensities
using xl

n 5 (ICy5 2 ICy3)/(ICy5 1 ICy3). This transformation
has the same advantages as the log-ratio but has two addi-
tional useful properties. It minimizes errors associated with
background subtraction from low-intensity signals and con-
strains expression levels to lie in the 21 # I # 11 domain.
The expression levels in the gene profile vectors used to train
a naive Bayes model are not shifted, rescaled, or modified in
any other way.

AutoClass Implementation of Feature Relevance

AutoClass implements a feature relevance measure
termed the relative influence Il

k. Here, it signifies how impor-
tant experiment l is in determining class k. It is defined as
the relative entropy between two distributions representing
the expression level for the N genes in the trained model
P(xl

nuck,l, M) and a model M* describing the entire data set by
means of a single class P(xl

nuM*)

Il
k ; (

n51

N

P~xl
nuck,l, M! log

P~xl
nuck,l, M!

P~xl
nuM*!

(5)

For experiment l, the Gaussian mean and standard deviation
for a single class can be calculated directly from {xl

1, . . . , xl
N}.

This allows terms involving M* to be computed using Eq. 1.
Reordering the L experiments according to their relative
influence values ranks them in terms of their importance in
defining class k. The most (least) influential experiment is
one that maximizes (minimizes) Il

k.

Integrating External Knowledge to Aid Interpretation:
Enrichment

To create a systematic and quantitative environment in
which to interpret naive Bayes model classes, external
knowledge about genes is integrated in the following manner.
An V 3 K enrichment matrix is calculated as the product of
an V 3 N ontology matrix and the N 3 K AutoClass
likelihood matrix (see above, AutoClass Implementation of
Naive Bayes Models). Given a specific type of external knowl-
edge, let a be one of the V categories to which the ontology
assigns a gene. For example, an ontology could classify genes
based upon cell type, developmental stage, and so on. Each
element of an ontology matrix is the probability of gene n
given category a, P(Xnua). The enrichment matrix is a product
of the ontology and likelihood matrices normalized so that
the sum across all classes in a single category is one. Each
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element of this enrichment matrix, ea
k or enrichment, is the

fraction of genes in category a that belong to class k

ea
k ;

¥n51
N P~XL

nuck, M!P~Xnua!

¥k51
K ¥n51

N P~XL
nuck, M!P~Xnua!

(6)

where ¥k51
K ea

k 5 1 and 0 # ea
k # 1. Reordering classes

according to their enrichment values allows them to be
ranked in terms of their association with a category. The
most (least) enriched class is the one which maximizes (min-
imizes) ea

k.
Four enrichment matrices are calculated using ontologies

that assign genes to the following sets of categories: 1) pro-
tein function, V 5 106 highest level categories in the MIPS
functional catalog (16); 2) M/G1, G1, S, S/G2, and G2/M stage
of the cell cycle, V 5 5 stages (this matrix uses only the 800
genes identified using Fourier analysis of the cell cycle ex-
periments (25) as being most associated with these stages); 3)
target of transcription factor, V 5 265 categories given by the
YPD version 9.36a (10); and 4) chromosome number, V 5 16

categories based upon chromosomal location given by the
YPD version 9.36a (10). For simplicity, the assignment of a
gene to a category is taken to binary: P(Xnua) is set to 1.0 (0.0)
if the gene is (is not) a member of category a.

RESULTS

Gene Profile Vector Classes

A naive Bayes model trained using 5,687 seventy-
eight-feature gene profile vectors identified 45 classes
(referred to as classes 1–45). Four exemplars of these
classes are shown in Fig. 2. Genes for which the class
probability (likelihood) is less than 1.0 have some prob-
ability of belonging to at least one other class (see class
1). The boundary for a class can be sharp if all its
members have a probability of 1.0 (see class 40). Class
40 shows an example of a class pattern that captures
the periodicity of time series studies. In class 42, the

Fig. 2. The general format devised to display the K classes discovered and characterized by a naive Bayes model
trained using N L-feature gene profile vectors. Shown are four of the K 5 45 classes estimated from 5,687
seventy-eight-feature yeast gene profile vectors: class 1 (top left), class 40 (top right), class 41 (bottom left), and class
42 (bottom right). Each column represents one of the L 5 78 experiments, and every row represents one of the
N 5 5,687 genes. Each element represents the expression level of a gene color-coded on a scale where red (green)
signifies increased (decreased) expression. The order of experiments is indicated by the colored bar (the Alp, elu,
cdc, spo, and dia studies are all time series). The genes are sorted according to their “class probability” or likelihood
of the gene profile vector given class k and model M, 0.0 # P(XL

nuck, M) # 1.0 (see A Naive Bayes Model, Eq. 2).
For brevity, only the 285, 43, 40, and 39 genes with the highest class probabilities given classes 1, 40, 41, and 42,
respectively, are shown. “Class pattern” represents the means of the Gaussians modeling the 78 experiments in
class k (a “prototypical” gene profile vector). “Relative influence,” Il

k, signifies how influential experiment l is in
defining class k (see AutoClass Implementation of Naive Bayes Models, Eq. 5). “Mean relative influence” is the
average of the relative influence for studies that contain more than one experiment.
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relative influence and mean relative influence values
indicate that the study most important in defining this
class is the Alp time series (this class is discussed in
more detail subsequently). The number of genes as-
signed to each class can be approximated by the Class
weight, wk 5 ¥n51

N P(XL
nuck, M). The classes and their

weights are as follows 1:244, 2:228, 3:222, 4:218, 5:210,
6:189, 7:184, 8:173, 9:166, 10:161, 11:158, 12:156, 13:
154, 14:152, 15:147, 16:145, 17:145, 18:144, 19:142,
20:142, 21:139, 22:135, 23:131, 24:128, 25:118, 26:115,
27:115, 28:115, 29:109; 30:107, 31:100, 32:98, 33:98,
34:91, 35:88, 36:84, 37:79, 38:76, 39:57, 40:42, 41:39,
42:38, 43:36, 44:36, and 45:33.

Of the 33 genes assigned to class 45 (data not
shown), 5 are associated with cell cycle control (PCL5),
energy generation (HAP1, SHY1), and amino acid me-
tabolism (ARG1, CPA2). Their YPD annotations are
ARG1 [YOL058W; argininosuccinate synthetase (cit-
rulline-aspartate ligase); catalyses the penultimate
step in arginine synthesis]; CPA2 [YJR109C; car-
bamoylphosphate synthase of arginine biosynthetic
pathway, synthetase (large) subunit]; HAP1
(YLR256W; transcription factor with heme-dependent
DNA-binding activity; responsible for heme-dependent
activation of many genes); PCL5 (YHR071W; cyclin
that associates with Pho85p); and SHY1 (YGR112W;
mitochondrial protein required for respiration). It re-
mains to be seen whether the 28 members with an
“unknown” YPD role have one or other of these biolog-
ical functions (“guilt-by-association”).

Association Between Classes and Gene Categories:
Enrichment

Figure 3 shows the relationship(s) between gene
profile vector classes and four types of external knowl-
edge. Because of limitations in how enrichment values
are computed, subsequent discussions will focus on a
qualitative assessment of selected observations that
highlight the overall utility of enrichment matrices.
For example, identical enrichment values can be ob-
tained that do not have the same significance, and
there is no correction for classes having different num-
bers of members. In addition, the assignment of genes
to categories is neither comprehensive nor complete, so
it is difficult to estimate the actual false positive and
false negative rates. The emphasis will be on classes
shown in Fig. 2.

Protein function. Class 40 (42 members) is most
associated with 32 genes assigned to “CELLULAR
ORGANIZATION; organization of chromosome
structure”. Similarily, Class 41 (39 members) is as-
sociated with 11 genes assigned to “METABOLISM;
phosphate metabolism; phosphate utilization”. If a
single class is associated primarily with a single
category, then it is possible to suggest a biological
function for genes assigned to the class that have an
“unknown” YPD role. For example, Class 25 contains
a large proportion of genes in the category “PRO-
TEIN SYNTHESIS; ribosomal proteins”. This class
contains “translationally controlled tumor protein”

(TCTP), a highly conserved eucaryotic cytoplasmic
protein found in several normal and tumor cells that
is believed to have a general, yet unknown, house-
keeping function (22). Since the likelihood of yeast
TCTP (YKL056C) given class 25 is 1.0, this protein
may have a ribosomal function. A general biological
function subdivided into a set of categories can be
segregated amongst many classes. For example,
“ENERGY” is associated with class 43 (ENERGY;
fermentation, ENERGY; gluconeogenesis, ENERGY;
glycolysis), class 31 (ENERGY; glyoxylate cycle) and
Class 30 (ENERGY; tricarboxylic acid pathway).

M/G1, G1, S, S/G2, and G2/M stage of the cell cycle.
These 5 categories are associated with only a subset of
the 45 classes. For example, M/G1 is associated with
class 39, but genes assigned to G1 are distributed
across classes 26 and 37. The results indicate that one
class (category) can be associated with more than one
category (classes).

Target of transcription factor. Classes 29, 39, 40, 41,
42, 43, and 44 are associated with specific transcription
factors. For class 40, these factors regulate cell cyclins
and chromatin assembly genes (BCK2, HTA1, HTA2,
HTB1, SIT4, SPT5, SPT6, SPT10, SPT12). This obser-
vation is consistent with the protein function category
most associated with class 40 being “CELLULAR OR-
GANIZATION; organization of chromosome struc-
ture”. Thus, members of class 40 with “unknown” YPD
roles may be involved directly or indirectly in cellular
organization and could be regulated by the aforemen-
tioned transcriptions factors. These ORFs are
YDR451C, YKR012C, YMR215W, YMR305C,
YNL300W, YNR009W, YOL007C, YOL019W,
YOR247W, and YOR248W. A similar type of prediction
can be made for ORFs in class 43: YCR013C and
YKL153W may be involved in energy metabolism and
could be regulated by PDC2 (pyruvate decarboxylase
regulatory protein), GCR2 (transcriptional activator
involved in regulation of glycolytic gene expression),
and REG1 (regulatory subunit for protein phosphatase
Glc7p required for glucose repression).

Chromosome number. At the level of resolution of
entire chromosomes, there is little association between
class and chromosome number. It is conceivable that
partitioning the genome into smaller segments might
reveal classes associated with specific regions of a
chromosome and thus potential common noncoding
regulatory regions.

Genes Assigned to More than One Class

Table 1 of the Supplementary Material lists genes
that best illustrate partial membership of multiple
classes. (Tables 1–4 have been published online as
Supplementary Material and can be viewed at the
Physiological Genomics web site.)1 The genes that
are almost equally distributed between the largest

1Supplementary Material to this article (Tables 1–4) is available
online at http://physiolgenomics.physiology.org/cgi/content/
full/4/2/127/DC1.
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number of classes are YLR020C, YLR113W (HOG1),
and YOR023C (AHC1). For YLR160C (ASP3D) and
YHR004C (NEM1), not only is the maximum value
of the likelihood of the profile vector given a class
less than 0.5, but they are assigned to 5 different
classes (the maximum possible). For genes that
belong to multiple classes, the eight YPD cellular
roles assigned to two or more genes are Pol II

transcription, protein modification, cell stress, small
molecule transport, vesicular transport, signal
transduction, amino acid metabolism, and protein
degradation.

For genes in Table 1 (of the Supplementary Material)
with known YPD roles, the annotations for other genes
assigned to the same set of classes was examined. This
analysis yields some novel and interesting observa-

Fig. 3. The general format devised to display the relationships between the profile vector classes (columns) and
external information (rows). The four enrichment matrices shown are “protein function” (top left), M/G1, G1, S,
S/G2, and G2/M stage of the cell cycle (top right), “target of transcription factor” (bottom left) and “chromosome
number” (bottom right) (see Integrating External Knowledge to Aid Interpretation: Enrichment). Each element
represents enrichment, the degree of association between genes assigned to category a and class k. The values,
0.0 # ea

k # 1.0, are color coded according the scale shown by the vertical bar (yellow-white signifies the greatest
association, highest value). For example, the 12 genes in the protein function category “ENERGY:fermentation”
are most associated with class 43 (top right). The rows of the enrichment matrices have been filtered to display only
those categories that have more than a minimum number of member genes and/or enrichment values above a
threshold. “Class weight” approximates the number of genes assigned to each of the K 5 45 naive Bayes model
classes.
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tions, especially with respect to yeast genes important
in regulating metal transport (reviewed in Ref. (20)).
YAL021C (CCR4) is assigned to classes 2, 5, and 7:
these classes contain many other genes that have been
linked genetically with CCR4. YGL233W (SEC15) and
YFL025C (BST1) are assigned to classes 2 and 7: these
classes contain other genes shown to be involved in
vesicle transport (SEC15 also falls into class 4).
YGL167C (PMR1), which encodes a protein involved in
import of calcium, copper, and manganese into the
Golgi, is assigned to classes 8, 12, 14, and 24: these
classes contain many other genes known to be involved
in intracellular metal metabolism. For example,
classes 8 and 24 contain GEF1, a gene encoding an
intracellular chloride transporter essential for proper
assembly of copper into the iron transport protein
Fet3p. Class 12 contains MMT2, which encodes a mi-
tochondrial iron transporter that results in enhanced
survival on low iron conditions. Class 14 contains both
YGL071W (RCS1/AFT1), which encodes the key tran-
scriptional regulator of iron metabolism, and BSD2,
which encodes a posttranslational regulator of Smf1p,
a manganese transporter. PBN1, RPN4, ASP3, HOG1,
and CIN1 are genes with complex functions that are
likely to be associated with many pathways and/or
interactions.

To predict potential biological functions for genes in
Table 1 with an “unknown” YPD role, other genes that
exhibit the same spectrum of class memberships were
identified (see Table 2 of the Supplementary Material).
Comparing these two tables suggests that these eight
genes could be involved in Pol II transcription, protein
degradation, cell stress, amino acid metabolism, lipid,
fatty acid, and sterol metabolism, and RNA turnover.

Genes Involved in Copper and Iron Metabolism

The original studies were designed to reveal expres-
sion patterns associated with the cell cycle, responses
to stress, and diauxic shift. It is not surprising, there-
fore, that many of the classes identified here are highly
enriched in genes involved in processes such as release
or storage of energy (see Fig. 3); these pathways are
likely to be coordinated with periods of the cell cycle in
which varying amounts of energy is required. An im-
portant issue is whether analysis of this same data set
can reveal other, potentially unknown regulatory path-
ways that might be less dependent upon the cell cycle.
To address this question, genes involved in metal
transport were selected for further study. Many yeast
genes involved in metal metabolism have been charac-
terized, and a priori such genes might not be expected
to have a strong cell cycle dependency. Although yeast
has proven to be a valuable model system for identifi-
cation and characterization of biological processes rel-
evant to a number of human diseases related to metal
metabolism, many aspects of metal physiology remain
to be discovered.

Genes known to be important in iron and copper
metabolism were identified and examined in more de-
tail (see Table 3 in the Supplementary Material).

Classes which contain more than one of these genes are
as follows: class 4, TAF17 (P(XL

nuM) 5 0.88); FRE4
(0.47); class 5, GEF1 (0.02), MMT1 (0.02); class 6, LYS7
(1.00), YFH1 (0.03); class 8, GEF1 (0.91), MNR2 (0.01);
class 9, SMF2 (1.00), CTR2 (1.00), YAH1 (1.00), TAF19
(0.07), TAF17 (0.01); class 12, MAC1 (1.00), MMT2
(1.00); class 14, RCS1 (0.99), TAF145 (1.00); class 18,
SMF1 (1.00), FRE7 (1.00); class 20, ATX1 (1.00), ISU2
(1.00); class 22, SLF1 (1.00), CRT2 (1.00), CRS5 (1.00),
MNR2 (0.94); class 30, RIP1 (1.00), CUP5 (1.00), FET5
(1.00), SDH2 (1.00), ISU1 (0.99), FTH1 (1.00); class 34,
ATM1 (1.00), GEF1 (0.02); class 35, CUP1A (1.00),
CUP1B (1.00); class 41, FTR1 (1.00), FET3 (1.00); and
class 42, SIT1 (1.00), ARN1 (1.00), TAF1 (1.00), FRE6
(1.00), FRE1 (1.00), ENB1 (1.00), CTR1 (1.00). There
are numerous instances in which genes with similar
functions are assigned to the same class. For example,
SMF2 and CTR2, genes which encode low-affinity
transporters of manganese and copper, respectively,
are assigned to class 9. FET3 and FTR1, which to-
gether encode the yeast high-affinity iron transporter,
is assigned to class 41.

The 38 members of class 42 are of particular interest
since 7 are known to be involved in copper and iron
transport (20). The proteins encoded by CTR1, FRE1,
and FRE6 have all been implicated in copper uptake.
SIT1, which encodes a protein involved in uptake of
siderophore-bound iron, is classified with three closely
related genes (ARN1, TAF1, and ENB1) that are
known to be tightly regulated by iron need and that are
collectively required for normal growth on low-iron
medium (31). It remains to be seen whether the three
transcription factors most associated with class 42
(Fig. 3) do indeed play a role in regulating copper and
iron transport. These transcription factors are Met31
and Met32 (zinc-finger proteins involved in transcrip-
tional regulation of methionine metabolism) and Met4
(transcriptional activator of the sulfur assimilation
pathway).

Table 4 of the Supplementary Material shows the
remaining 31 members of class 42, some of which have
known roles. YDR040C (ENA1) is required for high-
salt tolerance. YDR340W is similar to HAP1, a gene
which encodes a complex transcriptional regulator of
many genes involved in electron-transfer reactions and
which is essential in anaerobic or heme-depleted con-
ditions. These data suggest that the 17 members with
an “unknown” YPD role represent good candidates for
new genes involved in metal metabolism, especially
copper and iron homeostasis. The precise mechanisms
by which they regulate and maintain metal ion ho-
meostasis and the pathways in which they participate
can only be inferred by the function of the other mem-
bers of class 42. The regulatory mechanism(s) that
unites members of class 42 is as yet undiscovered,
although one good possibility is that it may involve the
activity of the transcription factors encoded by MET4,
MET31, and MET32. Specific experiments using yeast
mutants with deletions of genes listed in Table 4 could
help clarify the situation as well as suggest additional
new candidates. Interestingly, two of the uncharac-

133COPPER AND IRON HOMEOSTASIS IN S. CEREVISIAE

http://physiolgenomics.physiology.org



terized ORFs have human homologs (YJR033C,
YDR534C), suggesting that as yet unidentified human
disorders may result from aberrant regulation or func-
tioning of these proteins.

The ability of the current analysis to provide insights
into unknown regulatory mechanisms relevant to
metal metabolism suggests that other classes which
contain a high proportion of unknown ORFs could be
used to investigate other physiological processes.

DISCUSSION

The cornucopia of transcription profile data and
other information available for S. cerevisiae makes it
an excellent model system for investigating cellular
metabolic processes. This work addressed the problem
of extracting statistically and biologically meaningful
insights from such data in a systematic manner. A
naive Bayes model was used to discover and character-
ize classes of gene profile vectors. The probability pa-
rameters of the 45 classes were combined with external
knowledge to determine the relationship between each
class and a particular biological category. By suggest-
ing, for example, specific transcription factors that are
most associated with each class, new experiments can
be designed aimed at identifying common regulatory
mechanisms. The techniques described here provide a
method for predicting potential functions of currently
uncharacterized genes and their products based on
similarity of global gene expression patterns with
known roles rather than similarity to structures and/or
sequences. Thus, although the translationally con-
trolled tumor protein exhibits no obvious sequence
similarity to known ribosomal or ribosome-associated
proteins, its pattern of gene expression across the ex-
periments examined suggests that it might be associ-
ated with this physiological role.

The published studies characterized genes involved
in several housekeeping functions. Currently available
hierarchical clustering methods identified a large num-
ber of genes associated with the cell cycle but did not
focus on associations between genes involved in other
biological pathways and metabolic functions. The re-
sults here suggest a number of connections to genes
involved in copper and iron homeostasis even though a
link between metal metabolism and the cell cycle
might not be expected a priori. The 17 ORFs in class 42
predicted to be involved directly or indirectly in these
processes are good targets for investigation by gene
deletion and/or other techniques. Since many genes
involved in metal metabolism in yeast have human
homolog that are altered in disease states, studies of
these new yeast candidates may yield unanticipated
information on biochemical mechanisms relevant to
human disorders. Using techniques different from
those employed here, Tavazoie et al. (27) addressed the
issue of identifying other pathways and noncoding reg-
ulatory motifs (an area not considered in this work).
The association between class 42 and the MET4,
MET31, and MET32 transcription factors suggests
that this class may be equivalent to cluster 30 in their

work. A more complete comparison of their MIPS func-
tional category enrichment with the enrichment mea-
sure computed here may be warranted.

In the graphical model used for clustering gene pro-
file vectors, experiments were treated as independent
of each other. Despite the simple nature of this proba-
bilistic model and the assumption of a Gaussian func-
tional form for the data-generating mechanism, novel,
biologically plausible observations could be made. Con-
sequently, future experiments of particular interest
include comparisons of wild-type yeast with single and
multiple deletion mutants of genes predicted here to be
involved in copper and iron homeostasis as well as
those known to play roles in these processes. The
utility of gene profile vector classes could be enhanced
by computing a hierarchical structure capturing the
relationships between classes, i.e., clustering the
classes. As the number and variety of experiments
performed increases, a straightforward extension is
two-way clustering, finding classes of experiment and
gene profile vectors together with associations between
them. For the same data set, it will be useful to com-
pare the posterior probabilities of a K-class naive
Bayes model with a K-class (Gaussian) mixture model
computed from the clusters generated by a K-class
SOM.

For the time series studies, the independence suppo-
sition may be erroneous, since the measured expres-
sion level at one time point (modeled by node Fl) might
be related to those in one or more previous time points
(Fj , l). Such temporal dependencies could be encoded
in the topology of the graphical model by adding edges
between time points (Fig. 4). Nodes could be included
that represent gene profile vector labels such as bio-
chemical activity, protein fold, and so on. An important
area of future research is extending the graphical
model formalism used for clustering to graphical mod-
els for inferring genetic networks. For example, the
“cdc” time series experiments could be modeled using
dynamic Bayesian networks (18).

Here, the functional form for the data-generating
mechanism was a Gaussian. Even if the observed dis-
tribution of gene expression levels is unimodal, it may
not be Gaussian. As the number of experiments in-
creases, the data themselves could be used to estimate
more appropriate nonparametric and/or semi-paramet-
ric functional forms. In modeling amino acid distribu-

Fig. 4. Clustering gene profile vectors using a graphical model that
takes into consideration correlations between variables. In the ex-
ample shown, the first four experiments represent a time series
study. The joint distribution is P(F1, . . . , F6, CuM) 5 P(CuM)P(F1uC,
M) )l52

l54 P(FluFl21, C, M) )l55
l56 P(FluC, M). If the Fl nodes are indepen-

dent given the node C, then the joint distribution becomes P(F1, . . . ,
F6uM) 5 P(CuM) )l51

l56 P(FluC, M).
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tions in protein multiple sequence alignments, for ex-
ample, a mixture of Dirichlet densities estimated from
large databases of multiple sequence alignments were
combined with observed amino acid frequencies to form
estimates of expected amino acid probabilities at each
position in a profile, hidden Markov model, or other
statistical model (23). Eventually, it should be possible
to develop analogous mixture models and priors in
which a given observed profile vector is assumed to be
a mixture of prototypical profile vectors estimated from
a diverse array of experiments. These prototypical dis-
tributions could be regarded as different states of the
system under study.
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