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Abstract

A new method of discovering the common secondary
structure of a family of homologous RNA sequences
using Gibbs sampling and stochastic context-free
grammars is proposed. (liven an unaligned set of se-
quences, a Gibbs sampling step simultaneously esti-
mates the secondary structure of each sequence and
a set of statistical parameters describing the common
secondary structure of the set as a whole. These pa-
rameters describe a statistical model of the family. Af-
ter the Gibbs sampling has produced a crude statisti-
cal model for the family, this model is translated into a
stochastic context-free grammar, which is then refined
by an Expectation Maximization (EM) procedure 
produce a more complete model. A prototype imple-
mentation of the method is tested on tRNA, pieces of
16S rRNA and on U5 snRNA with good results.

Introduction

Tools for analyzing RNA are becoming increasingly im-
portant as in vitro evolution and selection techniques
produce greater numbers of synthesized RNA fami-
lies to supplement those related by phylogeny. Two
principal methods have been established for predict-
ing RNA secondary structure base pairings. The first
technique, phylogenetic analysis of homologous RNA
molecules (Fox & Woese 1975; Woese el al. 1983;
James, Olsen. & Pace 1989), ascertains structural fea-
tures that are conserved during evolution. The second
technique employs thermodynamics to compare the
free energy changes predicted for formation of possi-
ble s,’covdary structure and relies on finding the struc-
ture with the lowest free energy (Tinoco Jr., Uhlen-
beck, & Levine 1971: Turner, Sugimoto, & Freier 1988;
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Gouy 1987; Zuker 1989). When several related se-
quences are available that all share a common sec-
ondary structure, combinations of different approaches
have been used to obtain improved results (Water-
man 1989; Le & Zuker 1991; Han& Kim 1993;
Chiu & Kolodziejczak 1991; Sankoff 1985; Winker et
al. 1990; Lapedes 1992; Klinger & Brutlag 1993;
Gutell et aL 1992).

Recent efforts have applied Stochastic Context-Free
Grammars (SCFGs) to the problems of statistical
modeling, multiple alignment, discrimination and pre-
diction of the secondary structure of RNA families
(Sakakibara el al. 1994; 1993; Eddy & Durbin 1994;
Searls 1993). This approach is related to use of Hid-
den Markov Models (HMMs) to model E. coli DNA
(Krogh, Mian, & Haussler 1993) and protein families
and domains (Krogh el al. 1994; White, Stultz,
Smith 1994; Baldi el al. 1994). It incorporates el-
ements of both the thermodynamic and phylogenetic
approaches, with emphasis on the latter. The method
of Sakakibara el al (Sakakibara el al. 1994; 1993) re-
quires some initial knowledge of the common secondary
structure of the sequences in the family. In contrast,
Eddy and Durbin (Eddy & Durbin 1994) derive the
structure of the grammar directly from unaligned se-
quences and estimate the probability parameters of
the resulting grammar using Expectation Maximiza-
tion (EM). Here we propose a different method for de-
riving the structure of the grammar from unaligned se-
quences which uses Gibbs sampling techniques (Geman
& Geman 1984) described in (Lawrence et al. 1993;
1994). It is related to the EM methods described in
(Neal & Hinton 1993) (incremental EM) and (Meng
,_~ Rubin 1992) (Partitioned Expectation/Conditional
Maximization, or PECM).

The Gibbs sampler we propose simultaneously esti-
mates the secondary structure of each sequence and
a statistical model of the family with parameters de-
scribing the consensus secondary structure of the set
as a whole. In particular, we estimate the number of
helices, the length of each helix, the probability that a
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helix is present, and the general nesting pattern of the
helices. Furthermore, for each base-pair in each helix,
a separate probability distribution over the 16 possi-
ble nucleotide pairs that could occur is estimated. The
Watson-Crick pairs have much higher a priori proba-
bilities in this estimation, but non-Watson-Crick pairs
are also allowed, with appropriately small probabili-
ties. Since these probabilities are estimated from the
sequences, they are also influenced by phylogenetic
relationships among the sequences The phylogenetic
relationship guides the development of the statistical
model in a large part through these probability pa-
rameters. In addition to parameters involving helices,
parameters relating to the lengths of loops and other
features are also estimated. When the Gibbs sampling
has produced a crude statistical model for the family,
this model is translated into a SCFG which is then
refined by an EM procedure to produce a more com-
plete model, as described elsewhere (Sakakibara el al.
1993). A prototype implementation of the method is
tested on tRNA, pieces of 16S rRNA, and U5 snRNA.

Methods
Since this work builds on modeling RNA families with
SCFGs (Searls 1993; Eddy & Durbin 1994; Sakakibara
et ai. 1993), we provide a review of this method first.

SCFG Overview
A grammar is a set of productions or rewrite rules. An
example of an RNA grammar is shown in Figure 1 (in
practice, a grammar would have many more produc-
tions). The symbols Si are called nonterminal sym-
bols and So is the star1 symbol. The letters A,C,G,U
are called terminal symbols and each represents a nu-
cleotide. A grammar can be used to derive a set of
RNA molecules. A molecule is derived by starting
with the start symbol, and then repeatedly choosing
a nonterminal symbol in the current molecule, finding
a production in the grammar that has that symbol on
the left hand side, and replacing that symbol in the
molecule with the symbols on the right hand side of
the production (this is termed applying the produc-
tion), until there are no more nonterminals left in the
molecule. A typical derivation is illustrated in Fig-
ure 2. When a production is applied, the left hand side
nonterminal is shown with lines emanating from it to
each of the symbols in the right hand side. The result is
called a derivation tree, which can be seen by ignoring
the dashed line. Ignoring the nonterminals (imagining
that they really were replaced), leaves only the derived
RNA molecule. The primary structure of the molecule
is seen by tracing the letters from left to right along
the frontier of the tree (dashed line). The secondary
structure can be seen by highlighting the branching
links between nucleotides that are derived from pro-
ductions of the form Si "-* XSjY, where Si and Sj are
nonterminals and X and Y are nucleotides. These pro-
ductions define the base-pairing in the molecule. Con-
tiguous sequences of these base-pairs are helices (each

p={

Figure 1: This set of productions P generates
RNA sequences with a certain restricted structure.
S0, S1,...,Sla are nonterminals; ,t, u, G and C are
terminals representing the four nucleotides.

"’~ so ¢/" H has 3 members, H1, H2, and HS.

,., i _s~. " The position and length variables for
I,t ~j,\~. H1

this particular sequence are:
~/~2",4, ., .,

-" ss ", A ¯1. B .18,1H11=2.
.2 .~ / ~ "-. s, s,

/ /s4
,~---u 113 m H=,c~.=/ \._. /\ ",^ A =a, S -8, IH21=2.

, st a .. /sl( --. A -lo, B .15,1H31-3.
, " , ’../ ’~ ~ S! Sl
¯ /~7~-sa ~ "’. S12~Sls ]°, x, <

Figure 2: Derivation tree for the RNA sequence
CkUCAGGGAAGAUCUCIKIG using the grammar whose pro-
ductions are given in Figure 1. The dashed line shows
the primary sequence and 7~ is the set of helix models.
The 3 helix regions are HI, H2 and H3, and the nest-
ing structure is "(00)" with H1 enclosing the others.

such helix we will later denote by H). The nesting
structure of the helices is apparent in the derivation:
reading the sequence left-to-right, the bottom two he-
lices are clearly nested within the topmost helix, giving
the nesting "(00)’.t

For each nonterminal, placing a probability distri-
bution over the productions with that nonterminal on
the left hand side, enables the selection of an appropri-
ate production at random every time a rule is applied
(nonterminal is replaced). The result is Stochas-
tic Context Free Grammar (SCFG). An SCFG de-
fines a probability distribution over a family of RNA
molecules, where here, for simplicity, we identify an
RNA "molecule" with its primary sequence and sec-
ondary structure. The probability of a molecule is
the probability that it will be derived in a random
derivation, assuming each production is chosen inde-
pendently. Hence an SCFG defines a stochastic model
for the family. In (Sakakibara el al. 1993), SCFG mod-
els were used to determine the most likely secondary

I Context-free grammars can only represent secondary
structure with properly nested helices; they cannot repre-
sent pseudoknots. When we model a family with pseudo-
knots, these are currently ignored.
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structure for an RNA sequence from a family, and to
discriminate sequences in the family from those not in
the family. An Expectation Maximization (EM) algo-
rithm was then used to estimate the probabilities of
the productions of an SCFG from unaligned training
sequences. We use these same methods here.

Gibbs Sampling for common RNA secondary
structure
The Gibbs sampler we use applies a variant of the
method of Lawrence and colleagues (Lawrence et al.
1994) to locate helices in RNA molecules. Let S be 
set of ISI sequences (each individual sequence S E 
has its own length, ISI) with similar secondary struc-
ture. Let .hf be four parameters representing the prob-
abilities of each of the four nucleotides in the RNA
family from which the sequences in S are drawn. We
refer to these parameters as the null model. Let 7/ be
a set of ]7-/] helix models and H E 7"/ denote an indi-
vidual helix model. Helices H in 7-/ are intended to
be specific parametric models of the helices that are
common to the sequences in S. Associated with each
helix H are the parameters IHI, its length in base-pairs,
r n, a matrix of parameters specifying the probability
of occurrence for each of the 16 possible pairs of nu-
cleotides that could occur in each base-pair of H, and
pH the probability that H is present in a sequence in
the family. Associated with 7/ is a tree structure rep-
resenting the nesting relationships among the helices
in 7"/. Collectively, these parameters of 7/form a crude
statistical model of the sequence family (defined more
formally below). The goal is to estimate the structure
and parameters of this model from the family of se-
quences S. 7/ is then used to create a grammar for
this family and a more sophisticated parametric model
in the form of a SCFG.

Consider the sequence in Figure 2. If this sequence
has the typical secondary structure for sequences in its
family, then the 7-/for this family would have 3 individ-
ual helix models, HI, H2 and H3 with the lengths as
shown and would specify how they are nested: H2 and
H3 are totally enclosed by HI. The locations of these
helices in this particular sequence are also shown.

In order to define fully the statistical model repre-
sented by 7-/, and to estimate 7"/ from the data S, it
is necessary to consider the "missing data" consisting
of the set of hidden random variables that define the
location of each helix within each sequence S. Let Si
denote the i-th nucleotide of a sequence S and Si .4 the
subsequence with endpoints Si and Sj. The location
of a helix H within a sequence S requires knowledge
about both sides of the helix. These helix location pa-
rameters are denoted AsH and Bff. The first (5’) side 
a helix maps to the substring SA~...A~+IHI-1 and the

other (3’) side maps to the substring SB~...B~+IHI_1.
Refer to Figure 2 for an example. The variables AsH
and BH are 0 if the helix H does not occur in sequence
S. Xs denotes the set of location variables An and BsH

for all helices in the sequence S, and we let X denote
the set of all Xs.

We can formally define the manner in which 7"/is a
(crude) statistical model of a family of RNA sequences
using the hidden variables X. For a given sequence S,

P(SI~/) = P(S]Xs, 9t )P(Xs I~
xs

where P(S]Xs, 7t) is the probability of observing the
sequence 5’ given the particular placement Xs of the
helices in S. Assuming independence, this is simply
the product of the probabilities of each of the base-
paired pairs of nucleotides in S, calculated using the
parameters rH, times the product of the probabilities
of all the remaining nucleotides in S not placed in the
helices, calculated using the parameters Af of the null
model. The term P(Xs[?’l) is the prior probability of
the placement Xs, which is 0 for any placement that
violates the nesting structure of "H, and otherwise is
proportional to the product of terms that are pn for
each helix H that is placed in S and 1 - pH for each
helix not placed.

The aim of our approach is to estimate the parame-
ters in 7i from S. The method we use is Maximum A
Posleriori (MAP) estimation, implemented by a Gibbs
sampler/incremental EM method: We seek 7/ that
maximizes P(’H]8). By Bayes rule, this is equivalent
to maximizing P(7-/)P(8]7/) = P(7~) l-Is~8 P(S[7-/).
The terms P(S]7"/) in the latter product are defined
above. The prior P(7/) we define to be uniform (or
"uninformed") in all parameters, except for the param-
eters r H that define the frequencies of the 16 possible
nucleotide pairs in a given base paired position. For
each of these we use a specific Dirichlet prior that we
estimated from analysis of 16S rRNA multiple align-
ments (Sakakibara el al. 1993). During estimation,
these guide the Gibbs sampler to position helices in
appropriate places in the sequences, and greatly im-
prove the results.

Currently we use a simple greedy method, described
in the next section, to initially estimate the number of
helices, their lengths and their nesting structure. Sev-
eral candidate structures may be produced. For each
of these, the Gibbs sampler is then used to compute an
estimate of 7/, and the best of these solutions is kept.

The sampling method we use maintains a placement
Xs of the helices from 7-/ in each sequence S E ,.q,
along with current estimates of all the parameters in
7~. At each step, a single helix H in a single sequence
S is chosen at random, removed from S, and replaced
at random back into S. The replacement is done ac-
cording to the conditional distribution over all possible
locations for the replacement given the current values
of the parameters in 7"/and the current positions of the
other helices in S. The parameters in 7l are then rees-
timated given the current placement of all helices in all
sequences. 2 Apart from it’s close similarity with the

2In the current implementation, the parameters in 7i are
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Gibbs sampler of (Lawrence et al. 1994) which it was
modeled on, this system can also be viewed as a hy-
brid of the incremental EM method discussed in (Neal
&: Hinton 1993} and the PECM method of (Meng 
Rubin 1992).

in the course of Gibbs sampling, we also obtain esti-
mates for the hidden variables ,l" giving the locations
of the helices in each sequence. The Gibbs sampler can
be annealed as in (Geman & Geman 1984) to make ,l’
approach MAP estimates. Hence the Gibbs sampler
can be used alone to try to determine the secondary
structure of each of the sequences. This is a direct ex-
tension to RNA of the Gibbs sampling approach for
proteins described in (Lawrence et al. 1994). How-
ever, the model 7/ used by the Gibbs sampler does
not allow the length of a helix to vary between se-
quences, nor does it currently have any sophisticated
parametric models for the loop regions. In contrast,
SCFG models include all the parameters of the Gibbs
sampling models plus site specific insertion and dele-
tion probabilities for base-pairs within helices. More
importantly, SCFG models have detailed parameteric
models of each loop, including conserved nucleotides,
average length and site specific insertion and deletion
probabilities. Thus we expect to obtain more accu-
rate secondary structure predictions from these SCFG
models, at least when proper Bayesian methods are
used to avoid overfitting the sequence data.

We have developed a program that translates the
parametric model 7/ produced by the Gibbs sampler
to a stochastic context free grammar G. The initial
values of the parameters in G that cannot be obtained
from 7-/ are set according to an appropriate prior dis-
tribution. Then, using the same sequences S, the EM
algorithm described in (Sakakibara et ai. 1993) (called
Tree-grammar EM) is used to obtain a MAP estimate
of the parameters of G using the same prior. Implicit
in this estimation is a reestimation of the hidden ran-
dom variables A" that give the locations of the helices
in each sequence. Generally, we obtained improved es-
timates in this way. However, since the length of a
helix varies from sequence to sequence in the place-
ment assigned by the SCFG model, the final locations
of the helices cannot be specified by the simple random
variables AsH and BH defined above.

reestimated according to the mean (not the mode) of their
posterior distribution given sufficient statistics (i.e. counts)
from the current placement of the helicies and the paxam-
eters of the Dirichlet priors. Since the counts change little
in each replacement, this cMculation is efficient. Counts for
the helix that is being replaced are subtracted from the to-
taJ counts when it is removed, the parameters of the model
are reestimated before the conditional distribution on pos-
sible replacement locations is calculated, and then the new
counts from the replacement added back to the total counts
after the replacement, as in (Lawrence et al. 1994).

Implementation of the method
The current implementation of our model construction
algorithm has three parts: the development of an ini-
tial model 7-/, a Gibbs sampling placement of the he-
lices in 7/ in each sequence and re-estimation of the
parameters of 7/, and the generation and training of
a SCFG with Tree-Grammar EM (Sakakibara et ai.
1993). We use a massively parallel computer to speed
the process (a MasPar MP-2204).

Development of an initial model While it is pos-
sible in principle for a Gibbs sampler with an appro-
priate prior and some kind of "model surgery" method
similar to that used in (Krogh el al. 1994) to arrive at 
correct helix model 7/starting from an empty model,
this method would be time consuming and prone to
falling into local minima. For this reason, we set out
from the start to develop an alternative method for
finding a good initial model 7/.

Our method works by first finding likely helices in
each sequence individually (making use of the prior
base pairing statistics drawn from 16S rRNA (Sakak-
ibara el al. 1993)) and then selecting a dominant nest-
ing structure among those generated for each sequence
in S. The initial per-sequence search is a fast top-down
parsing heuristic. In the first step, for all possible he-
lices of length 4-14 and locations of the helix sides, we
compute the numbers of bits saved (in the minimal-
length encoding sense) by encoding the bases of the
helix jointly as base-pairs rather than as independent
bases. Our encoding is based on the null model proba-
bilities of bases (denoted Af) and the prior base-pairing
probabilities (r n) mentioned above. That is, for a
given H E 7/, and all possible starting positions AsH

and BH, we compute the number of bits required to
encode the helix positions assuming the helix informa-
tion

Inl
- log2 P(SAns+i_I *-~ SBs-+lnl_ilrn), (1)

i=l

where ~ denotes base-pairing, and, as the null model,
the number of bits required to encode the two sequence
segments independently of each other

Igl

-- log2 P(Sans+i_l [Af) log2 P(SBff+,_11Af), (2
i=1

and we take the difference of these two numbers. Fig-
ure 3 shows examples of this cost function. The helix
position that saves the highest number of bits is the
winner, and ties are broken arbitrarily.

Because of our requirement for proper helix nesting,
each location of a helix breaks the sequence into two
regions where additional helices could be: the outside
(the concatenation of S1...An_I with SBns+IHI...ISl) and

the inside (Sasn+lnl...Bs, 1) of the current helix (Fig-
ure 4). These two regions are then considered indepen-
dently and recursively, and a possible nesting structure
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o, .I .. o I I
UGACCGCCCAGGG UGACCGCCCAGGG

Figure 3: Cost flmction, as defined by equation 2, of
pairing a specific motif to a sequence. The ordinate
is the number of bits saved (or goodness of fit) in ar-
bitrary units, if the motif started at that point in the
sequence. A peak indicates a starting location where
the inotif has a likelihood of pairing. The lefthand side
shows pairing the motif GU, and the righthaud side
C(JC, to the sequence shown oil the abscissa. GU will
like best to pair with CA, second best with CG, third
best with U(, (as indicated by our Dirchlet priors and
as seen in graph). CC(~ would like best to pair with
(;G(;, and there is only one position in the sequence
where there are three (’is in a row.

is constructed. The recursion ternfinates when either a
region is too small (fewer than 4 bases), or when plac-
ing a new helix results in no encoding-length savings
over not placing that helix.

Figure 4: When two parts of a sequence are determined
to be base paired (shaded boxes), the inside region 
becomes independent from the outside regions L and
R. Searching for base pairs then focuses on region 1,
and the concatenation of L and R.

Structure Number Structure Number
(()()()) 43 (()()) 16
((())) 9 ((())()) 8
(((()))) 6 (0()()()) 4
(()(())) 4 ()()() 2
(()())() 1 ((()0)0) 1
((()())) 1 ((()))() 1
(()((()))) 1 ((0)()()) 1
(()(())()) 1 ()(()()) l

Figure 5: Nesting structures produced by the greedy al-
gorithm for 100 tRNA sequences. The correct cloverleaf
tRNA nesting structure, "(0()())", clearly dominates, 
the second most common is this structure with one helix
removed.

After completing this process on all sequences, the
resulting nesting structures are compared, and the
number of occurrences of each nesting type is tabu-
lated (Figure 5). From these, a single dominant, 
most frequently occuring, nesting structure is chosen
for use in the Gibbs sampleing phase.

Refillelnent with Gibbs Sampling When trying to
estimate the secondary structure of the sequences di-
rectly from the Gibbs sampler without using a SCFG,
the goal is to estimate the locations ,l’ of all helices
in the model in all sequences in 8. During this phase
the nesting structure of the helix model 7~ is fixed.
We explored letting the helix lengths IHI be variable
(i.e. re-estimated during sampling) and holding them
fixed. We examined re-estimating the helix probability
parameters pH and the base-pair probability matrices
rH and holding them fixed to the mode of the prior.
There is a "freezing" option in which as soon as the
placement Xs of the helices of the model 7/ on a se-
quence ,5’ fits the nesting structure, S is removed from
future consideration by the Gibbs sampler and Xs is
"frozen". In this case we rely on the SCFG produced
in a later stage to reliably reestimate the secondary
structure of S in cases where its structure is frozen in
to a suboptimal configuration.

(liven a current placement Xs for the helices on a
sequence S’, the inner loop of the Gibbs sampling phase
for ,5" consists of selecting uniformly at random H E 7-/
and modifying its position. For each possible reposi-
tioning X~; of H in the sequence o°, including the case
when H does not occur in S, we calculates

P( SIX~s, 7~)P( X~s[7-I)
P(XlXs, U)P(Xs In) (a)

These numbers are then normalized to sum to 1, to
generate a posterior distribution over repositionings.
This distribution will look very similar to those in Fig-
ure 3, where the abscissa indicates a pair of sequence
starting positions. A new location for helix H in se-
quence % is then selected at random from this distribu-
t.ion, and it will probably be one of the highly favored
positions that correspond to the peaks in the distribu-
tion.

Normally, we only consider repositionings of H that
do not overlap the current positions of the other helices
in 5’ and are consistent with the nesting structure in 7-/.
tlowever, we obtain improved results if a repositioning
of H may overlap another helix. In this case this other
helix is simply removed, and (3) is calculated for the
resulting X~. When the parameters of 7/are not held
fixed during the Gibbs sampling, these parameters are
re-estimated after each of the above helix replacements
using the same method as in (Lawrence el al. 1994),
employing the Dirichlet priors in the case of the rn
parameters.

For each S E 8, a phase of the Gibbs sampling
consists of performing the inner loop helix replace-
ment a sufficient number of times to allow all helices
several chances at repositioning within S (experimen-
tally, 717-/I). If the "freezing" option is turned on, se-

aActually, there is a slight adjustment to the parameters
in 7"( when the counts for the position of the helix H in 
are decremented due to its removal, as in (Lawrence et al.
1994).
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quences that match the dominant structure to start
with require zero Gibbs phase iterations. The num-
ber of phases required to reach the point where few,
if any, additional sequences are fit is very data depen-
dent (around 4 phases for tRNA, and 15 or more for U5
snRNA). This is due to the presence of variant struc-
tures in the sequences. If some sequences lack some
helices or the helices are of widely varying lengths, it
is difficult for the sampler to identify where these he-
lices fit in the overall model.

Training and evaluating the SCFGThe initial
SCFG for this part of the method is formed from the
Gibbs sampling model 7-/ by considering only the se-
quences in S that match the dominant helix nesting
structure. First, the helix productions of the gram-
mar are generated based on the nesting structure and
helix lengths found in 7-/. In our current implementa-
tion, the initial probabilities for each helix position are
taken only from the prior distribution; in the future,
we will transfer position-dependent base pairing statis-
tics from the Gibbs sampler to the SCFG. The length
of the loop regions between the helices are estimated
as the arithmetic mean of the loop regions across the
sequences.

The grammar is then trained using the entire se-
quence set S (including the ones the Gibbs sampler
was unable to match to the dominant nesting struc-
ture). The parser associated with the SCFG training
algorithm is used to determine the final estimate of
the secondary structure of each sequence based on the
trained grammar, see (Sakakibara el ai. 1993).

Software. implementation The MasPar MP-2204 at
UCSC is a single instruction stream, multiple data
stream (SIMD) parallel computer with 4096 32-bit pro-
cessing elements arranged in a 64 x 64 grid (Nick-
olls 1990). It provides fast evaluation of all possi-
ble helix locations during our greedy model creation
step. One processing element can be assigned to each
of the O(n2) possible positions of helices of length
l, and all positions are evaluated in parallel in O(l)
time. The minimum-cost position, following the greedy
paradigm, is then located in O(logn) time and re-
ported to the controlling program. Gibbs sampling
iterations benefit in the same way.

Experimental Results

For tRNA, U5 snRNA, and parts of E. coil 16S rFtNA,
we produced helix nesting models (i.e. 7t) using the
Gibbs sampler. In the case of tRNA, this was trans-
lated to a SCFG followed by refinement using Tree-
Grammar EM. All experiments used the freezing op-
tion and fixed helix lengths in the Gibbs phase (lengths
having been determined in the greedy phase).

tRNA In our previous studies of tRNA (Sakakibara
et al. 1993), we employed a hand generated helix
nesting structure that captured fine details of tRNA

structure. We would not expect the SCFG generated
from the results of the Gibbs sampler to achieve the
same level of detail for this or any other RNA family.
However, if the nesting structure and estimates of the
helix and loop lengths are fairly reasonable, we hoped
that the Tree-Grammar EM algorithm would learn suf-
ficient details to produce a sensitive discriminator.

Sequences were taken from a database that includes
tRNAs from virus, archaea, bacteria, cyanelle, chloro-
plast, cytoplasm and mitochondria (Steinberg, Misch,
& Sprinzl 1993). We used l0 sequences chosen at
random from 1222 tRNAs to produce a helix nesting
model which was then translated into a SCFG. The
results were essentially insensitive to the number and
choice of the sequences ie. similar results were obtained
when the data set consisted of 4 to 100 sequences. This
Gibbs grammar was compared to the hand generated
nesting structure from our earlier work (Sakakibara et
al. 1993). Both nesting structures were similar clover-
leaf structures and corresponding helices had similar
lengths (Figure 6). Starting from the Gibbs generated
grammar, we repeated our earlier experiments that
used the training set MT10CY10 and Tree-Grammar EM
(Sakakibara el al. 1993) to produce a discriminator.
This discriminator (which was totally automatically
produced, the only human input was choosing the ini-
tial sequences) was not as sensitive as our previous one,
but is still remarkably good (Figure 7).

16S rl%NA We examined three regions of 16S rRNA
corresponding to nucleotides 588 to 880 in E. coil 16S
rRNA (Woese et al. 1980; Noller & Woese 1981;
Woese el al. 1983; Gutell et al. 1985). For each of
the three segments, we used the Gibbs sampler to pro-
duce helix nesting models for four sequences (E. coil
and three archaea) taken from the RDP (Larsen el
al. 1993). Figure 9 shows the three regions along with
the consensus structure produced from their respective
Gibbs sampler models. Although Gibbs sampling pro-
duced a very good nesting structure, each individual
sequence can differ from the standard.

U5 snRNA snRNAs are expected to be more diffi-
cult than tRNA and 16S rRNA because the structures
change dynamically in vivo and strong static secondary
structures may not be so prominent (Guthrie ~z Pat-
terson 1988; McKeown 1993; Wise 1993). We used 34
U5 snRNA sequences (Guthrie, Roha, & Mian 1993) 
produce helix nesting models (Figure 8). Gibbs sam-
piing finds the accepted secondary structure (Guthrie
~: Patterson 1988) with the addition of one extra stem
(stem X).

Discussion
We have described a new method to help deter-
mine the common secondary structure of homologous
RNA molecules from a set of unaligned sequences us-
ing Gibbs sampling techniques similar to those that
have been applied to proteins (Lawrence et al. 1993;
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1994). The method is used to estinaate tile numbers,
lengths and nesting structure of RNA helices in related
RNA sequences. Previously, we relied on hand gener-
ated grammars to derive the structure of the grammar
from unaligned primary sequences (Sakakibara el al.
1993). The novel aspect of the Gibbs sampling ap-
proach is that this task is performed automatically.
The resulting crude statistical model is then trans-
lated into a SCFG and subsequently refined using EM.
Since the model probabilities are computed from the
sequences themselves, the phylogenetic relationships
guide development of the model. While we have not ex-
I)lored the method completely yet, it has been applied
with some success to tRNA, U5 snRNA and regions of
16S rRNA. We had less success in applying it to other
snRNA families and to whole 16S sequences.

()he of the weaknesses of the present method is 
the greedy step to determine the nesting structure of
the helices in the model. For families of longer P~NA se-
quences, with more complex nesting structure, and for
families with more variant structure, this method will
often not produce a clear dominant nesting structure.
We performed experiments in which Gibbs sampling
is used to sinmltaneously estimate the locations and
parameters of many helices without requiring a rigid
eotnlnoll nesting structure. However, the results were
not very promising. It appears that without some kind
of information about the preferred locations of the he-
lices within the sequence, there is too much "noise" in
the form of competing placements for the Gibbs sam-
pler to reliably sort things out. Thus, the method de-
scribed here does not appear to scale up well to larger
RNA rnodeling problems.

In order to address these problems, we are currently
modifying the method to use information from a nml-
tiple alignment of the sequences to suggest the loca-
tions of potential helices in the model and their nesting
structure, and to constrain the search for revised helix
locations during (libbs sampling. We use an IIMM to
align the sequences initially as in (Krogh et al. 1994),
and then later add special penalty functions to this
HMM to encourage base pairing in the helices we have
found.
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