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Moler, E. J., M. L. Chow, and I. S. Mian. Analysis of
molecular profile data using generative and discriminative
methods. Physiol Genomics 4: 109–126, 2000.—A modular
framework is proposed for modeling and understanding the
relationships between molecular profile data and other do-
main knowledge using a combination of generative (here,
graphical models) and discriminative [Support Vector Ma-
chines (SVMs)] methods. As illustration, naive Bayes models,
simple graphical models, and SVMs were applied to pub-
lished transcription profile data for 1,988 genes in 62 colon
adenocarcinoma tissue specimens labeled as tumor or non-
tumor. These unsupervised and supervised learning methods
identified three classes or subtypes of specimens, assigned
tumor or nontumor labels to new specimens and detected six
potentially mislabeled specimens. The probability parame-
ters of the three classes were utilized to develop a novel gene
relevance, ranking, and selection method. SVMs trained to
discriminate nontumor from tumor specimens using only the
50–200 top-ranked genes had the same or better generaliza-
tion performance than the full repertoire of 1,988 genes.
Approximately 90 marker genes were pinpointed for use in
understanding the basic biology of colon adenocarcinoma,
defining targets for therapeutic intervention and developing
diagnostic tools. These potential markers highlight the im-
portance of tissue biology in the etiology of cancer. Compar-
ative analysis of molecular profile data is proposed as a
mechanism for predicting the physiological function of genes
in instances when comparative sequence analysis proves
uninformative, such as with human and yeast translationally
controlled tumour protein. Graphical models and SVMs hold
promise as the foundations for developing decision support
systems for diagnosis, prognosis, and monitoring as well as
inferring biological networks.

microarrays; biological networks; graphical models; support
vector machines; decision support systems; comparative mo-
lecular profile data analysis

PROFILING TECHNIQUES such as DNA microarrays, two-
dimensional gel electrophoresis, capillary electro-
phoresis, and mass spectroscopy provide information
on genes, proteins, metabolites, and other molecules
(features) under defined conditions (for recent reviews

see Refs. 11 and 43). Despite differences in how and
which molecule is assayed, the problem can be gener-
alized to one of analysis of a molecular profile matrix.
Each row, a molecule profile vector, is the behavior of
the same molecule under different conditions. Each
column, an experiment profile vector, is the behavior of
different molecules in the same experiment. Experi-
ment profile vectors may be assigned class labels that
reflect the source of the biological sample, for example,
tumor or nontumor specimen. Molecule profile vectors
may be labeled with information pertinent to the mol-
ecule of interest such as the presence or absence of a
biochemical activity, oil-water partition coefficient,
specific protein domain, and transcription factor bind-
ing site.

Currently, the most prevalent molecular profile ma-
trices are those from transcription profiling studies in
which the molecules are genes. For convenience, each
functionally defined nucleic acid sequence whose ex-
pression level is monitored will be termed a “gene,”
irrespective of whether it is actually a gene, an ex-
pressed sequence tag, or DNA from another source.
Although still in their infancy, computational methods
have proved adept at extracting experimentally and
clinically useful information from transcription profile
data. These techniques include hierarchical clustering
(10), gene shaving (19), self-organizing maps (16, 49,
51), k-means clustering (50), Boolean networks (26, 30,
45), linear modeling (9), principal component analysis
(42), nonlinear modeling (53), Bayesian networks
(BNs) (14), dynamic Bayesian networks (DBNs) (36),
Support Vector Machines (SVMs) (5), and Petri nets
(17, 32).

This work proposes a modular framework for the
analysis of molecular profile data and domain knowl-
edge that combines generative and discriminative
methods. Initially, the framework is designed to ad-
dress the distinct, yet complementary tasks of elucidat-
ing basic biological mechanisms and pathways and
developing decision support systems for diagnosis,
prognosis, and monitoring. The long-term goal is cre-
ation of an object-oriented system for prediction, infer-
ence, and experimental planning in which local rela-
tions (network fragments) can be integrated to build
models that exhibit greater complexity. Here, specific
generative and discriminative methods are employed.
Graphical models were selected because of their struc-
tured stochastic nature and concomitant ability to
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model complex relations. SVMs were chosen because of
their predictive performance capabilities when applied
to classification, prediction, and regression problems.
These general techniques permit creation of increas-
ingly sophisticated models and analytical methods ca-
pable of yielding useful predictions and insights during
each phase of framework development. Such models
have good predictive accuracy (generalization) and
lend themselves to human interpretation (explana-
tion). They can handle missing data and/or “noisy” data
arising from the stochastic nature of the underlying
biological process (model noise) and errors occuring
during sample preparation and/or measurement (ob-
servation noise). The models can incorporate prior
knowledge, model hierarchical relationships, and uti-
lize heterogenous data.

Here, working prototypes of tools for modules that
address three statistical tasks associated with analysis
of profile data are described. They are applied to pub-
lished 1,988-feature experiment profile vectors from 62
human colon adenocarcinoma specimens labeled as
tumor or nontumor (2). A naive Bayes model, a simple
graphical model, is used to discover and characterize
classes of experiment profile vectors (unsupervised
learning). SVMs are employed to distinguish tumor
from nontumor specimens and to assign the label of
profile vectors not used for training (supervised learn-
ing). Two feature relevance experts are utilized to
identify marker genes, genes that distinguish the two
types of specimens (feature relevance, ranking, and
selection). Insights into colon adenocarcinoma biology
and future directions for the methodology are discussed.

MODELS

Learning Models from Profile Data

To make descriptions of the techniques more con-
crete, the profile data (2) to be analyzed will be de-
scribed first. Human colon adenocarcinoma specimens
were collected from 40 patients. For 22 of these pa-
tients, additional colon tissue specimens from “normal”
regions were obtained. Each RNA sample obtained
from these 62 specimens was hybridized to an Af-
fymetrix oligonucleotide array complementary to more
than 6,500 human genes and expressed sequence tags.
Only genes with the highest minimal intensity across
the samples were chosen for further study and made
publicly available. Specimens labeled “normal” will be
referred to as “nontumor” to differentiate them from
specimens that would have come from individuals with
no record of adenocarcinoma. The molecular profile
matrix consists of sixty-two 1,988-feature experiment
profile vectors labeled tumor or nontumor.

The aforementioned data can be represented as N
{input, output} pairs or {(XL

n, dn)}n 5 1
N , where N is the

number of profile vectors (here N 5 62); XL
n 5

[x1
n, . . . , xL

n] is an L-feature profile vector (L 5 1988);
xl

n is the “expression level” of gene l in profile vector n;
and dn [ {A, . . .} is a label that can take on a value
such as A (dn [ {tumor, nontumor}). Here, xl

n refers to
the published value, but it could represent the result of

any given transformation of “raw measurements.” Al-
though not the focus of this work, preprocessing image
data and other data to arrive at meaningful xl

n values is
an essential component of reducing errors in down-
stream analyses of the type described here.

Learning predictive models from training data fall
into two general headings. Unsupervised learning
finds “natural groupings” using only the input vari-
ables. Here, this translates to identifying classes of
experiment profile vectors by clustering the N L-fea-
ture input vectors [X1988

1 , . . . , X1988
62 ]. Supervised

learning estimates a function from paired values of
input and output variables with the aim of predicting
the outputs for future, unseen input variables. This
maps to utilising (X1988

n , dn) pairs to learn a model that
can assign the output label tumor or nontumor to a
new profile vector. Labeled input vectors are separated
into positive and negative training examples. Here,
tumor (nontumor) samples are considered to be posi-
tive (negative) training examples.

The generalization performance of a learning system
is a measure of how well it performs on data not used
for training. For a supervised learning system, labeled
training examples are partitioned into two disjoint
sets. The estimation set of positive and negative train-
ing examples is used to determine the parameters of
the model and the test set to assess its performance.
The label assigned by a trained model to a test example
can be a true positive (known positive example, posi-
tive label), true negative (negative example, negative
label), false positive (negative example, positive label),
or false negative (positive example, negative label).
Since the number of available training examples is
limited (here N 5 62), a “leave-one-out cross-valida-
tion” strategy is employed. A model estimated using
N 2 1 training examples is evaluated using the single
test example. This procedure is repeated for each ex-
ample in turn. The total number of models that make
true positive, true negative, false positive, and false
negative assignments is determined. Here, the gener-
alization performance is defined the sum of the true
positive and true negative assignments (the maximum
possible generalization performance is N).

Graphical Models

Graphical models can be viewed as highly structured
stochastic systems that provide a compact, intuitive,
and probabilistic framework capable of learning com-
plex relations between variables such as genes and
other molecular or environmental factors. A BN is a
graphical model annotated with conditional probabili-
ties in which the graph is directed and contains no
directed cycles (Fig. 1; for reviews see Refs. 23, 25, 40,
and the introductory tutorial at www.cs.berkeley.
edu/;murphyk/Bayes/bayes.html). Learning a
model from data can be decomposed into the problem of
learning the topology and/or the parameters. Many of
the discrete time models proposed for reconstructing
genetic networks from time series data are special
cases of DBNs (36). The advantages of DBNs include
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the ability to model stochasticity, incorporate prior
knowledge, and handle hidden variables and missing
data in a principled way (36).

Friedman et al. (14) analyzed the expression levels of
800 yeast genes found previously to be regulated by the
cell cycle (47). Their goal was to recover the structure of
regulatory interactions between these 800 genes, a
genetic network, by learning a BN from data tabula
rasa, i.e., without any prior knowledge or assumptions.
In contrast, the philosophy underlying the framework
proposed here is that given the size and complexity of
biological networks, reconstructing even fragments
will necessitate incorporating prior knowledge into the
model building process. Thus, clustering profile vectors
using a simple graphical model known as a naive
Bayes model is treated as an initial step toward learn-
ing “biologically plausible” (D)BNs. This procedure can
identify classes of coexpressed genes and thus families
of genes that are likely to be regulated by common
factors. If known (unknown), these factors can be rep-
resented as observed (hidden) variables that influence
coexpressed genes. Together with domain knowledge,
this type of information provides important contraints
on the space of (initial) network topologies and param-
eters that need to be explored during model learning.
These high-level network fragment objects could then
be assembled into larger biological networks within the
same graphical model formalism as that used for clus-
tering.

A naive Bayes model. In a naive Bayes model, a
single unobserved variable is assumed to “generate”
the observed data (here, sixty-two 1,988-feature exper-
iment profile vectors). The hidden variable is discrete,
and its possible states correspond to the underlying
classes in the data. The data are produced by K models

or data-generating mechanisms. These K models cor-
respond to the K classes or clusters of biological inter-
est (Fig. 2). A naive Bayes model can be viewed as a
finite mixture model. If the functional form for the
data-generating mechanism is a Gaussian, then the
model is a Gaussian mixture model (Fig. 3).

The models have a number of attractive features
that make them particularly well suited for unsuper-
vised learning and exploratory analysis of profile vec-
tors. These include a fixed topology so parameter esti-
mation is the only learning problem to be solved, ease

Fig. 1. The qualitative and quantitative aspects of graphical models illustrated using a simple model M consisting
of four binary-valued variables A, B, C, and D. These variables could represent four genes in which the values
indicate whether the gene is active (1) or inactive (0). The network topology is a directed acyclic graph in which
nodes represent the variables of interest and influences between variables are encoded explicitly by the presence
of edges between nodes; the edges have directionality and thus semantic meaning. The absence of an edge provides
information about the independence between concepts: when two variables lack a connecting edge, nothing about
the state of one variable can be inferred from the state of the other. The network parameters are the local
probability models and conditional probability distributions (0 # a, b, g, d, e, ε, z, h, u # 1). The joint distribution
is the product of the individual node distributions, so, for the example shown, it is P (A, B, C, DuM) 5
P(AuM)P(BuA, M)P(CuA, M)P(DuB, C, M). For example, the probability if all the genes are inactive is P (A 5 0, B 5
0, C 5 0, D 5 0uM) 5 a 3 b 3 d 3 ε.

Fig. 2. A graphical model representation of a naive Bayes model M
and its relationship to the labeled experiment profile vectors exam-
ined here. C is the hidden classification node that generates K
alternative classes present in the observed N 5 62, L 5 1,988-
feature experiment profile vectors (each row, XL

n, is a profile vector).
Each Fl node represents the expression measurements for gene l.
The network topology makes minimal assumptions about relation-
ships in the data: the Fl nodes are conditionally independent given
the class C. Thus, the joint distribution satisfies P(F1, . . . , FL,
CuM) 5 P(CuM) Pl 5 1

L P(FluC, M). The “tumor” and “nontumor” labels
are shown for illustration purposes only, since the model contains no
explicit node for a variable “label.”
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of implementation, speed, and ability to scale well as
the size of the data increase. Modifying the variance
characteristics of each component data-generating
mechanism allows direct control over the variability
permitted within each class. The question of how many
classes K the data suggest can be treated in an objec-
tive manner. This model-based approach to clustering
can handle missing data, noisy data, and uncertainty
about class membership in a probabilistic manner. In
the AutoClass implementation (7) of naive Bayes mod-
els (see below, Naive Bayes Models: AutoClass), a
Bayesian approach is employed to derive the maximum
posterior probability classification and the optimum
number of classes K.

Given labeled input vectors, an “unsupervised naive
Bayes model” refers to a model in which both the
number of classes K and the K 3 L sets of probability
parameters are estimated from unlabeled profile vec-
tors. A “supervised naive Bayes model” refers to a
model in which the number of classes is fixed a priori,
and the probability parameters are calculated directly
from the values of features assigned to classes. Here,
the unsupervised naive Bayes model is one trained to
discover and characterize the K classes present in the
62 unlabeled 1,988-feature experiment profile vectors.
A supervised naive Bayes model is one estimated by
first partitioning the profile vectors according to their
tumor or nontumor label. The K 5 2 3 1,988 sets of
probability parameters are computed directly from the
40 (or 22) expression levels of the 1,988 genes in the
tumor (or nontumor) samples.

Support Vector Machines

In the context of pattern classification, an SVM con-
structs a hyperplane as the decision surface such that
the margin of separation between positive and nega-
tive training examples is maximized (Fig. 4; for review,
see Ref. 52 and the introductory tutorials at www.
kernel-machines.org). This is achieved via an ap-
proximate implementation of the method of structural
risk minimization, a principled approach rooted in sta-
tistical learning theory. This induction principle is
based on the fact that the error rate of a learning
machine on test examples (the generalization error
rate) is bounded by the sum of the training-error rate
and a term that depends on the Vapnik-Chervonenkis

(VC) dimension. For separable data, an SVM produces
a value of zero for the first term and minimizes the
second VC term. Thus, SVMs generalize well when
applied to pattern recognition problems. Compared to
other machine learning algorithms, SVMs provide flex-
ibility in choosing a similarity function, sparseness of
solution when dealing with large data sets, the ability
to handle large feature spaces, and the capacity to
identify outliers.

A central notion in SVMs is the inner-product kernel
K(Xi, Xj), a measure of similarity between two input
vectors Xi and Xj. Depending on how the kernel is
defined, different learning machines characterized by

Fig. 3. A naive Bayes model for a toy
data set in which 600 five-feature ex-
periment profile vectors belonging to
K 5 3 classes (red, blue, green) are
generated by Gaussian data-generat-
ing mechanisms. Note the network to-
pology (top left), input data set (bottom
left), and resultant model (right, the
probability distributions are shown on
the z-axis). Each of the 3 3 5 Gauss-
ians (some overlap) has its own mean
and standard deviation (probability
parameters). For illustration purposes,
the expression values in a given profile
vector are connected by straight lines.

Fig. 4. The notion of separating hyperplanes illustrated using a
classification problem in a two-dimensional input space. Given the
12 positive and negative training examples labeled as circles and
squares, the task is to assign the output or class label for the input
vector 3 of unknown label. Based on the known examples, the new
point is most likely to be a circle. The size of the margin affects the
generalization capacity of a hyperplane, its ability to assign correctly
the label of a new data point. The “Hyperplane” would classify
incorrectly the new point as a square. The “Optimal hyperplane”
minimizes the generalization error because it separates the training
data with a maximal margin. Only for the optimal hyperplane,
therefore, does 3 lie inside the region of separation between the two
classes and fall on the correct side of the decision surface. The filled
data points at the margins are termed support vectors because they
define the optimal hyperplane. The input data shown are linearly
separable. If this were not the case, then mapping them into a
higher-dimensional feature space would allow the hyperplane to be
defined there as opposed to the input space occupied by the training
data. This mapping can be achieved via use of a kernel function that
encodes a similarity measure between two input vectors.
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nonlinear decision surfaces can be constructed. The
commonly used kernel employed here is a radial basis
function, K(Xi, Xj) 5 exp( 2 iXi 2 Xji2/2s2), where
the width g 5 1/2s2 is a user-defined parameter. An-
other often-used kernel is a dot product, K(XL

i , XL
j ) 5

¥l 5 1
L xl

ixl
j.

A MODULAR FRAMEWORK FOR ANALYSIS OF
MOLECULAR PROFILE AND OTHER DATA USING
GENERATIVE AND DISCRIMINATIVE METHODS

This section outlines tasks that are relevant to
modules of the framework. The particular generative
(graphical models, naive Bayes models) and discrimi-
native (SVM) methods employed for unsupervised and
supervised learning plus other specific algorithms are
designed to be illustrative rather than comprehensive.
Clearly, other learning systems, algorithms and ap-
proaches for defining and studying network fragments
could be utilized. Given the limited expressive capabil-
ity of any individual modeling method, it will be nec-
essary to incorporate different models and model types
to gain a comprehensive understanding of the myriad
of processes that generate molecular profile data. The
RESULTS present results from application of the methods
explained in METHODS to the transcription profile data
described in the subsection Learning Models from Pro-
file Data.

Unsupervised Learning

Discovering and characterizing classes of profile vec-
tors using an unsupervised learning method yields
information on the fine structure of the data. Identify-
ing classes of gene profile vectors can suggest genes
whose products may have related functions as well as
those that could be regulated by common transcription,
environmental, or other factors. Clustering experiment
profile vectors can indicate relationships between con-
ditions and pathways. For example, if mutants with
similar phenotypes fall into different classes, then the
homeostatic mechanisms by which the biological end-
point is reached could differ. Alternatively, if mutants
displaying seemingly unrelated physiological behav-
iors have similar profiles, then they may operate via
common pathways.

For labeled profile vectors, an unsupervised learning
method can be used to group the input vectors and the
estimated classes compared to those that would be
expected based on the output labels. The discrepancy
between the number of classes estimated from the data
and the number of known classes provides an indica-
tion of the homogeneity of the problem being addressed
and/or quality of the data used. The estimated classes
may correspond to subcategories of profile vectors with
the same label, for example, tumor subtypes, or profile
vectors with different labels. If an input vector with
one label is assigned to a class that is dominated by
examples from another class, then this could suggest
mislabeled examples.

Here, naive Bayes models are utilized to cluster
sixty-two 1,988-feature experiment profile vectors.

Elsewhere, they have been used to cluster seventy-two
7,070-feature experiment (8) and 5,687 seventy-eight-
feature gene (35) profile vectors.

Supervised Learning

Discriminating between profile vectors with differ-
ent labels and assigning the label of a new profile
vector using a supervised learning method is useful for
a variety of tasks. For experiment profile vectors, this
classification and prediction procedure can be a com-
ponent of decision support systems for clinical and/or
environmental diagnosis, prognosis, and monitoring.
In cancer transcription profiling studies, for example,
data from specimens that have different pathological
characteristics or are subtypes of the same disorder
can assist in developing systems for classifying and
analyzing cancers from a molecular rather than mor-
phological perspective. For gene profile vectors, this
analytical approach can suggest potential biological
roles for genes if the known labels correspond to bio-
chemical, functional, or other physiological properties.

A trained model can assist in identifying input vec-
tors that are most important in defining classes and
pinpointing those that may have been mislabeled (out-
liers). In principle, an unsupervised method can be
used to partition unlabeled input vectors into disjoint
sets such that each class can be associated with an
output label, which can then be employed subsequently
by a supervised learning system.

Here, SVMs are used for supervised learning prob-
lems involving the sixty-two 1,988-feature labeled ex-
periment profile vectors. A naives Bayes model trained
to address the same discrimination problem performed
considerably less well. Elsewhere, SVMs have been
applied to seventy-two 7,070-feature experiment pro-
file vectors with two to four different labels (8). SVMs
have been utilized to classify 2,467 seventy-nine-fea-
ture yeast gene profile vectors and to assign functional
roles for uncharacterised open reading frames (5).

Feature Relevance, Ranking, and Selection: Feature
Relevance Experts

In a supervised learning problem, features in the
input vector vary as to how relevant they are to the
discrimination problem. For molecule profile vector
classes, the extent to which experiments differentiate
classes can vary. Given a compendium of gene profile
vectors derived from experiments examining a range of
genotypes and conditions, feature relevance can define
experiments that best separate genes belonging to the
same biochemical and/or functional classes. For exper-
iment profile vector classes, molecules can vary as to
how well they distinguish classes. In cancer profiling
studies, molecules that discriminate tumor from non-
tumor samples are good candidates for subsequent
in-depth experimental studies as well as developing
decision support systems. Highly informative features,
marker genes or marker experiments, can be identified
by reducing the cardinality of input vectors such that
the generalization performance of a supervised learn-
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ing system is undiminished compared to one trained
using all the features.

Assume that profile vectors are assigned to T $ 2
classes, either those estimated from unlabeled profile
vectors or those designated on the basis of output
labels. The “relevance of a feature Fl” is defined as how
well it distinguishes class ci from cj. If the relevance is
zero, then the behavior of the feature in the two classes
is the same; larger values signify increasingly greater
differences and thus a greater ability to distinguish
classes. The absolute magnitude is augmented with a
sign such that a negative (positive) value signifies that
the value of the feature is lower (higher) in cj than in ci.
“Multiclass relevance” denotes how well the feature
distinguishes class ci from all other T 2 1 classes.
“Global relevance” signifies how well the feature dis-
tinguishes all T classes. Ordering features based on
their relevance value ranks them in terms of how well
they distinguish two specific classes, whereas the
global relevance ranks them with regards to how well
they distinguish all T classes. Different numbers of
features can be selected either in terms of an absolute
number such as the m top-, middle-, or bottom-ranked
features or those with values above (below) a specified
threshold.

Markers can be identified in a systematic manner
with the aid of a feature relevance expert. Such an
expert 1) implements an algorithm for computing fea-
ture relevance, 2) reorders features according to this
value, 3) selects subsets of ranked features for use in
training a supervised learning system, and 4) identifies
markers based on feature subsets that generalize well,
namely, assign the labels for input vectors not used for
training. Preferably, a relevance measure should gen-
erate a monotonic ordering. Reducing the number of
features by eliminating bottom-ranked ones should
improve the generalization performance of supervised
learning systems trained using the feature subsets.
There should be optimal subsets that maximize the
performance. Finally, retaining fewer features should
degrade the performance. If optimal subsets have the
same or better generalization performance than the
full repertoire, then these features are likely to be
particularly useful markers. Different feature rele-
vance experts can be evaluated by determining the
generalization performance of supervised learning sys-
tems trained using the m-ranked features of each ex-
pert.

For profile vectors with multiple labels, feature rel-
evance depends on the biological question being posed.
For example, the relevance of a gene in differentiating
pathological states may or may not be related to its
ability to discriminate between tissue types. Consider
experiment profile vectors with two sets of binary la-
bels, “tumor/nontumor” and “liver/colon.” The rele-
vance of a gene for the tumor/nontumor problem re-
quires comparing its expression values in profile
vectors labeled (tumor,liver)/(tumor,colon) and (non-
tumor,liver)/(nontumor,colon). In contrast, the rele-
vance of the same gene for the liver/colon problem

requires comparing (liver,tumor)/(liver,nontumor)
with (colon,tumor)/(colon,nontumor).

Here, specific algorithms for calculating the rele-
vance and global relevance of a feature are described
that are based on the probability parameters of naive
Bayes model classes. A feature relevance expert based
on an unsupervised naive Bayes model generalizes
better than one employing a supervised naive Bayes
model (see above, A naive Bayes model).

External Knowledge as an Aid to Interpretation

The time taken to explore complex relationships re-
vealed by analysis of profile data can be reduced by a
systematic environment that extracts, organizes, and
integrates external knowledge into the interpretation
procedure. Gene ontologies and controlled vocabularies
(3, 6) are key components in the creation of such
environments. Two-way unsupervised learning, dis-
covering classes of experiment and gene profile vectors,
integrated with a comprehensive knowledge base could
highlight markers and correlations for further study.
For example, if genes and experiments are cross-in-
dexed to external information in a qualitative and
quantitative manner, then it should be easier to un-
cover statistically and/or biologically significant asso-
ciations between profile vector classes and, for example
cell type, developmental stage, small molecule concen-
tration, environmental condition, signaling pathway,
and so on. Specific gene vector classes may be corre-
lated with protein products having similar functions,
noncoding regions, protein-protein interactions, and so
on.

Elsewhere (35), the associations between 45 classes
estimated from 5,687 seventy-eight-feature Saccharo-
myces cerevisiae gene profile vectors and four types of
external knowledge were determined. The results were
used to suggest potential functions and physiological
roles for specific genes.

Decision Support Systems for Diagnosis, Prognosis,
and Monitoring

A decision support system is a knowledge-based sys-
tems aimed at organizing relevant experimental and
other data for the purpose of assisting users make
decisions about real world problems. Experiment pro-
file vectors from cancer transcription profiling studies
can be used to distinguish between specimens of known
(sub)type and to assign the label for new specimens.
Since the consequences of misdiagnosis are potentially
deleterious, the supervised learning method and train-
ing data underlying such a decision support system
should maximize sensitivity and specificity. Not all the
genes monitored in a profile study are required to
assign the label for a specimen of unknown origin with
a high degree of accuracy. Some genes may even de-
crease prediction accuracy. Hence, feature relevance,
ranking, and selection is an important component of
creating prototypes of clinically useful systems. For a
given data set and fixed number of features, there are
likely to be a number feature subsets of this size that
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have similar generalization performances when used
to address the same supervised learning problem.
Thus, features ranked highly by a majority of, or all the
experts in a mixture of feature relevance experts
should be robust and reliable markers.

Here, a feature relevance expert is used to identify
markers for colon adenocarcinoma. Elsewhere (8), each
of the top 50 genes from three different feature rele-
vance experts were shown to generalize as well as each
other and the full repertoire of 7,070 genes. However,
the specific genes in these subsets were not identical.
Thus, genes at the union of these subsets (125 genes in
total) were proposed as candidate for developing a
prototype decision support system for distinguishing
two subtypes of leukemia.

Networks for Experimental Design, Planning,
and Inference

Inferring or verifying networks for use in diagnostic
reasoning, causal reasoning, and assessing the effects
of intervention will require fusing data and results
from the other modules of the framework. For example,
groupings of gene profile vectors and the identification
of common noncoding regions will provide important
constraints on learning the topology and/or parameters
of a network. Identifying markers using feature rele-
vance experts can pinpoint molecules that should be
represented explicitly in efforts to infer networks from
profile data using techniques such as graphical models.

METHODS

MATLAB (www.mathworks.com) was used for data
analysis, visualization, and algorithm and application devel-
opment. All computations were performed on a Sun Ultra 60
workstation.

Naive Bayes Models: AutoClass

In AutoClass C version 3.3 (7), the continuous Fl nodes are
modeled using Gaussian probability density functions and
the discrete classification node C using a Bernoulli distribu-
tion (Fig. 2). Training a model involves using profile vectors
to estimate the number of classes K for node C and the
probability parameters for each Fl node. Starting from ran-
dom initial descriptions for a specified number of classes, a
gradient descent search through the space of descriptors is
performed. At each step of the model search procedure, the
current descriptions are used to assign probabilistically each
profile vector to each class. The observed values for each
profile vector are used to update class descriptions, and the
procedure is repeated until a specified convergence criterion
is reached. The program iterates through different numbers
of classes to determine the best taxonomy.

Overfitting, finding a model in which the number of classes
K is equal to the number of profile vectors N, is ameliorated
as follows. A variant of the expectation-maximization (EM)
algorithm is used to search through model-space with the
condition that each profile vector belong to some class (the
sum of all class probabilities is one). A penalty is incurred for
adding more classes. Increasing the number of classes de-
creases the prior probability of each class unless the addi-
tional class improves the likelihood of the data. The model-
space that needs to be searched can be constrained by setting
a lower bound on the variance of the data-generating mech-

anism. For each gene l, the level of observation noise (mea-
surement error) and/or natural variation in expression be-
tween samples (patients) can be used to set this value in a
data-dependent manner. Thousands of models are estimated,
each starting from different random number seeds. Each
resultant model, a locally optimum solution in the parameter
space, is scored. These model marginals are compared to find
the model that best describes the data.

The input data are the sixty-two 1,988-feature experiment
profile vectors, [X1988

1 , . . . , X1988
72 ] where X1988

n 5 [x1
n, . . . ,

x1988
n ]. The expression level of gene l in profile vector n, xl

n, is
used as is, i.e., the published data (2) are not rescaled,
shifted, normalized, or modified. Since the measurement
error and intrinsic variability are unknown, the minimum
value of the standard deviation of the Gaussian for each
class, sk,l, is set to 0.1 of the standard deviation of the
Gaussian for the expression values across all N samples,
xl

1, . . . , xl
N. The output consists of 1) K, the number of classes,

2) an N 3 K likelihood matrix where each element is the
likelihood of experiment profile vector n given class ck,
P(XL

nuck, M), and 3) a K 3 L parameter matrix where each
element is the mean and standard deviation of the Gaussian
modelling class ck and gene l, (mk,l, sk,l). For the data set here,
the marginal for the best model is significantly higher than
the other models. The final results do not depend on the order
in which input vectors are entered into the model.

Support Vector Machines: SVMlight

SVMlight version 3.02 (24) has a fast optimization algo-
rithm, can handle many thousands of support vectors, can be
trained using tens of thousands of training examples, and
supports a variety of kernel functions. The input data are
labeled profile vectors and a kernel function plus any of its
associated parameters. Although there is no formal mecha-
nism for selecting the most appropriate class of kernel func-
tion for a particular problem, empirical evidence suggests
that a radial basis function is a reasonable choice. This
kernel performed well when applied to biological classifica-
tion problems arising from transcription profiling (5, 8) and
protein fold recognition (M. L. Chow and I. S. Mian, unpub-
lished information) studies. Based on the latter work and
tests using the data examined here, the width of the radial
basis function g 5 1/2s2 is set to 0.01. Elsewhere (5, 8), the
value of g is set in a data-dependent manner by choosing s to
be equal to the median of the Euclidean distances from each
positive example to the nearest negative example (5). The
output from the learning module is a binary classification
model which can be used to assign the label for a test
example.

SVMs are trained and evaluated using the leave-one-out
cross-validation procedure described above (Learning Models
from Profile Data). To account for unequal numbers of posi-
tive and negative training examples, each estimation set is
balanced by duplicating as many randomly chosen examples
as necessary from the smaller set to yield the same number
of examples as the larger set. The generalization perfor-
mance achieved is the total number of SVMs that make true
positive and true negative assignments for their test exam-
ple. A false positive or false negative assignment occurs when
the test example falls on the wrong side of the decision
boundary.

Feature Relevance: Naive Bayes (Global) Relevance

The relevance of a feature (see above, Feature Relevance,
Ranking, and Selection: Feature Relevance Experts) measure
proposed here is termed the naive Bayes relevance (NBR). It
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is based on the probability of a profile vector class k given the
observed value of the feature l, P(ck,luxl

n). Using Bayes rule
and assuming that classes ci and cj are independent and
equally likely a priori, the NBR is defined as

NBRij~Fl! ; log3 4
N (

n51

N

P~ci,luxl
n!P~cj,luxl

n!4
< log3 4

N (
n51

N

P~xl
nuci,l!P~xl

nucj,l!

@P~xl
nuci,l! 1 P~xl

nucj,l!#
24

The factor of 4 ensures the minimum and maximum values
are 0.0 and 1.0 (rather than 0.0 and 0.25). As calculated
above, the NBR is a fast and crude approximation of the joint
density P(ci,l, cj,luxl

1, . . . , xl
N, M). Since the data-generating

mechanism is taken to be a Gaussian, terms on the righthand
side can be evaluated from the mean and variance of the
Gaussian modeling class k and gene l

P~xl
nuck,l! 5

1

Î2psk,l

exp 2
1
2 Fxl

n 2 mk,l

sk,l
G2

The sign for the NBR value is obtained from sign(mj,l 2 mi,l).
A negative (positive) sign indicates that the expression level
in ci is higher (lower) than that in class cj. If NBRij(Fl) 5 0.0,
then the expression in class ci is identical to that in cj. The
larger the absolute value, the more distinct the expression
levels and the more likely gene Fl is to be a marker. Given
K $ 3 classes, the naive Bayes global relevance (NBGR) is
the sum of the NBR over pairwise combinations of the classes

NBGR~Fl! 5
1
K (

i51

K

(
j5i11

K

NBRij~Fl!

Naive Bayes Model-Based Feature Relevance Expert

The probability parameters for the K classes of an unsu-
pervised naive Bayes model (see above, Graphical Models)
are used to calculate NBRij(F1), . . . , NBRij(F1988) and
NBGR(F1), . . . , NBGR(F1988). The 1,988 genes are reordered
according to their NBR and NBGR values. The ranking based
on the NBGR values is termed the “K-class unsupervised
NBGR ranking.” The probability parameters for the K 5 2
classes of a supervised naive Bayes model are used to calcu-
late NBGR values. The ranking based on these NBGR values
is termed the “K 5 2 supervised NBGR ranking.”

For each ranking, representative gene subsets are created
by selecting different numbers of top-ranked genes. Each
subset is employed to create training examples for leave-one-
out cross-validation studies in which the input vectors con-
tain only the selected genes. Rather than working directly
with the original expression levels, xl

n, each value is normal-
ized using xl

n/[¥l [ S (xl
n)2]1/2 where S is the gene subset of

interest. For simplicity and to illustrate the basic approach,
genes are ranked once using all N training examples and not
for each N 2 1 estimation set.

Supervised Learning System: SVM vs. Naive Bayes Model

In addition to being a generative model for unsupervised
learning, a naive Bayes model can be used for supervised
learning and prediction. Given a model that has grouped
training data into K classes, the posterior probability of each
class given a test example P(ckuXL

n) is computed. The test
example is assigned to the class which maximizes this value.

To compare SVMs and naive Bayes models as supervised
learning systems, N supervised naive Bayes models are
trained and tested using the same leave-one-out cross-vali-
dation strategy employed to evaluate SVMs (see above, Sup-
port Vector Machines: SVMlight). The generalization perfor-
mance of these two systems is compared using feature
subsets derived from the K-class unsupervised NBGR rank-
ing and the K 5 2 supervised NBGR ranking.

Outliers and Potentially Mislabeled Specimens

Support vectors define the location of the decision surface
(solid symbols in Fig. 4) whereas nonsupport vectors (open
symbols) do not participate in its specification. One method
for identifying outliers and potentially mislabeled specimens
is pinpointing positive and negative training examples that
are the support and nonsupport vectors. For each leave-one-
out SVM, the training examples that constitute the support
vectors and nonsupport vectors are ascertained. An “invari-
ant support vector training example” is one that is a support
vector in all the N 2 1 SVMs which placed it in the estima-
tion set. Similarly, an “invariant nonsupport vector training
example” is one that is never a support vector. This approach
presumes no mislabeled examples and uses a hard margin for
SVM training. A soft margin would permit training examples
to violate the decision boundary subject to some penalty.

RESULTS

Unsupervised Learning Using Naive Bayes Models

An unsupervised naive Bayes model trained using
sixty-two 1,988-feature experiment profile vectors
identified four classes that will be referred to as classes
1–4. The two classes that might be expected a priori
given the tumor and nontumor labels differ from the
number estimated from the data. Each profile vector is
assigned to the class that maximizes the posterior
probability P(ckuXL

n). The results are class 1, 2 nontu-
mor, 19 tumor; class 2, 9 nontumor, 8 tumor; class 3, 11
nontumor, 4 tumor; class 4, 0 nontumor, 9 tumor.
While classes 1 and 4 contain primarily tumor speci-
mens, classes 2 and 4 are mixtures. The four classes
may reflect the composition of the tissue specimens.
While tumor specimens were biased toward epithelial
tissue, nontumor specimens probably included a mix-
ture of tissue types (2). Tumor specimens in classes 2
and 3 may contain a high degree of nonepithelial tis-
sue. The results indicate that transcription profile data
can distinguish tumor from nontumor specimens and
suggest the homogeneity of the original specimens.

The published study clustered the profile vectors by
means of a binary tree computed using an algorithm
based on deterministic annealing (2). Clusters 1 con-
tained 3 nontumor and 35 tumor specimens, whereas
cluster 2 contained 19 nontumor and 5 tumor speci-
mens; 36 of the 38 specimens assigned to cluster 1
belong to classes 1, 2, or 4. Although class 4 is a subset
of cluster 1, the specimens are scattered throughout
the clustering tree. Hence, the unsupervised naive
Bayes model defines an important subgroup of tumor
specimens not detected by the binary clustering
method.
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Supervised Learning Using SVMs

Table 1 shows that when all 1,988 genes are used, 55
(89%) of the SVMs make consistent assignments.
Classes 1 and 4 are associated with consistent assign-
ments, whereas classes 2 and 3 contain the three non-
tumor and four tumor inconsistent assignments (boxed in
Table 1). The discrepancy between the generalization
performance achieved, 55, and the maximum possible,
62, indicates the divergence between the known labels in
Alon et al. (2) and the assigned labels here. The seven

false negative and false positive assignments (boxed) are
valid only within the context of the original labels. Pos-
sible explanations for these seven “differences,” espe-
cially the two for patient 36, include 1) deficiencies in the
SVM learning method used, 2) specimens may have been
mislabeled as a result of human error, and 3) pathologi-
cally “normal” regions of the colon could have substantial
tumor-like properties from a molecular standpoint.

Analysis of the invariant support and nonsupport
training examples can suggest outliers and mislabeled
samples. There are 24 invariant support vector train-
ing example: 12/22 nontumor cases and 12/40 tumor
cases († in Table 1). There are 18 invariant nonsupport
vector training examples: 2/22 nontumor cases and
16/40 Tumor cases (asterisks in Table 1). These latter
18 examples should form the core of any revised train-
ing set, because they are the most unambiguous and
none belong to class 3, the class that appears to be the
most problematic in terms of tissue composition and
inconsistent assignments. The six inconsistently as-
signed, invariant support vector training examples
(boxed and † in Table 1) can be flagged as requiring
further investigation to clarify their labels. These are
the nontumor specimens of patients 8, 34, and 36 and
the tumor specimens of patients 30, 33, and 36.

Overall, the results suggest the presence of three
subtypes of specimens: those that are clearly tumor
(classes 1 and 4), those that are mainly nontumor (class
3), and those that are heterogeneous or have a mixed
tissue composition (class 2). The two tumor classes
could, for example, indicate different pathways for
reaching the same biological endpoint and/or variation
in the treatment schedules or clinical histories of the
patients.

NBR: Genes That Distinguish Class 4 From 1, 2, or 3

The NBR measure quantitates the degree to which
gene Fl distinguishes class i from j [see above, Feature
Relevance: Naive Bayes (Global) Relevance]. Genes
with the highest and lowest values are the top- and
bottom-ranked genes, respectively. Since Table 1 sug-
gests that class 4 is perhaps the most interesting, this
Class will be employed as an exemplar to illustrate the
utility of the overall approach (Fig. 5). The aim of the
subsequent analysis is not to provide a detailed discus-
sion of all the genes and their potential roles, but to
demonstrate that NBR values provide a useful mech-
anism for pinpointing biologically plausible candidates
for subsequent in-depth studies. For example, genes
that distinguish class 4 from the other three classes
include immunoglobulin superfamily receptors (Fc re-
ceptor hFvRn) and laminin receptors. Immunoglobulin
receptors are known to be associated with malignant
transformation and dissemination of colon tumors (48).

Relative to class 4, the following genes are upregu-
lated in classes 1, 2, and 3 (red, Fig. 5).

Precursors for both complement C1s and C1r. These
proteases are responsible for the lectin pathway acti-
vation and proteolytic activity of the C1 complex of
complement, an activation system designed for the
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elimination of pathogens. The lectin pathway plays an
important role in innate immunity.

Fibulin-2. This extracellular matrix (ECM) protein is
present in the basement membrane and stroma of
many tissues, and its expression pattern suggests an
essential role in organogenesis, particularly in embry-
onic heart development.

Hevin. This ECM protein is important for the adhe-
sion and trafficking of cells through the endothelium.
Hevin has been shown to be downregulated in non-
small cell lung cancer (4) and metastatic prostate ad-
enocarcinoma (38).

Vasoactive intestinal peptide. Vasoactive intestinal
peptide (VIP) has been implicated as an important
factor in several inflammatory conditions of the human
gut.

Tumour necrosis factor-a inducible protein A20. This
putative DNA binding protein is a Cys2/Cys2 zinc fin-
ger protein induced by a variety of inflammatory stim-
uli and characterised as an inhibitor of cell death.

The cytoskeletal proteins actin and myosin and endo-
thelial actin-binding protein. Relative to class 4, these
proteins are downregulated in classes 1, 2, and 3 (blue,
Fig. 5).

Polyadenylate-binding protein. This protein recog-
nises the 39 mRNA poly(A) tail and plays critical roles
in eucaryotic translation initiation and mRNA stabili-
zation/degradation.

DNA-apurinic or apyrimidinic site lyase APE1/
HAP1. This protein plays an important role in DNA
repair and in the resistance of cancer cells to radiother-
apy.

KAP-1. This protein (TIF1b/KRIP-1; human un-
known protein mRNA; R37428) may be a corepressor
for the large class of KRAB-containing zinc finger pro-
teins (1).

Calnexin precursor. This protein is a chaperone that
promotes the correct folding and oligomerisation of
many glycoproteins. A study of protein changes asso-
ciated with ionizing radiation-induced apoptosis in hu-

Fig. 5. Genes that best distinguish class 4 from the other three classes according to the naive Bayes relevance
(NBR) measure. Each row represents the same gene Fl and the columns, from left to right, its NBR41(Fl),
NBR42(Fl), NBR43(Fl), and NBR44(Fl) values. NBR values are color-coded such that more intense colors signify
higher values and thus noteworthy marker genes. The precise color indicates the sign of the NBR values and thus
the direction of change of the expression level. Positive (red) denotes that, relative to class 4, the gene is
upregulated in the other class. Negative (blue) indicates downregulation. The 1,988 genes are filtered to show only
those for which uNBR4j(Fl)u $ 0.7, i.e., those best able to discriminate class 4 from 1, 2, or 3. Relative to class 4,
“Hsa.1221: ACTIN, AORTIC SMOOTH MUSCLE (HUMAN)” is the gene that is most upregulated in any of the
other classes. Relative to class 4, “Hsa.7203: POLYADENYLATE-BINDING PROTEIN (Xenopus laevis)” is the
gene that is most downregulated in any of the other classes. The NBR is a log scale, but the brightness of a color
is a linear scale.
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man prostate epithelial tumor cells indicated that the
proteins levels of this molecular chaperone are higher
in such dying cells (41).

Inosine 59-monophosphate dehydrogenase 2. Inosine 59-
monophosphate dehydrogenase 2 (IMPDH isoform 2) en-
zyme is the rate-limiting enzyme in the de novo synthesis
of guanine nucleotide. Of the two isoforms, IMPDH iso-
form 2 is selectively upregulated in neoplastic and repli-
cating cells and is thus considered to be a sensitive target
for cancer chemotherapy (reviewed in Ref. 12).

Overall, the results suggest that tumor specimens
belonging to classes 1 and 4 have very distinctive
properties. For example, NDP kinase (nm23-H2S) is
known to be associated with tumor metastasis (13), but
the levels in these classes are very different. There are
marked differences in genes related to cell growth,
protein synthesis, energy metabolism, oxidative stress,
and apoptosis. Greater knowledge of the clinical histo-
ries of the patients from which these tumor specimens
were taken may reveal the origins of these differences.
One possibility based on the expression patterns of
calnexin and IMP is that patients whose tumor sam-
ples are assigned to class 4 may have received radia-
tion or other therapy.

In some instances, differential expression at the
gene level is mirrored at the protein level. Prohibitin
and IMPDH-2 are proteins that have been shown to
exhibit differential protein expression in normal and
neoplastic human breast epithelial cell lines (54).
The levels of the latter enzyme in tumor cell lines
was elevated 2- to 20-fold relative to the levels in
normal cells. Relative to tumor Class 4, the expres-
sion levels of the genes for these enzymes exhibit a
similar pattern in that they are downregulated in
the other classes.

NBGR: Genes That Distinguish All Classes

The NBGR measure quantitates the degree to which
gene Fl distinguishes all four classes. Genes with the
highest and lowest values are the top- and bottom-
ranked genes, respectively. The top 50 NBGR ranked
genes are listed in Table 2. Of the feature subsets
examined (discussed below, Naive Bayes Model-Based
Feature Relevance Experts), the top 50 represents the
smallest number of features that generalize as well as
all 1988 genes. Selected genes of potential interest are
as follows.

Serum response factor. Serum response factor (SRF)
regulates transcription of many serum-inducible and
muscle-specific genes. It binds to the serum response
element, a DNA sequence required for the transcrip-
tion of a number of genes in response to growth factor
or mitogen stimulation. A number of these types of
genes are present in the top 50: b9-actin, myosin light
chain, and profilin I. This is consistent with the obser-
vation that signal-regulated activation of SRF is medi-
ated by changes in actin dynamics (46). These genes
might provide an indication of the migratory capacity
of the cells in the specimens and hence their propensity
for metastasis.

Ferritin. Low serum ferritin levels are associated
with patients having serious gastrointestinal patholo-
gies such as neoplasia and acid peptic disease (29).
Previous work has shown that the majority of colorec-
tal adenocarcinomas exhibit ferritin expression (20),
but the clinical significance remains unknown.

Tra1/GRP94/GP96. This molecular chaperone been
suggested to be useful in cancer immunotherapy (39).
The level of the protein is higher in human breast
cancer cell lines compared to normal basal epithelial
cell lines (15). Figure 5 indicates that HSP 90-b, an-
other of member of the heat shock protein 90 family to
which Tra1 belongs, is downregulated in classes 1, 2,
and 3 relative to class 4.

In a manner analogous to comparative sequence
analysis, comparative analysis of molecular profile
data may be useful for inferring the potential physio-
logical roles of genes. Such comparison of the expres-
sion patterns of orthologous and paralogous proteins
can be illustrated using “translationally controlled tu-
mor protein” (TCTP, HRF P23), the ninth ranked gene.
TCTP is a eucaryotic cytoplasmic protein found in
several normal and tumor cells that is suggested to
have a general, yet unknown, housekeeping function
(44). Comparative sequence analysis (data not shown)
provides few insights into the biological role of this
evolutionarily conserved protein and a protein that
may have a role in colon cancer. A naive Bayes model
trained using 5,687 seventy-eight-feature yeast gene
profile vectors found 45 classes (35). The yeast TCTP
homologue (TCTP_YEAST; YKL056C) is found in a
class populated with genes from the MIPS (33) protein
functional category “PROTEIN SYNTHESIS: ribo-
somal proteins.” Physiologically, therefore, and consis-
tent with other genes in the top 50, human TCTP may
be a ribosome-associated protein.

Marker Genes for Understanding Colon
Adencarcinoma Biology

One mechanism for generating a set of candidates for
subsequent study is by taking the union of the NBGR
top 50 listed in Table 2 and the genes shown in Fig. 5.
Experimental data support the notion that these 89
genes may be biologically relevant. For example, the
set includes genes shown to be differentially expressed
in mucus-secreting cells and undifferentiated HT-29
colon cancer cells: transcripts encoded by the mitochon-
drial genome, components of the protein synthesis ma-
chinery, ferritin, and TCTP (37). Alterations in the
distribution and/or adhesiveness of laminin receptors
in colon cancer cell lines may be associated with in-
creased tumorigenicity (27). A study of cultured colon
cancer cells suggests that laminin may play an important
role in hematogeneous metastasis by mediating tether-
ing and spreading of colon cancer cells under blood flow
(28). In general, the markers are involved in cell signal-
ing, adhesion and communication, immune response,
heat shock, and DNA repair. Adhesion receptors and cell
surface-associated molecules mediating cell-matrix and
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cell-cell interactions are known to play an important role
in tumor cell migration, invasion, and metastasis.

Selecting markers for use in understanding colon
adenocarcinoma biology, creating diagnostic tools, and
highlighting targets for therapeutic intervention and
drug-design requires reducing the original 1,988 genes
to smaller, more manageable subsets. The aforemen-
tioned markers were defined using a fairly stringent
threshold uNBRij(Fl)u $ 0.7 and a small fixed number
of top-ranked genes (i.e., 50). This “low-hanging fruit”
approach is unable to detect genes involved in more
subtle interactions.

Naive Bayes Model-Based Feature Relevance Experts

Developing a decision support system may require
using a larger number of genes than an experimental
investigator might be interested in pursuing. A learn-
ing system designed to discriminate between tumor
and nontumor specimens should optimize specificity
and generalization performance rather than minimize
the number of genes proposed as being important. The
consequences of a tumor specimen labeled incorrectly
as nontumor (a false negative) may be more severe
than overpredicting false positives.

Table 2. The top 50 genes that distinguish all four classes according to the naive Bayes
global relevance measure

Gene ID Gene Annotation

Hsa.689 H55933 Homosapiens mRNA for homolog to yeast ribosomal protein L41
Hsa.5444 R39465 Eukaryotic initiation factor 4A (Oryctolagus cuniculus)
Hsa.2191 R39465 Eukaryotic initiation factor 4A (O. cuniculus)
Hsa.2097 R85482 Serum response factor (H. sapiens)
Hsa.1682 U14973 Protein S29 mRNA, complete cds
Hsa.7395 R02593 60S Acidic ribosomal protein P1 (Polyorchis penicillatus)
Hsa.1479 T51496 60S Ribosomal protein L37A (human)
Hsa.11850 H80240 Inter-a-trypsin inhibitor complex component II precursor (H. sapiens)
Hsa.2344 T65938 Translationally controlled tumor protein (human)
Hsa.1221 T55131 Glyceraldehyde-3-phosphate dehydrogenase, liver (human)
Hsa.490 T72863 Ferritin light chain (human)
Hsa.878 H86060 Negative factor (Simian immunodeficiency virus)
Hsa.549 X63432 mRNA for mutant b-actin (b9-actin)
Hsa.11616 H20709 Myosin light chain alkali, smooth-muscle isoform (human)
Hsa.904 U14971 Ribosomal protein S9 mRNA
Hsa.8068 T52342 Human tra1 mRNA for human homolog of murine tumor rejection antigen gp96
Hsa.539 L28809 dbpB-like protein mRNA
Hsa.7203 T63508 Ferritin heavy chain (human)
Hsa.6080 H09263 Elongation factor 1-a 1 (H. sapiens)
Hsa.15101 T49423 Breast basic conserved protein 1 (human)
Hsa.572 H79852 60S Acidic ribosomal protein P2 (Babesia bovis)
Hsa.11582 J02763 Gene
Hsa.951 R22197 60S ribosomal protein L32 (human)
Hsa.33 T59954 Thymosin b-4 (human)
Hsa.1288 H80240 Inter-a-trypsin inhibitor complex component II precursor (H. sapiens)
Hsa.18897 T95018 40S Ribosomal protein S18 (H. sapiens)
Hsa.1687 H86060 Negative factor (Simian immunodeficiency virus)
Hsa.8583 T63484 Human ornithine decarboxylase antizyme (Oaz) mRNA
Hsa.7 R02593 60S Acidic ribosomal protein P1 (P. penicillatus)
Hsa.489 M11799 Class I HLA-Bw58 gene
Hsa.3349 T61609 Laminin receptor (human)
Hsa.11712 T62220 Calpactin I light chain (human)
Hsa.539 T51574 40S Ribosomal protein S24 (human)
Hsa.2710 T48041 Human mRNA fragment for the b-2 microglobulin
Hsa.2700 T96832 Interferon-a receptor precursor (H. sapiens)
Hsa.929 H54676 60S Ribosomal protein L18A (human)
Hsa.491 R86975 40S Ribosomal protein S28 (human)
Hsa.8147 T63258 Elongation factor 1-a 1 (human)
Hsa.695 T57619 40S Ribosomal protein S6 (Nicotiana tabacum)
Hsa.27537 T88723 Ubiquitin (human)
Hsa.14478 R36455 Nucleolar transcription factor 1 (H. sapiens)
Hsa.45293 T61602 40S Ribosomal protein S11 (human)
Hsa.6555 T58861 60S Ribosomal protein L30E (Kluyveromyces lactis)
Hsa.41875 U21909 mRNA
Hsa.479 T61661 Profilin I (human)
Hsa.25322 T52015 Elongation factor 1-g (human)
Hsa.1610 H24754 Fructose-bisphosphate aldolase A (human)
Hsa.1732 H22688 Ubiquitin (human)
Hsa.9218 T93094 Annexin II (human)
Hsa.5971 T51560 40S Ribosomal protein S16 (human)

Genes in bold appear in Fig. 5 and are those that distinguish class 4 from 1, 2, or 3 based upon their NBR4j(Fl) values.
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One approach to identifying markers for prototype
decision support systems is by means of a feature
relevance expert. Table 3 shows the generalization
performance of leave-one-out SVMs trained using 11
feature subsets. The maximum generalization perfor-
mance achieved, 55, is less than the maximum possi-
ble, 62. The top 50 genes perform as well as the full
repertoire of 1,988 genes. Using only the top two de-
grades the overall performance by only three (55 to 52).
Further studies are required to assess whether, for
example, any 2 in the top 10 would have the same
performance as the top 2. The NBGR ranking appears
to be meaningful because the performance of the top
500, 50, 25, 10, 5, and 2 subsets is consistently higher
than the equivalent number of bottom-ranked genes.
As the number of genes used decreases from 500 to 2,

the difference in performance increases from 52 2 50 5
2 to 52 2 27 5 25. As shown elsewhere (8), there are
likely to be other subsets of 50 genes that have some or
no overlap with the NBGR top 50 but which have the
same generalization performance.

The patients can be divided into three broad groups
based on their pattern of assignments. The first group
includes 34 specimens whose labels are consistently
assigned irrespective of the subset used. It includes 7/9
members of class 4. The second group includes six
specimens that are invariably inconsistently assigned.
Most are members of the problematic class 3 shown in
Table 1. Additional studies are required to assess
whether these six specimens are genuine outliers (pa-
tient 30, tumor; patient 33, tumor; Patient 36, nontu-
mor and tumor; Patient 34, nontumor; patient 8, non-
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tumor). The assignments for the third group of 18
specimens changes from consistent (inconsistent) to
inconsistent (consistent) as the number of top-ranked
genes is reduced.

Although the exact shape of the function relating
performance to the number of top-ranked genes is
unknown, it is possible to improve the performance by
examining subsets in the 500–50 range. Table 4 shows
that of all the subsets examined, the maximum gener-
alization performance is achieved with the top 200
genes (56). The original 62 training examples were
partitioned such that the 56 consistently assigned
specimens (N or T in Table 4) formed the estimation
set. The remaining six specimens formed the test ex-
amples. The assignments made by an SVM trained using
the top 200 genes did not change, i.e., the false positive
and false negative assignments support the notion that

these six specimens are likely to be outliers. The results
suggest that the 200 top-ranked genes from the 56 afore-
mentioned specimens could be used to develop a proto-
type diagnostic tool. Further studies are required to as-
certain the success of such a tool when used for large-
scale colon adenocarcinoma screening studies.

Learning System: SVM vs. Supervised Naive
Bayes Model

Table 5 shows how the leave-one-out learning
method and naive Bayes model used to compute the
NBGR ranking affect performance. SVMs are consis-
tently better than supervised naive Bayes models. Fea-
tures subsets derived from an NBGR ranking based on
the number of estimated classes (K 5 4) outperform
those in which the classes are defined according to the
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Table 5. The generalization performance of two different learning systems trained using feature subsets
derived from two different NBGR rankings

Learning Method NBGR Ranking 100 50 25 10 5 2

SVM K-class unsupervised 55 55 52 53 52 52
SVM K 5 2 supervised 42 46 48 47 38 20†
Supervised naive Bayes model K-class unsupervised 42 42 45 48 49 35
Supervised naive Bayes model K 5 2 supervised 34 36 34 33 29 33

“Learning method” indicates whether the leave-one-out models were SVMs or supervised naive Bayes models (see Naive Bayes
Model-Based Feature Relevance Expert, in METHODS). “NBGR Ranking” denotes whether the NBGR values used to rank the 1,988 genes were
based on an unsupervised (K-class unsupervised) or supervised (K 5 2 supervised) naive Bayes model. The 6 feature subsets examined
contained the 100, 50, 25, 10, 5 and 2 top-ranked genes. †No model could be found when the tumor specimen from patient 24 was the test
example, so the maximum generalization performance possible in this instance is 61 not 62.

Table 6. The K 1 2 supervised NBGR top 50 genes

Gene ID Gene Annotation

Hsa.42738 H55933 Calcineurin B subunit isoform 1 (H. sapiens)
Hsa.3969 R39465 Factor 1 mRNA, complete cds
Hsa.8192 R39465 Macrophage colony stimulating factor-1 precursor (H. sapiens)
Hsa.2463 R85482 QM protein (human)
Hsa.33699 U14973 Protein (CRP) gene, exons 5 and 6
Hsa.23249 R02593 For c-sis gene (clone pSM-1)
Hsa.848 T51496 Twitch skeletal muscle/cardiac muscle troponin C gene, complete cds
Hsa.33982 H80240 And polyadenylation specificity factor mRNA, complete cds
Hsa.8010 T65938 Binding inhibitor (DBI) mRNA, complete cds
Hsa.30310 T55131 HLA class II histocompatibility antigen, DR-1 beta chain (human)
Hsa.35201 T72863 SKD1 protein (Mus musculus)
Hsa.3065 H86060 Lysosomal protective protein precursor (HUMAN)
Hsa.14595 X63432 Thyroid receptor interactor (TRIP1) mRNA, complete cds
Hsa.35741 H20709 60S ribosomal protein L7A (human)
Hsa.479 U14971 Profilin I (human)
Hsa.41164 T52342 Integral membrane protein, calnexin, (IP90) mRNA, complete cds
Hsa.32404 L28809 (human)
Hsa.43284 T63508 Aflatoxin B1 aldehyde reductase (Rattus norvegicus)
Hsa.2910 H09263 Trans-acting transcriptional protein ICP0 (Herpes simplex virus)
Hsa.538 T49423 Histone, class B mRNA, complete cds
Hsa.2529 H79852 For tyrosine hydroxylase type 3
Hsa.38205 J02763 C substrate, 80-kDa protein, heavy chain (human); contains TAR1 repetitive element
Hsa.11712 R22197 Calpactin I light chain (human)
Hsa.28162 T59954 RD protein (human)
Hsa.32358 H80240 UNC-33 protein (Caenorhabditis elegans)
Hsa.6048 T95018 Platelet-activating factor acetylhydrolase 45-kDa subunit (Bos taurus)
Hsa.37254 H86060 Protein 42 (human)
Hsa.24279 T63484 PP1-g catalytic subunit (human)
Hsa.8831 R02593 ER lumen protein retaining receptor 1 (H. sapiens)
Hsa.34416 M11799 (huc) mRNA, complete cds
Hsa.27560 T61609 14-3-3-like protein GF14 omega (Arabidopsis thaliana)
Hsa.1731 T62220 g3 heavy chain disease OMM protein mRNA
Hsa.896 T51574 P37879 lysyl-tRNA synthetase
Hsa.25536 T48041 Phospholipase A2, membrane associated precursor (human)
Hsa.35528 T96832 Inhibin b A chain precursor (M. musculus)
Hsa.1258 H54676 JC2042 SUI1 translation initiation factor
Hsa.36657 R86975 Of Drosophila discs large protein, isoform 2 (hdlg-2) mRNA, complete cds
Hsa.3280 T63258 Calcium/calmodulin-dependent protein kinase type II delta chain (R. norvegicus)
Hsa.2359 T57619 Merozoite surface antigens precursor (Plasmodium falciparum)
Hsa.41247 T88723 For RNA polymerase II associated protein RAP74
Hsa.15115 R36455 ATP synthase g chain, mitochondrial precursor (human)
Hsa.45499 T61602 IG kappa chain precursor V-III region (human)
Hsa.19143 T58861 Polymerase II subunit hsRPB7 mRNA, complete cds
Hsa.1672 U21909 For protein kinase C-g (partial)
Hsa.168 T61661 60S Ribosomal protein L7 (human)
Hsa.587 T52015 CD63 antigen (human)
Hsa.3086 H24754 Farnesyl pyrophosphate synthetase (human)
Hsa.3026 H22688 Synthase subunit B, brain isoform (human)
Hsa.4907 T93094 Protein kinase CEK1 (Schizosaccharomyces pombe)
Hsa.209 T51560 General negative regulator of transcription subunit 1 (Saccharomyces cerevisiae)

Genes in bold are present in the K-class unsupervised NBGR top 50 shown in Table 2.
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known tumor or nontumor labels (K 5 2). Profilin I
and calpactin I light chain are the only genes in com-
mon to the K 5 2 supervised NBGR top 50 (Table 6)
and the K-class unsupervised NBGR top 50 (Table 2).
Since they are highlighted as being important by two
independent ranking schemes, these genes may be
noteworthy markers. Biologically, they suggest that
regulation of cell morphology via control of cell adhe-
sion and cytoskeletal molecules could be important
factors in understanding colon adenocarcinoma biol-
ogy.

The results indicate that ranking and selecting
markers that distinguish tumor from nontumor speci-
mens is best achieved by estimating the number of
underlying experiment profile vector classes rather
than assuming the presence of K 5 2 classes sug-
gested by the observed phenotype. Given a method for
generating (disjoint) classes of profile vectors such as
gene shaving (19), other K-class unsupervised NBGR
rankings could be determined. The performance of
feature subsets derived from such NBGR-based rank-
ings as well as alternative methods for calculating
feature relevance are areas for future research. For
example, the Bayesian technique known as automatic
relevance determination (ARD) (MacKay DJC and
Neal RM, unpublished observations) uses labeled data
to compute a regularization coefficient for each feature;
large values signify variables that are less relevant to
the decision. These coefficients could be used to rank
genes.

DISCUSSION

Here, a modular framework for the analysis of mo-
lecular profile data and domain knowledge was pro-
posed as a method for understanding basic mecha-
nisms and developing decision support systems for
diagnosis, prognosis, and monitoring. Specific genera-
tive (graphical models) and discriminative (SVMs)
methods were suggested as techniques for addressing
tasks associated with certain modules. Published six-
ty-two 1,988-feature experiment profile vectors from
colon adenocarcinoma tissue specimens labeled as tu-
mor or nontumor were analyzed using a combination of
an unsupervised (naive Bayes model) and supervised
(SVM) learning methods. Putative tumour subtypes
were identified, “tumor” or “nontumor” labels were
assigned to new specimens, and six potentially misla-
beled specimens were detected. The profile vector
classes discovered and characterized by the naive
Bayes model were used as the basis for feature selec-
tion. SVMs trained using feature subsets derived from
these rankings had the same or better generalization
performance than the full repertoire of 1,988 genes.
Approximately 90 biologically plausible marker genes
were pinpointed for use in understanding the etiology
of colon adenocarcinoma, defining targets for therapeu-
tic intervention, and developing diagnostic tools.

A more thorough interpretation of and explanation
for the results would be possible if information such as
the sizes, sites, and disease stages of cancer for the

tumors and patient histories were available. Given
such information, the gene expression measurements
could be correlated with potential clinical outcomes
such as radiosensitivity and response of the tumor to
chemotherapy. The strategy utilized here is suffi-
ciently general that it can be applied to other transcrip-
tion profiling studies as well as other types of molecu-
lar profile data.

The results reiterate the importance of controlling
and optimizing the experimental techniques used to
obtain and handle in vivo specimens because of their
impact on the information that can be extracted. The
aforementioned markers implicate the microenviron-
ment, cell-matrix interactions, cell-cell communica-
tion, and the immune system as key factors that dif-
ferentiate nontumor from tumor colon adenocarcinoma
tissue specimens. It remains to be seen whether tran-
scription profiles derived from cell lines or cultures
would have highlighted the role of tissue biology in this
disorder. It will be necessary to compare tumor and
nontumor specimens with those from individuals hav-
ing no record of adenocarcinoma. Arrays containing the
full complement of human genes and not just the se-
lected set employed here are likely to reveal additional
marker genes. For the purpose of developing and using
a robust decision support system, it is critical that
collection and preparation of all specimens conform to
a standardized procedure in order to minimize hetero-
geneity in the cell types assayed.

Learning biologically realistic networks from data
even with the aid of domain experts remains a chal-
lenging task. This stems from the nature and quality of
the available data, theoretical issues of learning mod-
els with large numbers of noisy variables, and efficient
implementations of the modeling methods. For exam-
ple, mRNA transcript and protein levels are not neces-
sarily correlated (18). Clearly, genetic networks in-
ferred from molecular profile data alone will be
insufficient to understand many aspects of the behav-
ior of cells and tissues. Nonetheless, the results in this
and related work (8, 35) suggest that the framework
and techniques proposed here have the potential for
creating robust decision support systems and learning
plausible networks. The successful integration of dis-
criminative and generative methods in the analysis of
molecular sequence data (21, 34) augers well for their
application to molecular profile data.
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