Sonia Marin With Roman Kuznets and Lutz Straßburger

Inria, LIX, École Polytechnique

IMLA'17 July 17, 2017

Justification logic:

Gödel:

What is the classical provability semantics of intuitionistic logic?

Artemov:

Logic of Proofs gives an operational view of this S4 type of provability.

 $\Box A \quad \rightsquigarrow \quad t: A \quad \rightsquigarrow \quad t \text{ is a proof of } A$

Justification logic:

Gödel:

What is the classical provability semantics of intuitionistic logic? Artemov:

Logic of Proofs gives an operational view of this S4 type of provability.

 $\Box A \quad \rightsquigarrow \quad t: A \quad \rightsquigarrow \quad t \text{ is a proof of } A$

Semantics: Peano arithmetics or epistemic possible worlds models Extensions: realisation of logics below and above S4

Justification logic:

Gödel:

What is the classical provability semantics of intuitionistic logic? Artemov:

Logic of Proofs gives an operational view of this S4 type of provability.

 $\Box A \quad \rightsquigarrow \quad t: A \quad \rightsquigarrow \quad t \text{ is a proof of } A$

Semantics: Peano arithmetics or epistemic possible worlds models Extensions: realisation of logics below and above S4

Intuitionistic variants: Some investigations toward

- realisation theorems (Artemov/Steren and Bonelli),
- epistemic semantics (Marti and Studer),
- ▶ and arithmetical completeness (Artemov and lemhoff), but where the modal language is restricted to the □ modality.

Justification logic:

Gödel:

What is the classical provability semantics of intuitionistic logic? Artemov:

Logic of Proofs gives an operational view of this S4 type of provability.

 $\Box A \quad \rightsquigarrow \quad t: A \quad \rightsquigarrow \quad t \text{ is a proof of } A$

Semantics: Peano arithmetics or epistemic possible worlds models Extensions: realisation of logics below and above S4

Intuitionistic variants: Some investigations toward

- realisation theorems (Artemov/Steren and Bonelli),
- epistemic semantics (Marti and Studer),

▶ and arithmetical completeness (Artemov and lemhoff), but where the modal language is restricted to the □ modality.

However, intuitionistically \diamond cannot simply be viewed as the dual of \Box .

We start with Artemov's treatment of the \Box -fragment of intuitonistic modal logic.

We start with Artemov's treatment of the \Box -fragment of intuitonistic modal logic.

 \Box being read as provability, we propose to read \diamondsuit as consistency.

 $\Diamond A \quad \rightsquigarrow \quad \mu : A \quad \rightsquigarrow \quad \mu \text{ is an witness of } A$

We start with Artemov's treatment of the \Box -fragment of intuitonistic modal logic.

 \Box being read as provability, we propose to read \diamondsuit as consistency.

 $\Diamond A \rightarrow \mu: A \rightarrow \mu$ is an witness of A

Intuitionistic modal logic?

We start with Artemov's treatment of the \Box -fragment of intuitonistic modal logic.

 \Box being read as provability, we propose to read \diamondsuit as consistency.

 $\Diamond A \rightarrow \mu: A \rightarrow \mu$ is an witness of A

Intuitionistic modal logic?

The program: represent the operational side of the intuitionistic \diamondsuit .

We start with Artemov's treatment of the \Box -fragment of intuitonistic modal logic.

 \Box being read as provability, we propose to read \diamondsuit as consistency.

 $\Diamond A \rightarrow \mu: A \rightarrow \mu$ is an witness of A

Intuitionistic modal logic?

The program: represent the operational side of the intuitionistic \diamondsuit .

The focus: on constructive versions of modal logic.

Formulas: $A ::= \bot | a | A \land A | A \lor A | A \supset A$

Logic CK: Intuitionistic Propositional Logic

Constructive modal logic

Formulas: $A ::= \bot | a | A \land A | A \lor A | A \supset A | \Box A | \diamond A$

Logic CK: Intuitionistic Propositional Logic

$$+ \begin{array}{c} k_1 \colon \Box(A \supset B) \supset (\Box A \supset \Box B) \\ k_2 \colon \Box(A \supset B) \supset (\Diamond A \supset \Diamond B) \end{array} + \begin{array}{c} \text{necessitation:} \quad \frac{A}{\Box A} \end{array}$$

(Wijesekera/Bierman and de Paiva/Mendler and Scheele)

Justification logic adds proof terms directly inside its language.

 $\Box A \quad \rightsquigarrow \quad t: A \quad \rightsquigarrow \quad t \text{ is a proof of } A$

Justification logic adds proof terms directly inside its language.

 $\Box A \quad \rightsquigarrow \quad t: A \quad \rightsquigarrow \quad t \text{ is a proof of } A$

In the constructive version, we also add witness terms into the language.

 $\Diamond A \rightarrow \mu : A \rightarrow \mu$ is a witness of A

Justification logic

Modal formulas: $A ::= \bot | a | A \land A | A \lor A | A \supset A | \Box A$ Justification formulas: $A ::= \bot | a | A \land A | A \lor A | A \supset A | t : A$

Grammar of terms:

$$t ::= c \mid x \mid (t \cdot t) \mid (t+t) \mid t$$

- c : proof constants
- x : proof variables
- \cdot : application
- +: sum
- ! : proof checker

Modal formulas: $A ::= \bot \mid a \mid A \land A \mid A \lor A \mid A \supset A \mid \Box A \mid \diamond A$ Justification formulas: $A ::= \bot \mid a \mid A \land A \mid A \lor A \mid A \supset A \mid t : A \mid \mu : A$

Grammar of terms:

$$t ::= c \mid x \mid (t \cdot t) \mid (t+t) \mid t$$

- c : proof constants
- x : proof variables
- \cdot : application
- +: sum
- ! : proof checker

Modal formulas: $A ::= \bot \mid a \mid A \land A \mid A \lor A \mid A \supset A \mid \Box A \mid \diamond A$ Justification formulas: $A ::= \bot \mid a \mid A \land A \mid A \lor A \mid A \supset A \mid t : A \mid \mu : A$

Grammar of terms:

- c : proof constants
- x : proof variables
- \cdot : application
- +: sum
- ! : proof checker

Modal formulas: $A ::= \bot \mid a \mid A \land A \mid A \lor A \mid A \supset A \mid \Box A \mid \Diamond A$ Justification formulas: $A ::= \bot \mid a \mid A \land A \mid A \lor A \mid A \supset A \mid t : A \mid \mu : A$

Grammar of terms:

- c : proof constants
- x : proof variables
- \cdot : application
- +: sum

! : proof checker

- α : witness variables
- \star : execution
- \sqcup : disjoint witness union

Axiomatisation JCK:

taut: Complete finite set of axioms for intuitionistic propositional logic jk_{\Box} : $t: (A \supset B) \supset (s:A \supset t \cdot s:B)$

sum: $s: A \supset (s+t): A$ and $t: A \supset (s+t): A$

$$\operatorname{mp} \frac{A \supset B \quad A}{B} \qquad \qquad \operatorname{ian} \frac{A \text{ is an axiom instance}}{c_1 : \dots : c_n : A}$$

Axiomatisation JCK:

taut: Complete finite set of axioms for intuitionistic propositional logic jk_{\Box} : $t: (A \supset B) \supset (s: A \supset t \cdot s: B)$ jk_{\diamond} : $t: (A \supset B) \supset (\mu: A \supset t \star \mu: B)$ sum: $s: A \supset (s+t): A$ and $t: A \supset (s+t): A$ union: $\mu: A \supset (\mu \sqcup \nu): A$ and $\nu: A \supset (\mu \sqcup \nu): A$

$$\operatorname{mp} \frac{A \supset B \quad A}{B} \qquad \qquad \operatorname{ian} \frac{A \text{ is an axiom instance}}{c_1 : \dots : c_n : A}$$

Axiomatisation JCK:

taut: Complete finite set of axioms for intuitionistic propositional logic jk_{\Box} : $t: (A \supset B) \supset (s: A \supset t \cdot s: B)$ jk_{\diamond} : $t: (A \supset B) \supset (\mu: A \supset t \star \mu: B)$ sum: $s: A \supset (s+t): A$ and $t: A \supset (s+t): A$ union: $\mu: A \supset (\mu \sqcup \nu): A$ and $\nu: A \supset (\mu \sqcup \nu): A$

$$\operatorname{mp} \frac{A \supset B \quad A}{B} \qquad \qquad \operatorname{ian} \frac{A \text{ is an axiom instance}}{c_1 : \dots : c_n : A}$$

Application: $jk_{\Box}: t: (A \supset B) \supset (s: A \supset t \cdot s: B)$ If t is a proof of $A \supset B$ and s is a proof of A, then $t \cdot s$ is a proof of B.

Application: $jk_{\Box}: t: (A \supset B) \supset (s:A \supset t \cdot s:B)$ If t is a proof of $A \supset B$ and s is a proof of A, then $t \cdot s$ is a proof of B.

Witness execution: $jk_{\diamond}: t: (A \supset B) \supset (\mu : A \supset t \star \mu : B)$ If *t* is a proof of $A \supset B$ and μ is a witness for *A*, then the same model denoted $t \star \mu$ is also a witness for *B*. **Application:** $jk_{\Box}: t: (A \supset B) \supset (s:A \supset t \cdot s:B)$ If t is a proof of $A \supset B$ and s is a proof of A, then $t \cdot s$ is a proof of B.

Witness execution: $jk_{\diamond}: t: (A \supset B) \supset (\mu : A \supset t \star \mu : B)$ If *t* is a proof of $A \supset B$ and μ is a witness for *A*, then the same model denoted $t \star \mu$ is also a witness for *B*.

Sum and union: $s: A \supset (s+t): A, \mu: A \supset (\mu \sqcup \nu): B, ...$ We adopt Artemov's + to incorporate monotonicity of reasoning, and also transpose it on the witness side with \sqcup . **Application:** $jk_{\Box}: t: (A \supset B) \supset (s:A \supset t \cdot s:B)$ If t is a proof of $A \supset B$ and s is a proof of A, then $t \cdot s$ is a proof of B.

Witness execution: $jk_{\diamond}: t: (A \supset B) \supset (\mu : A \supset t \star \mu : B)$ If *t* is a proof of $A \supset B$ and μ is a witness for *A*, then the same model denoted $t \star \mu$ is also a witness for *B*.

Sum and union: $s: A \supset (s+t): A, \mu: A \supset (\mu \sqcup \nu): B, ...$ We adopt Artemov's + to incorporate monotonicity of reasoning, and also transpose it on the witness side with \sqcup .

Iterated axiom necessitation and modus ponens:

The machinery

Justification logic can internalise its own reasoning.

Justification logic can internalise its own reasoning.

Lifting Lemma:

If A₁,..., A_n ⊢_{JCK} B, then there exists a proof term t(x₁,...,x_n) such that, for all terms s₁,..., s_n

$$\vdash_{\mathsf{JCK}} s_1 : A_1 \land \ldots \land s_n : A_n \supset t(s_1, \ldots, s_n) : B$$

▶ If $A_1, ..., A_n, C \vdash_{\mathsf{JCK}} B$, then there exists a witness term $\mu(x_1, ..., x_n, \beta)$ such that, for all terms $s_1, ..., s_n$ and ν

$$\vdash_{\mathsf{JCK}} \mathsf{s}_1 : \mathsf{A}_1 \land \ldots \land \mathsf{s}_n : \mathsf{A}_n \land \nu : \mathsf{C} \supset \mu(\mathsf{s}_1, \ldots, \mathsf{s}_n, \nu) : \mathsf{B}$$

Forgetful projection: If $\vdash_{\mathsf{JCK}} F$, then $\vdash_{\mathsf{CK}} F^{\circ}$,

where $(\cdot)^{\circ}$ maps justification formulas onto modal formulas, in particular:

$$(t:A)^{\circ} := \Box A^{\circ} \qquad (\mu:A)^{\circ} := \Diamond A^{\circ}$$

Forgetful projection: If $\vdash_{\mathsf{JCK}} F$, then $\vdash_{\mathsf{CK}} F^{\circ}$,

where $(\cdot)^{\circ}$ maps justification formulas onto modal formulas, in particular:

$$(t:A)^{\circ} := \Box A^{\circ} \qquad (\mu:A)^{\circ} := \Diamond A^{\circ}$$

Can we get the converse?

I.e. can every modal logic theorem be realised by a justification theorem.

Forgetful projection: If $\vdash_{\mathsf{JCK}} F$, then $\vdash_{\mathsf{CK}} F^{\circ}$,

where $(\cdot)^{\circ}$ maps justification formulas onto modal formulas, in particular:

$$(t:A)^{\circ} := \Box A^{\circ} \qquad (\mu:A)^{\circ} := \Diamond A^{\circ}$$

Can we get the converse?

I.e. can every modal logic theorem be realised by a justification theorem.

Idea:

Transform directly a Hilbert proof of a modal theorem into a Hilbert proof of its realisation in justification logic.

Forgetful projection: If $\vdash_{\mathsf{JCK}} F$, then $\vdash_{\mathsf{CK}} F^{\circ}$,

where $(\cdot)^{\circ}$ maps justification formulas onto modal formulas, in particular:

$$(t:A)^{\circ} := \Box A^{\circ}$$
 $(\mu:A)^{\circ} := \Diamond A^{\circ}$

Can we get the converse?

I.e. can every modal logic theorem be realised by a justification theorem.

Idea:

Transform directly a Hilbert proof of a modal theorem into a Hilbert proof of its realisation in justification logic.

Problem:

Modus ponens can create dependencies between modalities.

Forgetful projection: If $\vdash_{\mathsf{JCK}} F$, then $\vdash_{\mathsf{CK}} F^{\circ}$,

where $(\cdot)^{\circ}$ maps justification formulas onto modal formulas, in particular:

$$(t:A)^{\circ} := \Box A^{\circ}$$
 $(\mu:A)^{\circ} := \Diamond A^{\circ}$

Can we get the converse?

I.e. can every modal logic theorem be realised by a justification theorem.

Idea:

Transform directly a Hilbert proof of a modal theorem into a Hilbert proof of its realisation in justification logic.

Problem:

Modus ponens can create dependencies between modalities.

Standard solution: Consider a proof of the modal theorem in a cut-free sequent calculus.

Sequent calculus for modal logic

Sequent calculus for modal logic

Sequent system LCK:

Sequent calculus for modal logic

Sequent system LCK:	$A_1,\ldots,A_n\Rightarrow C$	\rightsquigarrow	$(A_1 \wedge \ldots \wedge A_n) \supset C$
$id \ {\Gamma, a \Rightarrow a}$		$^{\perp_{L}}\overline{\Gamma},$	$\perp \Rightarrow C$
$\vee_{L} \frac{\Gamma, A \Rightarrow C \Gamma, B \Rightarrow}{\Gamma, A \lor B \Rightarrow C}$	$\frac{C}{\Gamma} \qquad \bigvee_{R} \frac{\Gamma}{\Gamma \Rightarrow \lambda}$	$\frac{A}{A \lor B}$	$\lor_{R} \frac{\Gamma \Rightarrow B}{\Gamma \Rightarrow A \lor B}$
$\wedge_{L} \frac{\Gamma, A, B \Rightarrow C}{\Gamma, A \land B \Rightarrow C}$	٨	$R \frac{\Gamma \Rightarrow L}{\Gamma} =$	$\frac{A \Gamma \Rightarrow B}{\Rightarrow A \land B}$
$\supset_{L} \frac{\Gamma, A \supset B \Rightarrow A \Gamma, B}{\Gamma, A \supset B \Rightarrow C}$	$\Rightarrow C$	⊃ _R	$\begin{array}{c} A \Rightarrow B \\ \hline \Rightarrow A \supset B \end{array}$

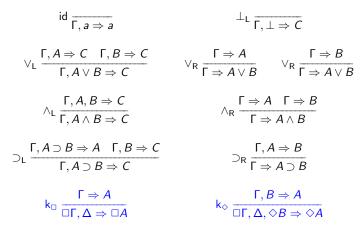
Sequent calculus for modal logic

Sequent system LCK:

id ----- $\perp_{\mathsf{L}} \xrightarrow{\Gamma \to C}$ $\bigvee_{L} \frac{I, A \Rightarrow C \quad I, B \Rightarrow C}{\Gamma \land A \lor B \Rightarrow C} \qquad \qquad \bigvee_{R} \frac{I \Rightarrow A}{\Gamma \Rightarrow A \lor B} \qquad \qquad \bigvee_{R} \frac{I \Rightarrow B}{\Gamma \Rightarrow A \lor B}$ $\wedge_{\mathsf{L}} \frac{\Gamma, A, B \Rightarrow C}{\Gamma \land A \land B \Rightarrow C}$ $\wedge_{\mathsf{R}} \frac{\Gamma \Rightarrow A \quad \Gamma \Rightarrow B}{\Gamma \Rightarrow A \land B}$ $\supset_{\mathsf{L}} \frac{\Gamma, A \supset B \Rightarrow A \quad \Gamma, B \Rightarrow C}{\Gamma \land A \supset B \Rightarrow C}$ $\supset_{\mathsf{R}} \frac{\Gamma, A \Rightarrow B}{\Gamma \Rightarrow A \supset B}$ $k_{\Box} \xrightarrow{\Gamma \Rightarrow A} \prod A$ $\mathsf{k}_{\diamond} \xrightarrow{\Gamma, B \Rightarrow A} \square \Gamma \land \land A \land B \Rightarrow \land A$

Sequent calculus for modal logic

Sequent system LCK:



Soundness and completeness: $\vdash_{CK} A$ iff $\vdash_{LCK} \Rightarrow A$.

Realisation: If $\vdash_{\mathsf{LCK}} A'_1, \ldots, A'_n \Rightarrow C'$, a modal sequent, then there is a normal realisation $A_1, \ldots, A_n \Rightarrow C$ of $A'_1, \ldots, A'_n \Rightarrow C'$ such that $\vdash_{\mathsf{JCK}} (A_1 \land \ldots \land A_n) \supset C$.

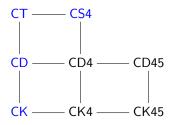
If t: A/µ: A is a negative subformula of A₁,... A_n ⇒ C, then t/µ is a proof/witness variable, and all these variables are pairwise distinct.

Realisation: If $\vdash_{\mathsf{LCK}} A'_1, \ldots, A'_n \Rightarrow C'$, a modal sequent, then there is a normal realisation $A_1, \ldots, A_n \Rightarrow C$ of $A'_1, \ldots, A'_n \Rightarrow C'$ such that $\vdash_{\mathsf{JCK}} (A_1 \land \ldots \land A_n) \supset C$.

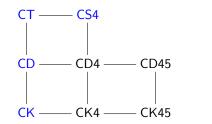
If t: A/µ: A is a negative subformula of A₁,... A_n ⇒ C, then t/µ is a proof/witness variable, and all these variables are pairwise distinct.

The proof goes along the lines of that for the \Box -only fragment.

The operation \sqcup on witness terms plays the same role as the operation + on proof terms, i.e. to handle contractions of modal formulas.

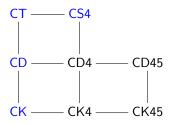


- d: $\Box A \supset \Diamond A$
- t: $(A \supset \diamondsuit A) \land (\Box A \supset A)$
- 4: $(\Diamond \Diamond A \supset \Diamond A) \land (\Box A \supset \Box \Box A)$
- 5: $(\Diamond A \supset \Box \Diamond A) \land (\Diamond \Box A \supset \Box A)$



d: $\Box A \supset \Diamond A$ t: $(A \supset \Diamond A) \land (\Box A \supset A)$ 4: $(\Diamond \Diamond A \supset \Diamond A) \land (\Box A \supset \Box \Box A)$ 5: $(\Diamond A \supset \Box \Diamond A) \land (\Diamond \Box A \supset \Box A)$

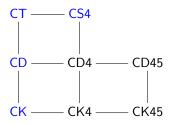
No other operation on witness terms outside execution and disjoint union.



d: $\Box A \supset \Diamond A$ t: $(A \supset \Diamond A) \land (\Box A \supset A)$ 4: $(\Diamond \Diamond A \supset \Diamond A) \land (\Box A \supset \Box \Box A)$ 5: $(\Diamond A \supset \Box \Diamond A) \land (\Diamond \Box A \supset \Box A)$

No other operation on witness terms outside execution and disjoint union. In particular, the \Box -version of 4 requires the proof checker operator !

 $j4_{\Box}$: $t: A \supset !t: t: A$



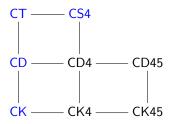
d: $\Box A \supset \Diamond A$ t: $(A \supset \Diamond A) \land (\Box A \supset A)$ 4: $(\Diamond \Diamond A \supset \Diamond A) \land (\Box A \supset \Box \Box A)$ 5: $(\Diamond A \supset \Box \Diamond A) \land (\Diamond \Box A \supset \Box A)$

No other operation on witness terms outside execution and disjoint union. In particular, the □-version of 4 requires the proof checker operator !

 $j4_{\Box}: t: A \supset !t: t: A$

but a priori no additional operation for the \diamond -version of 4.

 $j4_{\diamond}: \mu: \nu: A \supset \nu: A$



d: $\Box A \supset \Diamond A$ t: $(A \supset \Diamond A) \land (\Box A \supset A)$ 4: $(\Diamond \Diamond A \supset \Diamond A) \land (\Box A \supset \Box \Box A)$ 5: $(\Diamond A \supset \Box \Diamond A) \land (\Diamond \Box A \supset \Box A)$

No other operation on witness terms outside execution and disjoint union. In particular, the □-version of 4 requires the proof checker operator !

 $j4_{\Box}: t: A \supset !t: t: A$

but a priori no additional operation for the \diamond -version of 4.

$$\mathsf{j4}_{\diamond}: \mu: \nu: A \supset \nu: A$$

We think that the method here could be further extended, but we would need to prove cut-elimination for the other systems.

Conclusions

In a nutshell:

We introduced witness terms and defined an operator combining proof terms and witness terms to realise the constructive modal axiom k_2 .

Conclusions

In a nutshell:

We introduced witness terms and defined an operator combining proof terms and witness terms to realise the constructive modal axiom k_2 .

Future:

1. Intuitionistic modal logic IK = constructive CK +

 $\mathsf{k}_3: \Diamond (A \lor B) \supset (\Diamond A \lor \Diamond B) \quad \mathsf{k}_4: (\Diamond A \supset \Box B) \supset \Box (A \supset B) \quad \mathsf{k}_5: \Diamond \bot \supset \bot$

No ordinary sequent calculi for such logics, but there are nested sequent calculi for logics without axiom d. (Straßburger)

- adapt the realisation proof for classical nested sequents calculi. (Goetschi and Kuznets)
- 2. Investigate the semantics of the logics we proposed.
 - adapt modular models. (Fitting)

Conclusions

In a nutshell:

We introduced witness terms and defined an operator combining proof terms and witness terms to realise the constructive modal axiom k_2 .

Future:

1. Intuitionistic modal logic IK = constructive CK +

 $\mathsf{k}_3: \Diamond (A \lor B) \supset (\Diamond A \lor \Diamond B) \quad \mathsf{k}_4: (\Diamond A \supset \Box B) \supset \Box (A \supset B) \quad \mathsf{k}_5: \Diamond \bot \supset \bot$

No ordinary sequent calculi for such logics, but there are nested sequent calculi for logics without axiom d. (Straßburger)

- adapt the realisation proof for classical nested sequents calculi. (Goetschi and Kuznets)
- 2. Investigate the semantics of the logics we proposed.
 - adapt modular models. (Fitting)

Thank you. Let's discuss!