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Semantics: Peano arithmetics or epistemic possible worlds models
Extensions: realisation of logics below and above S4

Intuitionistic variants: Some investigations toward
» realisation theorems (Artemov/Steren and Bonelli),
> epistemic semantics (Marti and Studer),
» and arithmetical completeness (Artemov and lemhoff),

but where the modal language is restricted to the O modality.

However, intuitionistically & cannot simply be viewed as the dual of O.
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What are we doing here?

Justifying <:

We start with Artemov's treatment of the O-fragment of intuitonistic

modal logic.

O being read as provability, we propose to read < as consistency.
CA  ~  u:A  ~  uisan witness of A

Intuitionistic modal logic?

The program: represent the operational side of the intuitionistic <.

The focus: on constructive versions of modal logic.
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Formulas: Az=1|a|ANA|AVA|ADA|OA|CA
Logic CK: Intuitionistic Propositional Logic

ki: O(ADB)D>(0ADOB) A
ko: D(ADB)D(OADOB) + necessitation: A

(Wijesekera/Bierman and de Paiva/Mendler and Scheele)
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In the constructive version, we also add witness terms into the language.

CA ~ u:A ~  puisawitness of A
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Justification logic for constructive modal logic

Modal formulas: Ai=_1L|a|ANA|AVA|ADA|DA|CA

Justification formulas: A:= 1 |a|AANA|AVA|ADA|t:A|pn: A

Grammar of terms:
(t+1)
(1 U p)

ti= ¢ | x (t-1t)
o= a | txp

¢ : proof constants

x . proof variables
. application

4+ : sum

« : witness variables

* . execution
LI : disjoint witness union
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If tis a proof of AD B and s is a proof of A, then t - s is a proof of B.

Witness execution:  jko: t:(ADB)D (u:ADtxp: B)
If tis a proof of AD B and p is a witness for A, then the same model
denoted tx i is also a witness for B.

Sum and union: s:AD(s+t):A p:AD(pUv):B,...
We adopt Artemov’s + to incorporate monotonicity of reasoning, and

also transpose it on the witness side with LI.

Iterated axiom necessitation and modus ponens:
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The machinery

Justification logic can internalise its own reasoning.

Lifting Lemma:

> If Ay,..., A, Fick B, then there exists a proof term t(xq, . ..

such that, for all terms sy,...,s,
Fick 51ZAl/\.../\SnZAnDt(Sl,...,S,,)ZB

> If Ay,..., A, C ek B, then there exists a witness term
w(x1, ..., xn, B) such that, for all terms s1,...,s, and v

Fick s1 A1 A . ASy i Ap Av: CD (st ..y Sp, V)
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Correspondence

Forgetful projection: If Fjck F, then Fck F°,

o

where (-)° maps justification formulas onto modal formulas, in particular:

(t:A)° :=D0A° (pu:A)° = CA°

Can we get the converse?
l.e. can every modal logic theorem be realised by a justification theorem.

Idea:
Transform directly a Hilbert proof of a modal theorem into a Hilbert
proof of its realisation in justification logic.

Problem:
Modus ponens can create dependencies between modalities.

Standard solution:
Consider a proof of the modal theorem in a cut-free sequent calculus.
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Sequent calculus for modal logic

Sequent system LCK:

[La=a

NA=C I,B=C
NNAvB=C

L

L TAB=C
‘rANB=C

NMADB=A INNB=C
NNADB=C

oL

M= A
“orA=0A

VR ————
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1y —
rnit==-=C

= A =B
VR ————————=
= AVB

r=A I'=_8B

A\
RTT=AAB

NA=B
:) -
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) B=A
°Or,A, 0B = OA

Soundness and completeness: Fck A iff i ck= A.
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Main theorem

Realisation: If i ck A7,..., A, = C’, a modal sequent,
then there is a normal realisation Aq,... A, = C of A},..., A, = C’
such that Fjck (Al VANAN A,,) O C.
» if t: A/u: Alis a negative subformula of A;,... A, = C, then t/u is
a proof/witness variable, and all these variables are pairwise distinct.

The proof goes along the lines of that for the O-only fragment.

The operation LI on witness terms plays the same role as the operation +
on proof terms, i.e. to handle contractions of modal formulas.
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CT —— CS4
d: 0ADOA
t: (ADOCA)A(OADA)
CD CD4 CD45 4: (OOAD OA) A (DA D ODA)
5: (CADOOA) A (ODAD DA)
CK CK4 CK45

No other operation on witness terms outside execution and disjoint union.
In particular, the O-version of 4 requires the proof checker operator !

JAg:t:ADIlt:t: A
but a priori no additional operation for the <-version of 4.
Jdo n:v:ADUV A

We think that the method here could be further extended,
but we would need to prove cut-elimination for the other systems.
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Future:
1. Intuitionistic modal logic IK = constructive CK +

ky: O(AVB)D(CAVOB) kg: (CADOB)DO(ADB) ks: OLDL
No ordinary sequent calculi for such logics, but there are nested
sequent calculi for logics without axiom d. (StraBburger)

» adapt the realisation proof for classical nested sequents calculi.
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2. Investigate the semantics of the logics we proposed.
» adapt modular models. (Fitting)

Thank you. Let’s discuss!






