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The big picture

Justification logic:
Gödel:
What is the classical provability semantics of intuitionistic logic?
Artemov:
Logic of Proofs gives an operational view of this S4 type of provability.

2A ; t : A ; t is a proof of A

Semantics: Peano arithmetics or epistemic possible worlds models
Extensions: realisation of logics below and above S4

Intuitionistic variants: Some investigations toward

I realisation theorems (Artemov/Steren and Bonelli),

I epistemic semantics (Marti and Studer),

I and arithmetical completeness (Artemov and Iemhoff),

but where the modal language is restricted to the 2 modality.

However, intuitionistically 3 cannot simply be viewed as the dual of 2.
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What are we doing here?

Justifying 3:
We start with Artemov’s treatment of the 2-fragment of intuitonistic
modal logic.

2 being read as provability, we propose to read 3 as consistency.

3A ; µ : A ; µ is an witness of A

Intuitionistic modal logic?
The program: represent the operational side of the intuitionistic 3.

The focus: on constructive versions of modal logic.
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Constructive modal logic

Formulas: A ::= ⊥ | a | A ∧ A | A ∨ A | A⊃ A

| 2A | 3A

Logic CK: Intuitionistic Propositional Logic

+
k1 : 2(A⊃ B)⊃ (2A⊃2B)
k2 : 2(A⊃ B)⊃ (3A⊃3B)

+ necessitation:
A
−−−
2A

(Wijesekera/Bierman and de Paiva/Mendler and Scheele)
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Justification logic

Justification logic adds proof terms directly inside its language.

2A ; t : A ; t is a proof of A

In the constructive version, we also add witness terms into the language.

3A ; µ : A ; µ is a witness of A
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Justification logic

for constructive modal logic

Modal formulas: A ::= ⊥ | a | A ∧ A | A ∨ A | A⊃ A | 2A

| 3A

Justification formulas: A ::= ⊥ | a | A∧A | A∨A | A⊃A | t : A

| µ : A

Grammar of terms:

t ::= c | x | (t · t) | (t + t) | ! t

µ ::= α | t ? µ | (µ t µ)

c : proof constants
x : proof variables

α : witness variables

· : application

? : execution

+ : sum

t : disjoint witness union

! : proof checker
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Justification logic for constructive modal logic

Axiomatisation JCK:

taut : Complete finite set of axioms for intuitionistic propositional logic
jk2 : t : (A⊃ B)⊃ (s : A⊃ t · s : B)

jk3 : t : (A⊃ B)⊃ (µ : A⊃ t ? µ : B)

sum: s : A⊃ (s + t) : A and t : A⊃ (s + t) : A

union: µ : A⊃ (µ t ν) : A and ν : A⊃ (µ t ν) : A

A⊃ B A
mp −−−−−−−−−−−

B

A is an axiom instance
ian −−−−−−−−−−−−−−−−−−−−−−−−−

c1 : . . . cn : A
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The machinery

Application: jk2 : t : (A⊃ B)⊃ (s : A⊃ t · s : B)
If t is a proof of A⊃ B and s is a proof of A, then t · s is a proof of B.

Witness execution: jk3 : t : (A⊃ B)⊃ (µ : A⊃ t ? µ : B)
If t is a proof of A⊃ B and µ is a witness for A, then the same model
denoted t ? µ is also a witness for B.

Sum and union: s : A⊃ (s + t) : A, µ : A⊃ (µ t ν) : B, . . .
We adopt Artemov’s + to incorporate monotonicity of reasoning, and
also transpose it on the witness side with t.

Iterated axiom necessitation and modus ponens:
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The machinery

Justification logic can internalise its own reasoning.

Lifting Lemma:

I If A1, . . . ,An `JCK B, then there exists a proof term t(x1, . . . , xn)
such that, for all terms s1, . . . , sn

`JCK s1 : A1 ∧ . . . ∧ sn : An ⊃ t(s1, . . . , sn) : B

I If A1, . . . ,An,C `JCK B, then there exists a witness term
µ(x1, . . . , xn, β) such that, for all terms s1, . . . , sn and ν

`JCK s1 : A1 ∧ . . . ∧ sn : An ∧ ν : C ⊃ µ(s1, . . . , sn, ν) : B
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Correspondence

Forgetful projection: If `JCK F , then `CK F ◦,

where (·)◦ maps justification formulas onto modal formulas, in particular:

(t : A)◦ := 2A◦ (µ : A)◦ := 3A◦

Can we get the converse?
I.e. can every modal logic theorem be realised by a justification theorem.

Idea:
Transform directly a Hilbert proof of a modal theorem into a Hilbert
proof of its realisation in justification logic.

Problem:
Modus ponens can create dependencies between modalities.

Standard solution:
Consider a proof of the modal theorem in a cut-free sequent calculus.
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Sequent calculus for modal logic

Sequent system LCK:

A1, . . . ,An ⇒ C ; (A1 ∧ . . . ∧ An)⊃ C

id −−−−−−−−−
Γ, a⇒ a

⊥L −−−−−−−−−−−
Γ,⊥ ⇒ C

Γ,A⇒ C Γ,B ⇒ C
∨L −−−−−−−−−−−−−−−−−−−−−−−−

Γ,A ∨ B ⇒ C

Γ⇒ A
∨R −−−−−−−−−−−−

Γ⇒ A ∨ B

Γ⇒ B
∨R −−−−−−−−−−−−

Γ⇒ A ∨ B

Γ,A,B ⇒ C
∧L −−−−−−−−−−−−−−−

Γ,A ∧ B ⇒ C

Γ⇒ A Γ⇒ B
∧R −−−−−−−−−−−−−−−−−−

Γ⇒ A ∧ B

Γ,A⊃ B ⇒ A Γ,B ⇒ C
⊃L −−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ,A⊃ B ⇒ C

Γ,A⇒ B
⊃R −−−−−−−−−−−−

Γ⇒ A⊃ B

Γ⇒ A
k2 −−−−−−−−−−−−−−−

2Γ,∆⇒ 2A

Γ,B ⇒ A
k3 −−−−−−−−−−−−−−−−−−−−

2Γ,∆,3B ⇒ 3A

Soundness and completeness: `CK A iff `LCK⇒ A.
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Main theorem

Realisation: If `LCK A′1, . . . ,A
′
n ⇒ C ′, a modal sequent,

then there is a normal realisation A1, . . .An ⇒ C of A′1, . . . ,A
′
n ⇒ C ′

such that `JCK (A1 ∧ . . . ∧ An)⊃ C .

I if t : A/µ : A is a negative subformula of A1, . . .An ⇒ C , then t/µ is
a proof/witness variable, and all these variables are pairwise distinct.

The proof goes along the lines of that for the 2-only fragment.

The operation t on witness terms plays the same role as the operation +
on proof terms, i.e. to handle contractions of modal formulas.
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Extensions

CT CS4

CD CD4 CD45

CK CK4 CK45

d: 2A⊃3A
t : (A⊃3A) ∧ (2A⊃ A)
4 : (33A⊃3A) ∧ (2A⊃22A)
5 : (3A⊃23A) ∧ (32A⊃2A)

No other operation on witness terms outside execution and disjoint union.
In particular, the 2-version of 4 requires the proof checker operator !

j42 : t : A⊃ ! t : t : A

but a priori no additional operation for the 3-version of 4.

j43 : µ : ν : A⊃ ν : A

We think that the method here could be further extended,
but we would need to prove cut-elimination for the other systems.
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Conclusions

In a nutshell:
We introduced witness terms and defined an operator combining proof
terms and witness terms to realise the constructive modal axiom k2.

Future:

1. Intuitionistic modal logic IK = constructive CK +

k3 : 3(A∨B)⊃(3A∨3B) k4 : (3A⊃2B)⊃2(A⊃B) k5 : 3⊥⊃⊥

No ordinary sequent calculi for such logics, but there are nested
sequent calculi for logics without axiom d. (Straßburger)

I adapt the realisation proof for classical nested sequents calculi.
(Goetschi and Kuznets)

2. Investigate the semantics of the logics we proposed.
I adapt modular models. (Fitting)

Thank you. Let’s discuss!
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